Design of Engineering Experiments
Part 5 — The 2« Factorial Design

» Text reference, Chapter 6

« Special case of the general factorial design; k factors,
all at two levels

« The two levels are usually called low and high (they
could be either quantitative or qualitative)

* Very widely used In industrial experimentation

* Form a basic “building block™ for other very useful
experimental designs (DNA)

« Special (short-cut) methods for analysis
* We will make use of Design-Expert
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CHAPTER 6

Two-Level Factorial Designs

CHAPTER OUTLINE

6.1 INTRODUCTION 6.9 WHY WE WORK WITH CODED DESIGN

6.2 THE 2* DESIGN VARIABLES

6.3 THE 2 DESIGN SUPPLEMENTAL MATERIAL FOR CHAPTER 6

6.4 THE GENERAL 2* DESIGN 56.1 Factor Effect Estimates Are Least Squares Estimates

56.2 Yates's Method for Calculating Factor Effects

- \ " - Ak .
6.5 A SINGLE REPLICATE OF THE 2" DESIGN S6.3 A Note on the Variance of a Contrast

6.6 A__DDIHDNAL EXAMPLES OF UNREPLICATED 56.4 The Variance of the Predicted Response

2" DESIGNS 56.5 Using Residuals to ldentify Dispersion Effects
6.7 2* DESIGNS ARE OPTIMAL DESIGNS S6.6 Center Points versus Replication of Factorial Points
6.8 THE ADDITION OF CENTER POINTS 56.7 Testing for “Pure Quadratic™ Curvature

TO THE 2¢ DESIGN Using a t-Test

The supplemental material is on the textbook website www.wiley.com/go/global/montgomery.
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The Simplest Case: The 22

b =60 ab =90 m FIGURE 6.1 Treatment
High (18+19 + 23) (31+30+29  combinations in the 2° design
(2 pounds)
“ “-” and “+” denote the low and
o -
= high levels of a factor,
S respectively
m - -
< « Low and high are arbitrary
ow | ] | terms
(1pound) (1)~ g0 a =100 « Geometrically, the four runs
(28 +25+27) (36 +32+32) form the corners of a square
I 1 . .
- * « Factors can be quantitative or
Low High .. ]
(15%) (259%) qualltatlve_, althOl_Jgh their
Reactant treatment In the final model
concentration, will be different
A
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Chemical Process Example

Factor Treatment Replimte
B Combination I I1 I1 Total
— A low, B low 28 25 27 S0
— A high, B low 36 32 32 100
+ A low, B high I8 |9 23 60
+ A high, B high 31 30 29 90

A = reactant concentration, B = catalyst amount,
y = recovery
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Analysis Procedure for a
Factorial Design

Estimate factor effects

Formulate model
— With replication, use full model

— With an unreplicated design, use normal probability
plots

Statistical testing (ANOVA)
Refine the model

Analyze residuals (graphical)
Interpret results

Chapter 6 Design & Analysis of Experiments
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Estimation of Factor Effects

A=Y, -V,
~ab+a b+(1)
~2n2n
=--[ab+a—-b—-(1)]
B=y.. -V,
_ab+b a+(1)
T 2n 2n
=--[ab+b—-a—(1)]
AB:ab+(1)_a+b
2N 2N

— L[ab+(1)—a—b]

See textbook, pg. 235-236 for
manual calculations

The effect estimates are:
=8.33, B=-5.00, AB=1.67

Practical interpretation?

Design-Expert analysis

A
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Contrast 5 ,= (axl) (b£1) (c£1)........ (z+1)

ABC.....Z=2(Contrast .5 7)

n2K
SS spc.. 7= (Contrast y5-  7)?

n2Kk
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Statistical Testing - ANOVA

m TABLE 6.1

Analysis of Variance for the Experiment in Figure 6.1

Source of Sum of Degrees of Mean

Variation Squares Freedom Square F, P-Value
A 208.33 I 208.33 53.15 0.0001
B 75.00 I 75.00 19.13 0.0024
AB 8.33 I 8.33 2.13 0.1826
Error 31.34 8 3.92

Total 323.00 [

The F-test for the “model” source is testing the significance of the
overall model; that is, is either A, B, or AB or some combination of
these effects important?
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Normal probability

Residuals and Diagnostic Checking

Residuals

-2.833 -2.000 2.167 -0.333 0.500

Residual

(@) Normal probability plot

1.333  2.167

2.167

1.333

0.500

-0.333

-1.167

-2.000

-2.833

Predicted yield

(b) Residuals versus predicted yield

m FIGURE 6.2 Residual plots for the chemical process experiment
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The Response Surface

2.000
34.17 7
L2 A AALTT T
”%’:’fizz;”,@’;}';’;’? 1.833
iy
29.72 4
~ 1.667
c
y 25.28 g
T 1.500
w
20.83 T;;
©
© 1.333
2.000
1.800 25.00
o 1.167
I 3{\0(\
¢, o 1.000 ] | | | |
Z¢ 1.000 15-00?\63& 15.00  16.67  18.33  20.00 21.67 2333  25.00
Reactant concentration
(a) Response surface (b) Contour plot

m FIGURE 6.3 Response surface plot and contour plot of yield from the chemical process experiment

