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A 1.46.6 scale model
of an Arleigh Burke
class U.S. Navy fleet
destroyer being
tested in the 100-m
long towing tank at
the University of
lowa. The model is
3.048 m long. In
tests like this, the
Froude number is
the most important
nondimensional
parameter.



Objectives
Develop a better understanding of dimensions,
units, and dimensional homogeneity of equations

Understand the numerous benefits of dimensional
analysis

Know how to use the method of repeating
variables to identify nondimensional parameters

Understand the concept of dynamic similarity and
how to apply it to experimental modeling



/-1 m DIMENSIONS AND UNITS

Dimension: A measure of a physical quantity (without numerical values).
Unit: Away to assign a number to that dimension.

There are seven primary dimensions (also called fundamental or basic
dimensions): mass, length, time, temperature, electric current, amount of
light, and amount of matter.

All nonprimary dimensions can be formed by some combination of the
seven primary dimensions.

Length .
= } = {mL/t%}

Dimensions of force: {Force} = {Mﬂ:-;f-; Time?
ime~

Length
=3 =

A dimension is a measure of a
- 3.2 cm —"‘ physical quantity without
numerical values, while a unit is
T & way to assign a number to the
dimension. For example, length
cm I 2 3 IS a dimension, but centimeter
IS a unit.




Primary dimensions and their associated primary S| and English units

Dimension Symbol” S| Unit English Unit
Mass m kg (kilogram) Ibm (pound-mass)
Length L m (meter) ft (foot)

Timef t s (second) s (second)
Temperature T K (kelvin) R (rankine)
Electric current | A (ampere) A (ampere)
Amount of light C cd (candela) cd (candela)
Amount of matter N mol (mole) mol (mole)




EXAMPLE 7-1 Primary Dimensions of Surface Tension

An engineer is studying how some insects are able to walk on water (Fig. 7-2).
A fluid property of importance in this problem is surface tension (o), which
has dimensions of force per unit length. Write the dimensions of surface tension
in terms of primary dimensions.

SOLUTION The primary dimensions of surface tension are to be determined.

Analysis From Eq. 7-1, force has dimensions of mass times acceleration, or

{mL/t?}. Thus,

m-L/t?
L

F
Dimensions of surface tension: {o,} = { o } = { } = [m/t?} (1)

Length

Discussion The usefulness of expressing the dimensions of a variable
or constant in terms of primary dimensions will become clearer in the
discussion of the method of repeating variables in Section 7-4.

The water strider
is an insect that
can walk on water
due to surface
tension.




7—2 I DII\/IENSIONAL HOMOGENEITY

The law of dlmensmnal homogenelty Every additive
S term In an equatlon must have the same dlmenS|ons

| Chﬂnge ﬂf total energy {:-f a system: AE AU + AKE + APE
i : ‘. A&U = ﬂf[Hg __ i) ','3' : ‘_ . Total energy
| — | | . Iglice T  of a system
- AKE=—-m(V3—-VH = =« ~ atstatel System at state 2
- 2 st mEesleEt e and at state

2.

. APE=mg(z;—2))

System at state 1

E1=U|+KE1+PE1

-

' You can't add .ep:ples, and 'ofa.n‘ges'! sl



{AE} = {Energy} = {Force - Length} — {AE} = {mL%t*}

Energy -
AU} = {Mass —¢ = {Energy} — {AU} = {mL/t"}

Mass

L=::1gthl3 .
{AKE} = {Mu:-;s; —— } — {AKE} = {mL"/t"}
Time~

Length o
{APE} = {Mu:-;s; — Lcngth} — {APE} = {mL/t"}
Time~

LAUTION!
WaTCH OUT FOR

MNOMNHOMOGEMEDUS Al %C_Iuaﬂof‘ théﬁ IS
not dimensionally
EQUATIONS

homogeneous Is a
sure sign of an error.




EXAMPLE 7-2 Dimensional Homogeneity
of the Bernoulli Equation

Probably the most well-known (and most misused) equation in fluid mechanics B
is the Bernoulli equation (Fig. 7-6), discussed in Chap. 5. One standard form
of the Bernoulli equation for incompressible irrotational fluid flow is

L s
Bernoulli equation: P + ;pV‘ + pgz=0C (1)

(a) Verify that each additive term in the Bernoulli equation has the same
dimensions. (b) What are the dimensions of the constant C?

The Bernoulli equation is a
good example of a
dimensionally homogeneous
equation. All additive terms,
including the constant, have
the same dimensions,
namely that of pressure. In
terms of primary dimensions,
each term has dimensions
{m/(t?L)}.




SOLUTION We are to verify that the primary dimensions of each additive
term in Eq. 1 are the same, and we are to determine the dimensions of

constant C.
Analysis (a) Each term is written in terms of primary dimensions,

(P} = {Pressure] _{Fﬂ['ce}_{m Length | }_{m}
FESSHIE Area " Time? Length? 2L

{] Vz} 3 { Mass (Length)z} B {Muss X Lengthz} B { m }
2P | Volume \| Time B Length® X Time? e

{ Mass Length . h} { Mass X Length? } { m }
tpgzl Volume Time> & Length® X Time? 'L

Indeed, all three additive terms have the same dimensions.

(b) From the law of dimensional homogeneity, the constant must have the
same dimensions as the other additive terms in the equation. Thus,

Primary dimensions of the Bernoulli constant: {C} = { t?li}

Discussion If the dimensions of any of the terms were different from the
others, it would indicate that an error was made somewhere in the analysis.

- 10



Nondimensionalization of Equations

Nondimensional equation: If we divide each term in the equation by a
collection of variables and constants whose product has those same
dimensions, the equation is rendered nondimensional.

Normalized equatiion: If the nondimensional terms in the equation are of
order unity, the equation is called normalized.

Each term in-a nondimensional equation is dimensionless.

Nondimensional parameters: In the process of nondimensionalizing an
equation of motion, nondimensional parameters often appear—most of
which are named after a notable scientist or engineer (e.g., the Reynolds
number and the Froude number).

This process is referred to by some authors as inspectional analysis.

The nondimensionalized Bernoulh
equation
p . . C A nondimensionalized form of the
p gz . s
P + P + PP B_e_rn_oulll equatloq IS formed by
” ~ * ~ dividing each additive term by a
J l l l pressure (here we use P ). Each
(1 (1) (1) (1) re_sultlng term is dimensionless
(dimensions of {1}).

11



Equation of motion:

I
. . 2
Dimensional result: Z=2Zot wot —5gt°

Dimensional variables: Dimensional quantities
that change or vary in the problem. Examples: z
(dimension of length) and t (dimension of time).

Nondimensional (or dimensionless) variables:
Quantities that change or vary in the problem,
but have no dimensions. Example: Angle of
rotation, measured in degrees or radians,
dimensionless units.

Dimensional constant: Gravitational constant g,
while dimensional, remains constant.

Parameters: Refer to the combined set of
dimensional variables, nondimensional variables,
and dimensional constants in the problem.

Pure constants: The constant 1/2 and the
exponent 2 in equation. Other common examples
of pure constants are zand e.

w = component of velocity
in the z-direction

7z = vertical distance

¢ = gravitational
acceleration 1n the
negative z-direction

Object falling in a vacuum.
Vertical velocity is drawn
positively, so w < 0 for a
falling object. 12



To nondimensionalize an equation, we need to select scaling parameters,
based on the primary dimensions contained in the original equation.

