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Random-Number Generation

Random numbers are a necessary basic ingredient in the simulation of almost
all discrete systems. Most computer languages have a subroutine, object, or
function that will generate a random number. Similarly, simulation languages
generate random numbers that are used to generate event times and other ran-
dom variables. This chapter describes the generation of random numbers and

their subsequent testing for randomness. Chapter 8 shows how random num- |

bers are used to generate a random variable for many probability distributions.

7.1 Properties of Random Numbers

A sequence of random numbers, Ry, Rs, ..., must have two important statis-
tical properties, uniformity and independence. Each random number R; is an
independent sample drawn from a continuous uniform distribution between
- zero and 1. That is, the pdf is given by

f(x):{l‘ 0<x<1

0, otherwise
This density function is shown in Figure 7.1. The expected value of each R; is

given by

241
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and the variance is given by
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Figure 7.1. The pdf for random
numbers.

Some consequences of the uniformity and independence properties are the
following:

1. If the interval (0, 1) is divided into n classes, or subintervals of equal
length, the expected number of observations in each interval is N/n,
where N is the total number of observations,

2. The probability of observing a value in a particular interval is independent
of the previous values drawn.

7.2 Generation of Pseudo-Random Numbers

Notice that the title of this section has the word “pseudo” in it. “Pseudo”
means false, so false random numbers are being generated! In this instance,
“pseudo” is used to imply that the very act of generating random numbers by

1. The generated numbers may not be uniformly distributed.

2. The generated numbers may be discrete-valued instead of continuous-
valued.

3. The mean of the generated numbers may be too high or too low.
4. The variance of the generated numbers may be too high or too low,
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5. There may be dependence. The following are examples:

(a) Autocorrelation between numbers.
(b) Numbers successively higher or lower than adjacent numbers. ’

(¢c) Several numbers above the mean followed by several numbers below
the mean, :

Departures from uniformity and independence for a particular generation
scheme may be detected by tests such as those described in Section 7.4. If
such departures are detected, the generation scheme should be dropped in fa-
vor of an acceptable generator. Generators that pass all the tests in Section 7 4,
and even more stringent tests, have been developed; thus, there is no excuse
for using a generator that has been found to be deficient.

Usually, random numbers are generated by a digital computer as part of
the simulation. Numerous methods can be used to generate the values. In
selecting among these methods, or routines, there are a number of important |
considerations; ;

2. The routine should be portable to different Computers, and ideally to
different programming languages. This is desirable so that the simulation
program produces the same results wherever it is executed.

3. The routine should have a sufficiently long cycle. The cycle length, or
period, represents the length of the random-number sequence before
previous numbers begin to repeat themselves in an earlier order. Thus, if
10,000 events are to be generated, the period should be many times that
long.

A special case of cycling is degenerating. A routine degenerates when the
same random numbers appear repeatedly. Such an occurrence js certainly
unacceptable. This can happen rapidly with some methods. '

4. The random numbers should be replicable. Given the starting point (or

5. Most important, and as indicated previously, the generated random num-
bers should closely approximate the idea] statistical properties of unifor-
mity and independence. :
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Inventing techniques that seem to generate random numbers is easy; inventing
techniques that really do produce sequences that appear to be independent, |
uniformly distributed random numbers is incredibly difficult. There is now a
vast literature and a rich theory on the topic,-and many hours of testing have
been devoted to establishing the properties of various generators. Even when
a technique is known to be theoretically sound, it is seldom easy to implement
it in a way that will be fast and portable. Therefore, this chapter aims to make
the reader aware of the central issues in random-variate generation in order to
enhance understanding and to show some of the techniques that are used by
those working in this area.

7.3 Techniques for Generating Random Numbers

The linear congruential method of Section 7.3.1 is the most widely used tech-
nique for generating random numbers, so we describe it in detail. We also
report an extension of this method that yields sequences with a longer period.
Many other methods have been proposed, and they are reviewed in Bratley,
Fox, and Schrage [1987], Law and Kelton [2000], and Ripley [1987].

7.3.1 Linear Congruential Method

The linear congruential method, initially proposed by Lehmer [1951], produces
a sequence of integers, Xy, X5, ... between zero and m — 1 according to the
following recursive relationship:

Xiy1 = (@X; + comodm, | = 0,1,2,... (7.1

The initial value X, is called the seed, a is called the constant multiplier, ¢ is
the increment, and m is the modulus, Ifc#0in Equation (7.1), the form is
called the mixed congruential method. When ¢ — 0, the form is known as the
multiplicative congruential method. The selection of the values for a, ¢, m ,and
Xo drastically affects the statistical properties and the cycle length. Variations
of Equation (7.1) are quite common in the computer generation of random
- numbers. An example will illustrate how this technique operates.

ExamriE 7.1

Use the linear congruential method to generate a sequence of random numbers
with Xg = 27,4 = 17,¢c = 43, and m = 100. Here, the integer values
generated will all be between zero and 99 because of the value of the modulus.
Also, notice that random integers are being generated rather than random
numbers. These random integers should appear to be uniformly distributed on
the integers zero to 99. Random numbers between zero and 1 can be generated
by
X;

Ri = —, i =1,2,... (7.2)
m
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The sequence of X; and subsequent R; values is computed as follows:

Xo = 27 ,
X1 = (17 - 27 + 43) mod 100 = 502 mod 100 = 2
5 ,
R = — = 0.02
1= 700 0
X2 = (17-2+43)mod 100 = 77 mod 100 = 77
77
Ry, = 166 = (.77
*[3pt]Xs = (17 - 77 + 43) mod 100 = 1352 mod 100 = 52
52
R3 = — = 052
= 100 2

Recall that @ = b mod m provided that (a — b) is divisible by m with no
remainder. Thus, X; = 502 mod 100, but 502/100 equals 5 with a remainder
of 2, so that X; = 2. In other words, (502 — 2) is evenly divisible by m = 100,
50 X3 = 502 “reduces” to X; = 2 mod 100. (A shortcut for the modulo,
or reduction operation for the case m = 10%, a power of 10, is illustrated in
Example 7.3.) |

The ultimate test of the linear congruential method, as of any generation
scheme, is how closely the generated numbers R;, R,, ... approximate uni-
formity and independence. There are, however, several secondary properties
which must be considered. These include maximum density and maximum
period.

First, notice that the numbers generated from Equation (7.2) can only
assume values from the set I = {0,1/m,2/m, ..., (m — 1)/m}, since each X;
is an integer in the set {0, 1,2, ... ,m — 1}. Thus, each R; is discrete on /,
instead of continuous on the interval [0, 1]. This approximation appears to
be of little consequence, provided that the modulus m is a very large integer.
(Values such as m = 23! — 1 and m = 2 are in common use in generators
appearing in many simulation languages.) By maximum density is meant that
the values assumed by R;,i = 1,2, ..., leave no large gaps on [0, 1].

Second, to help achieve maximum density, and to avoid cycling (i.e., re-
currence of the same sequence of generated numbers) in practical applications,
the generator should have the largest possible period. Maximal period can
be achieved by the proper choice of a, ¢, m, and X, [Fishman, 1978; Law and
Kelton, 2000].

e For m a power of 2, say m = 22, and ¢ # 0, the longest possible period
is P = m = 2%, which is achieved provided that c¢ is relatively prime to
m (that is, the greatest common factor of ¢ and m is 1),and a = 1 + 4k,
where £ is an integer.
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e For m a power of 2, say m = 2% and ¢ = 0, the longest possible period
is P=m/4 = 25=2 which is achieved provided that the seed Xy is odd
and the multiplier, q, is givenbya =3+8org =35 + 8k, for some
k=0,1,.... -

e Form aprime numberand ¢ = 0, the longest possible periodis P = m—1,
which is achieved provided that the multiplier, a, has the property that
the smallest integer k such that a* — 1 is divisibleby mis k =m — 1.