Chapter 6 Design & Analysis of Experiments 10
8E 2012 Montgomery



The 23 Factorial Design

m FIGURE 6.4 be abe
The 2° factorial :
design High + — : - Factor
| Run A B
o
S 1 L
@ 2 . _
L
3 - + -
Low — - 4 + + -
5 - - +
6 + - +
7 - + +
8 + + +
Factor A
(a) Geometric view (b) Design matrix
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Effects in The 23 Factorial Design

|
e )
O // e

m FIGURE 6.5

Geometric presenta-

tion of contrasts

corresponding to the

main effects and
interactions in the
2} design

Chapter 6

pred

h) Two-factor interaction

ABC

(c) Three-factor interaction
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Analysis
done via
computer
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An Example of a 23 Factorial Design

m TABLE 6.4
The Plasma Etch Experiment, Example 6.1

Coded Factors Etch Rate Factor Levels

Run A B C Replicate 1 Replicate 2 Total Low (—1) High (+1)
I —1 —1 —1 550 604 (1)=1154 A (Gap, cm) 0.80 1.20

2 l —1 —1 669 650 a= 1319 B (C,F, flow, SCCM) 125 200

3 —1 | —1 633 601 b = 1234 C (Power, W) 275 325

4 l | —1 642 635 ab = 1277

5 —1 —1 1 1037 1052 ¢ = 2089

6 l —1 1 749 868 ac = 1617

7 —1 | 1 1075 1063 bc = 2138

8 l | 1 729 860 abc = 1589

A =gap, B = Flow, C = Power, y = Etch Rate

Chapter 6 Design & Analysis of Experiments 13
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Table of — and + Signs for the 23 Factorial Design (pg. 218)

m TABLE 6.3

Algebraic Signs for Calculating Effects in the 2’ Design

Factorial Effect

Treatment

Combination I A B AB C AC BC ABC
(1) = . . + — + + —
a + + — - - — + +

b + - + . - - . -
ab + + + + - — - -

c = . . + + — — +
ac + + — - + + — —
bc + - + . + . - .
abc + + + - + - - -

Chapter 6

Design & Analysis of Experiments
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Properties of the Table

« Except for column 1, every column has an equal number of + and —
signs
« The sum of the product of signs in any two columns is zero

« Multiplying any column by I leaves that column unchanged (identity
element)

« The product of any two columns yields a column in the table:

AxB = AB
ABx BC = AB°C = AC

« Orthogonal design
« Orthogonality is an important property shared by all factorial designs

Chapter 6 Design & Analysis of Experiments 15
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Estimation of Factor Effects

m TABLE 6.5
Effect Estimate Summary for Example 6.1

Effect Sum of Percent
Factor Estimate Squares Contribution
A —101.625 41,310.5625 7.7736
B 7.375 217.5625 0.0409
C 306.125 374,850.0625 70.5373
AB —24.875 2475.0625 0.4657
AC —153.625 94,402.5625 17.7642
BC —2.125 18.0625 0.0034
ABC 5.625 126.5625 0.0238

Chapter 6 Design & Analysis of Experiments
8E 2012 Montgomery

16



ANOVA Summary — Full Model

m TABLE 6.6

Analysis of Variance for the Plasma Etching Experiment

Source of Sum of Degrees of Mean

Variation Squares Freedom Square F, P-Value
Gap (A) 41,310.5625 l 41,310.5625 18.34 0.0027
Gas flow (B) 217.5625 I 217.5625 0.10 0.7639
Power (C) 374,850.0625 l 374,850.0625 166.41 0.0001
AB 2475.0625 l 2475.0625 .10 0.3252
AC 94,402.5625 I 94.,402.5625 4191 0.0002
BC 18.0625 l 18.0625 0.01 0.9308
ABC 126.5625 l 126.5625 0.06 0.8186
Error 18,020.5000 8 2252.5625

Total 531,420.9375 15
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Model Coefficients — Full Model

Coefficient Standard 95% ClI 95% CI
Factor Estimated F Error Low High VIF
Intercept 776.06 1 11.87 748.70 803.42
A-Gap —50.81 1 11.87 —78.17 —23.45 1.00
B-Gas flow 3.69 1 11.87 —23.67 31.05 1.00
C-Power 153.06 1 11.87 125.70 180.42 1.00
AB —12.44 1 11.87 —39.80 14.92 1.00
AC —76.81 1 11.87 —-104.17 —49.45 1.00
BC —1.06 1 11.87 —28.42 26.30 1.00
ABC 2.81 1 11.87 —24.55 30.17 1.00

Chapter 6 Design & Analysis of Experiments 18
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Refine Model — Remove Nonsignificant Factors

m TABLE 6.7 (Continued)

Response: Etch rate
ANOVA for Selected Factorial Model
Analysis of variance table [Partial sum of squares]

