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What If There Are More Than 

Two Factor Levels?

• The t-test does not directly apply

• There are lots of practical situations where there are 

either more than two levels of interest, or there are 

several factors of simultaneous interest

• The analysis of variance (ANOVA) is the appropriate 

analysis “engine” for these types of experiments

• The ANOVA was developed by Fisher in the early 

1920s, and initially applied to agricultural experiments

• Used extensively today for industrial experiments
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An Example (See pg. 66)

• An engineer is interested in investigating the relationship 
between the RF power setting and the etch rate for this tool. The 
objective of an experiment like this is to model the relationship 
between etch rate and RF power, and to specify the power 
setting that will give a desired target etch rate.

• The response variable is etch rate.

• She is interested in a particular gas (C2F6) and gap (0.80 cm), 
and wants to test four levels of RF power: 160W, 180W, 200W, 
and 220W. She decided to test five wafers at each level of RF 
power.

• The experimenter chooses 4 levels of RF power 160W, 180W, 
200W, and 220W

• The experiment is replicated 5 times – runs made in random 
order
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An Example (See pg. 66)
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• Does changing the power change the 

mean etch rate?

• Is there an optimum level for power?

• We would like to have an objective 

way to answer these questions

• The t-test really doesn’t apply here –

more than two factor levels
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The Analysis of Variance (Sec. 3.2, pg. 68)

• In general, there will be a levels of the factor, or a treatments, 
and n replicates of the experiment, run in random order…a 
completely randomized design (CRD)

• N = an total runs

• We consider the fixed effects case…the random effects case 
will be discussed later

• Objective is to test hypotheses about the equality of the a 
treatment means
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The Analysis of Variance
• The name “analysis of variance” stems from a 

partitioning of the total variability in the 

response variable into components that are 

consistent with a model for the experiment

• The basic single-factor ANOVA model is 
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Models for the Data

There are several ways to write a model 

for the data:

 is called the effects model

Let ,  then 

 is called the means model

Regression models can also be employed
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The Analysis of Variance

• Total variability is measured by the total 

sum of squares:

• The basic ANOVA partitioning is:
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The Analysis of Variance

• A large value of SSTreatments reflects large differences in 
treatment means

• A small value of SSTreatments likely indicates no 
differences in treatment means

• Formal statistical hypotheses are:

T Treatments ESS SS SS 

0 1 2

1

:

:  At least one mean is different 

aH

H
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The Analysis of Variance
• While sums of squares cannot be directly compared 

to test the hypothesis of equal means, mean 
squares can be compared.

• A mean square is a sum of squares divided by its 
degrees of freedom:

• If the treatment means are equal, the treatment and 
error mean squares will be (theoretically) equal. 

• If treatment means differ, the treatment mean square 
will be larger than the error mean square.
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The Analysis of Variance is 

Summarized in a Table

• The reference distribution for F0 is the Fa-1, a(n-1) distribution

• Reject the null hypothesis (equal treatment means) if 

0 , 1, ( 1)a a nF F  
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ANOVA Table

Example 3-1



Chapter 3 Design & Analysis of Experiments 

8E 2012 Montgomery

17



Chapter 3 Design & Analysis of Experiments 

8E 2012 Montgomery

18



Chapter 3 Design & Analysis of Experiments 

Montgomery

19

Model Adequacy Checking in the ANOVA

Text reference, Section 3.4, pg. 80

• Checking assumptions is important

• Normality

• Constant variance

• Independence

• Have we fit the right model?

• Later we will talk about what to do if 

some of these assumptions are 

violated
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Model Adequacy Checking in the ANOVA

• Examination of 

residuals (see text, Sec. 

