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Random-Variate Generation

This chapter deals with procedures for sampling from a variety of widely used
continuous and discrete distributions, Previous discussions and examples in-
dicated the usefulness of statistical distributions to model activities that are
generally unpredictable or uncertain. For example, interarrival times and ser-
vice times at queues, and demands for a product, are quite often unpredictable
in nature, at least to a certain extent. Usually, such variables are modeled
as random variables with some specified statistical distribution, and standard
statistical procedures exist for estimating the parameters of the hypothesized
distribution and for testing the validity of the assumed statistical model. Such
procedures are discussed in Chapter 9.

In this chapter it is assumed that a distribution has been completely spec-
ified, and ways are sought to generate samples from this distribution to be
used as input to a simulation model. The purpose of the chapter is to explain
and illustrate some widely used techniques for generating random variates, not
to give a state-of-the-art survey of the most efficient techniques. In practice,
most simulation modelers will use existing routines available in programming
libraries, or the routines built into the simulation language being used. How-
CVEr, some programming languages do not have built-in routines for all of
the regularly used distributions, and some computer installations do not have
random-variate-generation libraries, in which case the modeler must construct
an acceptable routine. Even though the chance of this happening is small, it is
nevertheless worthwhile to understand how random-variate generation occurs.

This chapter discusses the inverse transform technique, the convolution
method, and, more briefly, the acceptance-rejection technique. Another tech-
nique, the composition method, is discussed by Fishman [1978] and Law and
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Kelton [2000]. All the techniques in this chapter assume that a source of uni-
form (0,1) random numbers, Ry, Ry, ... is readily available, where each R; has
pdf

1, 0<x<1
Fr(x) = {0, otherwise
and cdf
0, x <90
FR(x):-:{x, 0<x<1
I, x> 1
Throughout this chapter R and Ry, R,, ... represent random numbers uni-

formly distributed on (0,1) and generated by one of the techniques in Chapter 7
or taken from a random-number tabie such as Table A.1 described in Chapter?2.

8.1 Inverse Transform Technique

The inverse transform technique can be used to sample from the exponential,
the uniform, the Weibull, and the triangular distributions and empirical distri-
butions. Additionally, it is the underlying principle for sampling from a wide
variety of discrete distributions. The technique will be explained in detail for
the exponential distribution and then applied to other distributions. It is the
most straightforward, but not always the most efficient, technique computa-
tionally.

8.1.1 Exponential Distribution

The exponential distribution, discussed in Section 5.4, has probability density
function (pdf) given by '

/ _Jre™ x>0
f@) = {o, x <0
and cumulative distribution function (cdf) given by
/ x
« l—e™ x>0
F = = ! —
) ,[_mﬂr)d; {0, - xz0

The parameter A can be interpretgd as the mean number of occurrences per
time unit. For example, if interarrival times X, X2, X3, ... had an exponential
distribution with rate A, then A could be interpreted as the mean number of
arrivals per time unit, or the arrival rate, N otice that for any

E(X;) = -};-

sothat 1/A is the mean interarrival time, The goal here is to develop a procedure
for generating values X, X3, X3, ... which have an exponential distribution.
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The inverse transform technique can be utilized, at least in principle, for
any distribution, but it is most useful when the cdf, F (x), is of such simple form
that its inverse, F~!,can be easﬂy computed 1A step-by-step procedure for the
inverse transform techmque 1Hustrated by the exponential distribution, is as
follows: B

Step 1. Compute the cdf of the desired random variable X. For the expo-
nential distribution, the e cdfis F(x) =1—e A x> 0.

Step 2. Set F (X ) R on the range of X . For the exponennal distribution,
it becomes 1 — e*X = R on the range x > 0. Since X is a random variable
(with the exponentxal distribution in this case), it follows that 1 —e~*X is also
a random variable, here called R. As will be shown later R has a uniform
distribution over the interval (O 1).

Step 3. Solve'the equatlon F(X) = R for X in terms of R. For the expo-
nential distribution, the solution proceeds as follows:

1—e™ =R
e M =1-R
—-AX =¥¢n(l — R)
1 B
L X = ——n(1 - R)| 8.1)
S

——n —

“Equation (8.1) is called a random—varlate generator for the exponential dis-
tribution. In general, Equation (8.1) is written as X = F- 1(R) Generating
a sequence of values is accomphshed through step 4.

Step 4. Generate (as needed) uniform random numbers Ri, Ry, R3, ... and
compute the desired random vanates by

Xx = ~1(R)

For the exponentxal case, F “l(R) = (=1/A)fn(1 - R) by Equatlon (8.1),s0
that

1
Xi = --}-:En(}. - R,) (82)
fori = 1,2,3,.... One simplification that is usually employed in Equa-
tion (8.2) is to replace 1 R by R; to yield
1
Xi = ~—-}:€nR,~ (83)

which is justified since both K; and 1 — R; are uniformly distributed on (0, 1).

! The notation F~! denotes the solution of the equation r = F(x) interms of r, not 1/F.



Table 8.1. Generation of Exponential
Variaies X; with Mean 1, Given
Random Numbers g;

i 1 2 3 - 4 5

R; 01306 0.0422 0.6597 0.7965  0.7696

X; 01400 0.0431 1078 1.592  1.468

-1 -8

— a—

ExamrLE 8.1 7

Table 8.1 gives a sequence of random numbers from Table A.1 and the com-
puted exponential variates, X, given by Equation (8.2) with a value of A=l
Figure8.1(a)isa histogram of 200 values, Ry, Ry, ..., Rygo from the uni form dis-
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Figure 8.2. Graphical view of the inverse transform technique.

tribution, and Figure 8.1(b) is a histogram of the 200 values, X, X, .. ., X0,
computed by Equation (8.2). Compare these empirical histograms with the
theoretical density functions in Figure 8.1(c) and (d). As illustrated here, a
~ histogram is an estimate of the underlying density function. (This fact is used
- in Chapter 9 as a way to identify d@ibuﬁo&g) 4
Figure 8.2 gives a graphical interpretation of the inverse transform tech-
nique. The cdf shownis F(x) = 1—e™*, an exponential distribution with rate A
- = L. To generate d value X, with cdf F(x), first a random number R; between
0 and 1 is generated, a horizontal line is drawn from R; to the graph of the cdf,
then a vertical line is dropped to the x-axis to obtain X;, the desired result.
Notice the inverse relation between Ry and X 1, hamely

Ry =1-¢%

and
X1 = —~In(l — Ry)

- In general, the relation is written as o
Ry = F(Xy)