Chapter 6

Sum of Mean F
Source Squares DF Square Value Prob > F
Model 5.106E+005 3 1.702E+005 97.91 <0.0001
A 41310.56 1 41310.56 23.77 0.0004
C 3.749E+005 1 3.749E+005 215.66 <0.0001
AC 94402.56 1 94402.56 54.31 <0.0001
Residual 20857.75 12 1738.15
Lack of Fit 2837.25 4 709.31 0.31 0.8604
Pure Error 18020.50 8 2252.56
Cor Total 5.314E+005 15
Std. Dev. 41.69 R-Squared 0.9608
Mean 776.06 Adj R-Squared 0.9509
C.V. 5.37 Pred R-Squared 0.9302
PRESS 37080.44 Adeq Precision 22.055
Coefficient Standard 95% Cl1 95% CI
Factor Estimate DF Error Low High VIF
Intercept 776.06 | 10.42 753.35 798.77
A-Gap —50.81 1 10.42 —73.52 28.10 1.00
C-Power 153.06 1 10.42 130.35 175.77 1.00
AC —76.81 1 10.42 —99.52 =54.10 1.00
Final Equation in Terms of Coded Factors:
Etch rate =
+776.06
—50.81 *A
+153.06 *C
—76.81 FAEC
Final Equation in Terms of Actual Factors:
Etch rate =
—5415.37500
+4354.68750 * Gap
+21.48500 * Power

—15.36250

* Gap * Power

Design & Analysis of Experiments
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Model Coefficients — Reduced Model

Coefficient Standard 95% CI 95% ClI
Factor Estimate DF Error Low High VIF
Intercept 776.06 1 10.42 753.35 798.77
A-Gap —50.81 1 10.42 —73.52 28.10 1.00
C-Power 153.06 1 10.42 130.35 175.77 1.00
AC —76.81 1 10.42 —99.52 —54.10 1.00
Chapter 6 Design & Analysis of Experiments 20
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Model Summary Statistics for Reduced Model
« R2and adjusted R?

5
2 _ SO odel _ 5.106><1O5 _ 0.9608
SS;  5.314x10

SSe /df, _,  20857.75/12
SS. /df, 5.314x10° /15

RZ, =1- = 0.9509

« R?for prediction (based on PRESS)
PRESS 37080.44

RZ =1- =1- _ —0.9302
S, 5.314x10

Chapter 6 Design & Analysis of Experiments 21
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Model Interpretation

Power (C)

oo T [T T

- g 200 sccm
=~
~
275 w| - &< 1) =1154 a = 1319] .~ C, Fg Flow

| _ + | 125 sccm
0.80 cm 1.20 cm
Gap (A)

m FIGURE 6.6 The 2’ design for the plasma
etch experiment for Example 6.1

Chapter 6 Design & Analysis of Experiments
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The General 2X Factorial Design

 Section 6-4, pg. 253, Table 6-9, pg. 25
e There will be k main effects, and

Kk
(Zj two-factor interactions

Kk
[3) three-factor interactions

1 k —factor interaction

Chapter 6 Design & Analysis of Experiments
8E 2012 Montgomery
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6.5 Unreplicated 2 Factorial Designs

« These are 2k factorial designs with one
observation at each corner of the “cube”

 An unreplicated 2% factorial design is also
sometimes called a “single replicate” of the 2k

» These designs are very widely used

* Risks...1f there 1s only one observation at each
corner, Is there a chance of unusual response
observations spoiling the results?

e Modeling “noise”?

Chapter 6 Design & Analysis of Experiments 24
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Spacing of Factor Levels In the
Unreplicated 2k Factorial Designs

~True ~True
. factor - factor
< effect effect
w w
- :
o .
= 2 Estimate of
ke & factor effect
Estimate of
factor effect
I I I I
- + - +
Factor, x Factor, x
(a) Small distance between factor levels {(h) Aggressive spacing of factor levels

m FIGURE 6.9 The impact of the choice of factor levels in an unreplicated design

If the factors are spaced too closely, it increases the chances
that the noise will overwhelm the signal in the data

More aggressive spacing is usually best

Chapter 6 Design & Analysis of Experiments
8E 2012 Montgomery
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Unreplicated 2k Factorial Designs

 Lack of replication causes potential problems in
statistical testing

— Replication admits an estimate of “pure error” (a better
phrase is an internal estimate of error)

— With no replication, fitting the full model results in zero
degrees of freedom for error

 Potential solutions to this problem
— Pooling high-order interactions to estimate error
— Normal probability plotting of effects (Daniels, 1959)
— Other methods...see text

Chapter 6 Design & Analysis of Experiments 26
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Example of an Unreplicated 2k Design

« A 24factorial was used to investigate the

effects of four factors on the filtration rate of a
resin

» The factors are A = temperature, B = pressure,
C = mole ratio, D= stirring rate

Experiment was performed in a pilot plant

Chapter 6 Design & Analysis of Experiments 27
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Chapter 6

The Resin Plant Experiment

m TABLE 6.10

Pilot Plant Filtration Rate Experiment

Filtration
Run Factor Rate
Number A B C D Run Label (gal/h)
| — — — — (1) 45
2 + — = = a 71
3 — + — = b 438
4 + + — = ab 65
5 — — + — ¢ 68
6 aF = F = ac 60
7 — + + — be 80
8 = o F — abc 65
9 — — — + d 43
10 = — — 1 ad 100
Il — -F — IF bd 45
12 s -F — IF abd 104
13 — — - 1 cd 75
14 = — - + acd 86
15 = = 4F 1= bed 70
16 aF = T 1= abed 96

Design & Analysis of Experiments
8E 2012 Montgomery
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The Resin Plant Experiment

