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Design of Engineering Experiments

Part 5 – The 2k Factorial Design

• Text reference, Chapter 6

• Special case of the general factorial design; k factors, 
all at two levels

• The two levels are usually called low and high (they 
could be either quantitative or qualitative)

• Very widely used in industrial experimentation

• Form a basic “building block” for other very useful 
experimental designs (DNA)

• Special (short-cut) methods for analysis

• We will make use of Design-Expert
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The Simplest Case: The 22

“-” and “+” denote the low and 

high levels of a factor, 

respectively

• Low and high are arbitrary 

terms

• Geometrically, the four runs 

form the corners of a square

• Factors can be quantitative or 

qualitative, although their 

treatment in the final model 

will be different  
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Chemical Process Example

A = reactant concentration, B = catalyst amount, 

y = recovery
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Analysis Procedure for a 

Factorial Design

• Estimate factor effects

• Formulate model

– With replication, use full model

– With an unreplicated design, use normal probability 
plots

• Statistical testing (ANOVA)

• Refine the model

• Analyze residuals (graphical)

• Interpret results
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Estimation of Factor Effects
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See textbook, pg. 235-236 for 

manual calculations

The effect estimates are:           A

= 8.33,  B = -5.00,  AB = 1.67

Practical interpretation?

Design-Expert analysis
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Contrast ABC….Z= (a±1) (b±1) (c±1)…….. (z±1)

ABC…..Z= 2(Contrast ABC….Z)

-----------------------

n2K

SS ABC….Z= (Contrast ABC….Z)2

------------------------

n2K

SST= ΣΣΣΣ…. Σ Y2
ij....k – Y2

...../ ab…..n
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Statistical Testing - ANOVA

The F-test for the “model” source is testing the significance of the 

overall model; that is, is either A, B, or AB or some combination of 

these effects important?
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Residuals and Diagnostic Checking
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The Response Surface
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The 23 Factorial Design
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Effects in The 23 Factorial Design

etc, etc, ...
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Analysis 

done via 

computer
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An Example of a 23 Factorial Design

A = gap, B = Flow, C = Power, y = Etch Rate
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Table of – and + Signs for the 23 Factorial Design (pg. 218)
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Properties of the Table 

• Except for column I, every column has an equal number of + and –
signs

• The sum of the product of signs in any two columns is zero

• Multiplying any column by I leaves that column unchanged (identity 
element)

• The product of any two columns yields a column in the table:

• Orthogonal design

• Orthogonality is an important property shared by all factorial designs

2

A B AB

AB BC AB C AC

 

  
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Estimation of Factor Effects
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ANOVA Summary – Full Model
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Model Coefficients – Full Model
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Refine Model – Remove Nonsignificant Factors
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Model Coefficients – Reduced Model
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Model Summary Statistics for Reduced Model

• R2 and adjusted R2

• R2 for prediction (based on PRESS)
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Model Interpretation

Cube plots are 

often useful visual 

displays of 

experimental 

results
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The General 2k Factorial Design

• Section 6-4, pg. 253, Table 6-9, pg. 25

• There will be k main effects, and

 two-factor interactions
2

 three-factor interactions
3

1 factor interaction

k

k

k

 
 
 

 
 
 


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6.5 Unreplicated 2k Factorial Designs

• These are 2k factorial designs with one
observation at each corner of the “cube”

• An unreplicated 2k factorial design is also 
sometimes called a “single replicate” of the 2k 

• These designs are very widely used

• Risks…if there is only one observation at each 
corner, is there a chance of unusual response 
observations spoiling the results?