EXAMPLE 7.2

Using the multiplicative congruential method, find the period of the generator
fora = 13,m = 26 — 64, and Xy = 1,2, 3, and 4. The solution is given in
Table 7.1. When the seed is 1 and 3, the sequence has period 16. However, a
period of length eight is achieved when the seed is 2 and a period of length four
occurs when the seed is 4. <

InExample 7.2,m =26 = 64 and ¢ = 0. The maximal period is therefore
P = m/4 = 16. Notice that this period is achieved using odd seeds Xo=1
and Xy = 3, but even seeds, Xo = 2 and X, = 4, yield periods of eight and
four, both less than the maximum, Notice that a = 13 is of the form 5 + 8k
with k = 1, as required to achieve maximal period.

When Xy, = 1, the generated Séquence assumes values from the set
{1,5,9,13, ..., 53,57, 61}. The “gaps” in the sequence of generated random
numbers, R;, are quite large (i.e., the gap is 5/64 — 1/64 or 0.0625). Such a gap
gives rise to concern about the density of the generated sequence.

Table 7.1. Period Determination

Using Various Seeds

0 1 2 3 4
1 43 2% 3 s
2 4l 18 59 36
3 21 42 6
4 17 34 51 4
5 20 58 23
6 57 50 43
737 10 47
8 33 2 35
9 45 7

10 9 27

1 53 31

12 49 19

13 61 55

4 25 11

15 15

16 1 3
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The generator in Example 7.2 is not viable for any application—its period
is too short, and its density is insufficiently low. However, the example shows
the importance of properly choosing a, ¢, m, and Xj.

Speed and efficiency in using the generator on a digital computer are alsoa
selection consideration. Speed and efficiency are aided by use of a modulus, m,
whichis either a power of 2 or close to a power of 2. Since most di gital computers
use a binary representation of numbers, the modulo, or remaindering, operation

*of Equation (7.1) can be conducted efficiently when the modulo is a power of
2 (i.e., m = 2%). After ordinary arithmetic yields a value for aX; + c, X;41 is
obtained by dropping the leftmost binary digits in aX; + ¢ and then using only
the b rightmost binary digits. The following example illustrates, by analogy,
this operation using m = 10%, because most human beings think in decimal
representation.

ExAmPLE 7.3

Letm =10 =100, a = 19, ¢ = 0, and X, = 63, and generate a sequence of
random integers using Equation (7.1).

Xo = 63

X1 = (19)(63) mod 100 = 1197 mod 100 = 97
X2 = (19)(97) mod 100 = 1843 mod 100 = 43
X3 = (19)(43) mod 100 = 817 mod 100 = 17

When m is a power of 10, say m = 10%, the modulo operation is ac-
complished by saving the b rightmost (decimal) digits. By analogy, the mod-
ulo operation is most efficient for binary computers when m = 2° for some
b>0. |

ExampLE 7.4

The last example in this section is in actual use. It has been extensively tested

- [Learmonth and Lewis, 1973; Lewis et al., 1969]. The valuesfor a, ¢, and m have
been selected to ensure that the characteristics desired in a generator are most
likely to be achieved. By changing Xy, the user can control the repeatability of
the stream. -

Leta = 7° = 16,807, m = 231—1 = 2,147,483 647 (a prime number), and
¢ = 0. These choices satisfy the conditions that insure a periodof P =m — 1
(well over 2 billion). Further, specify a seed, Xg = 123,457. The first few
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numbers generated are as follows:

X1 = 7°(123,457) mod (23! — 1) = 2,074,941,799 mod (23! — 1)
X1 = 2,074,941,799
Xy
Ry = = 0.9662 |
X, = 7°(2,074,941,799) mod 2! - 1) = 559,872,160

X
R, = 22 = 0.2607

931
X3 = 7°(559,872,160) mod (23! — 1) = 1,645,535,613
X3
R3 = = 0.7662

Notice that this routine divides by m + 1 instead of m; however, for such
a large value of m, the effect is negligible. <

7.3.2 Combined Linear Congruential Generators

As computing power has increased, the complexity of the systems that we are
able to simulate has also increased. A random-number generator with period
2’1 —1 2 2 x 10, such as the popular generator described in Example 7.4, is no
longer adequate for all applications. Examples include the simulation of highly
reliable systems, in which hundreds of thousands of elementry events must be
simulated to observe even a single failure event; and the simulation of complex
computer networks, in which thousands of users are executing hundreds of
programs. An area of current research is deriving generators with substantially
longer periods. '

One fruitful approach is to combine two or more multiplicative congruen-
tial generators in such a way that the combined generator has good statistical
properties and a longer period. The following result from L’Ecuyer [1988]
suggests how this can be done: : :

Wi, Wia,..., W, r are any independent, discrete-valued random variables
(not necessarily identically distributed), but one of them, say W; 1, is uniformly
distributed on the integers 0 to my — 2, then

k
W, = (ZW,,) modrr;; -1

j=t

is uniformly distributed on the integers 0 to my — 2.
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To see how this result can be used to form combined generators, let
Xi1, Xi2,..., X; x be the ith output from k different multiplicative congru-
ential generators, where the jth generator has prime modulus m;, and the
multiplier a; is chosen so that the period is m j — 1. Then the jth generator is
producing integers X; ; that are approximately uniformly distributed on 1 to
mj —1,and W;; = X; ; — 1 is approximately uniformly distributed on 0 to
m; — 2. L’Ecuyer [1988] therefore suggests combined generators of the form

k
X,' = (Z(—-l)f‘”lX,-,j mod m; —1

Jj=1
with X
. --i, X,' > 0
R ={™
-1
_ my X, =0
my

Notice that the “(—1)/~1” coefficient implicitly performs the subtraction X i1—
1; for example, if k¥ = 2, then (-1)°(Xi; — 1) — (=1)'(X;s — 1)
=Y (=X, ),

The maximum possible period for such a generator is

pm—Dm -1 (m -1
- k-1

which is achieved by the following generator:

ExXAMPLE 7.5

For 32-bit computers, L’Ecuyer [1988] suggests combining k = 2 generators
with m; = 2147483563, a; = 40014, m, = 2147483399, and a; = 40692. This

leads to the following algorithm:

1. Select seed X1 in the range [1,2147483562] for the first generator, and
seed X3¢ in the range [1, 2147483398].
Set j =0.

2. Evaluate each individual generator.

X1,j+1 = 40014X; ; mod 2147483563
X2.j41 = 40692X, ; mod 2147483399

3. Set :
Xj+1 = (Xl,j-i-l - Xz,j+1) mod _21474835_62

4. Return
X '
—ar ¥
2147483563° 1 > 0
2147483562
2147483563’

Rjy1 =
Xjy1 =10
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5. Set j = j + 1 and go to step 2.