D
- +
80 65 70 96

682 : N 75/ : e

| |

| | B

_48— —|— —65 _ _AB— —[— —104 C

454 71 43 100

mFIGURE 6.10 Datafrom the pilot plant filtra-

tion rate experiment for Example 6.2

Chapter 6 Design & Analysis of Experiments
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m TABLE 6.11

Contrast Constants for the 2* Design
. _____________________________________________________________________________________________________________________________________|

A B AB C AC BC ABC D AD BD ABD CD ACD BCD ABCD

(1) - - + -+ + — — + + — + — — +
a + - - - - + + — — + + + + — —
b -+ - -+ — + — + — + + — + —
ab + + + — — — — — — — — + + + +
c - - + o+ - — + — + + — — + + —
ac + - - 4+ O+ — — — — + + — — + +
be -+ -+ - + — — + — + — + — +
abc + + —+ — —+ + + — — — — — — — —
d - = + — + — — + — + + —
ad + — — — — + + + + — — — — I -
bd -+ - -+ — + + — + — — + — +
abd + + + = = = = + + + + — = = =
cd — — + + — — + + — — + + - — +
acd + = — + + — — + + — — + + — —
bed -+ - 4+ = + — + — + — + — + —
abed — +  + +  + o+ + + + + + + + + + +
Chapter 6 Design & Analysis of Experiments 30
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Estimates of the Effects

m TABLE 6.12

Factor Effect Estimates and Sums of Squares for the 2*

Factorial in Example 6.2 99 A

Model Effect Sum of Percent 95 |- AD =

Term Estimate Squares Contribution . 90} DO

A 21.625 1870.56 32.6397 % §g C g 0

B 3.125 39.0625 0.681608 'g

C 9.875 390.062 6.80626 S

D 14.625 855.563 14.9288 < 301

AB 0.125 0.0625 0.00109057 % 201~

AC —18.125  1314.06 22.9293 = e

AD 16.625 1105.56 19.2911 o

BC 2.375 22.5625 0.393696 1B

BD —0.375 0.5625 0.00981515

CD —1.125 5.0625 0.0883363 I I I I I

ABC 1.875 14.0625 0.245379 -18.12 -8.19 1.75 11.69 21.62

ABD 4.125 68.0625 1.18763 Effect

ACD —1.625 10.5625 0.184307

BCD 1625 27 5625 0.480942 m FIGURE 6.11 Normal probability plot of

ABCD 1375 7 565 0.131959 the effects for the 2* factorial in Example 6.2
Chapter 6 Design & Analysis of Experiments 31
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The Half-Normal Probability Plot of Effects

mFIGURE 6.15
Half-normal plot of

the factor effects 99 -
from Example 6.2

O

97
95—

0%

90—
85— '
80

0
60 [—

Oa
O

Half-normal % probability

40—
20

| | | | |
0.00 5.41 10.81 16.22 21.63

Effect
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Design Projection: ANOVA Summary for
the Model as a 23in Factors A, C, and D

m TABLE 6.13

Analysis of Variance for the Pilot Plant Filtration Rate Experiment in A, C, and D

Source of Sum of Degrees of Mean

Variation Squares Freedom Square F, P-Value
A 1870.56 I 1870.56 83.36 <0.0001
C 390.06 I 390.06 17.38 <0.0001
D 855.56 I 855.56 38.13 <0.0001
AC 1314.06 I 1314.06 58.56 <0.0001
AD 1105.56 I 1105.56 49.27 <0.0001
CD 5.06 I 5.06 <l

ACD 10.56 [ 10.56 <l

Error 179.52 8 22.44

Total 5730.94 15

Chapter 6 Design & Analysis of Experiments 33
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Model Residuals are Satisfactory

m FIGURE 6.13
Normal probability
plot of residuals for
Example 6.2

Normal % probability

-6.375  -3.34375  -0.3125  2.71875 5.75
Residual
Chapter 6 Design & Analysis of Experiments
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Model Interpretation — Main Effects
and Interactions

£ 90 90 90

S

2 80|~ 80 |- 80 |-

c

£ oF 70_/ 70—

% 60| 60 |- 60 |-

g

. | 5o L | 5o L |
< = + = + = +

A C D

(a) Main effect plots

100 — 100 —
. AC interaction AD interaction Doy
< 90| 90 |- B
T C=-
2
L 80 80 |-
o —e
c C=+ ?‘ Z_
2 70| 70| b=
% 60 60}
{=)]
o
[14]
é 50 50—

40— L 4oL L

A A

(b) Interaction plots

m FIGURE 6.12 Main effect and interaction plots for Example 6.2
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Model Interpretation — Response
Surface Plots

1.000
1.000 F750 0 1 | I
0.667 - 0.667
9 %
o, 0333 - £ 0.333
5 s
% 0.000 80.00 90.00 T 0.000
= f)]
© £
S _0.333 . = -0.333
S w
-0.667 — -0.667 70.00 —
65.00
~1.000 I I I ~1.000 I I /
-1.000 -0.667 -0.333 0.000 0.333 0.667 1.000 -1.000 -0.667 -0.333 0.000 0.333 0.667 1.000
Temperature, A (x1) Concentration, C (x3)
(a) Contour plot with stirring rate (D), x4 = 1 (b) Contour plot with temperature (A), xq = 1

mFIGURE 6.14 Contour plots of filtration rate, Example 6.2

With concentration at either the low or high level, high temperature and
high stirring rate results in high filtration rates
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m TABLE 6.14
JMP Screening Platform Ouiput for Example 6.2

