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A 1:46.6 scale model 

of an Arleigh Burke 

class U.S. Navy fleet 

destroyer being 

tested in the 100-m 

long towing tank at 

the University of 

Iowa. The model is 

3.048 m long. In 

tests like this, the 

Froude number is 

the most important 

nondimensional 

parameter. 
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Objectives 

• Develop a better understanding of dimensions, 

units, and dimensional homogeneity of equations 

• Understand the numerous benefits of dimensional 

analysis 

• Know how to use the method of repeating 

variables to identify nondimensional parameters 

• Understand the concept of dynamic similarity and 

how to apply it to experimental modeling 
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7–1 ■ DIMENSIONS AND UNITS 

A dimension is a measure of a 

physical quantity without 

numerical values, while a unit is 

a way to assign a number to the 

dimension. For example, length 

is a dimension, but centimeter 

is a unit. 

Dimension: A measure of a physical quantity (without numerical values).  

Unit: A way to assign a number to that dimension.  

There are seven primary dimensions (also called fundamental or basic 

dimensions): mass, length, time, temperature, electric current, amount of 

light, and amount of matter. 

All nonprimary dimensions can be formed by some combination of the 

seven primary dimensions. 
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The water strider 

is an insect that 

can walk on water 

due to surface 

tension. 
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7–2 ■ DIMENSIONAL HOMOGENEITY 

You can’t add apples and oranges! 

Total energy 

of a system 

at state 1 

and at state 

2. 

The law of dimensional homogeneity: Every additive 

term in an equation must have the same dimensions. 
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An equation that is 

not dimensionally 

homogeneous is a 

sure sign of an error. 
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The Bernoulli equation is a 

good example of a 

dimensionally homogeneous 

equation. All additive terms, 

including the constant, have 

the same dimensions, 

namely that of pressure. In 

terms of primary dimensions, 

each term has dimensions 

{m/(t2L)}. 
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Nondimensionalization of Equations 

Nondimensional equation: If we divide each term in the equation by a 

collection of variables and constants whose product has those same 

dimensions, the equation is rendered nondimensional.  

Normalized equatiion: If the nondimensional terms in the equation are of 

order unity, the equation is called normalized.  

Each term in a nondimensional equation is dimensionless. 

Nondimensional parameters: In the process of nondimensionalizing an 

equation of motion, nondimensional parameters often appear—most of 

which are named after a notable scientist or engineer (e.g., the Reynolds 

number and the Froude number). 

This process is referred to by some authors as inspectional analysis. 

A nondimensionalized form of the 

Bernoulli equation is formed by 

dividing each additive term by a 

pressure (here we use P). Each 

resulting term is dimensionless 

(dimensions of {1}). 
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Object falling in a vacuum. 

Vertical velocity is drawn 

positively, so w < 0 for a 

falling object. 

Dimensional variables: Dimensional quantities 

that change or vary in the problem. Examples: z 

(dimension of length) and t (dimension of time).  

Nondimensional (or dimensionless) variables: 

Quantities that change or vary in the problem, 

but have no dimensions. Example: Angle of 

rotation, measured in degrees or radians, 

dimensionless units.  

Dimensional constant: Gravitational constant g, 

while dimensional, remains constant. 

Parameters: Refer to the combined set of 

dimensional variables, nondimensional variables, 

and dimensional constants in the problem. 

Pure constants: The constant 1/2 and the 

exponent 2 in equation. Other common examples 

of pure constants are  and e. 
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In a typical fluid flow problem, the 

scaling parameters usually include a 

characteristic length L, a characteristic 

velocity V, and a reference pressure 

difference P0  P. Other parameters 

and fluid properties such as density, 

viscosity, and gravitational 

acceleration enter the problem as well. 

To nondimensionalize an equation, we need to select scaling parameters, 

based on the primary dimensions contained in the original equation. 

Froude 

number 
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The two key advantages of nondimensionalization of an equation.  
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Trajectories of a steel ball falling in a 

vacuum: (a) w0 fixed at 4 m/s, and 

(b) z0 fixed at 10 m (Example 7–3). 

Trajectories of a steel ball falling 

in a vacuum. Data of Fig. 7–12a 

and b are nondimensionalized 

and combined onto one plot. 
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Throwing a 

baseball on the 

moon 
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In a general unsteady fluid flow problem with a free surface, the scaling 

parameters include a characteristic length L, a characteristic velocity V, a 

characteristic frequency f, and a reference pressure difference P0  P. 