This combined generator has period (m; — 1)(m; — 1)/2 =~ 2 x 108, Perhaps
surprisingly, even such a long period may not be adequate for all applications.
See L’Ecuyer [1996, 1999] for combined generators with periods as long as
21 % 3 % 1057, |

7.4 Tests for Random Nﬁmbers '

The desirable properties of random numbers — uniformity and independence
— were discussed in Section 7.1. To insure that these desirable properties are
achieved, a number of tests can be performed (fortunately, the appropriate tests
have already been conducted for most commercial simulation software). The
tests can be placed in two categories according to the properties of interest.
The first entry in the list below concerns testing for uniformity. The second
through fifth entries concern testing for independence. The five types of tests
discussed in this chapter are as follows: |

—4. Frequency test. Uses the Kolmogorov-Smirnov or the chi-square test to
compare the distribution of the set of numbers generated to a uniform
distribution.

2. Runs test. Tests the runs up and down or the runs above and below the
mean by comparing the actual values to expected values. The statistic for
comparison is the chi-square.

3. Autocorrelation test. Tests the correlation between numbers and corq-
pares the sample correlation to the expected correlation of zero.

4. Gap test. Counts the number of digits that appear between repetitions of
a particular digit and then uses the Kolmogorov-Smirnov test to compare
with the expected size of gaps.

5. Poker test. Treats numbers grouped together as a poker hand. Then the
hands obtained are compared to what is expected using the chi-square
test. '

In testing for uniformity, the hypotheses are as follows:
HQZ R; ~ U[O, 1]
Hi: R; # U[0, 1]

The null hypothesis, Hy, reads that the numbers are distributed uniformly on
the interval [0, 1]. Failure to reject the null hypothesis means that no evidence
of nonuniformity has been detected on the basis of this test. This does not
imply that further testing of the generator for uniformity is unnecessary.

In testing for independence, the hypotheses are as follows:

Hy: R; ~ independently
Hy: R; # independently
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This null hypothesis, Hy, reads that the numbers are independent. Failure
to reject the null hypothesis means that no evidence of dependence has been
detected on the basis of this test. This does not imply that further testing of the
generator for independence is unnecessary.

For each test, a level of significance o must be stated. The level o is the
probability of rejecting the null hypothesis given that the null hypothesis is true,
or .

a = P(reject Hy|Hy true)

The decision maker sets the value of « for any test. Frequently, « is set to 0.01
or 0.05.

If several tests are conducted on the same set of numbers, the probability
of rejecting the null hypothesis on at least one test, by chance alone [i.e., making
a Type I (@) error], increases.  Say that o = 0.05 and that five different tests
are conducted on a sequence of numbers. The probability of rejecting the null
hypothesis on at least one test, by chance alone, may be as large as 0.25.

Similarly, if one test is conducted on many sets of numbers from a gen-
erator, the probability of rejecting the null hypothesis on at least one test by
chance alone [i.e., making a Type I («) error], increases as more sets of numbers
are tested. For instance, if 100 sets of numbers were subjected to the test, with
a = 0.05, it would be expected that five of those tests would be rejected by
chance alone. If the number of rejections in 100 tests is close to 100a, then
there is no compelling reason to discard the generator. The concept discussed
in this and the preceding paragraph is discussed further at the conclusion of
Example 7.12.

If one of the well-known simulation languages or random-number gen-
erators is used, it is probably unnecessary to use the tests mentioned above
and described in Sections 7.4.1 through 7.4.5. (However, a generator such
as RANDU, distributed by IBM in the late 1960s and still available on some
computers, has been found unreliable due to autocorrelation among triplets of
random numbers.) If a new method has been developed, or if the generator
that is at hand is not explicitly known or documented, then the tests in this
chapter should be applied to many samples of numbers from the generator.
Some additional tests that are commonly used, but are not covered here, are

" Good’s serial test for sampling numbers [1953, 1967], the median-spectrum test

[Cox and Lewis, 1966; Durbin, 1967}, and a variance heterogeneity test [Cox
and Lewis, 1966]. Even if a set of numbers passes all the tests, it is no guaran-
tee of randomness. It is always possible that some underlying pattern will go
undetected. |

In this book we emphasize empirical tests that are applied to actual se-
quences of numbers produced by a generator. There are also families of theo-
retical tests that evaluate the choices for m, a , and ¢ without actually generating
any numbers, the most common being the spectral test. Many of these tests as-
sess how k-tuples of random numbers fill up a k-dimensional unit cube. These
tests are beyond the scope of this book; see, for instance, Ripley [1987]. |
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In the examples of tests that follow, the hypotheses are not restated. The
hypotheses are as indicated in the paragraphs above,

-

7.4.1 Frequency Tests

A basic test that should always be performed to validate a new generator is the
test of uniformity. Two different methods of testing are available. They are
the Kolmogorov-Smirnov and the chi-square test. Both of these tests measure
the degree of agreement between the distribution of a sample of generated ran-
dom numbers and the theoretical uniform distribution. Both tests are based on
the null hypothesis of no significant difference between the sample distribution
and the theoretical distribution.

1. The Kolmogorov-Smirnov test. This test compares the continuous cdf,
F(x), of the uniform distribution to the empirical cdf, Sy (x), of the sample of

N observations. By definition,

Fx)=x, 0<x<1

If the sample from the random-pumber generator is Ry, R,, ..., Ry, then the
empirical cdf, Sy (x), is defined by
number of Ry, R,, ..., Ry which are <x
Sw(x) = ' N

As N becomes larger, Sy(x) should become a better approximation to F(x),
provided that the null hypothesis is true.

In Section 5.6, empirical distributions were described. The cdf of an
empirical distribution is a step function with jumps at each observed value, -
This behavior was illustrated by Example 5.34.

The Kolmogorov-Smirnov test is based on the largest absolute deviation
between F(x) and Sy(x) over the range of the random variable. That is, it is
based on the statistic

D = max|F(x) — Sy(x)| ' (7.3)

The sampling distribution of D is known and is tabulated as a function of N in
Table A.8. For testing against a uniform cdf, the test procedure follows these
steps: '

Step 1. Rank the data from smallest to largest. Let R denote the ith
smallest observation, so that '
Ry < Rp < -+ < Ry

Step 2. Compute

. i
D “:’é}i’%{z\r Ry

"

D-

li

i —1
max y Rjy — ———
lsisw{ © N }
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Step 3. Compute D = max(D*, D).
Step 4. Determine the critical value, D,, from Table A.8 for the specified
significance level o and the given sample size N.

- Step 5. If the sample statistic D is greater than the critical value, D, , the null
hypothesis that the data are a sample from'a uniform distribution is rejected.
If D < D,, conclude that no difference has been detected between the true
distribution of {Ry, R,, ... , Ry} and the uniform distribution.

EXAMPLE 7.6

Suppose that the five numbers 0.44,0.81,0.14, 0.05, 0.93 were generated, and it
is desired to perform a test for uniformity using the Kolmogorov-Smirnov test
with a level of significance o of 0.05. First, the numbers must be ranked from
smallest to largest. The calculations can be facilitated by use of Table 7.2. The
top row lists the numbers from smallest (R() to largest (R(s)). The computa-
tions for D, namely i /N — R(),andfor D™, namely Ry, — (i —1)/N, are easily
accomplished using Table 7.2. The statistics are computed as Dt = 0,26 and
D™ = 0.21. Therefore, D = max{0.26, 0.21} = 0.26. The critical value of D,
obtained from Table A.8 for « = 0.05 and N = 3, is 0.565. Since the computed
value, 0.26, is less than the tabulated critical value, 0.565, the hypothesis of no
difference between the distribution of the generated numbers and the uniform
distribution is not rejected.