• Modeling “noise”? 
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Spacing of Factor Levels in the 

Unreplicated 2k Factorial Designs

If the factors are spaced too closely, it increases the chances 

that the noise will overwhelm the signal in the data

More aggressive spacing is usually best
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Unreplicated 2k Factorial Designs

• Lack of replication causes potential problems in 
statistical testing

– Replication admits an estimate of “pure error” (a better 
phrase is an internal estimate of error)

– With no replication, fitting the full model results in zero 
degrees of freedom for error

• Potential solutions to this problem

– Pooling high-order interactions to estimate error

– Normal probability plotting of effects (Daniels, 1959)

– Other methods…see text
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Example of an Unreplicated 2k Design

• A 24 factorial was used to investigate the 

effects of four factors on the filtration rate of a 

resin

• The factors are A = temperature, B = pressure, 

C = mole ratio, D= stirring rate

• Experiment was performed in a pilot plant 
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The Resin Plant Experiment
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The Resin Plant Experiment
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Estimates of the Effects



Chapter 6 Design & Analysis of Experiments 

8E 2012 Montgomery

32

The Half-Normal Probability Plot of Effects
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Design Projection: ANOVA Summary for 

the Model as a 23 in Factors A, C, and D
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The Regression Model
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Model Residuals are Satisfactory
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Model Interpretation – Main Effects 

and Interactions
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Model Interpretation – Response 

Surface Plots

With concentration at either the low or high level, high temperature and 

high stirring rate results in high filtration rates
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Outliers: suppose that cd = 375 (instead of 75)
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Dealing with Outliers

• Replace with an estimate

• Make the highest-order interaction zero

• In this case, estimate cd such that ABCD = 0

• Analyze only the data you have

• Now the design isn’t orthogonal

• Consequences?
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The Drilling Experiment 

Example 6.3

A = drill load, B = flow, C = speed, D = type of mud,       

y = advance rate of the drill
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Normal Probability Plot of Effects –

The Drilling Experiment
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Residual Plots

DESIGN-EXPERT Plot

adv._rate

Predicted

R
e

s
id

u
a
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Residuals vs. Predicted

-1.96375

-0.82625

0.31125

1.44875

2.58625

1.69 4.70 7.70 10.71 13.71
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• The residual plots indicate that there are problems 
with the equality of variance assumption

• The usual approach to this problem is to employ a 
transformation on the response

• Power family transformations are widely used

• Transformations are typically performed to 

– Stabilize variance

– Induce at least approximate normality

– Simplify the model

Residual Plots

*y y
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Selecting a Transformation

• Empirical selection of lambda

• Prior (theoretical) knowledge or experience can 

often suggest the form of a transformation

• Analytical selection of lambda…the Box-Cox 

(1964) method (simultaneously estimates the 

model parameters and the transformation 

parameter lambda)

• Box-Cox method implemented in Design-Expert



Chapter 6 Design & Analysis of Experiments 

8E 2012 Montgomery

48

(15.1)
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The Box-Cox Method
DESIGN-EXPERT Plot
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Best = -0.23
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Box-Cox Plot for Power Transforms
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A log transformation is 

recommended

The procedure provides a 

confidence interval on 

the transformation 

parameter lambda

If unity is included in the 

confidence interval, no 

transformation would be 

needed
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Effect Estimates Following the 

Log Transformation

Three main effects are 

large

No indication of large 

interaction effects

What happened to the 

interactions?
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ANOVA Following the Log Transformation
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Following the Log Transformation
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The Log Advance Rate Model

• Is the log model “better”?

• We would generally prefer a simpler model

in a transformed scale to a more 

complicated model in the original metric

• What happened to the interactions?

• Sometimes transformations provide insight 

into the underlying mechanism
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Other Examples of 

Unreplicated 2k Designs

• The sidewall panel experiment (Example 6.4, pg. 274)

– Two factors affect the mean number of defects

– A third factor affects variability

– Residual plots were useful in identifying the dispersion 

effect

• The oxidation furnace experiment (Example 6.5, pg. 

245)

– Replicates versus repeat (or duplicate) observations?