Aand o E
Xi = FQI‘(RZ.}
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| Why does the random variable X 1 generated by this proceduré have the desired

distribution? Pick a value x; and compute the cumulative probability

P(Xy < x0) = P(Ry <.F(xp)) = F(xp) (84)

- To see the first equality in Equation (8.4), refer to Figure 8.2, where the fixed

numbers xy and F (x0) are drawn on their respective axes. [t can be seen
that X; < xp when and only when R; < F(xp). Since 0 < F(xg) < 1, the
second equality in Equation (8.4) follows immediately from the fact that Ry is

- uniformly distributed on (0, 1). Equation (8.4) shows that the cdf of Xiis F;

hence, X, has the desired distribution. .
8.1.2 Uniform Distribution

Consider a random variable X that is uniformly distributed on the interval
[a, b]. A reasonable guess for generating X is given by

A X=a+(b-ak 3 (8.5)
[Recall that R is always a random number on (0, 1).] The pdf of X is given by
3 B |
fo)=1p =5 @5 xX.<b
. 0, otherwise

The derivation of Equation (8.5) follows Steps 1 through 3 of Section 8.1.1:
Step 1. The cdf is given by

,0‘,, X <~’a,
Foy=42"2 4<y<p
1, ’ x>b

 Step2. Set F(X) = (X —a) /b—a)=R.
Step 3. Solving for X in terms of R yields X =a+ (b~ a)R, which agrees

with Equation (8.5).

81.3 Weibull Distribution

The Weibull distribution was introduced in Section 5.4 as a model for time to
failure for machines or electronic components. When the location parameter
v is set to 0, its pdf is given by Equation (5.46) as

SN JLIVE SR
fo) = gt e Xz 0
| e 0, - otherwise
where o > 0 and B > 0 are the scale and shape parameters of the distribution.
To generate a Weibull variate, follow steps 1 through 3 of Section 8.1.1;

Step 1. The cdf is given by F(X) =1 — ¢~/ x > .
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Step2. Let F(X) =1 — e~X/@ _ p.
Step 3. Solving for X in terms of R yields

X = a[—fn(1 — R)]V/P (8.6)

The derivation of Equation (8.6) is left as Exercise 10 for the reader. By com-
paring Equations (8.6) and (8.1), it can be seen that if X is a Weibull variate,
then X isan exponential variate with mean a?. Conversely, if ¥ is an exponen-
tial variate with mean u, then Y/ is a Weibull variate with shape parameter
B and scale parameter o = p /8,

8.1.4 Triangular Distribution

Consider a random variable X which has pdf

x, = 0=<x<1
fix) = {2-—-x,f1<x52
-0, otherwise

as shown in Figure 8.3. This distribution is called a triangular distribution with
endpoints (0, 2) and mode at 1. Its cdf is given by ‘

‘.,['0,2 x <0 ro/ X <6
) 0<x<1 G’ o< x<h
L. F(x)={2 @ — xp? o-e) - @)
1—--——--2~—-—, <x =<2 (ox\?" b ex L
, . x > 2 v ﬂc'a\
For0<X <1, , (L x D¢
!
R =’-¥2~ | | (8.7)
andforl <X <2, ,
2-X
R=1‘—-—(—-—§——)- (8.8)
f@ A
I_
. i _
0 1 2 x

Figure 8.3. Density function for a triangular
distribution.
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By Equation (8.7), 0 < X < 1 implies that 0 < RX< % in which case X =
V2R. By Equation 88),1<x <2 implies that -21- = R <1, in which case
X=2-/20= R). Thus, X is generated.by

¥ _ [ V7R, 0<R<! (8.9)
2~ vz TR, P <R<1 ‘

Exercises 2, 3, and 4 give the student practice in dealing with other triangular
distributions. Notice that if the pdf and cdf of the random variable X come
in parts (ie., require different formulas over different parts of the range of

8.1.5 Empirical Continuous Distributions

If the modeler has been unable to find a theoretical distribution that provides
a good model for the input data, then it may be necessary to use the empirical
distribution of the data. One possibility is to simply resample the observed
data itself. This is known ag using the empirical distribution, and it makes

a method for generating random inputs. .

On the other hand, if the data are drawn from what is believed to be a
continuous-valued input process, then it makes sense to interpolate between
the observed data points to fill in the gaps. This section describes a method for
defining and generating data from a continuous empirical distribution.

EXAMPLE 8.2

Five observations of fire Crew response times (in minutes) to incoming alarms
have been collected to be used in a simulation investigating possible alternative
staffing and crew scheduling policies. The data are

2.76 1.83 0.80 1.45 1.24

Before collecting more data, it is desired to develop a preliminary simulation
model which uses a response-time distribution based op these five observa-

and n = 5 is the number of observations.

Arrange the data from smallest to largest and let Y1) S X@Q) < - < xqpy
denote these sorted values, Since the smallest possible value is believed to
be 0, define X = 0. Assign a probability of 1/n = 1/5 to each interval
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Table 8.2. Summary of Fire Crew Response-Time Data

Interval, Probability, Cumulative Slope,
I X <x < xg 1/n Probability, i /n a;
1 00 <x<0.80 0.2 0.2 4.00
2 080 <x<124 0.2 04 2.20
3 124<x<145 0.2 - 0.6 1.05
4 145<x<1.83 0.2 0.8 - 190
5 183<x<276 0.2 1.0 4.65

illustrated in Figure 8.4. The slope of the i th line segment is given by

The inverse cdf is calculatéﬁq“by

when (i —1)/n < R < i/n.

F(x)

Cumulative probability

1.0

04

0.2

- (1.45,0.60)

X)) — XG-1) X@) ~ X6~y -
a; = =

i/n—@G-D/n "~ 1/n

0.8

- ¢ p— 1
X = F-I(R) = X(@i-1) + a; (R — 'gi"';;‘*-)')

!

\

o

=

- (2.76, 1.0)

- (1.83, 0.80)

!
1
i
l
!