. i Y
{ :
Table 7.2. Calculations for
Kolmogorov-Smirnov Test

Rg) 005 014 044 081 093 ,
i/N 020 040 060 080 1.00
li/N}- R 015 026 016 — 007
Ro—G-1)/N 005 — 004 021 013

The calculations in Table 7.2 are illustrated in Figure 7.2, where the em-
pirical cdf, Sy(x), is compared to the uniform cdf, F(x). It can be seen
that D7 is the largest deviation of Sy(x) above F(x), and that D~ is the
largest deviation of Sy(x) below F (x). For example, at Rz the value of
D* is given by 3/5 — Rz = 0.60 — 0.44 = 0.16 and of D~ is ‘given by
R —2/5 = 0.44 — 0.40 = 0.04. Although the test statistic D is defined
by Equation (7.3) as the maximum deviation over all x, it can be seen from
Figure 7.2 that the maximum deviation will always occur at one of the jump
points Ra), R, . .., and thus the deviation at other values of x need not be
considered. <

2. The chi-square test. The chi-square test uses the sample statistic

n
(0i — E;)?
6=y GBS
i =1 L .
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Figure 7.2. Comparison of F(x) and Sy(x).

where O; is the observed number in the ith class, E; is the expected number in
the ith class, and # is the number of classes. For the uniform distribution, E;,
the expected number in each class is given by ‘

N
Ei = —
n

for equally spaced classes, where N is the total number of observations. It can
be shown that the sampling distribution of x2 is approximately the chi-square
distribution with n — 1 degrees of freedom. '

ExampLE 7.7

Use the chi-square test with o = 0.05 to test whether the data shown below are

uniformly distributed. Table 7.3 contains the essential computations. The test

uses n = 10 intervals of equal length, namely [0, 0.1), [0.1,0.2), ..., [0.9, 1.0).
A 2

The value of xC is 3.4, This is compared with the critical value Xooso =169,

Since xZ is much smaller than the tabulated value of X3 0s.o» the null hypothesis
of a uniform distribution is not rejected, . R
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034 090 025 089 087 044 01 021 046 0.67
083 076 079 064 070 o081 0.94 074 032 074
096 099 077 067 056 041 052 073 099 0.02
047 030 017 032 036 ogs 035 031 078 ols.
079 071 023 019 08 033 05 of 039 042
099 017 099 046 005 0.66 010 042 018 049
037 051 054 001 081 028 069 034 (75 0.49
072 043 056 097 030 094 096 058 073 0.05
0.06. 039 0.84 024 040 0.4 0.40 019 079 0.62
0.18 026 097 088 064 047 060 011 029 078 <

Different authors have offered considerations concerning the application
of the x?2 test. In the application to a data set the size of that in Example 7.7,
the considerations do not apply. That is, if 100 values are in the sample and
from 5 to 10 intervals of equal length are used, the test will be acceptable. In
general, it is recommended that n and N be chosen so that each E; > 5.
Both the Kolmogorov-Smirnov and the chi-square test are acceptable for
testing the uniformity of a sample of data, provided that the sample size is large.
“However, the Kolmogorov-Smirnoy test js the more powerful of the two and is
-recommended. Furthermore,‘the Kolmogorov-Smirnov test can be applied to
small sample sizes, whereas the chi-square is valid only for large samples, say
N > 50.

Table 7.3. Computations for Chi-Square Test

2
Interval 0; E; 0; — E; {(O; — E;)z M
- b 1 8 10 4 0.4
2 8 10 2 4 0.4
3 10 10 0 0 0.0
4 9 10 1 0.1
5 12 10 2 4 0.4
6 8§ 10 2 4 0.4
7 10 10 0 0 0.0
8 14 10 4 16 1.6
9 10 10. 0 0 0.0
10 11 10 1 1 0.1
100 100 3§ 34
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7.4.2 Runs Tests

1. Runs up and runs down. Consider a generator that provxded a set of 40
numbers in the following sequence:

-

—

0.08 0.09 ‘0.23 029 042 055 058 0.72 0.89 091
0.11 0.16 0.18 031 041 053 071 073 074 0.84
0.02 0.09 030 032 045 047 069 074 091 , 095
012 0.13 029 036 038 054 068 0.86 0.88 091

Both the Kolmogorov-Smirnov test and the chi-square test would indicate that
the numbers are uniformly distributed. However, a glance at the ordering
shows that the numbers are successively larger in blocks of 10 values. If these
numbers are rearranged as follows, there is far less reason to doubt their inde-
pendence:

041 068 0.89 084 074 091 055 071 036 030
009 072 0.86 0.08 054 002 011 029 0.16 0.18
0.88 091 .095 069 0.09 038 023 032 091 053
031 042 073 012 074 045 0.13 047 058 029

‘The runs test examines the arrangement of numbers in a sequence to test the
hypothesis of independence. T

Before defining a run, a look at a sequence of coin tosses will help with
some terminology. Consider the following sequence generated by tossing a

coin 10 times:
HTTHHTTTHT

There are three mutually exclusive outcomes, or events, with respect to the
sequence. Two of the possibilities are rather obvious. That is, the toss can
result in a head or a tail. The third possibility is “no event.” The first head is
preceded by no event and the last tail is succeeded by no event. Every sequence
begins and ends with no event.

A run is defined as a succession of similar events preceded and followed
by a different event. The length of the run is the number of events that occur
in the run. In the coin-flipping example above there are six runs. The first run
is of length one, the second and third of length two, the fourth of length three,
and the fifth and sixth of length one.

There are two possible concerns in a runs test for a sequence of numbers.
The number of runs is the first concern and the length of runs is a second
concern. The types of runs counted in the first case might be runs up and
runs down. An up run is a sequence of numbers each of which is succeeded
by a larger number. Similarly, a down run is a sequence of numbers each of
which is succeeded by a smaller number. To illustrate the concept, consider the
following sequence of 15 numbers

"0.87 +0.15 “*‘0.23 *'0.45 “‘0.-69 —0.32 030 *0.19 "0.24
T0.18 *0.65 *0.82 093 *022 081
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The numbers are givena “+” ora “—» depending on whether they are followed
by a larger number or a smaller number. Since there are 15 numbers, and they
are all different, there will be 14 +’s and —’s. The last number js followed
by “no event” and hence will get neither a + nor a —. The sequence of 14 +’s
and —’s is as follows: -

—+++—-~+~+++~7+

Each succession of +’s and —’s forms a run. There are eight runs. The first run
is of length one, the second and third are of length three, and so on. Further,
there are four runs up and four runs down.

There can be too few runs or too many runs. Consider the following
sequence of numbers:

008 018 023 036 042 055 063 072 0.89 0091

This sequence has one run, a run up. Itis unli'kely that a valid random-number
generator would produce such a sequence. Next, consider the following se-
quence:

0.08 093 015 096 0.26 0.84 0.28 0.79 036 0.57

This sequence has nine runs, five up and four down. Itis unlikely that a sequence
of 10numbers would have this manyruns. Whatis more likely is that the number
of runs will be somewhere between the two extremes. These two extremes can
be formalized as follows: if N is the number of numbers in a ‘sequence, the
maximum number of runsis N — 1 and the minimum number of runs is one.