- Primary dimensions of all parameters:

{z} = {L} {r} = {t} {zo} = {L}
Nondimensionalized variables: ¥ = ql
20

dz  d(zz*)  widz*

ialrysec it i S
dt=  d(zot*Iwg)~  Zop dr¥”
>
V, P

(wol = (LAt} {g} = {L/°)
Wyl |
r:*k — i
<o
wg dzt _ _iFr= "o Fr-oude
8o dr* \/ gz, humber

In a typical fluid flow problem, the

scaling parameters usually include a

characteristic length L, a characterlstlc
velocity V, and a reference pressure
difference P, — P . Other parameters
and fluid properties such as density,

viscosity, and gravitational

acceleration enter the problem as well.
13



oate The Froude number is important in
} free-surface flows such as flow in
open channels. Shown here is flow
Y1 \ m through a sluice gate. The Froude
- ), === pumber upstream of the sluice gate is
l\» N | Fr, = V)/\/gy,. and it is Fr, = V3/\Vgy,
downstream of the sluice gate. |

. Vi
".—nn--1

| o _ . d’z* l

- Nondimensionalized equation of motion: S a—

' dr*- Fr

‘ : : " e

Nondimensional result: ZF=1+1r — SFp2 r*
2Fr-

The number of parameters
in a nondimensionalized
equation is less than the

are idem‘{ fied. number of parameters in

N the original equation.

‘The two key advantages of nondimensionalization of an equation..

Relationships between key
parameters in the problem

14



EXAMPLE 7-3 Illustration of the Advantages
of Nondimensionalization

Your little brother's high school physics class conducts experiments in a
large vertical pipe whose inside is kept under vacuum conditions. The stu-
dents are able to remotely release a steel ball at initial height z; between O
and 15 m (measured from the bottom of the pipe), and with initial vertical
speed wy between O and 10 m/s. A computer coupled to a network of pho-
tosensors along the pipe enables students to plot the trajectory of the steel
ball (height z plotted as a function of time {) for each test. The students are
unfamiliar with dimensional analysis or nondimensionalization techniques,
and therefore conduct several “brute force” experiments to determine how
the trajectory is affected by initial conditions z; and wg. First they hold wy
fixed at 4 m/s and conduct experiments at five different values of z;: 3, 6,
9, 12, and 15 m. The experimental results are shown in Fig. /-12a. Next,
they hold z, fixed at 10 m and conduct experiments at five different values
of wp: 2, 4, 6, 8, and 10 m/s. These results are shown in Fig. 7-12b. Later
that evening, your brother shows you the data and the trajectory plots and
tells you that they plan to conduct more experiments at different values of
Z, and wy. You explain to him that by first nondimensionalizing the data, the
problem can be reduced to just one parameter, and no further experiments
are required. Prepare a nondimensional plot to prove your point and discuss.

Analysis Equation /-4 is valid for this problem, as is the nondimension-
alization that resulted in Eq. 7-9. As previously discussed, this problem
combines three of the original dimensional parameters (g, z;, and wy) into
one nondimensional parameter, the Froude number. After converting to the
dimensionless variables of Eqg. 7-6, the 10 trajectories of Fig. 7-12a and
b are replotted in dimensionless format in Fig. 7-13. It is clear that all
the trajectories are of the same family, with the Froude number as the only
remaining parameter. Fr? varies from about 0.041 to about 1.0 in these exper-
iments. If any more experiments are to be conducted, they should include
combinations of z, and w that produce Froude numbers outside of this range.
A large number of additional experiments would be unnecessary, since all the
trajectories would be of the same family as those plotted in Fig. 7-13.

15
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EXAMPLE 74 Extrapolation of Nondimensionalized Data

The gravitational constant at the surface of the moon is only about one-sixth m
of that on earth. An astronaut on the moon throws a baseball at an initial &
speed of 21.0 m/s at a 5° angle above the horizon and at 2.0 m above the
moon’s surface (Fig. 7-14). (a) Using the dimensionless data of Example 7-3
shown in Fig. 7-13, predict how long it takes for the baseball to fall to
the ground. (b) Do an exact calculation and compare the result to that of
part (a).

Properties The gravitational constant on the moon is gy,on = 9.81/6 =
1.63 m/s?.

Analysis (a) The Froude number is calculated based on the value of
and the vertical component of initial speed,

gmncnn

w, = (21.0 m/s) sin(5°) = 1.830 m/s

Throwing a
baseball on the
moon

17



wg . (1830m/s)>
Emoon<o (1.63 mfszj{Z.D m)

Fr? = 1.03

This value of Fr? is nearly the same as the largest value plotted in Fig. 7-13.
Thus, in terms of dimensionless variables, the baseball strikes the ground
at t* = 2.75, as determined from Fig. 7-13. Converting back to dimensional
variables using Eq. 7-6,

: . : 2.75(2.0m)
Estimated time to strike the ground: f = = : =
Wy 1.830 m/s

(b) An exact calculation is obtained by setting z equal to zero in Eq. 7-5
and solving for time f (using the quadratic formula),

Exact time to strike the ground:

w, + Vws + 2z
0 0 T <08
8

I:

~ 1.830 m/s + \V(1.830 m/s)? + 2(2.0 m)(1.63 m/s2)
1.63 m/s?

= 3.05s

Discussion If the Froude number had landed between two of the trajecto-

ries of Fig. 7-13, interpolation would have been required. Since some of

the numbers are precise to only two significant digits, the small difference

between the results of part (a) and part (b) is of no concern. The final result _

is t = 3.0 s to two significant digits. 18



__JL Po—P.,
==~ Eu=——7=

In a general unsteady fluid flow problem with a free surface, the scaling

parameters include a characteristic length L, a characteristic velocity V, a

characteristic frequency f, and a reference pressure difference Py — P_..

Nondimensionalization of the differential equations of fluid flow produces

- four dimensionless parameters: the Reynolds number, Froude number
Strouhal number, and Euler number (see Chap. 10).

19



/=3 m DIMENSIONAL ANALYSIS AND SIMILARITY

In most experiments, to save time and money, tests are performed on a
geometrically scaled model, rather than on the full-scale prototype.

In such cases, care must be taken to properly scale the results. We introduce
here a powerful technique called dimensional analysis.

The three primary purposes of dimensional analysis are

» To generate nondimensional parameters that help in the design of experiments
(physical and/or numerical) and in the reporting of experimental results

» To obtain scaling laws so that prototype performance can be predicted from
model performance

 To (sometimes) predict trends in the relationship between parameters
The principle of similarity

Three necessary conditions for complete similarity between a model and a
prototype.

(1) Geometric similarity—the model must be the same shape as the prototype,
but may be scaled by some constant scale factor.

(2) Kinematic similarity—the velocity at any point in the model flow must be
proportional (by a constant scale factor) to the velocity at the corresponding

point in the prototype flow. i



(3) dynamic similarity—When all forces in the model flow scale by a
constant factor to corresponding forces in the prototype flow (force-scale

equivalence).
Prototype:

v,

Model:
V

m

[]

] ] o o] (o] o] ] ] |
] o] oy o] (o] o] ] o]

Kinematic similarity is
achieved when, at all
locations, the speed in the
model flow is proportional to
that at corresponding
locations in the prototype
flow, and points in the same
direction.

In a general flow field, complete similarity between a model and prototype is
achieved only when there is geometric, kinematic, and dynamic similarity.