X; =1.45+1.90(0.71 - 0.60) = 1.66

!
!
f
!
I
!
]
]
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!
[
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I
!
!
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as shown in Table 8.2. The resulting empirical cdf, ﬁ(x), is

(8.10)

0.5 1.0 1.5 1~ 2.0 25 3.0
X 1

Response times

Figure 8.4. Empirical cdf of fire crew response times.
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For example, if a random number Ry = 0.71 is generated, then Ry isseen
to lie in the fourth interval (between 3/5 = 0.60 and 4/5 = 0.80), so that by
Equation (8.10),

X1 = xg-1 + as(Ry — (4 = 1)/n)
= 1.45 + 1.90(0.71 — 0.60)
=166

The reader is referred to Figure 8.4 for a graphical view of the generation
procedure, <

In Example 8.2 each data point was represented in the empirical cdf. If
a large sample of data is available (and sample sizes from several hundred to
tens of thousands are possible with modern, automated data collection), then
it may be more convenient and computationally efficient to first summarize the
data into a frequency distribution with a much smaller number of intervals and
then fit a continuous empirical cdf to the frequency distribution. Only a slight
generalization of Equation (8.10) is required to accomplish this. Now the slope
of the i th line segment is given by

X(@) — X(i-1
a4 = (&) (i—-1)
Ci — Ci-y

where ¢; is the cumulative probability of the first i intervals of the frequency
distribution and x;_;) < x < x() 1s the ith interval. The inverse cdf is calcy-
lated by

X=F'R = x4+ R - ci_p) (8.11)

whenc;_; < R < ¢.

EXAMPLE 8.3

Suppose that 100 broken-widget repair times have been collected. The data
are summarized in Table 8.3 in terms of the number of observations in various
intervals. For example, there were 31 observations between 0 and 0.5 hour, 10
between 0.5 and 1 hour, and so on.

Suppose it is known that all repairs take at least 15 minutes, so that X >
0.25 hour always. Then we set x©0) = 0.25, as shown in Table 8.3 and Figure 8.5.

Table 8.3. Summary of Repair-Time Data

Interval Relative Cumulative  Slope,
i (Hours) Frequency  Frequency Frequency, c; a;
1 025<x<05 31 031 0.31 0.81
2 0S5<xx10 10 0.10 0.41 5.0
3 10<x<15 25 0.25 0.66 20
4 15<x<20 34 0.34 100 147
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Figure 8.5. Generating variates from the empirical distribution function for
repair-time data (X > 0.25).

, For example, suppose the first random number generated is Ry = 0.83.
Then since Ry is between ¢3 = 0.66 and ¢4 =1.00, X; is

X1 = x@-1) + a4(Ry — c4-1) = 1.5 + 1.47(0.83 — 0.66) = 1.75 (8.12)

As another illustration, suppose that R, = 0.33. Since ¢; = 0.31 < R, <
041 = 2, ,
X2 = xq)y + a(R; — cy)

= 0.5 + 5.0(0.33 — 0.31)
= 0.6

The point (R; = 0.33, X, = 0.6) is also shown in Figure 8.5. <

Now reconsider the data of Table 8.3. The data are restricted in the
range 0.25 < X < 2.0, but the underlying distribution may have a wider
range. This provides one important reason for attempting to find a theoretical
statistical distribution (such as the gamma or Weibull) for the data, since these
distributions allow a wider range, namely 0 < X < 00. On the other hand, an
empirical distribution adheres closely to what is present in the data itself, and
the data are often the best source of information available.

When data are summarized in terms of frequency intervals, it is recom-
mended that relatively short inten(als be used, as this results in a more accurate
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portrayal of the underlying cdf. For example, for the repair-time data of Ta-
ble 8.3, for which there were n — 100 observations, a much more accurate
estimate could have been obtained by using 10 to 20 intervals, certainly not an
excessive number, rather than the four fairly wide intervals actually used here
for purposes of illustration.

Several comments are in order:

1. A computerized version of the procedure will become more inefficient as
the number of intervals, n, increases, A systematic computerized version
is often called a table-lookup generation scheme, because given a value
of R, the computer program must search an array of ¢; values to find the
interval i in which R lies, namely the interval i satisfying

Ci-1 < R < ¢

The more intervals there are, the longer on the average the search will
take if it is implemented in the crude way described here. The analyst
should consider this trade-off between accuracy of the estimating cdf and
computational efficiency when programming the procedure. If a large
number of observations are available, the analyst may well decide to group
the observations from 20 to 50 intervals (say) and then use the procedure
of Example 8.3. Or a more efficient table-lookup procedure may be used,
such as the one described in Law and Kelton [2000].

2. In Example 8.2 it was assumed that response times X satisfied 0 < X <
2.76. This assumption led to the inclusion of the points x, = 0 and
x(s) = 2.76 in Figure 8.4 and Table 8.2. If it.is known a priori that X falls
in some other range, for example, if it is known that response times are
always between 15 seconds and 3 minutes, that is,

025 < X <30

then the points x() = 0.25 and x(5) = 3.0 would be used to estimate the
empirical cdf of response times. Notice that because of inclusion of the
new point x) there are now six intervals instead of five and each interval
is assigned probability 1/6 = 0.167. Exercise 12 illustrates the use of these

additional assumptions.

8.1.6 Continuous Distributions without a Closed-Form Inverse

A number of useful continuous distributions do not have a closed form ex-
pression for their cdf or its inverse; examples include the normal, gamma, and
beta distributions. For this reason, it is often stated that the inverse transform
technique for random-variate generation cannot be used for these distribu-
tions. This is not true, provided we are willing to approximate the inverse cdf,
or numerically integrate and search the cdf. Although this may sound impre-
cise, notice that even a closed-form inverse requires approximation in order to
evaluate it on a computer. For example, generating exponentially distributed
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Table 8.4. Comparison of Approximate
Inverse with Exact Values (to
Four Decimal Places) for the
Standard Normal Distribution

R Approximate Inverse  Exact Inverse
0.01 —-2.3263 -2.3373
0.10 ~1.2816 ~1.2813
0.25 —0.6745 -0.6713
0.50 0.0000 0.0000
0.75 0.6745 0.6713
0.90 1.2816 1.2813
0.99 2.3263 2.3373
random variates via the inverse cdf X = FYR) = —n(1 — R)/A requires a

numerical approximation for the logarithm function. Thus, there is no essential
difference between using an approximate inverse cdf and approximately eval-
uating a closed-form inverse. The problem with using an approximate inverse
cdf is that some of them are computationally slow to evaluate.