– Modeling within-run variability



• Example 6.6, Credit Card Marketing, page 

278

– Using DOX in marketing and marketing 

research, a growing application

– Analysis is with the JMP screening platform
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Other Analysis Methods for 

Unreplicated 2k Designs

• Lenth’s method (see text, pg. 262)

– Analytical method for testing effects, uses an estimate 

of error formed by pooling small contrasts

– Some adjustment to the critical values in the original 

method can be helpful

– Probably most useful as a supplement to the normal 

probability plot

• Conditional inference charts (pg. 264)
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Overview of Lenth’s method

For an individual contrast, compare to the margin of error



Chapter 6 Design & Analysis of Experiments 

8E 2012 Montgomery

58



Chapter 6 Design & Analysis of Experiments 

8E 2012 Montgomery

59

Adjusted multipliers for Lenth’s method

Suggested because the original method makes too many 

type I errors, especially for small designs (few contrasts)

Simulation was used to find these adjusted multipliers

Lenth’s method is a nice supplement to the normal 

probability plot of effects

JMP has an excellent implementation of Lenth’s method 

in the screening platform
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The 2k design and design optimality

The model parameter estimates in a 2k design (and the effect estimates) are 

least squares estimates.  For example, for a 22 design the model is
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The four 

observations 

from a 22 design 
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The least squares estimate of β is
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The        matrix is 

diagonal –

consequences of an 

orthogonal design

X X

The regression 

coefficient estimates 

are exactly half of the 

‘usual” effect estimates

The “usual” contrasts
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The matrix        has interesting and useful properties:X X

2 1

2

ˆ( ) (diagonal element of ( ) )

4

V  







X X

Minimum possible 

value for a four-run 

design

|( ) | 256 X X
Maximum possible 

value for a four-run 

design

Notice that these results depend on both the design that you 

have chosen and the model

What about predicting the response?
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What about  prediction variance over the design space?average
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Average prediction variance

1 1

2

1 2 1 2

1 1

1 1

2 2 2 2 2

1 2 1 2 1 2

1 1

2

1
ˆ[ ( , )      = area of design space = 2 4

1 1
(1 )     

4 4

4

9

I V y x x dx dx A
A

x x x x dx dx



 

 

 

   



 

 



Chapter 6 Design & Analysis of Experiments 

8E 2012 Montgomery

66

Design-Expert® Software

Min StdErr Mean: 0.500

Max StdErr Mean: 1.000

Cuboidal

radius = 1

Points = 10000

FDS Graph
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For the 22 and in general the 2k

• The design produces regression model coefficients  that 

have the smallest variances (D-optimal design)

• The design results in minimizing the maximum

variance of the predicted response over the design space 

(G-optimal design)

• The design results in minimizing the average variance 

of the predicted response over the design space (I-

optimal design)
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Optimal Designs

• These results give us some assurance that 

these designs are “good” designs in some 

general ways

• Factorial designs typically share some (most) 

of these properties

• There are excellent computer routines for 

finding optimal designs (JMP is outstanding)
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Addition of Center Points 

to a 2k Designs 

• Based on the idea of replicating some of the 

runs in a factorial design

• Runs at the center provide an estimate of 

error and  allow the experimenter to 

distinguish between two possible models:

0

1 1

2

0

1 1 1

First-order model (interaction) 

Second-order model 

k k k

i i ij i j

i i j i

k k k k
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i i j i i

y x x x

y x x x x

   

    

  

   

   

    

 
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 no "curvature"F Cy y 

The hypotheses are:
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This sum of squares has a 

single degree of freedom
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Example 6.7, Pg. 286

4Cn 

Usually between 3 

and 6 center points 

will work well

Design-Expert 

provides the analysis, 

including the F-test 

for pure quadratic 

curvature

Refer to the original experiment 

shown in Table 6.10. Suppose that 

four center points are added to this 

experiment, and at the points x1=x2  

=x3=x4=0 the four observed 

filtration rates were 73, 75, 66, and 

69. The average of these four center 

points is 70.75, and the average of 

the 16 factorial runs is 70.06.  

Since are very similar, we suspect 

that there is no strong curvature 

present.
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ANOVA for Example 6.7 
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If curvature is significant, augment the design with axial runs to 

create a central composite design.  The CCD is a very effective design 

for fitting a second-order response surface model
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Practical Use of Center Points (pg. 289) 

• Use current operating conditions as the center 
point

• Check for “abnormal” conditions during the 
time the experiment was conducted

• Check for time trends

• Use center points as the first few runs when there 
is little or no information available about the 
magnitude of error

• Center points and qualitative factors?
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Center Points and Qualitative Factors