We let uppercase Greek letter Pi (IT) denote a nondimensional parameter.

In a general dimensional analysis problem, there is one I1 that we call the
dependent I, giving it the notation IT;.

The parameter I1, is in general a function of several other IT's, which we call
independent IT’s.

Functional relationship between 11's: [I, = f(L, 115, ..., 11})

To ensure complete similarity, the model and prototype must be geometrically

similar, and all independent groups must match between model and prototype.

To achieve similarity
[f I, ,=1,, and II,, =11 ,... and I, =11, ,.
then II, , =11, , (7-12)

22



Prototype car

Vv
———-
P
i
_pVL VL
Re = il
Model car The Reynolds number Re is formed by
Vin - the ratio of density, characteristic
Mns Pm @ speed, and characteristic length to

> viscosity. Alternatively, it is the ratio of
| *—L,—* characteristic speed and length to
Geometric similarity between a - kinematic viscosity, defined as v =ulp.
prototype car of length L, and a model
car of length L.

F, VL
ﬁ? - and I, = P
pV-L- L

1, = f(I1,) where I1, =

The Reynolds number is the most well known and useful
dimensionless parameter in all of fluid mechanics.



: EXAMPLE 7-5 Similarity between Model and Prototype Cars

:The aerodynamic drag of a new sports car is to be predicted at a speed of
~'m 50.0 mi/h at an air temperature of 25°C. Automotive engineers build a one-
fifth scale model of the car to test in a wind tunnel. It is winter and the wind
tunnel is located in an unheated building; the temperature of the wind tunnel
air is only about 5°C. Determine how fast the engineers should run the wind
tunnel in order to achieve similarity between the model and the prototype.

Properties For air at atmospheric pressure and at T = 25°C, p = 1.184 kg/m?
and u = 1.849 X 107° kg/m-s. Similarly, at T = 5°C, p = 1.269 kg/m? and
p = 1.754 X 107° kg/m-s.

Wind tunnel test section

A drag balance is a device used
in‘a wind tunnel to measure the
aerodynamic drag of a body.
When testing automobile models,
a moving belt is often added to
the floor of the wind tunnel to

Moving belt Drag balance the car’s frame of reference).

simulate the moving ground (from

24



Analysis Since there is only one independent II in this problem, the similarity
equation (Eq. 7/-12) holds if 11, ,, = II, ,, where II, is given by Eq. 7-13,
and we call it the Reynolds number. Thus, we write

P m Vwr[‘ m P P VPLP
Mo ' My

which we solve for the unknown wind tunnel speed for the model
tests, Vp,

m\[ Pp\[ L
v = vl b)) )
P’p pm Lm

1.754 X 10‘5kghn-s)(1.184 kg/m?
1.849 X 10~ kg/m-s/\ 1.269 kg/m’

II

= Re,, =

2.m

= (50.0 mifh}( ){5} = 221 mi/h

Thus, to ensure similarity, the wind tunnel should be run at 221 mi/h (to
three significant digits). Note that we were never given the actual length of
either car, but the ratio of L, to L, is known because the prototype is five
times larger than the scale model. When the dimensional parameters are
rearranged as nondimensional ratios (as done here), the unit system is irrel-
evant. Since the units in each numerator cancel those in each denominator,
no unit conversions are necessary.

Discussion This speed is quite high (about 100 m/s), and the wind tun-
nel may not be able to run at that speed. Furthermore, the incompressible
approximation may come into question at this high speed (we discuss this in
more detail in Example 7-8).

25



EXAMPLE 7-6 Prediction of Aerodynamic Drag Force
on a Prototype Car

This example is a follow-up to Example 7-5. Suppose the engineers run the ®
wind tunnel at 221 mi/h to achieve similarity between the model and the
prototype. The aerodynamic drag force on the model car is measured with a
drag balance (Fig. 7-19). Several drag readings are recorded, and the aver-
age drag force on the model is 21.2 Ibf. Predict the aerodynamic drag force
on the prototype (at 50 mi/h and 25°C).

Wind tunnel test section

Model

A drag balance is a device used

In a wind tunnel to measure the
aerodynamic drag of a body.

‘When testing automobile models,

a moving belt is often added to

the floor of the wind tunnel to

simulate the moving ground (from
Moving belt Drag balance the car’s frame of reference). 26




Analysis The similarity equation (Eq. 7-12) shows that since II, = II, p
I, , = I, ,, where II, is given for this problem by Eq. /-13. Thus, we write

I _ F.D. m 10 _ FD._EJ'
1, m pmvrgnLi l.p vaﬁL;%

which we solve for the unknown aerodynamic drag force on the prototype car,

Fp, p
P\ Vo V(L )2
FD‘P N FD"’”(pm:)<Vm> Lm:

51 Ibf (1.184 kg!m3)(50.0 mi.fh)2 S
= (21. 5)2 = 25.1
: N\ 1269 kg/m® J\ 221 mi/h /) | ’

Discussion By arranging the dimensional parameters as nondimensional
ratios, the units cancel nicely even though they are a mixture of Sl and Eng-
lish units. Because both velocity and length are squared in the equation for
IT,, the higher speed in the wind tunnel nearly compensates for the model’s
smaller size, and the drag force on the model is nearly the same as that on
the prototype. In fact, if the density and viscosity of the air in the wind tun-
nel were identical to those of the air flowing over the prototype, the two drag
forces would be identical as well (Fig. 7-20).

27



Prototype

For the special case in which the wind
[« L, g tunnel air and the air flowing over the
prototype have the same properties
B ), and under
similarity conditions (V,, = VL /L, )

I Model the aerodynamic drag force on the
V="V, P prototype is equal to that on the scale
m . model. If the two fluids do not have

Hom = Mop the same properties, the two drag forces

Fp.m=*p,p are not necessarily the same, even
under dynamically similar conditions.

28



If a water tunnel is used instead of a wind tunnel to test their one-fifth
scale model, the water tunnel speed required to achieve similarity is

N\ /L
()G @)
Ju’p i Lm
1.002 X 10~ ke/m - s})(l, 184 kg/m’
1.849 X 1077 kg/m -+ s/ \998.0 kg/m’

){51 = 16.1 mi/h

= (50.0 mifh](

One advantage of a water tunnel
IS that the required water tunnel
speed is much lower than that
required for a wind tunnel using
the same size model (221 mi/h
for air and 16.1 mi/h for water) .

4 Similarity can be achieved
i even when the model fluid
| is different than the

4 prototype fluid. Here a
submarine model is tested

- ; 29
in a wind tunnel.




/-4 m THE METHOD OF REPEATING VARIABLES
AND THE BUCKINGHAM PI THEOREM

How to generate the The Method of Repeating Variables
nondimensional parameters, i.e.,
the IT’s? Step |: List the parameters in the problem

and count their total number n.
There are several methods that

have been developed for this
purpose, but the most popular
(and simplest) method is the

method of repeating variables. Step 3: Set the reduction j as the number
of primary dimensions. Calculate £,
the expected number of II's,
k=n—j

Step 2: List the primary dimensions of each
of the n parameters.

Step 4: Choose j repeating parameters.

Step 5: Construct the £ II's, and manipulate

3 dsS NECESS .
A concise summary of -

the six steps that
comprise the method of
repeating variables.

Step 6: Write the final functional relationship
and check your algebra.