If a is the total number of runs in a truly random sequence, the mean and
variance of a are given by

2N - 1
Hg = 3 (74)
- and
16N — 29
0? = 50 (7.5)

For N > 20, the distribution of ¢ is reasonably approximated by a normal dis-
tribution, N (i, orf) . This approximation can be used to test the independence
of numbers from a generator. In that case the standardized normal test statistic
is developed by subtracting the mean from the observed number of runs, a, and
dividing by the standard deviation. That is, the test statisticis

d—-‘/{La
Oq

Zy =

Substituting Equation (7.4) for u, and the Square root of Equation (7.5) for o,
yields
_ a—[@N - 1)/3]
"7 TN =295




272 Chap.7 Random-Number Generation

where Zy ~ N(0, 1). Failure to reject the hypothesis of independence occurs
when ~z,, < Z; < Za72, Where « is the level of significance. The critical
values and rejection region are shown in Figure 7.3.

-

al2 ‘ al2

ya

T2tz Zar2

L(———— Fail to reject —~—4

Figure 7.3. Failure to reject hypothesis.

ExaAmPLE 7.8

Based on runs up and runs down, determine whether the following sequence of
40 numbers is such that the hypothesis of independence can be rejected where
a = 0.05. '

041 068 089 094 074 091 055 062 036 027
019 072 075 008 054 0.02 001 036 0.16 028
018 001 095 069 018 047 023 032 085 053
031 042 073 004 083 045 013 057 063 029

The sequence of runs up and down is as follows:

.w‘/l +

S e T
T T R S
There are 26 runs in this sequence. With N = 40 and a = 26, Equations (7.4)
and (7.5) yield

2(40) —
he = 280 -1 s
3 .
and 16(40) — 29
(40) —
a; = 50— =679
Then,
26 — 26.33
Zo= 2263 _ 1
/6.79
Now, the critical value is Zo.025 = 1.96, so the independence of the numbers
cannot be rejected on the basis of this test. <

2. Runs above and below the mean. The test for runs up and runs down
is not completely adequate to assess the independence of a group of numbers.
Consider the following 40 numbers:
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063 072 0.79 081 052 094 083 093 087 0.67
0.54 083 0.89 055 088 0.77 074 095 082 086
043 032 036 0.8 008 019 018 027 036 0.34
031 045 049 043 046 035 025 039 047 041

The sequence of runs up and runs down is as follows:

This sequence is exactly the same as that in Example 7.8. Thus, the numbers
would pass the runs-up and runs-down test. However, it can be observed that
the first 20 numbers are all above the mean [(0.99 + 0.00)/2 = 0.495] and the
last 20 numbers are all below the mean. Such an occurrence is highly unlikely.
The previous runs analysis can be used to test for this condition, if the definition
of a run is changed. Runs will be described as being above the mean or below
the mean. A “4.” sign will be used to denote an observation above the mean,
and a “~” sign will denote an observation below the mean. ‘
For example, consider the following sequence of 20 two-digit random
numbers: :

040 084 075 018 013 0.92 057 077 030 0.71
042 005 078 074 068 0.03 0.18 051 010 0.37

The pluses and minuses are as follows:

~—+.+-~-+++-,+—,-——+++-,-_—-+-—~—

In this case, there is a run of lepgth one below the mean followed by a run

N = ny + n,, and the minimum number of runs is one. Given ny and n,, the
mean—with a continuity correction suggested by Swed and Eisenhart [1943]
—and the variance of b for a truly independent sequence are given by

2n1n2 1
= - 7.6
J75 v T 5 (7.6)
and
02 = 2111)12(2)21722 - N) (7'7)

N2(N - 1)

For either n; or n, greater than 20, b is approximately normally distributed.
The test statistic can be formed by subtracting the mean from the number of
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runs and dividing by the standard deviation, or
b — (2niny/N) — 1/2
[27!1?12(2721)12 = N) :] 1/2

Zy =

N2(N — 1)

Failure to reject the hypothesis of independence occurs when —Zas2°< Zp <
Zas2, Where o is the level of significance. The rejection region is shown in
Figure 7.3

EXAMPLE 7.9

Determine whether there is an excessive number of runs above or below the
mean for the sequence of numbers given in Example 7.8. The assignment of
+’s and —’s results in the following:

—

-

- 4+ + —
- + - - + + -

—

+ + + + - - -

| + - + - -
-+ + - - + - 4

4
-+

The values of ny, n,, and b are as follows:

np =18 ¥

nyg =227

N =ny +ny = 40
b =17

Equations (7.6) and (7.7) are used to determine b and o} as follows:

2(18)(22) 1
b = T -+ -2- = 20.3

and
o2 — 2(18)(22)[(2)(18)(22) — 40]
b a———

(40)2(40 — 1)

Since n, is greater than 20, the normal approximation is acceptable, resulting
in a Zy value of

= 9.54

7 - 17 - 20.3 _
X7

Since zg.ps = 1.96, the hypothesis of independence cannot be rejected

on the basis of this test. : <

3. Runs test: length of runs. Yet another concern is the length of runs. As
an example of what might occur, consider the following sequence of numbers:

0.16, 0.27, 0.58, 0.63, 0.45, 0.21, 0.72, 0.87, 0.27, 0.15, 0.92, 0.85, ...

Assume that this sequence continues in a like fashion: two numbers below the
mean followed by two numbers above the mean. A test of runs above and

. -
A e ermm st i et e oo+
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below the mean would detect no departure from independence. However, it is
to be expected that runs other than of length two should occur.,

Let ¥; be the number of runs of length i in a sequence of N numbers.
For an independent sequence, the expected value of ¥; for runs up and down
. Is given by

g —_ .2 . _ .3 .2_. . N _
E(Y) = G V3 +D) ~ @C+3%-i-4)], i < N -2 (7.8)
2 .
E®) ==, i=N-1 (7.9)

For runs above and below the mean, the expected value of Y is approximately
given by "

N w;
EY) = —, N >2 7.10
where w;, the'approximate probability that a run has length i, is given by
ni\: /n; ni\ /na2\?¢
v=G) @@ G o o
and where E([), the approximate expected length of a rum, is given by
ED =242 No 2 (7.12)
na n :

The approximate expected total number of runs (of all lengths) in a sequence
of length N, E(A), is given by

N
E(4) = 5 N> 2 (7.13)

The appropriate test is the chi-square test with O; being the observed number
of runs of length ;. Then the test statistic is

L 2
2 _ [0 - E(¥]
o= Z; E(Y)
where L = N—1 forruns upanddownand L = N for runs above and below the
mean. If the null hypothesis of independence is true, then xZ is approximately
chi-square distributed with 1 — 1 degrees of freedom.

ExAampLE 7.10 -

Given the fo!lowing sequence of numbers, can the hypothesis that the numbers
are independent be rejected on the basis of the length of runs up and down at
a =0.05? T
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030 048 036 0.01 054 0.34 096 006 0.61 085
048 086 014 086 0.89 0.37 049 060 004 083
042 083 037 ‘021 090 0.89 091 079 0.57 0.99
095 027 041 081 009 031 G.09 006 023 077
0.73 047 013 055 011 0.75 036 025 023 072
060 0.84 070 030 0.26 038 005 019 073 044

For this sequence the +’s and ~’s are as follows:

+-~—+.~_+—++‘—--i——++-—++-+‘
f+~r—+~+-~+~~+++~~~++
-—-—~+-—+--—-+—-+—~-——-+-++-
The length of runs in the sequence is as follows:
1.) 21 317,19 1’ 1! 2’ 1) 1! 1;!; 2’ " * 1,7-1) ey " 2‘) 1) 19
1,2,1,2,3,3,2,3,1,1; 1 1,2,1

.