To illustrate the idea, consider the simple approximation to the inverse
cdf of the standard normal distribution proposed by Schmeiser [1979]:

R0.135 - (1 _ R)0.135

X = FYUR) ~
(R 0.1975

This approximation gives at least one-decimal-place accuracy for 0.0013499 <
R < 0.9986501. Table 8.4 compares the approximation with exact values (to
four decimal places) obtained by numerical integration for several values of R.
Much more accurate approximations exist that are only slightly more compli-
cated. A good source of these approximations for a number of distributions is
Bratley, Fox, and Schrage [1987]. ‘

8.1.7 Discrete Distributions

All discrete distributions can be generated using the inverse transform tech-
nique, either numerically through a table-lookup procedure, or in some cases
algebraically with the final generation scheme in terms of a formula. Other
techniques are sometimes used for certain distributions, such as the convolu-
tion technique for the binomial distribution. Some of these methods are dis-
cussed in later sections. This subsection gives examples covering both empirical
distributions and two of the standard discrete distributions, the (discrete) uni-
form and the geometric. Highly efficient table-lookup procedures for these and
other distributions.are found in Bratley, Fox, and Schrage [1987] and Ripley
[1987]. ' |
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Table 8.5. Distribution

of Number of

. Shipments, X
X p(x) ° F(x)
0- 0.50 0.50
1 0.30 0.80

2 0.20 1.00

EXAmPLE 8.4 (An Empirical Discrete Distribution)

At the end of the day, the number of shipments on the loading dock of the I[HW
Company (whose main product is the famous, incredibly huge widget) is either
0, 1, or 2, with observed relative frequency of occurrence of 0.50, 0.30, and
0.20, respectively. Internal consultants have been asked to develop a model to
improve the efficiency of the loading and hauling operations, and as'part of this
model they will need to be able to generate values, X, to represent the number
of shipments on the loading dock at the end of each day. The consultants decide
to model X as a discrete random variable with distribution as given in Table 8.5
and shown in Figure 8.6.
The probability mass function (pmf), p(x), is given by

p(0) = P(X =0) = 0.50

p1) = PX =1) = 0.30

p2) = P(X =2) =020
and the cdf, F(x) = P(X < x), is given by

05 x <0
05, 0<x <1
F&) = 08, 1<x<?2

1.0, 2 <«x

Fx) &
i T -
3
L a )
R =013 }— - _ -

f
!
0.5 o ﬁ?
l
|
I
{
]
|
1

=Y.

Figure 8.6. The cdf of number of shipments, X .’
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Table 8.6, Table for Generating
the Discrete Variate X

Input, Output,
i 7 Xi
1 0.50 0
2 0.80 |
3 1.00 2

Recall that the cdf of a discrete random variable always consists of hor-
izontal line segments with jumps of size p(x) at those points, x, which the
random variable can assume. For example, in Figure 8.6 there is a jump of size
p(0) = 0.5 at x = 0, of size p(1) = 03 at x = 1, and of size p2) = 0.2 at
x =2, :

For generating discrete random variables, the inverse transform technique
becomes a table-lookup procedure, but unlike the case of continuous variables,
interpolation is not required. To illustrate the procedure, suppose that R; =
0.73 is generated. Graphically, as illustrated in Figure 8.6, first locate Ry = 0.73
on the vertical axis, next draw a horizontal line segment until it hits a “jump” in
the cdf, and then drop a perpendicular to the horizontal axis to get the generated
variate. Here Ry = 0.73 is transformed to X 1 = 1. This procedure is analogous
to the procedure used for empirical continuous distributions in Section 8.1.5
and illustrated in Figure 8.5, except that the final step of linear interpolation is
eliminated.

'The table-lookup procedure is facilitated by construction of a table such
as Table 8.6. When R; = 0.73 is generated, first find the interval in which Ry
lies. In general, for R = Ry, if

F(xi-1) =ri.y < R <r, = F(x;) (8.13)

thenset X = x;. Here ry =0, Xp = —00, while x1, x, ..., x,, are the possible
values of the random variable, and r; = p(x;) + ... + pGxi), k=1,2,... n.

For this example, n = 3, x; = 0, x2 =1,x3 = 2, and hence r; = 0.5, r; = (0.8,
and r; = 1.0. (Notice that r, = 1.0 in all cases.)

Sincer; =05 < Ry =073 < ry =0.8,set X; = x; = 1. The generation
scheme is summarized as follows: '

0, R <05
X={1, 05 <R <08
2, 0.8 <R<10 <

Example 8.4 illustrates the table-lookup procedure, while the next
example illustrates an algebraic approach that can be used for certain distri-
butions.
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ExaMPiE 8.5 (A Discrete Uniform Distribution)

Consider the discrete uniform distribution on {1,2,..., k} with pmf and cdf
given by :

|
P(x)=']€, x=12,...,k

and
0, x < 1
1 l<x <2
k’ .
2
-, 2 <x <3

F(x) = { k

k —
-——-z-—}—,k-—~1_<_x<k
1, k < x

Letx; =iandr; = p(U+-- -+ p(x;) = F(x;) = i/kfori = 1,2, ..., k. Then
by using Inequality (8.13) it can be seen that if the generated random number
R satisfies

ri-1 = f—-—;———l— <R<r = -lk— : (8.14)

then X is generated by setting X = /. Now, Inequality (8.14) can be solved for i
i—1 < Rk < i

Rk <i < Rk +1 - (815)

Let [y] denote the smallest integer > y. For example, [7.82] = 8;.[5.13] =6,
and [-1.32]1 =-1.Fory > 0, [ y1 is a function that rounds up. This notation
and Inequality (8.15) yield a formula for generating X, namely

X =[RKl (8.16)

For example, consider generating a random variate X, uniformly distributed
on {1,2,...,10}. The variate, X, might represent the number of pallets to be
loaded onto a truck. Using Table A.1 as a source of random numbers, R, and
Equation (8.16) with k£ = 10 yields

Ry =078, X; =[78] =8
R, =003, X, =7[03]=1
Ry =023, X3 =123]=3
Ry =097, X4 = [9.7] = 10

The procedure discussed here can be modified to generate a discrete uni-
form random variate with any range consisting of consecutive integers. Exercise
13 asks the student to devise a procedure for one such case. <
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ExXAMPLE 8.6
Consider the discrete distribution with pmf given by

2x

—_— =12, ...,k
kk + 1) g

plx) =

(This example is taken from Schmidt and Taylor [1970].) For integer values of
x in the range {1,2, ..., k}, the cdf is given by :

ad 2 | , .
Fx) =Y —=
) =2 kk + 1) |

i=1

2
T kG + 1)'2@

2 x(x + 1)
k(k+1) 2
_x(x+ 1)
T k(e + 1)

Generate R and use Inequality (8.13) to conclude that X = x whenever

F(x_1)=u<R<M=th)'

. k(k + 1) T kk+1)

or whenever
(x -~ Dx < ktk+ DR < x(x + 1)

To solve this inequality for x in terms of R, first find a value of x that satisfies
(x —Dx = k(k + DR

or _
x> —x —k(k+ 1R = 0

Then by rounding up; the solution is X = [x — 1]. By the quadratic formula,

namely
—b + /B2 = 4ac
r = 2a

witha = 1,b = -1, and ¢ = —k(k + 1)R, the solution to the quadratic
equation is ,