Detailed description of the six steps that comprise the method of repeating
variables

Step 1 List the parameters (dimensional variables, nondimensional variables,
and dimensional constants) and count them. Let n be the total
number of parameters in the problem, including the dependent
variable. Make sure that any listed independent parameter is indeed
independent of the others, i.e., it cannot be expressed in terms of
them. (E.g., don’t include radius rand area A = #r2, since rand A
are not independent.)

Step 2 List the primary dimensions for each of the n parameters.

Step 3 Guess the reduction j. As a first guess, set j equal to the number of
primary dimensions represented in the problem. The expected num-
ber of IT's (k) is equal to n minus j, according to the Buckingham Pi
theorem,

The Buckingham Pi theorem: k=n—j (7-14)

If at this step or during any subsequent step, the analysis does not
work out, verify that you have included enough parameters in step 1.
Otherwise, go back and reduce j by one and try again.

Step4 Choose j repeating parameters that will be used to construct each I1.
Since the repeating parameters have the potential to appear in each
I1, be sure to choose them wisely (Table 7-3).

Step 5 Generate the I1's one at a time by grouping the j repeating parameters
with one of the remaining parameters, forcing the product to be
dimensionless. In this way, construct all k IT's. By convention the
first I1, designated as I1,, is the dependent I1 (the one on the left
side of the list). Manipulate the Il's as necessary to achieve estab-
lished dimensionless groups (Table 7-5).

Step 6 Check that all the IT's are indeed dimensionless. Write the final
functional relationship in the form of Eq. /-11.

" This is a step-by-step method for finding the dimensionless IT groups when performing a dimensional
analysis.

31



Step 1 ' List of relevant parameters: z=flt,wy, 29, 8) n=>

9= initial
elevation
A

J

- Step 2 | I‘| ‘;Fﬂ—l E[: |g—;:_r
i (L") {t) (L't} (L") (Lt =}
Step ‘3 Reduction: | j=2

Number of expected 11's: k=n—j=5—-2=3
Step 4 REpmHng pammérerj: | Wy ﬂﬁd Z0 |

wy = initial vertical speed

g = gravitational

acceleration in the

negative z-direction
Setup for dimensional analysis of
a ball falling in a vacuum.

z=elevationof ball  Elevation z is a function of time t,
=1t wo, 20, 8) initial vertical speed w,, initial

————————————————— elevation z,, and gravitational 30

= 0 (datum plane) constant g. |



Dapendent H : e e i
"'”7' - {LDD} 1'17«’1""I Zfi} {L(thl)‘]
. [t__} . . S
Length: (L7} = [L'L%L"} ~ 0=1+a + ""1 b=-lma b=
Dimensions of Tz {TL,} = (L%} = (k) = (L'~ ysL)
Equatmg KPDEtS R A S P R R S A

Time: {Oy={tt™} O0=1-a, ay=1

Lengih: (L) = {L”?L"I} 0 =
Secand mdepandenr II:

. Dimensions of I1;: (T3} = {L%°) = {gwizy} = (L't AL HBLb)




Equating exponents,
Time: (O} = {2 0=-2-a; a5 =—2

Length: {L"} = {L'L%L") O=1+as+by by=—1—ay by=1

8<0 . \—1/2 ,
=2 . 830 Wo
I, wﬁ Modified 115; L5 nodified = (_g) = T = Fr
Wi \V gz,
sl y — (01 ;07070 ~ 0N 0Oy —
Multiplication: Add exponents Hint of the Dad ) = oL oCTECEN T = (1)
% _ La+bsle .
I‘IBI = I‘ + R “‘qu {'hﬂ[{le i:]‘f {[]E} — {mDLﬂtGTDIDCGNG} — { ] ’
/ i ameter
ting parame’
Division: Subtract exponents Eif most flu Ed{ﬂﬂ:l )
a i is d gngtits |
ITKLZ‘; — IH—EE IJI’(}IJ[ET]LIIS, ﬂﬂd a LSS
X X 1{?“”.1 ¥ i
; or density’ (I} = (mL°°TO10CON®) = {1}
The mathematical sl H
rules for adding tls wise to choose The TI groups that result from the
and subtracting g el method of repeating variables are

exponents during  'cPealng parameters since g aranteed to be dimensionless
multiplication and 1€y may appear in each of e se we force the overall
division, your dimensionless L1 exponent of all seven primary
respectively. P dimensions to be zero. 34



Aaron, you've made it!
They named a nondimensional
parameter after you!

Established
nondimensional

“parameters are usually
named after a notable
“scientist or engineer.
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Step 6

 Relationship between IT's: 11, = f(Il,, I15) —> = =f<

Final result of dimensional analysis: 7% = f(t*, Fr)

The method of repeating variables cannot predict
the exact mathematical form of the equation.

ARE YOUR PI’S
DIMENSIONLESS?

A quick check of
your algebra is
always wise.
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EXAMPLE 7-7 Pressure in a Soap Bubble :
Some children are playing with soap bubbles, and you become curious as to :
the relationship between soap bubble radius and the pressure inside the soap m
bubble (Fig. 7-29). You reason that the pressure inside the soap bubble must
be greater than atmospheric pressure, and that the shell of the soap bubble
Is under tension, much like the skin of a balloon. You also know that the
property surface tension must be important in this problem. Not knowing any
other physics, you decide to approach the problem using dimensional analysis.
Establish a relationship between pressure difference AP = P ... — Pousiger
soap bubble radius R, and the surface tension o of the soap film.

/‘ \ P outside

/

i

P inside

- The pressure inside a
soap bubble is greater
than that surrounding
the soap bubble due to

_surface tension in the

-soap film.
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Analysis The step-by-step method of repeating variables is employed.

Step 1 There are three variables and constants in this problem; n = 3.
They are listed in functional form, with the dependent variable listed as a
function of the independent variables and constants:

List of relevant parameters: AP =f(R,o0) n=23

Step 2 The primary dimensions of each parameter are listed. The dimen-
sions of surface tension are obtained from Example /-1, and those of

pressure from Example 7-2. What happens if
AP R o, k=n-j=0?
{m'L™'t™?) (L'} (m't2}

Do the following:
Step 3 As a first guess, j is set equal to 3, the number of primary dime S T R TR G151 g1 1= (5 g )
sions represented in the problem (m, L, and 1). * Check your algebra.
Reduction (first guess): j=3 * If all else fails, reducej by one.
If this value of j is correct, the expected numberof Il'sisk=n—j=3 — If the methOd_Of
3 = 0. But how can we have zero IT's? Something is obviously not right repeating variables

(Fig. 7-30). At times like this, we need to first go back and make sure that indicates zero IT’s. we
we are not neglecting some important variable or constant in the problem. : ’
Since we are confident that the pressure difference should depend only on have either made an

soap bubble radius and surface tension, we reduce the value of j by one, error, or we need to
o ) reduce j by one and
f 5Ec 5 r —
eduction (second guess) j=2 start over.

If this value of jis correct, k= n— j= 3 — 2 = 1. Thus we expect oneII,
which is more physically realistic than zero IT's. 38



Step4 We need to choose two repeating parameters since j = 2. Following
the guidelines of Table 7-3, our only choices are R and o, since AP is the
dependent variable.

Step 5 We combine these repeating parameters into a product with the
dependent variable AP to create the dependent II,

Dependent 1I: I, = APR%o" (M

We apply the primary dimensions of step 2 into Eq. 1 and force the II to be
dimensionless.