The number of observed runs of each length is as follows:

Run Length, 1 2
Observed Runs, O, 26 ¢

1,2 1,1
1,3,1,1,1,3,1,
h

3
5

The expected numbers of runs of lengths one, two, and three are computed
from Equation (7.8) as

2 \
E(f) = =[60(1 +3 + 1) — 1+3-1-4)]
= 25.08

2 ~ |
E() = 5604 +6+1) — 8+ 122 ]
= 10.77

E;) = 62-'-[60(9 O+ 1) — (274273 — g

The mean total number of runs (up and down) is given by Equation (7.4) as
2 -
a = (60; 1 = 39.67

Thus far, the E(Y) fori =1, 2, and 3 total 38.89. The expected number of
runs of length 4 or more is the difference y, — }:?zl E(Y;), or 0.78.
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Table 74. Length of Runs Up and Down: x2 Test

Run Observed Number  Expected Number [0i — E(Y)P
Length, i of Runs, O; of Runs, E(Y;) E(Y)
1 26 25.08 0.03
2 9 10.77
>3 . 5}14 3‘82}14.59 }0.02
40 39.67 0.05
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it can be combined with the expected frequency in an adjacent class interval. -
The corresponding observed frequencies would then be combined also, and L
would be reduced by one. With the foregoing calculations and procedures in
mind, we construct Table 7.4. The critical value X&OS,I is 3.84. (The degrees of

freedom equals the number of class intervals minus one.) Since x2 = 0.05 is
less than the critical value, the hypothesis of independence cannot be rejected
on the basis of this test. <

ExampLE 7.11

Given the same sequence of numbers in Example 7.10, can the hypothesis that
the numbers are independent be rejected on the basis of the length of runs
above and below the mean at « = 0.05? For this sequence, the +’s and —’s
are as follows:

e e S S SRV
S e . S S S S . [T,
S S e S I
The number of runs of each length is as follows:

Run Length, i 1 2 3 >4

Observed Runs, O; 17 9 1 5

There are 28 values above the mean (n1 = 28) and 32 values below the mean
(n2 = 32). The probabilities of runs of various lengths, w;, are determined
from Equation (7.11) as :

28\1'32 28 /32\!
28\232 28 /32\2
= | — —_— — -] =024
w2 (60) 60+60(60) 0.249
28\332 28 /32\3
w3 = (@) '6‘64-“6(66) = (.125
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The expected length of a run, E(7), is determined from Equation (7.12) as

28 32
E{l) = ) + B = 2.02

Now, Equation (7.10) can be used to determine the expected numbers of runs
of various lengths as

49
E(Y,) = -6-9-%90_2_@ ~ 14.79

60(0.249)
2.02
60(0.125)

2.02 _
The total number of runs expected is given by Equation (7.13) as E(A) =60/2.02
=29.7. This indicates that approximately 3.8 runs of length four or more can be

expected. Proceeding by combining adjacent cells in which E(Y;) < 5 produces
Table 7.5. ' '

E(Y,) = = 7.40

EW;) = = 3.71

Table 7.5. Length of Runs Above and Below the Mean: x? Test

Run Observed Number  Expected Number  [0; — E(Y;)]
Length, i of Runs, 0 of Runs, E(Y;) E(Y)
1 17 14.79 0.33
2 9 7.40 0.35
3 1 3.71
% E }6 3 }7.51 }?ﬁz
32 29.70 0.98

The critical value Xg,os,z‘is 5.99. (The degrees of freedom equals the

number of class intervals minus one.) Since xg = 0.98 is less than the critical
value, the hypothesis of independence cannot be rejected on the basis of this
test. <

7.4.3 Tests for Autocorrelation

The tests for autocorrelation are concerned with the dependence between num-
bersinasequence. Asan example, consider the following sequence of numbers:

012 001 023 028 08 031 064 028 083 093
099 015 033 035 091 041 060 027 075 088
068 049 005 043 095 058 019 036 069 0.87

‘From a visual inspection, these numbers appear random, and they would prob-
ably pass all the tests presented to this point. However, an examination of the
5th, 10th, 15th (every five numbers beginning with the fifth), and so on, indi-
cates a very large number in that position. Now, 30 numbers is a rather small
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sample size to reject a random-number generator, but the notion is that num-
bers in the sequence might be related. In this particular section, a method for
determining whether such a relationship exists is described. The relationship
would not have to be all high numbers. It is possible to have all low numbers in
the locations being examined, or the numbers may alternately shift from very
high to very low. -

The test to be described below requires the computation of the autocor-
relation between every m numbers (m is also known as the lag) starting with
the ith number. Thus, the autocorrelation Pim between the following num-

‘bers would be of interest: R;, Ritm: Risom, ..., Riz(M+1ym- The value M is the

largest integer such that i + (M + 1)m < N, where N is the total number of
values in the sequence. (Thus, a subsequence of length M + 2 is being tested.)

Since a nonzero autocorrelation implies a lack of independence, the fol-
lowing two-tailed test is appropriate:

Hy: Pim = 0
HI: Pim :)é 0
For large values of M, the distribution of the estimator of p;,,, denoted Dims
is approximately normal if the values Ri,Ritm, Rizom, ..., Ri(M+1)m are un-
correlated. Then the test statistic can be formed as follows:
ZO — Pim
Uﬁim

which is distributed normally with a mean of zero and a variance of 1, under
the assumption of independence, for large M.

The formula for 5;,,, in a slightly different form, and the standard devia-
tion of the estimator, o5, , are given by Schmidt and Taylor [1970] as follows:

M
~ 1
Pim = M1 L—o Ri+kai+(k+1)m] - 0.25

and
o J13M + 7
Pm T 12M + 1)

After computing Zg, do not reject the null hypothesis of independence if
—Za/2 < Zy < 242, Where « is the level of significance. Figure 7.3, presented
earlier, illustrates this test.

If pim > 0, the subsequence is said to exhibit positive autocorrelation. In
this case, successive values at lag m have a higher probability than expected of
being close in value (i.e., high random numbers in the subsequence followed
by high, and low followed by lew). On the other hand, if p;,, < 0, the subse-
quence is exhibiting negative autocorrelation, which means that low random
numbers tend to be followed by high ones, and vice versa. The desired prop-
erty of independence, which implies zero autocorrelation, means that there
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is no discernible relationship of the nature discussed here between successive
random numbers at lag m.