1+ /14 4kk +DR

(8.17)
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The positive root in Equation (8.17) is the correct one to use (why?),so X is
generated by

- {1 + VT +%& + DR _ 1] (3.18)

2

Exercise 14 asks the student to generate a few values from this distribution. <

ExampLE 8.7 (The Geometric Distribution)
Consider the geometric distribution with pmf

pix) =p(1l-p)y, x=012,...
where 0 < p < 1. Its cdf is given by

F(x) = Y p(l - p)’
Jj=0

Pl — (1 - p)**
1-1-p
:1__(1___p)x+1

for x = 0,1,2,... Using the inverse transform technique [i.e., Inequality
(8.13)], recall that a geometric random variable X will assume the value x
whenever

Fx-D=1-(0-p)  <R=1-0-pF'=F@x (819

where R is a generated random number assumed 0 < R < 1. Solving Inequal-
ity (8.19) for x proceeds as follows:

A-p*T <1-R<(1-p)
(x + Dén(l — p) < tn(1 = R) < xtn(l - p)
But 1 — p < 1 implies that £n(1 — p) < 0, so that

in(l = R) n(l — R)
mi-p T wip o

Thus, X = x for that integer value of x satisfying Inequality (8.20), or, in brief,
using the round-up function [-]

_[t-R
X = {m 1] (8.21)

Since p is a fixed parameter, let 8 = —1/¢n(1 — p). Then B8 > 0 and, by
Equation (8.21), X = [-B£n(1 — R) — 1]. By Equation (8.1),=8¢n(1 - R) is
an exponentially distributed random variable with mean 8, so that one way of
generating a geometric variate with parameter p is to generate (by any method)
an exponential variate with parameter 8~! = —¢n(1 — p), subtract one, and
round up.
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Occasionally, a geometric variate X is needed which can assume values
{g.9+1,9+2,...) withpmf p(x) = p(1 — p)*~9 (x = q,9+1,...). Sucha
variate, X can be generated, using Equation (8.21), by

_ n(l — R) _ ‘
X =g+ [m 1.l (8.22)

One of the most common cases is g = 1. <

ExamprLE 8.8

Generate three values from a geometric distribution on the range {X > 1}
with mean 2. Such a geometric distribution has pmf p(x) = p(1 — py*l(x =
1,2,...) withmean 1/p = 2, or p = 1/2. Thus, X can be generated by
Equation (8.22) withg =1, p = 1/2,and 1/4n(1 — p) = —1.443. Using Table
Al Ry = 0932, R; = 0.105, and R; = 0.687, which yields

X1 =1+ [~1.443¢n(1 — 0.932) — 1]
=1+4+[3878 -1 =4

X2 =1+ [-1.443¢n(1 - 0.105) — 1] = 1

X3 =1+ [-1.443¢n(1 — 0.687) — 1] = 2

Exercise 15 deals with an application of the geometric distribution. |

8.2 Direct Transformation for the Normal and
Lognormal Distributions

Many methods have been developed for generating normally distributed ran-
dom variates. The inverse transform technique cannot be applied easily, how-
ever, because the inverse cdf cannot be written in closed form. The standard
normal cdf is given by

_ * 1 _p 2
d(x) Lwﬁie dt, oo <X < 00
This section describes an intuitively appealing direct transformation that pro-
duces an independent pair of standard normal variates with mean zero and
variance 1. The method is due to Box and Muller [1958]. Although not as
efficient as many more modern techniques, it is easy to program in a scientific
language such as FORTRAN, C, or Pascal. We then show how to transform a
standard normal variate into a normal variate with mean p and variance o2.

Once we have a method (this or any other) for generating X froma N(u, 0?)
distribution, then we can generate a lognormal random variate ¥ with parame-
ters u and o2 using the direct transformation ¥ = eX [recall that 1 and o are
not the mean and variance of the lognormal; see Equations (5.57) and (5.58)].



JPe— o

308 Chap.8 Random-Variate Generation |

Z,-axis
(Zy, 2,)
________ o] Z{

o
]
! B
i
i
) )
i \6
|

- Y | , -~
Z 0 Z,-axis

4

Figure 8.7. Polar representation of a pair of standard
normal variables.

Consider two standard normal random variables, Z; and Z;, plotted as a
point in the plane as shown in Figure 8.7 and represented in polar coordinates
as

Z; = Bcos@

_ (8.23)
Z; = Bsing
It is known that B” = Z? + 22 has the chi-square distribution with 2
degrees of freedom, which is equivalent to an exponential distribution with
mean 2. Thus, the radius, B, can be generated by use of Equation (8.3):

B = (=2enR)!/? (8.24)

By the symme try of the normal distribution, it seems reasonable to suppose, and
indeed it is the case, that the angle is uniformly distributed between and 27
radians. In addition, the radius, B, and the angle, 4, are mutually independent.
Combining Equations (8.23) and (8.24) gives a direct method for generating
two independent standard normal] variates, Z; and Z,, from two independent
random numbers R; and Ry:

Z; = (=2£nRy)'7 cos 2n Ry)

(8.25)
Z; = (=2tnRy)M? sin 2 Ry)

To illustrate the generation scheme, consider Equation (8.25) with R; =
0.1758 and R, = 0.1489. Two standard normal random variates are generated
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as follows:
21 = [~2€n(0.1758)]/2 cos (270.1489) = 1.11
2> = [~2€n(0.1758)]/2 sin (270.1489) = 1.50

To obtain normaj variates X; with mean w and variance o2, we then a ly the
pply

transformation
Xi = u+ 0Z; (8.26)

to the standard normal variates. For example, to transform the two standard
normal variates into normal variates with mean # = 10 and variance g2 — 4

we compute
X1 =10+ 2(1.11) = 12.22

Xy =10 + 2(1.50) = 13.00

8.3 Convolution Method

K
X=3"x

i=1

Since each X; can be generated by Equation (8.3) with 1/) = 1 /K6, an Erlang
variate can be generated by

X = Z—-;{%Zﬁ&

i=]

1 » K P
1
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ExamMpLE 8.9

Trucks arrive at a large warehouse in a completely random fashion which is
modeled as a Poisson process with arrival rate A = 10 trucks per hour. The
guard at the entrance sends trucks alterfiately to the north and south docks.
An analyst has developed a model to study the loading/unloading process at
the south docks and needs -a model of the arrival process at the south docks
alone. An interarrival time X between successive truck arrivals at the south
docks is equal to the sum of two interarrival times at the entrance and thus it
is the sum of two exponential random variables, each with mean 0.1 hour, or 6
minutes. Thus, X has the Erlang distribution with X = 2 and mean 1 /0 =2/A
= 0.2 hour. To generate the variate X , first obtain K = 2 random numbers
from Table A.1, say R; = 0.937 and R, = 0.217. Then by Equation (8.27),

X = —0.1£r[0.937(0.217)]

= 0.159 hour = 9.56 minutes <

In general, Equation (8.27) implies that K uniform random numbers
are needed for each Erlang variate generated. If K is large, it is more effi-
cient to generate Erlang variates by other techniques, such as one of the many
acceptance-rejection techniques for the gamma distribution given by Bratley,
Fox, and Schrage [1987], Fishman [1978], and Law and Kelton [2000].