Dimensions of I1;:
(I} = {m°L%} = {APR%¢?} = {(m'L™" U )L(m't ")

We equate the exponents of each primary dimension to solve for a;, and b;:

Time: (°} = [t & &) 0= —2—2b, b, = —1
Mass: (m?} = {m!m®*) 0=1+ b b, = —1
Length: (L%} = {L L%} 0=-1+ q a, = 1

Fortunately, the first two results agree with each other, and Eq. 1 thus
becomes
_APR

i

I, (2)
From Table 7-5, the established nondimensional parameter most similar to
Eqg. 2 is the Weber number, defined as a pressure (pV?) times a length
divided by surface tension. There is no need to further manipulate this II.
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Step 6 We write the final functional relationship. In the case at hand,
there is only one II, which is a function of nothing. This is possible only if
the II is constant. Putting Eq. 2 into the functional form of Eq. 7-11,

Relationship between I1s:

APR o,
II, = o = f(nothing) = constant — AP = constant R (3)

5

Discussion This is an example of how we can sometimes predict frends with
dimensional analysis, even without knowing much of the physics of the prob-
lem. For example, we know from our result that if the radius of the soap
bubble doubles, the pressure difference decreases by a factor of 2. Similarly,
if the value of surface tension doubles, AP increases by a factor of 2. Dimen-
sional analysis cannot predict the value of the constant in Eq. 3; further anal-
ysis (or one experiment) reveals that the constant is equal to 4 (Chap. 2).
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- ,
m EXAMPLE 7-8 Lift on a Wing
m

B Some aeronautical engineers are designing an airplane and wish to predict
M the lift produced by their new wing design (Fig. 7-31). The chord length L,

| of the wing is 1.12 m, and its planform area A (area viewed from the top
when the wing is at zero angle of attack) is 10.7 m2. The prototype is to fly

at ¥V = 52.0 m/s close to the ground where T = 25°C. They build a one-
tenth scale model of the wing to test in a pressurized wind tunnel. The wind
tunnel can be pressurized to a maximum of 5 atm. At what speed and pres-
sure should they run the wind tunnel in order to achieve dynamic similarity?

Lift F; on a wing of chord length L_

at angle of attack « in a flow of free-
stream speed V with density p,
viscosity w, and speed of sound c. The
angle of attack « is measured relative
to the free-stream flow direction.
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Anafysfs First, the step—by—step method of repeating variables is employéd
to obtain the nondimensional parameters. Then, the dependent II's are
matched between prototype and model.

Step 1 There are seven parameters (variables and constants) in this
problem; n = 7. They are listed in functional form, with the dependent
variable listed as a function of the independent parameters:

List of relevant parameters: F, =f(V.L.p.p.c,a) n=7

where F, is the lift force on the wing, V is the fluid speed, L, is the chord
length, p is the fluid density, w is the fluid viscosity, c is the speed of
sound in the fluid, and « is the angle of attack of the wing.

Step 2 The primary dimensions of each parameter are listed; angle « is
dimensionless:

F; V L p L c o

c

(m'L't2} (L% 'y (L'} {(m'L73} {(m'L- %'} {L%'} {1}
Step 3 As a first guess, Jis set equal to 3, the number of primary
dimensions represented in the problem (m, L, and t).

Reduction: j=3

If this value of j is correct, the expected numberof II'sisk=n—j =
/7 —3=4.



Step 4 We need to choose three repeating parameters since j = 3. Following
the guidelines listed in Table 7-3, we cannot pick the dependent variable F,.
Nor can we pick a since it is already dimensionless. We cannot choose both
V and c since their dimensions are identical. It would not be desirable to
have u appear in all the IT's. The best choice of repeating parameters is
thus either V, L, and p or ¢, L., and p. Of these, the former is the better
choice since the speed of sound appears in only one of the established
nondimensional parameters of Table 7-5, whereas the velocity scale is
more “common” and appears in several of the parameters (Fig. 7-32).

Repeating parameters: V.L.andp
Step 5 The dependent II is generated:
II, = F,VaLhps — {II,} = {(m'L'¢ )L H™(LY(m'L )}

The exponents are calculated by forcing the II to be dimensionless
(algebra not shown). We get a, = -2, b, = =2, and ¢; = —1. The
dependent II is thus

- pViL2

From Table 7-5, the established nondimensional parameter most similar to
our I1, is the lift coefficient, defined in terms of planform area A rather than
the square of chord length, and with a factor of 1/2 in the denominator.

Thus, we may manipulate this IT according to the guidelines listed in
Table 7-4 as follows:

I,

FL
VA

Modified 11;: I1; odified = = Lift coefficient = C;
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CaUTIon!

Oftentimes when performing the method
CHOOSE YOUR of repeating variables, the most difficult
REFEATIMGC part of the procedure is choosing the
PARAMETERS repeating parameters. With ‘practice;
WISELY “however, you will learn to choose these
parameters wisely. '

Similarly, the first independent II is generated:

I, = uVaLllpe — |{IL,} = {(m'L~ 't H(L e H(LH)a(miL )2}

from which a, = —1, b, = —1, and ¢, = —1, and thus
oo P
> pVL,
We recognize this II as the inverse of the Reynolds number. So, after
inverting,
. pVL.
Modified I1,: Il odified = e = Reynolds number = Re

The third II is formed with the speed of sound, the details of which are left
for you to generate on your own. The result is

v Lot
II, = — = Mach number = Ma =i 44



Finally, since the angle of attack « is already dimensionless, it is a
dimensionless II group all by itself (Fig. 7—33). You are invited to go
through the algebra; you will find that all the exponents turn out to be zero,
and thus

IT, = a = Angle of attack
Step 6 We write the final functional relationship as

Fy
C, = = f(Re, Ma, a) (1

“oiev4

A parameter that is
dimensionless (like an
‘angle) is already a
‘nondimensional IT all by
itself—we know this I1
without doing any further
algebra.

A parameter that is already
dimensionless becomes a Il
parameter all by itself.

=5
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To achieve dynamic similarity, Eq. 7-12 requires that all three of the
dependent nondimensional parameters in Eq. 1 match between the model
and the prototype. While it is trivial to match the angle of attack, it is not so
simple to simultaneously match the Reynolds number and the Mach number.
For example, if the wind tunnel were run at the same temperature and pres-
sure as those of the prototype, such that p, u, and ¢ of the air flowing over
the model were the same as p, u, and c of the air flowing over the prototype,
Reynolds number similarity would be achieved by setting the wind tunnel air
speed to 10 times that of the prototype (since the model is one-tenth scale).
But then the Mach numbers would differ by a factor of 10. At 25°C, c is
approximately 346 m/s, and the Mach number of the prototype airplane wing
is Ma, = 52.0/346 = 0.150—subsonic. At the required wind tunnel speed,
Ma,, would be 1.50—supersonic! This is clearly unacceptable since the phys-
ics of the flow changes dramatically from subsonic to supersonic conditions.
At the other extreme, if we were to match Mach numbers, the Reynolds
number of the model would be 10 times too small.

