Problem-1.

In a single-product plant where IMPROSHARE was installed, 411 employees produced 14762 product units over a one-yesr period, and recorded 802000 clock hours. In a given week, 425 employees worked a total of 16150 hours and produced 348 units.

Q1- What would be the hourly value of this output?
Q2- What percentage bonus would each of these 425 workers receive?
Q3- What would be the unit labor cost in hours for this week's production?

Solution: (IMPROSHARE System)

Work hour standard =802000/14762 = 54.33 hrs/unit
Value of output $=348 \times 54.33=18906.84$ hrs.
Gain $=18906.84 \mathbf{- 1 6 1 5 0}=2756.84$ hrs.
Percentage bonus $=(2756.84 / 2) / 16150=8.54 \%$
Unit labor cost in hours $=[16150+(2756.84 / 2)] / 348=50.37$ Hrs/unit.

Problem-2.

Analysts eastablished a standard time of $\mathbf{0 . 0 1 2 5}$ hours/piece for machining a small component. A setup time of 0.32 hour was also established, as the operator performed the necessary setup work on incentive. Compute the following:
a. Total time allowed to complete an order of $\mathbf{8 6 0}$ pieces.
b. Operator efficiency, if job is completed in an 8 -hour day.
c. Efficiency of the operator who requires $\mathbf{1 2}$ hours to complete the job.

Solution:

Total time allowed completing an order of $\mathbf{8 6 0}$ pieces: $(\mathbf{8 6 0} \times 0.0125)+\mathbf{0 . 3 2}=\mathbf{1 1 . 0 7} \mathbf{~ h r s}$.
Operator efficiency, if job is completed in an $\mathbf{8}$ hours-day: $11.07 / 8=1.3838$
Efficiency of the operator who requires 12 hours to complete the job:11.07/12=0.9225

Problem-3.

A'one-for-one' or 100-percent participation plan for incentive payment is in operation. The operator base rate for this class of work is $\mathbf{\$ 1 0 . 4 0}$. The base rate is guaranteed. Compute:
a. Total earnings for the job at the efficiency determined in problem 2(b).
b. Hourly earnings.
c. Total earnings for the job, at the efficiency determined in problem 2(c).
d. Direct labor cost per piece from (a), excluding setup.
e. Direct labor cost per piece from (c), excluding setup.

Solution: (100\% participation plan)

Total earnings for the job at an efficiency of 1.3838 : $10.4 \times 1.3838 \times 8=\$ 115.13$
Hourly earnings $=10.4 \times 1.3838=\$ 14.39 / \mathrm{hr}$.
Total earnings for the job at an efficiency of 0.9225: $10.4 \times 12=\$ 124.8 / \mathrm{lob}$
Direct Labor cost/piece (completed in $\mathbf{8} \mathbf{h r s}$.), excluding setup:

Efficiency $=(860 \times 0.0125) / 8=1.3438$
Total Earnings $=10.4 \times 1.3438 \times 8=\$ 111.8$
Direct labor cost $=111.8 / 860=\$ 0.13 /$ unit
Direct Labor cost/piece (completed in $\mathbf{1 2} \mathbf{h r s}$.), excluding setup: ($\mathbf{1 2} \times 10.4$) / 860 $=\mathbf{\$ 0 . 1 5}$
/ job

Problem-4.

A rate of $\mathbf{0 . 4 2}$ minute per piece is set for a foreign operation. The operator works on the job for a full 8 -hour day and produces $\mathbf{1 5 0 0}$ pieces. Use a standard hour plan.
a. How many standard hours does the operator earn?
b. What is the operator's efficiency for the day?
c. If the base rate is $\mathbf{\$ 9 . 8 0}$ per hour, compute the earnings for the day?
d. What is the direct labor cost per piece at this efficiency?
e. What would be the proper piece rate (expressed in dollars) for this job, assuming that the time standard is correct?

Solution: Operator earns: $(1500 \times 0.42) / 60=10.5$ hours.
Operator's efficiency $=10.5 / 8=1.3125$
Earnings per day (Base rate is \$9.8): $9.8 \times 1.3125 \times 8=\$ 102.9$
Direct Labor cost/piece: $102.9 / 1500=\$ 0.0686$
Piece rate $\left(\mathrm{T}_{\text {std }}=0.42 \mathrm{~min} / \mathrm{unit}\right)=(9.8 \times 0.42) / 60=\$ 0.0686 /$ unit

Problem-5.

A 60-40 participation plan is used in a plant (base rate is guaranteed an operator receives 60 percent of proportional gain after exceeding 100 percent). The established time value on a certain job is 0.75 minute, and the base rate is $\$ 8.8$. What is the direct labor cost per piece when operator efficiency is:
a. 50 percent of standard?
b. 80 percent of standard?
c. 100 percent of standard?
d. 120 percent of standard?
e. 160 percent of standard?

Solution: \quad Standard Output=(8x60)/0.75=640 Units/Day
a- 50% of standard:
Total Earnings=8x8.8=\$70.4/day
Direct Labor Cost/Piece=70.4/(640x0.5)=\$0.22/piece
b- $\mathbf{8 0 \%}$ of standard:
Direct Labor Cost/Piece= 70.4/(640x0.8)= \$0.14/piece
c- $\mathbf{1 0 0 \%}$ of standard:
Direct Labor Cost/Piece= 70.4/(640x1)=0.11 \$/piece
d- $\mathbf{1 2 0 \%}$ of standard:
Total Earnings $=70.4+\mathbf{0 . 6}(8.8 \times 0.2 \times 8)=78.85 \$ /$ piece
Direct Labor Cost/Piece=78.85/(640x1.2)=0.10 \$/piece
e- 160\% of Standard:
Total Earnings $=70.4+0.6(8.8 \times 0.6 \times 8)=95.74 \$ /$ piece
Direct Labor Cost/Piece=95.74/(640x1.6)=0.09 \$/piece