Nondimensionalization of the differential equations of fluid flow produces 

four dimensionless parameters: the Reynolds number, Froude number, 

Strouhal number, and Euler number (see Chap. 10). 
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7–3 ■ DIMENSIONAL ANALYSIS AND SIMILARITY 
In most experiments, to save time and money, tests are performed on a 

geometrically scaled model, rather than on the full-scale prototype.  

In such cases, care must be taken to properly scale the results. We introduce 

here a powerful technique called dimensional analysis. 

The three primary purposes of dimensional analysis are 

• To generate nondimensional parameters that help in the design of experiments 

(physical and/or numerical) and in the reporting of experimental results 

• To obtain scaling laws so that prototype performance can be predicted from 

model performance 

• To (sometimes) predict trends in the relationship between parameters 

The principle of similarity 

Three necessary conditions for complete similarity between a model and a 

prototype.  

(1) Geometric similarity—the model must be the same shape as the prototype, 

but may be scaled by some constant scale factor.  

(2) Kinematic similarity—the velocity at any point in the model flow must be 

proportional (by a constant scale factor) to the velocity at the corresponding 

point in the prototype flow. 
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(3) dynamic similarity—When all forces in the model flow scale by a 

constant factor to corresponding forces in the prototype flow (force-scale 

equivalence). 

In a general flow field, complete similarity between a model and prototype is 

achieved only when there is geometric, kinematic, and dynamic similarity. 

Kinematic similarity is 

achieved when, at all 

locations, the speed in the 

model flow is proportional to 

that at corresponding 

locations in the prototype 

flow, and points in the same 

direction. 
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We let uppercase Greek letter Pi () denote a nondimensional parameter. 

In a general dimensional analysis problem, there is one  that we call the 

dependent , giving it the notation 1.  

The parameter 1 is in general a function of several other ’s, which we call 

independent ’s.  

To ensure complete similarity, the model and prototype must be geometrically 

similar, and all independent  groups must match between model and prototype. 

To achieve similarity 
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Geometric similarity between a 

prototype car of length Lp and a model 

car of length Lm. 

The Reynolds number Re is formed by 

the ratio of density, characteristic 

speed, and characteristic length to 

viscosity. Alternatively, it is the ratio of 

characteristic speed and length to 

kinematic viscosity, defined as  =/. 

The Reynolds number is the most well known and useful 

dimensionless parameter in all of fluid mechanics. 
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A drag balance is a device used 

in a wind tunnel to measure the 

aerodynamic drag of a body. 

When testing automobile models, 

a moving belt is often added to 

the floor of the wind tunnel to 

simulate the moving ground (from 

the car’s frame of reference). 
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A drag balance is a device used 

in a wind tunnel to measure the 

aerodynamic drag of a body. 

When testing automobile models, 

a moving belt is often added to 

the floor of the wind tunnel to 

simulate the moving ground (from 

the car’s frame of reference). 
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Similarity can be achieved 

even when the model fluid 

is different than the 

prototype fluid. Here a 

submarine model is tested 

in a wind tunnel. 

If a water tunnel is used instead of a wind tunnel to test their one-fifth 

scale model, the water tunnel speed required to achieve similarity is 

One advantage of a water tunnel 

is that the required water tunnel 

speed is much lower than that 

required for a wind tunnel using 

the same size model (221 mi/h 

for air and 16.1 mi/h for water) . 
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7–4 ■ THE METHOD OF REPEATING VARIABLES 

AND THE BUCKINGHAM PI THEOREM 

How to generate the 

nondimensional parameters, i.e., 

the ’s?  

There are several methods that 

have been developed for this 

purpose, but the most popular 

(and simplest) method is the 

method of repeating variables.  

A concise summary of 

the six steps that 

comprise the method of 

repeating variables. 
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Setup for dimensional analysis of 

a ball falling in a vacuum. 

Elevation z is a function of time t, 

initial vertical speed w0, initial 

elevation z0, and gravitational 

constant g. 

Step 1 

Step 2 

Step 3 

Step 4 
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Step 5 
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The mathematical 

rules for adding 

and subtracting 

exponents during 

multiplication and 

division, 

respectively. 

It is wise to choose 

common parameters as 

repeating parameters since 

they may appear in each of 

your dimensionless  

groups. 

The  groups that result from the 

method of repeating variables are 

guaranteed to be dimensionless 

because we force the overall 

exponent of all seven primary 

dimensions to be zero. 
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Established 

nondimensional 

parameters are usually 

named after a notable 

scientist or engineer. 