What should we do? A common rule of thumb is that for Mach numbers
less than about 0.3, as is the fortunate case here, compressibility effects
are practically negligible. Thus, it is not necessary to exactly match the
Mach number; rather, as long as Ma,, is kept below about 0.3, approximate
dynamic similarity can be achieved by matching the Reynolds number. Now
the problem shifts to one of how to match Re while maintaining a low Mach
number. This is where the pressurization feature of the wind tunnel comes
in. At constant temperature, density is proportional to pressure, while viscosity
and speed of sound are very weak functions of pressure. If the wind tunnel
pressure could be pumped to 10 atm, we could run the model test at the
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same speed as the prototype and achieve a nearly perfect match in both
Re and Ma. However, at the maximum wind tunnel pressure of 5 atm, the
required wind tunnel speed would be twice that of the prototype, or 104
m/s. The Mach number of the wind tunnel model would thus be Ma, =
104/346 = 0.301—approximately at the limit of incompressibility according
to our rule of thumb. In summary, the wind tunnel should be run at approxi-
mately 100 m/s, 5 atm, and 25°C.

Discussion This example illustrates one of the (frustrating) limitations of
dimensional analysis; namely, You may not always be able to match all the
dependent II's simultaneously in a model test. Compromises must be made
in which only the most important II's are matched. In many practical situa-
tions in fluid mechanics, the Reynolds number is not critical for dynamic
similarity, provided that Re is high enough. If the Mach number of the prototype
were significantly larger than about 0.3, we would be wise to precisely match
the Mach number rather than the Reynolds number in order to ensure rea-
sonable results. Furthermore, if a different gas were used to test the model,
we would also need to match the specific heat ratio (k), since compressible
flow behavior is strongly dependent on k (Chap. 12). We discuss such model
testing problems in more detail in Section 7-5.

In Examples 7-5 and 7—6 the air speed of the prototype car is 50.0 mi/h, and that of the
wind tunnel is 224 mi/h. At 25°C, this corresponds to a prototype Mach number of Ma, =
0.065, and at 5°C, the Mach number of the wind tunnel is 0.29—on the borderline of the
iIncompressible limit. In hindsight, we should have included the speed of sound in our
dimensional analysis, which would have generated the Mach number as an additional .
Another way to match the Reynolds number while keeping the Mach number low is to use
a liquid such as water, since liquids are nearly ncompressible, even at fairly high speeds.



EXAMPLE 7-9 Friction in a Pipe :

Consider flow of an incompressible fluid of density p and viscosity w through :
a long, horizontal section of round pipe of diameter D. The velocity profile m
is sketched in Fig. 7-34; V is the average speed across the pipe cross sec-
tion, which by conservation of mass remains constant down the pipe. For a
very long pipe, the flow eventually becomes hydrodynamically fully developed,
which means that the velocity profile also remains uniform down the pipe.
Because of frictional forces between the fluid and the pipe wall, there exists

a shear stress 7, on the inside pipe wall as sketched. The shear stress is also
constant down the pipe in the fully developed region. We assume some con-
stant average roughness height £ along the inside wall of the pipe. In fact,
the only parameter that is not constant down the length of pipe is the pres-
sure, which must decrease (linearly) down the pipe in order to “push” the
fluid through the pipe to overcome friction. Develop a nondimensional rela-
tionship between shear stress 7, and the other parameters in the problem.

D N o Friction on the inside wall of a pipe.

The shear stress 7, on the pipe walls
is a function of average fluid speed V,

- average wall roughness height &, fluid
/ density p, fluid viscosity w, and inside
-

pipe diameter D.




Analysis 'The step—by—step' method of repeéting variables is. employed to
obtain the nondimensional parameters.

Step 1 There are six variables and constants in this problem; n = 6. They
are listed in functional form, with the dependent variable listed as a
function of the independent variables and constants:

List of relevant parameters: .= fWV.e.pou.D) n=6

Step 2 The primary dimensions of each parameter are listed. Note that
shear stress is a force per unit area, and thus has the same dimensions as
pressure.

T V £ P I D

w

(m'L~'¢2})  {L'¢') (L'} {m'L7*) {mlL7'¢'} o {LY)

Step 3 As a first guess, Jis set equal to 3, the number of primary
dimensions represented in the problem (m, L, and t).

Reduction: j=3
If this value of jis correct, the expected number of II'sis k=n— j =
6 —3=3.

Step4 We choose three repeating parameters since j = 3. Following the
guidelines of Table 7-3, we cannot pick the dependent variable 7,,. We
cannot choose both £ and D since their dimensions are identical, and it
would not be desirable to have u or £ appear in all the IT's. The best choice
of repeating parameters is thus V, D, and p.

Repeating parameters: V.D,and p



Step 5 The dependent II is generated:
1, = 7,VaD"p — (II,} = {(m!L™ % %) (L% HaLhb(mlL3)%)

from which a, = =2, b, = 0, and ¢, = —1, and thus the dependent II is

T,
I, = —=
pV-

From Table 7-5, the established nondimensional parameter most similar
to this II, is the Darcy friction factor, defined with a factor of 8 in the
numerator (Fig. 7—35). Thus, we manipulate this II according to the
guidelines listed in Table 7-4 as follows:

STW
Modified 11,: IT, odified = PRl Darcy friction factor = f
V2
= o=
| P =
V=Y. - -
.;f Although the Darcy friction
 — factor for pipe flows is most
i -

common, you should be

aware of an alternative, less
. | 87, common friction factor called
Darcy friction factor: f=—2 Y Brshiiaa rE e o :
ad the Fanning friction factor.
2y The relationship between the.

Fanning friction factor: | C¢= V2 two is f = 4Cf .




Similarly, the two independent II's are generated, the details of which are
left for you to do on your own:

VD
[, = uVuDbp  — 11, = pT = Reynolds number = Re

& :
1, = gVaDhps  — 11, = D Roughness ratio

Step 6 We write the final functional relationship as

87, ’ £
= oV —f(Re.D) (1)
Discussion The result applies to both laminar and turbulent fully developed
pipe flow; it turns out, however, that the second independent II (roughness
ratio £/D) is not nearly as important in laminar pipe flow as in turbulent pipe
flow. This problem presents an interesting connection between geometric
similarity and dimensional analysis. Namely, it is necessary to match &/D
since it is an independent II in the problem. From a different perspective,
thinking of roughness as a geometric property, it is necessary to match /D
to ensure geometric similarity between two pipes.
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To verify the validity of Eq. 1 of Example 7-9, we use computational fluid
dynamics (CFD) to predict the velocity profiles and the values of wall shear stress
for two physically different but dynamically similar pipe flows:

« Air at 300 K flowing at an average speed of 14.5 ft/s through a pipe of inner
diameter 1.00 ft and average roughness height 0.0010 ft.

« Water at 300 K flowing at an average speed of 3.09 m/s through a pipe of inner
diameter 0.0300 m and average roughness height 0.030 mm.

The two pipes are clearly geometrically similar since they are both round pipes.
They have the same average roughness ratio (/D = 0.0010 in both cases).

We have carefully chosen the values of average speed and diameter such that the
two flows are also dynamically similar.

Specifically, the other independent IT (the Reynolds number) also matches
between the two flows.

VoD (1.225 ke/m®)(14.5 ft/s)(1.00 ft) {0.3048 m\>
Re,, = Poic Vi D i _ (] I\?Im (14 a ft/s)( 1 ft) H.JHTH m\~ 097 % 10°
Fair [.789 X 10~ kg/m - s ft
wateeVoaterDwater (9982 keg/m?)(3.09 m/s)(0.0300 m)
Rey e = Lo ver—vater _ : =922 X 10*

Movater 0.001003 kg/m - s
52
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d

I —fﬂ— -]
kY
7R 0.6 ] Normalized axial velocity
0.4 - profiles for fully developed
0.2 _ flow _through a pipe as |
. i predicted by CFD; profiles
e T of air (circles) and water
0 0.5 I 1.5 (crosses) are shown on the

u/V same plot.