8.4 Acceptance-Rejection Technique

Suppose that an analyst needed to devise a method for generating random
variates, X, uniformly distributed between 1/4 and 1. One way to proceed
would be to follow these steps:

Step 1. Generate a random number R.

Step 2a. If R > 1/4, accept X = R, then go to step 3.

Step 2b. If R < 1/4, reject R, and return to step 1.

Step 3. If another uniform random variate on [1/4, 1] is needed, repeat the
procedure beginning at step 1. If not, stop.

Each time step 1 is executed, a new random number R must be gener-
ated. Step 2a is an “acceptance” and step 2b is a “rejection” in this acceptance-
rejection technique. To summarize the technique, random variates (R) with
some distribution (here uniform on [0, 1]) are generated until some condition
(R > 1/4) is satisfied. When the condition is finally satisfied, the desired ran-
dom variate, X (here uniform on [1/4, 1]), can be computed (X = R). This
procedure can be shown to be correct by recognizing that the accepted values of
R are conditioned values; that is, R itself does not have the desired distribution,
but R conditioned on the event {R > 1/4} does have the desired distribution.
To show this, take 1/4 <a < b < 1; then

Pla < R < b) b—a

P(a<R5b}1/4§R_<_1)=P(1/4<R<1)= i

(8.28)
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which is the correct probability for a uniform distribution on [1/4,1]. Equa-
tion (8.28) says that the probability distribution of R, given that R is between
1/4 and 1 (all other values of R are thrown out), is the desired distribution.
Therefore,if 1/4 < R < 1,set X = R. :

The efficiency of an acceptance-rejection technique depends heavily on
being able to minimize the number of rejections. In this example, the proba-
bility of a rejection is P(R < 1 /4) = 1/4, so that the number of rejections is a
geometrically distributed random variable with probability of “success” being
P = 3/4 and mean number of rejections (1/p — 1) = 4/3 -1 = 1/3. (Ex-
ample 8.7 discussed the geometric distribution.) The mean number of random
numbers R required to generate one variate X is one more than the number
of rejections; hence, it is 4/3 = 1.33. In other words, to generate 1000 values of
X would require approximately 1333 random numbers R.

In the present situation an alternative procedure exists for generating
a uniform variate on [1/4, 1], namely Equation (8.5), which reduces to X =
1/4 + (3/4)R. Whether the acceptance-rejection technique or an alternative
procedure such as the inverse-transform technique [Equation (8.5)] is the more
efficient depends on several considerations. The computer being used, the skills
of the programmer, and the relative efficiency of generating the additional (re-
jected) random numbers needed by acceptance-rejection should be compared
to the computations required by the alternative procedure. In practice, con-
cern with generation efficiency is left to specialists who conduct extensive tests
comparing alternative methods,

 For the uniform distribution on [1/4, 1], the inverse transform technique
of Equation (8.5) is undoubtedly much easier to apply and more efficient than
the acceptance-rejection technique. The main purpose of this example was to
explain and motivate the basic concept of the acceptance-rejection technique.
However, for some important distributions such as the normal, gamma, and
beta, the inverse cdf does not exist in closed form and therefore the inverse
transform technique is difficult. These more advanced techniques are summa-:
rized by Bratley, Fox, and Schrage [1987], Fishman [1978], and Law and Kelton
[2000].

In the following subsections, the acceptance-rejection technique is illus-
trated for the generation of random variates for the Poisson and gamma distri-
butions.

8.4.1 Poisson Distribution

A Poisson random variable, N » With mean « > 0 has pmf

e gt

, n=2012 ...
n!

pn) = P(N =n) =

but more important, N can be interpreted as the number of arrivals from a Pois-
son arrival process in one unit of time. Recall from Section 5.5 that the inter-
arrival times, Aj, A, . .. of successive customers are exponentially distributed
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with rate o (i.e., a is the mean number of arrivals per unit time); in addition,
an exponential variate can be generated by Equation (8.3). Thus there is a
relationship between the (discrete) Poisson distribution and the (continuous)

exponential distribution, namely: - !
N =n “ (8.29)
if and only if
A1+Az+---+A,,_<_1<A1+-~-+An+An+1 (8.30)

Equation (8.29), N = n, says there were exactly n arrivals during one unit
of time; but relation (8.30) says that the nth arrival occurred before time 1
while the (n + 1)st arrival occurred after time 1. Clearly, these two statements
are equivalent. Proceed now by generating exponential interarrival times until
some arrival, say n + 1, occurs after time 1; thenset N = n. ‘

For efficient generation purposes, relation (8.30) is usually simplified by
first using Equation (8.3), A; = (—1/a)¢n R;, to obtain

Next multiply through by —a, which reverses the sign of the inequality, and
use the fact that a sum of logarithms is the logarithm of a product, to get

n n n+1 n41

en[]R: = Z(ZnR,— > —a > Y nR; = KnHR,-

Finally, use the relation ¢*** = x for any number x to obtain

n+1

f]R,- > e > []& (8.31)
i=1

i=]1

which is equivalent to relation (8.30). The procedure for generating a Poisson
random variate, N, is given by the following steps:

Stepl. Setn =0, P = 1.
Step 2. Generate a random number R,1 and replace P by P-R,4;.

Step 3. If P < e, then accept N = n. Otherwise, reject the current n,
increase n by one, and return to step 2.

Notice that upon completion of step 2, P is equal to the rightmost expression
in relation (8.31). The basic idea of a rejection technique is again exhibited; if
P > ™% instep 3, then 7 is rejected and the generation process must proceed
through at least one more trial.

A o L e



Sec. 8.4 Acceptance-Rejection Technique 313

How many random numbers wil] be required, on the average, to generate
one Poisson variate, N? If N = n, then n + 1 random numbers are required,
so the average number is given by

EN+D) =a+1

which is quite large if the mean, a, of the Poisson distribution is large.