Response Y
Summary of Fit
RSquare 1
RSquare Adj -
Root Mean Square Error -
Mean of Response T0.0625
Observations (or Sum Wets) 16
Sorted Parameter Estimates

Relative Psendo Pseudo
Term Estimate Std Error t-Ratio Pseudo t-Ratio p-Value
Temp 10.8125 0.25 824 = (0.0004#
Temp*Conc —0.0625 0.25 —6.90 = 0.0010#
Temp*Stirk 83125 0.25 6.33 —_— 0.0014%
SurR 73125 0.25 5.57 = 0.0026%
Conc 49375 0.25 376 = 0.0131#
Temp*Pressure®Stirk 20625 0.25 1.57 e 0.1769
Pressure 1.5625 0.25 1.19 —— 0.2873
Pressure®*Conc*Surl —1.3125 025 —1.00 —_— (.3632
Pressure*Conc 1.1875 0.25 0.90 —— 0.4071
Temp*Pressure®*Cone 0.9375 0.25 0.71 _— (.5070
Temp*Conc*StirR —0.8125 0.25 —0.62 _— 0.5630
Temp*Pressure*Conc*Stirk 0.6875 0.25 0.52 —_— 0.6228
Conc*SurR —0.5625 0.25 —0.43 e 06861
Pressure®Stirl —0.1875 0.25 —0.14 _— (.8920
Temp*Pressure 0.0625 0.25 0.05 (.9630

No error degrees of freedom, so ordinary tests uncomputable. Relative Std Error corresponds to residual standard error of 1.
Pseudo t-Ratio and p-Value calculated using Lenth PSE = 1.3125 and DFE = 5

Effect Screening
The parameter estimates have equal vanances.
The parameter estimates are not correlated.

Lenth PSE
3125

Orthog t Test used Pseudo Standard Error

Chapter 6 Design & Analysis of Experiments
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Outliers: suppose that cd = 375 (instead of 75)

99
29
5 ACH
g 90
o
£ 80 ap
®
g70
E 50
=30
£ 20 s

18 m 2 AD

T | T T T
0.00 13.91 27.81 4172 55.63
|Effect|

(a)

Warning! No terms are selected

Normal % probability
(#)]
o

-28.69 -1.75
Effect

(b)

-55.63

T T
25.19 52.13

m FIGURE 6.17 The effect of outliers. («) Half-normal probability plot. (b)) Normal

probability plot
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Dealing with Outliers

» Replace with an estimate

» Make the highest-order interaction zero

* In this case, estimate cd such that ABCD =0
« Analyze only the data you have

* Now the design isn’t orthogonal

« Conseguences?

Chapter 6 Design & Analysis of Experiments 41
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m FIGURE 6.18
Analysis of Example
6.2 with an outlier
removed
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The Drilling Experiment
Example 6.3

~ D . m FIGURE 6.19 Data from the drilling experiment of
‘ Example 6.3
9.97 9.07 11.75 16.30
e — 1 e
3.24—|—3.44 4.09 i 4.53
I |
I | ‘l T :B
4.98— —— -5.70 177— —— -9.43 C
- ~ ~ ~
1.68 1.98 2.07 2.44 1

A = drill load, B = flow, C = speed, D = type of mud,
y = advance rate of the drill

Chapter 6 Design & Analysis of Experiments 43
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Normal probability (1 —Pj) x 100

10
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70
80

90
95

2k,

Chapter 6

Normal Probability Plot of Effects —

The Drilling Experiment

| m FIGURE 6.20 Normal probability plot of
effects for Example 6.3
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Normal probability (1 —Pj) x 100

m FIGURE 6.21
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Residual Plots
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Residuals

residuals for Example 6.3

Chapter 6

Normal probability plot of

Predicted advance rate

B FIGURE 6.22 Plot of residuals ver-

sus predicted advance rate for Example 6.3
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Residual Plots

« The residual plots indicate that there are problems
with the equality of variance assumption

« The usual approach to this problem is to employ a
transformation on the response

« Power family transformations are widely used
* A
y =Y
« Transformations are typically performed to
— Stabilize variance

— Induce at least approximate normality
— Simplify the model

Chapter 6 Design & Analysis of Experiments 46
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Selecting a Transformation

« Empirical selection of lambda

* Prior (theoretical) knowledge or experience can
often suggest the form of a transformation

» Analytical selection of lambda...the Box-Cox
(1964) method (simultaneously estimates the
model parameters and the transformation
parameter lambda)