Comparison of wall shear stress and nondimensionalized wall shear stress for
fully developed flow through an air pipe and a water pipe as predicted by CFD"

Parameter Air Flow Water Flow

Wall shear stress T = (.0557 N/m? T = 22.2 N/m?

W, air w, water

Dimensionless . .
wall shear stress _ OTwair 0.0186 Fomer = o, water 0.0186

(Darcy friction factor) i 2 2

pair air water ' water

* Data obtained with ANSYS-FLUENT using the standard k-& turbulence model with wall functions.



/=5 m EXPERIMENTAL TESTING, MODELING,
AND INCOMPLETE SIMILARITY

One of the most useful applications of dimensional analysis is in designing
physical and/or numerical experiments, and in reporting the results of such
experiments.

In this section we discuss both of these applications, and point out
situations in which complete dynamic similarity is not achievable.

Setup of an Experiment and Correlation of

Experimental Data

Consider a problem in which there are five original parameters (one of which is the
dependent parameter).

A complete set of experiments (called a full factorial test matrix) is conducted.
This testing would require 5% = 625 experiments.

Assuming that three primary dimensions are represented in the problem, we can
reduce the number of parameters from five to two (k =5 — 3 = 2 nondimensional
groups), and the number of independent parameters from four to one.

Thus, for the same resolution we would then need to conduct a total of only 51 =5
experiments. 54



For a two-I1 problem, we plot

I, dependent dimensionless parameter
Lo (I1,) as a function of independent
.e”” dimensionless parameter (I1,). The
- resulting plot can be (a) linear or (b)
- nonlinear. In either case, regression
and curve-fitting technigues are
I, available to determine the relationship
between the IT's.

Y

11, PR If there are more than two IT's in
P the problem (e.g., a three- I1
.’ problem ora four- IT problem), we
» need to set up a test matrix to
.’ determine the relationship
o between the dependent IT and the
independent IT's. In many cases
L we discover that one or more of
(b) the dependent IT's has negligible
effect and can be removed from
the list of necessary dimensionless
parameters.




Incomplete Similarity

We have shown several examples in which the nondimensional
groups are easily obtained with paper and pencil through
straightforward use of the method of repeating variables.

In fact, after sufficient practice, you should be able to obtain the
IT's with ease—sometimes in your head or on the “back of an
envelope.”

Unfortunately, it is often a much different story when we go to
apply the results of our dimensional analysis to experimental data.

The problem is that it is not always possible to match all the IT's of
a model to the corresponding s of the prototype, even if we are
careful to achieve geometric similarity.

This situation is called incomplete similarity.

Fortunately, in some cases of incomplete similarity, we are still
able to extrapolate model test data to obtain reasonable full-scale
predictions.
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Wind Tunhnel Testing

We illustrate incomplete similarity with

Wind tunnel test section the problem of measuring the
aerodynamic drag force on a model truck
4 In a wind tunnel.
— Model :
/ One-sixteenth scale.
p IL - Fp The model is geometrically similar to the
—~ B o prototype.
-('L ® The model truck is 0.991 m long. Wind
~— . / tunnel has a maximum speed of 70 m/s.
The wind tunnel test section is 1.0 m tall
Moving belt  Drag balance and 1.2 m wide.

Measurement of aerodynamic drag on a model
truck in‘a wind tunnel equipped with a drag
balance and a moving belt ground plane.

Pm m"{‘:rz — Re. = P PVF‘[‘F
Hom ST

‘ i — i.l' — r . I-I-I h _ —_— I : ..1

RC”] —




To match the Reynolds number between model and prototype, the wind
tunnel should be run at 429 m/s. This is impossible in this wind tunnel.

What do we do? There are several options:

(1) Use a bigger wind tunnel. Automobile manufacturers typically test
with three-eighths scale model cars and with one-eighth scale model
trucks and buses in very large wind tunnels.

(2) We could use a different fluid for the model tests. For example,
water can achieve higher Re numbers, but more expensive.

(3) We could pressurize the wind tunnel and/or adjust the air
temperature to increase the maximum Reynolds number capability.

(4) If all else fails, we could run the wind tunnel at several speeds near
the maximum speed, and then extrapolate our results to the full-scale
Reynolds number.

Fortunately, it turns out that for many wind tunnel tests the last option is
quite viable.
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(a) The Langley full-scale wind tunnel (LEST)
is large enough that full-scale vehicles can be
" tested. (b) For the same scale model and
speed, water tunnels achieve higher Reynolds
numbers than wind tunnels.

' |
,f' “‘t |
—— I “ 1 : RE:
I == I .
| =9
(a) ' | independence
,
S P——
|
|
|
|
! -
_ / . Re
pes R Unreliable data at low Re

For many objects, the drag coefficient levels
off at Reynolds numbers above some
threshold value. This fortunate situation is
called Reynolds number independence. It
enables us to extrapolate to prototype
Reynolds numbers that are outside of the
(b) range of our experimental facility. 59




||
m EXAMPLE 7-10 Model Truck Wind Tunnel Measurements

]
m A one-sixteenth scale model tractor-trailer truck (18-wheeler) is tested in a

B wind tunnel as sketched in Fig. 7-38. The model truck is 0.991 m long,
0.257 m tall, and 0.159 m wide. During the tests, the moving ground belt
speed is adjusted so as to always match the speed of the air moving through
the test section. Aerodynamic drag force Fj is measured as a function of

wind tunnel speed; the experimental results are listed in Table 7—7. Plot the
drag coefficient C, as a function of the Reynolds number Re, where the area
used for the calculation of C is the frontal area of the model truck (the area
you see when you look at the model from upstream), and the length scale
used for calculation of Re is truck width W. Have we achieved dynamic simi-
larity? Have we achieved Reynolds number independence in our wind tunnel
test? Estimate the aerodynamic drag force on the prototype truck traveling on
the highway at 26.8 m/s. Assume that both the wind tunnel air and the air
flowing over the prototype car are at 25°C and standard atmospheric pressure.

Wind tunnel test section

Measurement of aerodynamic
drag on a model truck in a
wind tunnel equipped with a
drag balance and a moving
belt ground plane.

Moving belt  Drag balance
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Properties For air at atmospheric pressure and at T = 25°C, p = 1.184 kg/m3
and u = 1.849 X 107° kg/m-s.

Analysis We calculate C, and Re for the last data point listed in Table 7-7
(at the fastest wind tunnel speed),

o Foom 89.9 N (1 kg-mfs?)
D ly V2ZA - 3(1.184 kg/m®)(70 m/s)2(0.159 m)(0.257 m) I N
= ().758
and
0V W (1.184 ke/m?)(70 m/s)(0.159 m) _
Re, = £ = SR — = 7.13 X 10° (1
Mo 1.849 X 1072 kg/m-s

Wind tunnel data: aerodynamic drag 1.4 Aerodynamic drag

force on a model truck as a function 13 7] fici "[

of wind tunnel speed 1 o Co€ I_Clen as a

V. mis N | 12 Ejnctlolr(l:I of t‘heb
20 12.4 - 1.1 SyRLECINHDG:
25 19.0 - The values are
- C l .
30 22.1 D _ ° calculated from
= 23.0 0.9 > wind tunnel test
40 34.3 -
45 399 0.8 ° | data on a model
: e (e T )

50 47.2 | 0.7 truck (Table 7-7).
55 55.5 | - il
60 66.D [}6 ITTTT ITTTTTTTTI ITTTTTTTI ITTTT :
65 77.6 2 3 4 5 6 T 8 61

70 89.9 Re x 107




We repeat these calculations for all the data points in Table 7-7, and we
plot C, versus Re in Fig. 7-41.