3-4, pg. 80) 

• Computer software 

generates the residuals

• Residual plots are very 

useful

• Normal probability plot

of residuals
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Other Important Residual Plots
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Post-ANOVA Comparison of Means

• The analysis of variance tests the hypothesis of equal 
treatment means

• Assume that residual analysis is satisfactory

• If that hypothesis is rejected, we don’t know which
specific means are different 

• Determining which specific means differ following an 
ANOVA is called the multiple comparisons problem

• We will use pairwise t-tests on means…sometimes 
called Fisher’s Least Significant Difference (or Fisher’s 
LSD) Method and Tukey Method
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Why Does the ANOVA Work?
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Sample Size Determination

Text, Section 3.7, pg. 105

• FAQ in designed experiments

• Answer depends on lots of things; including 
what type of experiment is being 
contemplated, how it will be conducted, 
resources, and desired sensitivity

• Sensitivity refers to the difference in means
that the experimenter wishes to detect

• Generally, increasing the number of 
replications increases the sensitivity or it 
makes it easier to detect small differences in 
means
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Sample Size Determination

Fixed Effects Case

• Can choose the sample size to detect a specific 

difference in means and achieve desired values of 

type I and type II errors

• Type I error – reject H0 when it is true (    )

• Type II error – fail to reject H0 when it is false (     )

• Power = 1 -

• Operating characteristic curves plot     against a 

parameter        where
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Sample Size Determination

Fixed Effects Case---use of OC Curves

• The OC curves for the fixed effects model are in the 
Appendix, Table V

• A very common way to use these charts is to define a 
difference in two means D of interest, then the minimum 
value of      is

• Typically work in term of the ratio of            and try values 
of n until the desired power is achieved

• Most statistics software packages will perform power and 
sample size calculations – see page 108

• There are some other methods discussed in the text
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Example:

• EXAMPLE: Consider the tensile strength 

experiment described earlier. Suppose 

that the experimenter is interested in 

rejecting the null hypothesis with a 

probability of at least

• 0.90 if the five treatment means are

• µ1=11, µ2=12, µ3=15, µ4=18, and µ5=19

• She plans to use α = 0.01. In this case, 

because Σµi = 75.
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Therefore, the mean average = (1/5)75 =15 and,

T1  = µ1- µ = 11 - 15 = -4

T2  = µ2- µ = 12 - 15 = -3

T3  = µ3- µ = 15 - 15 = 0

T4  = µ4- µ = 18 - 15 = 3

T5  = µ5- µ = 19 - 15 = 4

Thus, Σi Τi
2 = 50. Suppose the experimenter feels 

that the standard deviation of tensile strength at 

any particular level of cotton weight percentage will 

be no larger than σ = 3 psi. Then, by using the 

Equation, we have:
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Φ2= nΣτi
2/ aσ2 =1.11n

We use the operating characteristic curve for a - 1  = 5  - 1 = 4 with,      

N  - a  = a(n  - 1) = 5(n  - 1) error degrees of freedom and α  = 0.01 (see 

OC curves at Appendix). As a first guess at the required sample size, 

try n  = 4 replicates. This  yields Φ2=1.11(4) = 4.44,  Φ=2.11, and 5(3) = 

15 error degrees of freedom. Consequently,

• from Chart V, we find that ß = 0.30. Therefore, the power of the test 

is approximately

• 1-ß=1- 0.30 = 0.70, which is less than the required 0.90, and so we 

conclude that

• n = 4 replicates are not sufficient. Proceeding in a similar manner, 

we can construct the

• following display:
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n Φ2 Φ a(n -1) ß Power (1- ß)

4 4.44 2.11 15 0.30 0.70

5 5.55 2.36 20 0.15 0.85

6 6.66 2.58 25 0.04 0.96

Thus, at least n = 6 replicates must be run to obtain a 

test with the required power.