« Box-Cox method implemented in Design-Expert

Chapter 6 Design & Analysis of Experiments 47
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We have noted that the power family of transformations y* = y* is very useful,
where A is the parameter of the transformation to be determined (e.g.. A = % means use
the square root of the original response). Box and Cox (1964) have shown how the trans-
formation parameter A may be estimated simultaneously with the other model parame-
ters {overall mean and treatment effects). The theory underlying their method uses the
method of maximum likelihood. The actual computational procedure consists of per-
forming. for various values of A, a standard analysis ol variance on

it
Y= (15.1)
vin vy A =0

where y = In"'[(1/n) 2 In y] is the geometric mean of the observations. The maximum
likelihood estimate of A is the value for which the error sum of squares, say SSi(A). 1s a
minimum. This value of A 1s usually found by plotting a graph of S5;(A) versus A and then
reading the value of A that minimizes SS;(A) from the graph. Usually, between 10 and 20
values of A are sufficient for estimating the optimum value. A second iteration using a finer
mesh ol values can be performed if a more accurate estimate of A 1s necessary.,

Notice that we cannot select the value of A by directly comparing the error sums of
squares from analyses of variance on y* because for each value of A the error sum of
squares 1s measured on a different scale. Furthermore. a problem arises in y when A = 0,
namely. as A approaches zero. y* approaches unity. That is. when A = 0, all the response
values are a constant. The component (y* — 1)/A of Equation 15-1 alleviates this prob-
lem because as A tends to zero. (y* — 1)/A goes to a limit of In y. The divisor component
v*~! in Equation 15-1 rescales the responses so that the error sums of squares are di-

rectly comparable.
O ZUlZ IvIuliwyulriery



DESIGN-EXPERT Plot

adv._rate

Lambda
Current=1
Best = -0.23
Low C.l. =-0.79
High C.I. =0.32

Recommend transform:

Log
(Lambda = 0)
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Ln(ResidualSS)

The Box-Cox Method

Box-Cox Plot for Power Transforms

6.85—
5.40 —
3.95—

2.50—

1.05— \

Lambda
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A log transformation is
recommended

The procedure provides a
confidence interval on
the transformation
parameter lambda

If unity is included in the
confidence interval, no
transformation would be
needed
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Effect Estimates Following the
LLog Transformation

1k —99 .
s .| ¢, Three main effects are
I I arge
= 30| 1702 . . .
£ ol Joo® No indication of large
R 12 interaction effects
E 90— —10
S ol {5 What happened to the
oo | | | 1 Interactions?
0 0.3 0.6 0.9 1.2

Effect estimate

m FIGURE 6.23 Normal probability plot of

effects for Example 6.3 following log transformation
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ANOVA Following the Log Transformation

m TABLE 6.16

Analysis of Variance for Example 6.3 following the Log Transformation

Source of Sum of Degrees of Mean

Variation Squares Freedom Square F, P-Value
B (Flow) 5.345 | 5.345 381.79 <<0.0001
C (Speed) 1.339 | [.339 95.64 <0.0001
D (Mud) 0.431 | 0.431 30.79 <0.0001
Error 0.173 12 0.014

Total 7.288 15

Chapter 6 Design & Analysis of Experiments
8E 2012 Montgomery



Normal probability (1 —PJ-} % 100

99

Following the Log Transformation

-0.2 -0.1

Chapter 6

0

Residuals

m FIGURE 6.24 Normal probability plot of
residuals for Example 6.3 following log transformation
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m FIGURE 6.25 Plot of residuals

2.5

versus predicted advance rate for Example

6.3 following log transformation
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The Log Advance Rate Model

* Is the log model “better”?

« We would generally prefer a simpler model
In a transformed scale to a more
complicated model in the original metric

« What happened to the interactions?

« Sometimes transformations provide insight
Into the underlying mechanism
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Other Examples of
Unreplicated 2k Designs

» The sidewall panel experiment (Example 6.4, pg. 274)
— Two factors affect the mean number of defects
— A third factor affects variability
— Residual plots were useful in identifying the dispersion

effect

 The oxidation furnace experiment (Example 6.5, pg.
245)
— Replicates versus repeat (or duplicate) observations?
— Modeling within-run variability
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« Example 6.6, Credit Card Marketing, page
278

— Using DOX in marketing and marketing
research, a growing application

— Analysis Is with the JMP screening platform

Chapter 6 Design & Analysis of Experiments
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Other Analysis Methods for
Unreplicated 2k Designs

» Lenth’s method (see text, pg. 262)

— Analytical method for testing effects, uses an estimate
of error formed by pooling small contrasts

— Some adjustment to the critical values in the original
method can be helpful

— Probably most useful as a supplement to the normal
probability plot

« Conditional inference charts (pg. 264)
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Overview of Lenth’s method

Suppose that we have m contrasts of interest, say ¢y, ¢5. . ... c,. If the design is an
unreplicated 2" factorial design. these contrasts umupund 10 th m = 2% — 1 factor ef-
fect estimates. The basis of Lenth’s method is to estimate the variance of a contrast from

the smallest (in absolute value) contrast estimates. Let

so = 1.3 X mcdiun{|(j..-|}
and
PSE =135 X |ncdi11|1{|c'_l,-|:|c‘_,—

S e

L.:],‘I-D}

PSE is called the “pseudo standard error.” and Lenth shows that it is a reasonable estima-
tor of the contrast variance when there are not many active (significant) effects.