Have we achieved dynamic similarity? Well, we have geometric similarity
between model and prototype, but the Reynolds number of the prototype
truck is

. P,V,W,  (1.184 kg/m?)(26.8 m/s)[ 16(0.159 m)]
e = =

— 106
s K, 1.849 X 107> kg/m:s HI7 0T @

where the width of the prototype is specified as 16 times that of the model.
Comparison of Eqgs. 1 and 2 reveals that the prototype Reynolds number is
more than six times larger than that of the model. Since we cannot match
the independent II's in the problem, dynamic similarity has not been achieved.

Have we achieved Reynolds number independence? From Fig. 7/-41 we
see that Reynolds number independence has indeed been achieved—at Re
greater than about 5 X 10°, C, has leveled off to a value of about 0.76 (to
two significant digits).

Since we have achieved Reynolds number independence, we can extrapo-
late to the full-scale prototype, assuming that C, remains constant as Re is
increased to that of the full-scale prototype.

Predicted aerodynamic drag on the prototype:

Fpp= %pPV;APCD-F

= $(1.184 kg/m?)(26.8 m/s)*[ 16%(0.159 m)(0.257 m)](0.76) (—)
- 1 kg-m/s? =i

= 3400 N



Flows with Free Surfaces

For the case of model testing of flows with free surfaces (boats and ships,
floods, river flows, aqueducts, hydroelectric dam spillways, interaction of
waves with piers, soil erosion, etc.), complications arise that preclude
complete similarity between model and prototype.

For example, if a model river is built to study flooding, the model is often
several hundred times smaller than the prototype due to limited lab space.

Researchers often use a distorted model in which the vertical scale of
the model (e.g., river depth) is exaggerated in comparison to the
horizontal scale of the model (e.qg., river width).

In addition, the model riverbed slope is often made proportionally steeper
than that of the prototype.

These modifications result in incomplete similarity due to lack of geometric
similarity.

Model tests are still useful under these circumstances, but other tricks
(like deliberately roughening the model surfaces) and empirical
corrections and correlations are required to properly scale up the model
data. 63



In-many flows involving a liquid with
a free surface, both the Reynolds
I number and Froude number are

i 0o g anml - relevant nondimensional parameters.
AR »T-VJJJ—T—U-T-T—T— L : ~ : = Since it is not always possible to
- ,.VL;;;,;”'&;?-_& Y. 1atch both Re and Fr between
. I model_and prototype, we are
sometimes forced to settle for
p. K l g incomplete similarity.
pVL VL vV
Re = = Fr= ——
M v \/gL
; V L V L ; v,i‘? Vm
| REP _ p=p _ Rflm __ m™m | FrP — : — Frm — —
Fp _ U V g Lp \% g Lrn

m VYo (ﬂ;)‘ Required ratio of kinematic viscosities to match both Re and Fr:

LP I.I"Ir:'. I’l:” VF "! ___: ) L ) .-;'."._-:|
i _ M
_ | v, L,

To ensure complete similarity we would need touse a ¢4
liquid whose kinematic viscosity satisfies this equation.



(b)

(¢)

A NACA 0024 airfoil being
tested in a towing tank at Fr
(a) 0.19, (b) 0.37, and (c) 0.55.:

In tests like this, the Froude

- number is the most important
‘nondimensional parameter.
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~ model includes a scaled version of the

EXAMPLE 7-11 Model Lock and River o

-
In the late 1990s the U.S. Army Corps of Engineers designed an experiment @
to model the flow of the Tennessee River downstream of the Kentucky Lock =
and Dam (Fig. 7-44). Because of laboratory space restrictions, they built a
scale model with a length scale factor of L,/L, = 1/100. Suggest a liquid
that would be appropriate for the experiment.

A 1:100 scale model constructed to
investigate navigation conditions in
- the lower lock approach for a distance
~ of 2 mi downstream of the dam. The

spillway, powerhouse, and existing
lock. In addition to navigation,
the model was used to evaluate
environmental issues associated with
the new lock and required railroad
and highway bridge relocations. The
~ view here is looking upstream toward
~ the lock and dam. At this scale, 52.8 ft
- on the model represents 1 mi on the
prototype. A pickup truck in the
background gives you a feel for the
model scale.




Properties For water at atmospheric pressure and at T = 20°C, the prototype
kinematic viscosity is v, = 1.002 X 107° m?/s.

Analysis From Eq. 7-24,

Required kinematic viscosity of model liquid:

L\ 1 \32
v, = vp(—) = (1.002 X l[]_ﬁmzfsj(—> = 1.00 X 10~"m%*s (1)

L, 100

Thus, we need to find a liquid that has a viscosity of 1.00 X 107° m?/s. A
quick glance through the appendices yields no such liquid. Hot water has
a lower kinematic viscosity than cold water, but only by a factor of about 3.
Liquid mercury has a very small kinematic viscosity, but it is of order
10~7 m?/s—still two orders of magnitude too large to satisfy Eq. 1. Even
if liquid mercury would work, it would be too expensive and too hazardous
to use in such a test. What do we do? The bottom line is that we cannot
match both the Froude number and the Reynolds number in this model test.

In other words, it is impossible to achieve complete similarity between
model and prototype in this case. Instead, we do the best job we can under
conditions of incomplete similarity. Water is typically used in such tests for
convenience.

Discussion It turns out that for this kind of experiment, Froude number
matching is more critical than Reynolds number matching. As discussed pre-
viously for wind tunnel testing, Reynolds number independence is achieved
at high enough values of Re. Even if we are unable to achieve Reynolds
number independence, we can often extrapolate our low Reynolds number
model data to predict full-scale Reynolds number behavior (Fig. 7-45). A
high level of confidence in using this kind of extrapolation comes only after
much laboratory experience with similar problems.
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a
Measured
parameter

In many experiments involving

free surfaces, we cannot match

..-r-'?\ both the Froude number and the
i i}i:‘ﬁpolutcai Reynolds number. However, we
I can often extrapolate low Re

= /* ' »  model test data to predict high

Y Re Re .
Range of Re, P Re prototype behavior.

We mention the importance of similarity in the production of Hollywood movies in
which model boats, trains, airplanes, buildings, monsters, etc., are blown up or
burned.

Movie producers must pay attention to dynamic similarity in order to make the
small-scale fires and explosions appear as realistic as possible.

You may recall some low-budget movies where the special effects are
unconvincing.

In most cases this is due to lack of dynamic similarity between the small model
and the full-scale prototype.

If the model's Froude number and/or Reynolds number differ too much from those
of the prototype, the special effects don’t look right, even to the untrained eye.

The next time you watch a movie, be on the alert for incomplete similarity!
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Dimensions and units

Dimensional homegeneity
v' Nondimensionalization of Equations
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Dimensional analysis and similarity
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Buckingham pi theorem
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