EXAMPLE 8.10

Generate three Poisson variates with mean o = 0.2. First compute e~ = ¢—02
= 0.8187. Next get a Séquence of random numbers R from Table A.1 and
follow steps 1 to 3 above:

Stepl. Setn=0,P =1.
Step 2. R, = 0.4357, P=1-R =04357.
Step 3. Since P = 0.4357 < ¢~ = 0.8187, accept N = 0.
Step 1-3. (R; = 0.4146.Jeads to N = 0.)
Stepl. Setn=0,P =1,
Step2. R; = 08353, P = 1. R1 =0.8353.
Step 3. Since P > ¢, reject n = 0 and return to step2withn =1,
Step 2. R, =0.9952, p — RiR; = 0.8313.
Step 3. Since P > e, reject n = 1 and return to step 2 with n = 2,
Step 2. Ry = 0.8004, P = Ri Ry R; = 0.6654. '
Step 3. Since P < e™%, accept N = 2,
The calculations required for the generation of these three Poisson random
variates are summarized as follows:

) P Accept/Reject Result
0.4357 04357 P < e (accept) N =0
0.4146 04146 P < e (accept) N =0
0.8353 . 0.8353 P > ¢ (reject)

0.9952 08313 P> ¢ (reject)
0.8004 0.6654 P <= (accept) N =2

e R~

It took five random numbers, R, to generate three Poisson variates here (N =
0,N =0,and N = 2), butin the long run to gencrate, say, 1000 Poisson variates
with mean a = 0.2 it would require approximately 1000 (e +1) or 1200 random
numbers./, ~ |

Exé MPL;E 8.11

Buses arrive at the bus stop at Peachtree and North Avenue according to a
Poisson process with a mean of one bus per 15 minutes. Generate a random
variate, N, which represents the number of arriving buses during a 1-hour time
slot. Now, N is Poisson distributed with a mean of four buses per hour. First
compute e™* = ¢4 = (,0183. Using a sequence of 12 random numbers from
Table A.1 yields the following summarized results:
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n o Ry P Accept/Reject Result
0 04357 04357 p Z e (reject)

1 04146 0.1806 p Z e (reject)

2 08353 01508 p 2 e (reject)
3
4
5

0.9952 0.1502 p = e”% (reject)
0.8004 0.1202 p 2 e7% (reject)
0.7945 0.0955 P > ¢~ (reject)
6 01530 00146 P < o= (accept) N =6

s S5

Itis immediately seen that a larger value of o (here & = 4) usually requires
more random numbers; if 1000 Poisson variates were desired,, approximately
1000( + 1) = 5000 random numbers would be required. <

Ja

is approximately normally distributed with mean zero and variance 1, which
Suggests an approximate technique. First generate a standard normal variate
Z, by Equation (8.25), then generate the desired Poisson variate, N, by

N = o+ /az - 0.5 (8.32)

where [-] is the round-up function described in Section 8.1.7. (Ifo+./az -
0.5 <0, thenset N = 0.) The “0.5” used in the formula makes the round-up
function become a “round to the nearest integer” function. Equation (8.32)
is not an acceptance-rejection technique, but, used as an alternative to the
acceptance rejection method, it provides a fairly efficient and accurate method
for generating Poisson variates with a large mean. -

-

8.4.2 Gamma Distribution v

use the convolution technique in Section 8.3.1, since the Erlang distribution

method for the Erlang distribution, especially if 8 = k were large. The routine
generates gamma random variates with scale parameter 6 and shape parameter
B — that is, with mean 1/6 and variance 1/862. The steps are as follows:

If the shape parameter B is an integer, say B8 = k, one possibility is to .

;
{
:
¥
i
g
i
H
¢
£
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Step 1. Compute a = (28 — 1)1/2 p — 28 —tnd +1/a.

Step 2. Generate R; and R;.

Step 3. Compute X = BIRi/(1 - R)J°.

Stepda. If X > b — ¢p (RiRy), reject X and return to step 2.

Step4b. If X < b — ¢ (RfRz), use X as the desired variate. The generated
variates from step 4b will have mean and variance both equal to B.
If it is desired to have mean 1/6 and variance 1 /B6? as in
Section 5.4, then include

Step 5. Replace X by X/B6.

The basic idea of all acceptance-rejection methods is again illustrated
here, but the proof of this example is beyond the scope of this book. In step 3,
X = B[R /(1 — Ry))° is not gamma distributed, but rejection of certain values
of X in step 4a guarantees that the accepted values in step 4b do have the
gamma distribution.

EXAMPLE 8.12 _
Downtimes for a high-production candy-making machine have been found to

be gamma distributed with mean 2.2 minutes and variance 2.10 minutes?, Thus,
1/6 =22 and 1/862 = 2.10, which implies that B =2.30 and 6 = 0.4545.

Stepl. a = 1.90, b = 3.74,
Step 2. Generate Ry =0.832, R; =0.021.
Step 3. Compute X = 2.3(0.832/0.168)1 = 48 1.
Stepd. X =481 > 3.74 — £r[(0.832)%0.021] = 7.97, so reject X and return
to step 2. :
Step 2. Generate Ry =0.434, R, = 0.716. |
Step 3. Compute X = 2.3(0.434/0.566)1° = 1 389,
- Step 4. Since X =1.389 < 3.74 — ¢n[(0.434)%0.716] = 5.74, accept X.
Step 5. Divide X by 86 = 1.045 to get X = 1.329.

This example took two trials (i.e., one rejection) to generate an accept-
able gamma-distributed random variate, but on the average to generate, say,
1000 gamma variates, the method will require between 1130 and 1470 trials, or
equivalently, between 2260 and 2940 random numbers. The method is some-
what cumbersome for hand calculations, but is casy to program on the computer
and is one of the most efficient gamma generators known. <

8.5 Summary

The basic principles of random-variate generation using the inverse transform
technique, the convolution method, and acceptance-rejection techniques have
been introduced and illustrated by examples. Methods for generating many
of the important continuous ard discrete distributions, as well as empirical
distributions, have been given. See Schmeiser [1980] for an excellent survey;
for a state-of-the-art treatment, the reader is referred to Devroye [1986] or

- Dagpunar [1988].
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EXERCISES

1. Develop a random-variate generator for a random variable X with the pdf

e, —co<x <0
f(x)—{e“z", 0<x <o

2. Develop a generation scheme for the triangular distribution with pdf

i
T b
.

1
-2-(x~2), 2<x<3

)y =41 x
-2-( - 3), 3 <x <6
L 0, otherwise

Generate 10 values of the random variate, compute the sample mean, and compare
it to the true mean of the distribution,

3. Develop a generator for a triangular distribution with range (1, 10) and mode at
x =4,

4. Develop a generator for a triangular distribution with range (1, 10) and a mean
of 4.
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7.