ExamreLE 7.12

Test whether the 3rd, 8th, 13th, and so on, numbers in the sequence at the
beginning of this section are autocorrelated. (Use ¢ = 0.05.) Here,i = 3
(beginning with the third number), m = 5 (every five numbers), N = 30 (30
numbers in the sequence), and M = 4 (largest integer such that 3 + (M+1)5 <
30). Then,

P35 = Z—-—j:—I[(O.B)(O.ZS) + (0.28)(0.33) + (0.33)(0.27) + (0.27)(0.05)

+ (0.05)(0.36)] — 0.25
~0.1945

il

and

v13(4) +7

Drs = = 0.1280
s T D@+ D

Then, the test statistic assumes the value

- =0.1945

= = —1.516

% = 520 1
Now, the critical value is ' f
Z0.025s = 1.96

Therefore, the hypothesis of independence cannot be rejected on the basis
of this test.
It can be observed that this test js not very sensitive for small values of
M, particularly when the numbers being tested are on the low side. Imagine
~what would happen if each of the entries in the foregoing computation of p;,,
were equal to zero. Then, Pim would be equal to —0.25 and the calculated Z
would have the value of —1.95, not quite enough to reject the hypothesis of
independence. : <
Many sequences can be formed in a set of data, given a large value of
N. For example, beginning with the first number in the sequence, possibilities
include (1) the sequence of all numbers, (2) the sequence formed from the first,
third, fifth,. .., numbers, (3) the sequence formed from the first, fourth, . ..,
‘numbers, and so on. If ¢ = 0.05, there is a probability of 0.05 of rejecting a
true hypothesis. If 10 independent sequences are examined, the probability
of finding no significant autocorrelation, by chance alone, is (0.95)*% or 0.60.
Thus, 40% of the time significant autocorrelation would be detected when it
does not exist. If o is 0.10 and 10 tests are conducted, there is a 65% chance
of finding autocorrelation by chance alone. In conclusion, when “fishing” for
autocorrelation, upon performing numerous tests, autocorrelation may even-
tually be detected, perhaps by chance alone, even when no autocorrelation is
present.
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7.4.4 Gap Test

The gap test is used to determine the significance of the interval between the
- recurrences of the same digit. A gap oflength x occurs between the recurrences
of some specified digit. The following example illustrates the length of gaps
associated with the digit 3:

41,35 1,7,2 820791352789 4163
39,6 3,4,8,2,3,1,9 4, 4,6,8 4, 1,3,8 9,5,5 7
3, 9.5 9 8,5 3,2, 2 3, 7, 4 17, 0,36 3599355
50 4 6,80 47,03 30095795 1,6, 6, 3, 8
88 92,9 1,8 5 4,450,239 7 1, 2, 0, 3, 6, .3

To facilitate the analysis, the digit 3 has been underlined. There are eighteen
3’s in the list. Thus, only 17 gaps can occur. The first gap is of length 10, the

second gap is of length 7, and so on. The frequency of the gaps is of interest.
The probability of the first gap is determined as follows:

10 of these terms

P

P(gap of 10) = P(no3)--- P(no 3) PG
= (0.9)1°¢0.1)

since the probability that any digit is not a 3 is 0.9, and the probability that any
digitis a 3is 0.1. In general,

P(t followed by exactly x non-z digits) = (0.9)*(0.1), x = 0,1,2, ...

In the example above, only the digit 3 was examined. However, to fully analyze
a set of numbers for independence using the gap test, every digit, 0, 1,2, ...,
9, must be analyzed. The observed frequencies of the various gap sizes for all
the digits are recorded and compared to the theoretical frequency using the
Kolmogorov-Smirnav test for discretized data.

The theoretical frequency distribution for randomly ordered digits is
given by

P
P(gap < x) = F(x) = 01) (0.9" = 1 - 09"+ (7.14)
n=0 -

'The procedure for the test follows the steps below. When applying the test to
random numbers, class intervals such as [0, 0.1), [0.1,0.2), . .. play the role of
random digits. '

Step 1. Specify the cdf for the theoretical frequency distribution given by
Equation (7.14) based on the selected class interval width.

Step 2. Arrange the observed sample of gaps in a cumulative distribution
with these same classes. ‘
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Step 3. Find D, the maximum deviation between F(x) and Sy(x) as in
Equation (7.3).

Step 4. Determine the critical value, D,, from Table A.8 for the specified
value of o and the sample size N. -

Step S. If the calculated value of D is greater than the tabulated value of
Dy, the null hypothesis of independence is rejected.

Itshould be noted that using the Kolmogorov-Smirnov test when the underlying
distribution is discrete results in a reduction in the Type I error, «, and an
increase in the Type II error, B. The exact value of o can be found using the
methodology described by Conover [1980].

ExampLE 7.13

Based on the frequency with which gaps occur, analyze the 110 digits above
to test whether they are independent. Use a = 0.05. The number of gaps

-is given by the number of data values minus the number of distinct digits, or
110—-10 = 100 in the example. The number of gaps associated with the various
digits are as follows: '

9
13

Digit 0
7

3 4 5 6
Number of Gaps 7

1 2 7 8
8.8 17 10 13 8 9

The gap test is presented in Table 7.6. The critical value of D is given by

»

D, = — = (.136
0.95 \/iﬁﬁ

Since D = max |[F(x) — N (x)| = 0.0224 is less than Dy g5, do not reject the
hypothesis of independence on the basis of this test. <«

Table 7.6. Gap-Test Example

Relative  Cumulative Relative
Gap Length Frequency  Frequency Frequency ~ F(x) |F(x)- Swn ()}

0-3 35 0.35 0.35 0.3439 0.0061

4-7. 22 0.22 0.57 0.5695. 0.0005

8-11 17 0.17 0.74 0.7176, 0.0224
12-15 9 0.09 0.83 0.8147 0.0153
16-19 s 0.05 0.88 0.8784 0.0016
20-23 6 0.06 0.94 0.9202 0.0198
24-27 3 0.03 0.97 0.9497 0.0223
28-31 0 0.0 0.97 0.9657 0.0043
32-35 0 0.0 097 097757  0.0075
36-39 2 0.02 0.99 0.9852 0.0043
40-43 0 0.0 " 0.99 0.9903 0.0003
44-47 1 0.01 1.00 0.9936 0.0064
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7.4.5 Poker Test

The poker test for independence is based on the frequency with which certain
digits are repeated in a series of numbers. The following example shows an
unusual amount of repetition:

0.255, 0.577, 0.331, 0.414, 0.828, 0.909, 0.303, 0.001,

In each case, a pair of like digits appears in the number that was generated. In
three-digit numbers there are only three possibilities, as follows:

1. The individual numbers can all be different.
2. The individual numbers can all be the same.
3. There can be one pair of like digits.

The probability associated with each of these possibilities is given by the fol-
lowing: \

P(;hree different digits) = P(second different from the first)

X P(third different from the first and second)
(0.9(0.8) = 0.72
P (three like digits) = P(second digit same as the first)

x P(third digit same as the first)
= (0.1)(0.1) = 0.01

P(exactly one pair) = 1 — 0.72 — 0.01 = 0.27

Alternatively, the last result can be obtained as follows:
3
P (exactly one pair) = ( 2) (0.1)(0.9) = 0.27

The following example shows how the poker test (in conjunction with the chi-
square test) is used to ascertain independence.

ExamvprLE 7.14

A sequence of 1000 three-digit numbers has been generated and an analysis
indicates that 680 have three different digits, 289 contain exactly one pair of
like digits, and 31 contain three like digits. Based on the poker test, are these
numbers independent? Let « = 0.05. The test is summarized in Table 7.7.
The appropriate degrees of freedom are one less than the number of class
intervals. Since 47.65 > X{;)z.as,z = 5.99, the independence of the numbers is
rejected on the basis of this test. <
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Table 7.7. Poker-Test Results

Observed Expected (0: — Ei)?
Combination, i Frequency, O; Frequency, E; E;
Three different digits 680 720 2.22
Three like digits 31 10 44.10
Exactly one pair 289 270 1.33
1000 1000 47.65

7.5 Summary

This chapter described the generation of random numbers and the subsequent
testing of the generated numbers for uniformity and independence. Random
numbers are used to generate random variates, the subject of Chapter 8.

Of the many types of random-number generators available, the linear
congruential method is the most widely used. Of the many types of statistical
tests that are used in testing random-number generators, five different types
are described. Some of these tests are for uniformity, the others for testing
independence.