The only problem with this approach to using the operating 

characteristic curves is that it is usually difficult to select a 

set of treatment means on which the sample size decision 

should be based. An alternate approach is to select a 

sample size such that if the difference between any two 

treatment means exceeds a specified value the null hy

pothesis should be rejected.If the difference between any 

two treatment means is as large as D, it can be shown that 

the minimum value of  Φ2 is: Φ2=  nD2/ 2aσ2  
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To  illustrate this  approach, suppose  that  in  the  

tensile  strength  experiment Example, the 

experimenter wished  to reject  the null hypothesis 

with probability at least 0.90 if any two treatment  

means differed  by as much as 10 psi. Then, 

assuming that σ = 3 psi, we find the minimum 

value of Φ2 to be:

Φ2= n (10)2 / 2(5)(32) = 1.11 n

from the analysis  in Example  3-11,  we conclude 

that n  = 6 replicates are required to give the 

desired  sensitivity  when  α = 0.01.
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3.8 Other Examples of Single-Factor Experiments
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Conclusions?
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Example:
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3.9  The Random Effects Model

• There are a large number of possible 

levels for the factor (theoretically an infinite 

number)

• The experimenter chooses ‘a’ of these 

levels at random

• Inference will be to the entire population of 

levels
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Variance components
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ANOVA F-test is identical to the fixed-effects case
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Estimating the variance components using the ANOVA method:



• The ANOVA variance component 

estimators are moment estimators

• Normality not required

• They are unbiased estimators

• Finding confidence intervals on the variance 

components is “clumsy”

• Negative estimates can occur – this is 

“embarrassing”, as variances are always 

non-negative
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• Confidence interval for the error variance:

• Confidence interval for the interclass 

correlation:
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Problem. A manufacturing engineer was concerned about the density of bricks. He 

conducted an experiment on the brick-manufacturing process, to determine the effects of 

firing temperatures on the density of a certain type of brick. 

Four specific firing temperatures were selected to be used in this experiment. This 

experiment led to the following data: 

 

Temperature 

        (oF)    Density 

100 15.3 15.3 15.2 15.3 15.4 

130 15.7 15.4 15.5 15.5 - 

160 15.9 15.8 15.8 15.6 15.5 

190 15.9 15.7 15.8 15.7 - 

 

Q1- Does the firing temperature affect the density of the brick? What the experimenter 

should do to decrease the Type I Error? Analyze the residuals from the experiment. 
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Q1-Answer: Ho: µ100 = µ130 = µ160= µ190  and H1: Not. 

 

ANOVA SS df MS Fo 
  

Treatment 0.653111111 3 0.217704 15.01405 
  

Error 0.203 14 0.0145 
   

Total 0.856111111 17 
  

F0.05,3,14: 3.34 

 

Therefore, reject Ho. 
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Q2- Assuming that the normality assumption of ANOVA is unjustified, test 

the null hypothesis that the ‘a treatments’ are identical? Did you obtain a 

similar decision to the one obtained from ANOVA?

Q2- Answer: Let’s, first, sort the density from minimum to maximum. 

 

 Density i j Rank 

15.2 100 3 1 

15.3 100 1 3 

15.3 100 2 3 

15.3 100 4 3 

15.4 100 5 5.5 

15.4 130 2 5.5 

15.5 130 3 8 

15.5 130 4 8 

15.5 160 5 8 

15.6 160 4 10 

15.7 130 1 12 

15.7 190 2 12 
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 Density i j Rank 

15,7 190 4 12 

15.8 160 2 15 

15.8 160 3 15 

15.8 190 3 15 

15.9 160 1 17.5 

15.9 190 1 17.5 
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There are ties. 

 

Y1j R1j Y2j R2j Y3j R3j Y4j R4j SUMj(Rij^2)

15.3 3 15.7 12 15.9 17.5 15.9 17.5 765.5

15.3 3 15.4 5.5 15.8 15 15.7 12 408.25

15.2 1 15.5 8 15.8 15 15.8 15 515

15.3 3 15.5 8 15.6 10 15.7 12 317

15.4 5.5 15.5 8 94.25

SUMi: 2100

S^2= 27.97

H= 12.8787

[1/(18-1)]*[SUMi SUMj Rij^2 -(18*(19)^2)/4]=

1/S^2*(SUMi ((Ri.^2)/ni) - (18*19^2)/4)=  
 

Χ2
0.05,3=7.81 

Since H= 12.8787 > 7.81 We reject Ho. 