For an individual contrast, compare to the margin of error

;'1’;"’5 - IG.DES,J:." >< PSE

where the degrees of freedom are defined as d = m/3. For inference on a group of con-
trasts Lenth suggests using the simultaneous margin of error

SME =1,, X PSE
where the percentage point of the 7 distribution used is y = 1 — (1 + 0.95")/2,
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To illustrate Lenth’s method, consider the 2 expériment in Example 6.2. The calcula-
tions result in s, = 1.5 X |—=2.625| = 3.9375 and 2.5 X 3.9375 = 9.84375, so

PSE = 1.5 X [1.75] = 2.625
ME = 2571 X 2.625 = 6.75
SME = 5.219 X 2.625 = 13.70

Now consider the effect estimates in Table 6.12. The SME criterion would indicate that the
four largest effects (in magnitude) are significant because their effect estimates exceed SME.
The main effect of C is significant according to the ME criterion, but not with respect to
SME. However, because the AC interaction is clearly important, we would probably include
C in the list of significant effects. Notice that in this example, Lenth’s method has produced
the same answer that we obtained previously from examination of the normal probability
plot of effects.

Chapter 6 Design & Analysis of Experiments
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Adjusted multipliers for Lenth’s method

Suggested because the original method makes too many
type | errors, especially for small designs (few contrasts)

Number of Contrasts 7 15 31

Original ME 3.764 2.571 2.218
Adjusted ME 2.295 2.140 2.082
Original SME 9.008 3.219 4218
Adjusted SME 4.89] 4.163 4.030

Simulation was used to find these adjusted multipliers

Lenth’s method 1s a nice supplement to the normal
probability plot of effects

JMP has an excellent implementation of Lenth’s method

In the screening platform
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mn TABLE 6.14
JMP Screening Platform Output for Example 6.2

Screening for Filtration Rate Contrasts

Term Contrast Lenth Individual Simultaneous
Temperature 10.8125 | t-Ratio p-value p-value
Stirring Rate 73125 | 8.24 0.0006* 0.0037*
Concentration 4.9375 | | 5.57 0.0029* 0.0168*
Pressure 1.5625 3.76 0.0096* 0.0755
Temperature *Stirring Rate 8.3125 | [ .19 0.2280 0.9611
Temperature *Concentration —9.0625 6.33 0.0014* 0.0102%
Stirring Rate *Concentration —0.5625 —6.90 0.0011* 0.0072%
Temperature *Pressure 0.0625 [:l —0.43 0.7032 1.0000
Stirring Rate *Pressure —0.1875 m 0.05 0.9671 1.0000
Concentration *Pressure 1.1875 :|' —0.14 0.8995 1.0000
Temperature *Stirring Rate *Concentration —0.8125 |: 0.90 0.3471 0.9990
Temperature *Stirring Rate* Pressure 2.0625 —| —0.62 0.5820 1.0000
Temperature *Concentration *Pressure 0.9375 1.57 0.1272 0.7666
Stirring Rate *Concentration *Pressure —1.3125 0.71 0.4580 1.0000
Temperature *Stirring Rate *Concentration *Pressure 0.6875 —1.00 0.3055 0.9945
0.52 0.6435 1.0000
Half Normal Plot
12
+Temperature
104 Temperature*Concentration
% g4 Temperature*Stirring Rate
o +Stirring Rate
© +Concentration
5 44
©
3 5] +
< +++++ +
O 4
_2 T T T T T T

—
0.0 0.5 1.0 1.5 2.0 2.5
Half Normal Quantile

Lenth PSE = 1.3125

P-Values derived from a simulation of 10000 Lenth 7 ratios
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The 2k design and design optimality

The model parameter estimates in a 2« design (and the effect estimates) are
least squares estimates. For example, for a 22 design the model is

y= :Bo +ﬂ1X1 "‘:Bzxz +1312X1X2 T &

(1) — /Bo T 131 (_1) + 182 (_1) + 1612 (_1)(_1) T &
a=f,+B,0)+ 5D+ B0 +e, The four
b=4,+p(D)+B,0)+p,(-)Q)+e,  +— observations
ab =, + A0+ B,0) + B, DD +e, from a 2% desiar

1) 1 -1 -1 1] B, g
a 1 1 -1 -1 E
y=XB+eg, y= X = B = A e=| °
b 1 -1 1 -1 B, £,
ab | 11 1 1] |B,] |é&.
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The least squares estimate of 3 is

~ -1l
p=XX)"XYy The “usual” contrasts
4 0 0 0] [(+a+b+ab
O 4 0 O a+ab-b—(1) The X'X matrix is
= diagonal —
00 40 b-+ab—a—(1) consequences of an
0 0 0 4| |-a—-b+ab orthogonal design
[ ()+a+b+ab]
m AT ~ _ 4
ﬂAO (1)+a+b+ab a+ab—b— (1)
oA 1I a+ab-b-(2) 4 -
~ |=— = The regression
,32 4 *|b+ab-a- (1) b+ab-a- (1) coefficient estimates
,é ()-a-b+ab 4 are exactly half of the
| /712 ] - - 1) -a-b+ab ‘usual” effect estimates
i 4 _
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The matrix X'’X has interesting and useful properties:

V (B) = o* (diagonal element of (X'X)™)

o’ Minimum possible
= e « value for a four-run
design

Maximum possible

|(X’X) |: 2956 « value for a four-run

design

Notice that these results depend on both the design that you
have chosen and the model