The simulation analyst may never work directly with a random-number
generator or with the testing of random numbers from a generator. Most
computers and simulation languages have routines that generate a random
number, or streams of random numbers, for the asking. But even generators
that have been used for years, some of which are still in use, have been found to
be inadequate. So this chapter calls the simulation analyst’s attention to such
possibilities, with a warning to investigate and confirm that the generator has
been tested thoroughly. Some researchers have attained sophisticated expertise
in developing methods for generating and testing random numbers and the
subsequent application of these methods. However, this chapter provides only
a basic introduction to the subject matter; more depth and breadth are required
for the reader to become a specialist in the area. A key reference is Knuth
[1981]; see also the reviews in Bratley, Fox and Schrage [1987], Law and Kelton
[2000], L’Ecuyer [1998], and Ripley [1987].

One final caution is due. Even if generated numbers pass all the tests
(both those covered in this chapter and those mentioned in the chapter), some
underlying pattern may go undetected and the generator may not be rejected as
faulty. However, the generators available in widely used simulation languages
have been extensively tested and validated.
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EXERCISES

1. Describe a procedure to physically generate random numbers on the interval {0,1]
with 2-digit accuracy. [Hint: Consider drawing something out of a hat.]

2. List applications, other than systems simulation, for pseudo-random numbers —
for example, video gambling games.

3. How could random numbers that are uniform on the interval [0, 1] be transformed
into random numbers that are uniform on the interval [—11, 17]? Transformations
to more general distributions are described in Chapter 8.
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8.

14.

15.

16.

Chap.7 Random-Number Generation

Use the linear congruential method to generate a sequence of three two-digit ran-
dom integers. Let Xy = 27,a=8,c=47,and m = 100.

Do we encounter a problem in the previous exercise if Xy = 0?

Use the multiplicative congruential method to generate a sequence. of four three-
digit random integers. Let Xy = 117, a = 43, and m = 1000. ” '

The sequence of numbers 0.54, 0.73,0.98, 0.11, and 0.68 has been generated. Use
the Kolmogorov-Smirnov test with o = 0.05 to determine if the hypothesis that
the numbers are uniformly distributed on the interval [0, 1] can be rejected.

Reverse the 100 two-digit random numbers in Example 7.7 to get a new set of
random numbers. Thus, the first random number in the new set will be 0.43. Use
the chi-square test, with a = 0.05, to determine if the hypothesis that the numbers
are uniformly distributed on the interval [0, 1] can be rejected.

Consider the first 50 two-digit values in Example 7.7. Based on runs up and runs
down, determine whether the hypothesis of independence can be rejected, where |
a = 0.05.

Consider the last 50 two-digit valués in Example 7.7. Determine whether there is
an excessive number of runs above or below the mean. Use o = 0.05.

Consider the first 50 two-digit values in Example 7.7. Can the hypothesis that the
numbers are independent be rejected on the basis of the length of runs up and down
when ¢ = 0.05?

Consider the last 50 two-digit values in Example 7.7. Can the hypothesis that the
numbers are independent be rejected on the basis of the length of runs above and
below the mean, where a = 0.05? V

Consider the 60 values in Example 7.10. Test whether the 2nd, 9th, 16th, ... num-
bers in the sequence are autocorrelated, where a = 0.05.

Consider the following sequence of 120 digits:

1 37 48 62 5164433 42158 7
07 6 2 6 05 7 8 0112676 3 7 5 9
0 8 8 2 6 7 8 13 5 3 8 4090320 9 2
23 6 56 0013 446 9 9 856 0 1 7
567 9 4 9 3 183366 7 82 3 5 9 6
6 70 3 1 0 2 42 06 403 9 3 6 8 1 5
Test whether these digits can be assumed to be independent based on the frequency

with which gaps occur. Use o = 0.05.
Develop the poker test for:

(a) Four-digit numbers

(b) Five-digit numbers

A sequence of 1000 four-digit numbers has been generated and an analysis indicates
‘the following combinations and frequencies.
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Combination i Observed Frequency, O;
Four different digits 565
One pair 392
Two pairs 17
Three like digits 24
Four like digits 2
1000

Based on the poker test, test whether these numbers are independent. Use
.o =0.05. . -

17. Determine whether the linear congruential generators shown below can achieve a
maximum period. Also, state restrictions on X, to obtain this period.

(a) The mixed mnguential method with
a= 2,814,749,7@,109
¢ = 59,482,661,568,307
m = 2%

(b) The multiplicative congruential generator with

a = 69,069
c=20
m=232

(¢) The mixed congruential generator with

a = 4951
¢ = 247
m = 256

(d) The multiplicative congruential generaior with

a = 6507
¢c=10
m = 1024

18. Use the mixed congruential method to generate a sequence of three two-digit ran-
dom numbers with Xo = 37,a =7, ¢ = 29, and m = 100.

19. Use the mixed congruential method to generate a sequence of three two-digit ran-
dom integers between 0 and 24 with X = 13,4 = 9, and ¢ = 35.

20. Write a computer program that will generate four-digit random numbers using
the multiplicative congruential method. Allow the user to input values of Xy, a, ¢
and m.

21. If Xo = 3579 in Exercise 17(c), generate the first random number in the sequence.
Compute the random number to four-place accuracy.
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22. Investigate the random-number generator in a spreadsheet program on a computer
to which you have access. In many spreadsheets, random numbers are generated
by a function called RAND or @RAND. ‘

(a) Check the user’s manual to see if it describes how the random numbers are
generated.

(b) Write macros to conduct each of the tests described in this chapter. Gener-
ate 100 sets of random numbers, each set containing 100 random numbers.
Perform each test on each set of random numbers, Draw conclusions.

23. Consider the multiplicative congruential generator under the following circum-

stances: .

@ a=11,m=16,X,=7.

) a=11,m =16, X, = 8.

© a=7,m=16 X, =7.

(d) a=7,m=16, Xy = 8.
Generate enough values in each case to complete a cycle. What inferences can be
drawn? Is maximum period achieved?

24. For 16-bit computers, L’Ecuyer [1988] recommends combining three multiplicative
generators with my = 32363, q; = 157, my = 31727, a, = 146, m3 = 31657, and
az = 142. The period of this generator is approximately 8 x 10*2, Generate 5 ran-
dom numbers with the combined generator using initial seeds X; o = 100, 300, 500
for the individual generators =123

25. Apply the tests described in this chapter to the generator given in the previous
exercise.

26. Use the principles described in this chapter to develop your own linear congruential
random-number generator.

27. Use the principles described in this chapter to develop your own combined linear
congruential random-number generator.

28. Test the following sequence of numbers for uniformity and independence using
procedures you learned in this chapter: 0.594, 0.928, 0.515, 0.055, 0.507, 0.351,
0.262,0.797, 0.788, 0.442, 0.097, 0.798, 0.227,0.127, 0.474, 0.825, 0.007, 0.182, 0.929,
0.852. :

29. Insome applications it is useful to be able to quickly skip ahead in a pseudo-random
‘number sequence without actually generating all of the intermediate values. (a)
For a linear congruential generator with ¢ = 0, show that X, = (a"X;) mod m.
(b) Next show that (¢"X;) mod m = (@" mod m)X; mod m (this result is useful
because a” mod m can be precomputed, making it easy to skip ahead n random
numbers from any point in the sequence). (c) In Example 7.3, use this result to
compute X starting with Xg = 63. Check your answer by computing X in the
usual way. ~