10.

11.
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Given the following cdf for a continuous variable with range —3 to 4, develop a
generator for the variable,

0, x X -3
-1-+£,~ -;3<x<0
‘ 12 6 -

F(x) = |
1+ch 0<x <4
— -—-’ x
2 2
1, x >4

. Giventhecdf F (x) =x*/16 0n0 = x < 2,developa generator for this distribution.

Given the pdf f(x) =x?/90n0 < x <3, develop a génerator for this distribution,
Develop a generator for a random variable whose pdf is

[ 1

3 0<xx<2
fx)y =141 ,
— 2 < 10 .
240 c=x=1
0, otherwise ‘

The cdf of a discrete random variable Xis givé’ﬁ by

Xx(x + 1)2x + 1)
nin + 12n + 1)’

When n = 4, generate three values of X using R; = 0.83, Ry =024, and R; =
0.57.

Times to failure for an automated production process have been found to be rap-
domly distributed with a Weibull distribution with parameters B =2and a = 10.
Derive Equation (8.6) and then use it to generate five values from this Weibull
distribution, using five random numbers taken from Table A 1.

Data have been collected on service times at a drive-in bank window at the Shady
Lane National Bank. This data are summarized into intervals as follows:

F(x) = x =12 ...,n

Interval (Seconds) Frequency
15-30 10
30-45 20
45-60 25
60-90 35
90-120 30
120-180 20
180-300 -0 10

Setup a table like Table 8.2 for generating service times by the table-lookup method
and generate five values of service time using four-digit random numbers.

In Example 8.2, assume that fire crew response times satisfy 0.25 < x < 3. Modify
Table 8.2 to accommodate this assumption. Then generate five values of response
time using four-digit uniform random numbers from Table A.1.

3



318 . ‘Chap.8 Random-Variate Generation

ﬁ For a preliminary ve\g‘on of a simulation model, the number of pallets, X, to be

loaded onto a truck ag a loading dock was assumed to be uniformly distributed

- » between 8 and 24. Deyise a method for senerating X, assuming that the loads on

~  Successive trucks are independent. Use'the technique of Example 8.5 for discrete

DA uniform distributions. Finally, generate loads for 10 successive trucks by using four-

~. digit random numbers.

14. Aftér collec’:‘ti}ig more data, it was found that the distribution of Example 8.6 was a
better approximation to the number of pallets loaded than was the uniform distri-
bution, as was assumed in Exercise 13. Using Equation (8.18) generate loads for
10 successive trucks using the same random numbers as were used in Exercise 13.
Compare the results to the results of Exercise 13.

15. The weekly demand, X, for a slow-moving item has been found to be well approx-
imated by a geometric distribution on the range {0, 1, 2, .. .} with mean weekly de-
mand of 2.5 items. Generate 10 values of X, demand per week, using random num-
bers from Table A.1. [Hint: For a geometric distribution on the range {g,q+1, ...}
with parameter p, the mean is I/p+qg—1]

16. In Exercise 15, Suppose that the demand has been found to have a Poisson dis-
tribution with mean 2.5 items per week. Generate 10 values of X, demand per
week, using random numbers from Table A.1. Discuss the differences between the
geometric and the Poisson distributions,

17. Lead times have been found to be exponentially distributed with mean 3.7 days.
Generate five random lead times from this distribution.

18. Regular maintenance of a production routine has been found to vary and has been
modeled as a normally distributed random variable with mean 33 minutes and
variance 4 minutes?. Generate five random maintenance times, with the given
distribution.

19. A machine is taken out of production if it fails, or after 5 hours, whichever comes
first. By running similar machines until failure, it has been found that time to failure,
X, has the Weibull distribution with o — 8,8 =0.75,and v = 0 (refer to Sections 54
and 8.1.3). Thus, the time until the machine is taken out of production can be
representedas ¥’ = min(X, 5). Developa step-by-step procedure for generating Y.

20. The time until a component is taken out of service is uniformly distributed on 0 to
8 hours. Two such independent components are putin series, and the whole system
goes down when one of the components goes down. If X; ( = 1, 2) represents the
component runtimes, then ¥ = min(X 1 X2) represents the system lifetime. Devise
two distinct ways to generate Y. [Hint: One way is relatively straightforward. For
a second method, first compute the cdf of Y: Fy(y) = PY<y)=1-P(Y > ¥),
for 0 < y < 8. Use the equivalence {¥ > y} = {X; > yand X, > ¥y} and
the independence of X, and X2. After finding Fy(y), proceed with the inverse
transform technique.]

21. In Exercise 20, component lifetimes are exponentially distributed, one with mean
2 hours and the other with mean 6 hours. Rework Exercise 20 under this new
assumption. Discuss the relative efficiency of the two generation schemes devised.



22.

23.

25,

26.

27.

Exercises 319

Develop a technique for generating a binomial random variable, X, using the con-
volution technique. [Hint: X canbe represented as the number of successes in » in-
dependent Bernoulli trials, each success having probability p. Thus, X = dor X,
where P(X; = 1) = p and P(X; =0)=1-p]

Develop an acceptance-rejection technique for generating a geometric random
variable, X, with parameter p onthe range {0, 1,2, .. }. (Hint: X can be thought
of asthe sumber of trials before the first success occurs in a sequence of independent
Bernoulh trials.)

Write a computer routine to generate standard normal variates by the exact method
discussed in this chapter. Use it to generate 1000 values, Compare the true proba-
bility, ®(z), that a value lies in (—00, 7) to the actual observed relative frequency
that values were < z,forz = —4, -3, -2, -1,0,1,2,3 and 4. ,
Write a computer routine to generate gamma variates with shape parameter B and
scale parameter 6. Generate 1000 values with 8 = 2.5 and 8 = 0.2 and compare
the true mean, 1 /8 =5, to the sample mean.

Write a computer routine to generate 200 values from one of the variates in Exer-
cises 1 to 23. Make a histogram of the 200 values and compare it to the theoretical
density function (or probability mass function for discrete random variables).

Many spreadsheet, symbolic calculation, and statistical analysis programs have
built-in routines for generating random variates from standard distributions. Try
to find out what variate-generation methods are used n one of these packages by
looking at the documentation. Should you trust a variate generator if the method
is not documented? g

Suppose that somehow we have available a source of exponentially distributed
random variates with mean 1. Write an algorithm to generate random variates
with a triangular distribution by transforming the exponentially distributed random
variates. [Hint: First transform to obtain uniformly distributed random variates.]