What about predicting the response?
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VI9(x,%,)] = o2 (XX) X
X' = [1’ TRY X1X2]

2

§(X,, X, =2 y A+ X+ X2 +X°X)

V
The maximum prediction variance occurs when x, =1, X, =+1
V
T

V(X %,)] = o
ne prediction variance when x, =X, =0 IS
2

V[y(xl,x»]:%

What about average prediction variance over the design space?
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Average prediction variance

1 11 X -
| = KI IV[y(xl, X,)dx,dx, A = area of design space = 2% =4
-1-1
1 [ 2 1 2 2 2.,2
ZZJ;J;G Z(1+ X, + X5 + X, X5 )dx,dX,
B Ao?
9
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Design-Expert® Software

Min StdErr Mean: 0.500
Max StdErr Mean: 1.000
Cuboidal

radius = 1

Points = 10000

Chapter 6

StdErr Mear

FDS Graph

1.000 —

0.750 —

0.500 —

0.250 —

0.000 —

0.00 0.25 0.50 0.75

Fraction of Design Space
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For the 22and in general the 2X

» The design produces regression model coefficients that
have the smallest variances (D-optimal design)

« The design results iIn minimizing the maximum
variance of the predicted response over the design space
(G-optimal design)

« The design results In minimizing the average variance
of the predicted response over the design space (I-
optimal design)
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Optimal Designs

* These results give us some assurance that
these designs are “good” designs 1n some
general ways

 Factorial designs typically share some (most)
of these properties

» There are excellent computer routines for
finding optimal designs (JMP Is outstanding)
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Addition of Center Points
to a 2X Designs

« Based on the idea of replicating some of the
runs in a factorial design

» Runs at the center provide an estimate of
error and allow the experimenter to
distinguish between two possible models:

First-order model (interaction) y = g, + Z,B, X, + ZZ,BU XX + &

=l j>i
Second-order model y = 3, + Z,B, X, + ZZ,B, [+ Z,B“xf +&
i=1 j>i i=1
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Ye =Y. = no “curvature”

The hypotheses are:

H, :Zk:ﬁii =0

k
H,: ) B; #0
i=1

S | SS _NeNe (yF — yc)2

m FIGURE 6.37 A 2* design with center points —
Pure Quad n. 4n
F C

This sum of squares has a
single degree of freedom
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Example 6.7, Pg. 286

Refer to the original experiment
shown in Table 6.10. Suppose that
four center points are added to this
experiment, and at the points x1=x2
=x3=x4=0 the four observed
filtration rates were 73, 75, 66, and
69. The average of these four center
points is 70.75, and the average of
the 16 factorial runs is 70.06.

Since are very similar, we suspect
that there is no strong curvature
present.

Chapter 6 Design & Analysis of Experiments
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n.=4

Usually between 3
and 6 center points
will work well

Design-Expert
provides the analysis,
Including the F-test
for pure quadratic
curvature
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Table 6.22 summarizes the analysis of variance for this
experiment. In the upper portion of the table, we have fit the
full model. The mean square for pure error is calculated
from the center points as follows:

> =)

SS Center points
MSy = £ e (6.29)

ne — | ne — |

Thus. in Table 6.22,

(v, — 70.75)°

MSE:I‘

.
= _ 4875

— 22 = 1625

The difference vy — v = 70.06 — 70.75 = —0.69 is
used to compute the pure quadratic (curvature) sum of
squares in the ANOVA table from Equation 6.30 as

follows:
: npne( Ve — .\_"C)j
LSSPure quadratic = ng + e
_(16))( — 0.69)° g
16 + 4 N
Chapter 6 Design & Analysis of Experiments

8E 2012 Montgomery

73



m TABLE 6.24
ANOVA for the Reduced Model

ANOVA for Example 6.7

(Continued)

Source of Sum of Mean
Variation Squares DF Square F Prob = F
Model 5535.81 5 1107.16 59.02 =2 (.00
A 1870.56 ) 1870.56 99.71 = (0L.000
C 390.06 I 390,06 20.79 0.0005
D 55.56 ) 855.56 45.61 = (0L.000
AC 1314.06 I 1314.00 70.05 < (0.O00
AD 1105.56 ) 1105.56 58.93 = (0L.000
Pure quadratic
curvature 1.51 1 1.51 0.081 0.7809
Residual 243.87 13 18.76
Lack of fit 195.12 10 19.5] 1.20 04942
Pure error 4875 3 I6.25
Cor total 5T81.20 19
Chapter 6 Design & Analysis of Experiments

8E 2012 Montgomery

74



If curvature is significant, augment the design with axial runs to
create a central composite design. The CCD is a very effective design
for fitting a second-order response surface model

X9 x3
L ]
[ . ]
—e & o X1
| L ]
(a) Two factors (b) Three factors

m FIGURE 6.39 Central composite designs
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Practical Use of Center Points (pg. 289)

« Use current operating conditions as the center
point

» Check for “abnormal” conditions during the
time the experiment was conducted

» Check for time trends

« Use center points as the first few runs when there
IS little or no information available about the
magnitude of error

« Center points and qualitative factors?
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Center Points and Qualitative Factors

m FIGURE 6.40 A 2®factorial

design with one qualitative factor and
center points

'('\(f‘e’

Temperature

Catalyst
type
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