36 

Step 6 

The method of repeating variables cannot predict 

the exact mathematical form of the equation. 

A quick check of 

your algebra is 

always wise. 
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The pressure inside a 

soap bubble is greater 

than that surrounding 

the soap bubble due to 

surface tension in the 

soap film. 
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If the method of 

repeating variables 

indicates zero ’s, we 

have either made an 

error, or we need to 

reduce j by one and 

start over. 
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Oftentimes when performing the method 

of repeating variables, the most difficult 

part of the procedure is choosing the 

repeating parameters. With practice, 

however, you will learn to choose these 

parameters wisely. 
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A parameter that is 

dimensionless (like an 

angle) is already a 

nondimensional  all by 

itself—we know this  

without doing any further 

algebra. 
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In Examples 7–5 and 7–6 the air speed of the prototype car is 50.0 mi/h, and that of the 

wind tunnel is 224 mi/h. At 25°C, this corresponds to a prototype Mach number of Map = 

0.065, and at 5°C, the Mach number of the wind tunnel is 0.29—on the borderline of the 

incompressible limit. In hindsight, we should have included the speed of sound in our 

dimensional analysis, which would have generated the Mach number as an additional . 

Another way to match the Reynolds number while keeping the Mach number low is to use 

a liquid such as water, since liquids are nearly ncompressible, even at fairly high speeds. 
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Although the Darcy friction 

factor for pipe flows is most 

common, you should be 

aware of an alternative, less 

common friction factor called 

the Fanning friction factor. 

The relationship between the 

two is f = 4Cf . 
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To verify the validity of Eq. 1 of Example 7–9, we use computational fluid 

dynamics (CFD) to predict the velocity profiles and the values of wall shear stress 

for two physically different but dynamically similar pipe flows: 

• Air at 300 K flowing at an average speed of 14.5 ft/s through a pipe of inner 

diameter 1.00 ft and average roughness height 0.0010 ft. 

• Water at 300 K flowing at an average speed of 3.09 m/s through a pipe of inner 

diameter 0.0300 m and average roughness height 0.030 mm. 

The two pipes are clearly geometrically similar since they are both round pipes.  

They have the same average roughness ratio (/D = 0.0010 in both cases).  

We have carefully chosen the values of average speed and diameter such that the 

two flows are also dynamically similar.  

Specifically, the other independent  (the Reynolds number) also matches 

between the two flows. 
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Normalized axial velocity 

profiles for fully developed 

flow through a pipe as 

predicted by CFD; profiles 

of air (circles) and water 

(crosses) are shown on the 

same plot. 
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7–5 ■ EXPERIMENTAL TESTING, MODELING, 

AND INCOMPLETE SIMILARITY 
One of the most useful applications of dimensional analysis is in designing 

physical and/or numerical experiments, and in reporting the results of such 

experiments.  

In this section we discuss both of these applications, and point out 

situations in which complete dynamic similarity is not achievable. 

Setup of an Experiment and Correlation of 

Experimental Data 
Consider a problem in which there are five original parameters (one of which is the 

dependent parameter).  

A complete set of experiments (called a full factorial test matrix) is conducted. 

This testing would require 54 = 625 experiments. 

Assuming that three primary dimensions are represented in the problem, we can 

reduce the number of parameters from five to two (k = 5  3 = 2 nondimensional  

groups), and the number of independent parameters from four to one.  

Thus, for the same resolution we would then need to conduct a total of only 51 = 5 

experiments. 
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For a two- problem, we plot 

dependent dimensionless parameter 

(1) as a function of independent 

dimensionless parameter (2). The 

resulting plot can be (a) linear or (b) 

nonlinear. In either case,  regression 

and curve-fitting techniques are 

available to determine the relationship 

between the ’s. 

If there are more than two ’s in 

the problem (e.g., a three-  

problem ora four-  problem), we 

need to set up a test matrix to 

determine the relationship 

between the dependent  and the 

independent ’s. In many cases 

we discover that one or more of 

the dependent ’s has negligible 

effect and can be removed from 

the list of necessary dimensionless 

parameters. 
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Incomplete Similarity 

We have shown several examples in which the nondimensional  

groups are easily obtained with paper and pencil through 

straightforward use of the method of repeating variables.  

In fact, after sufficient practice, you should be able to obtain the 

’s with ease—sometimes in your head or on the “back of an 

envelope.”  

Unfortunately, it is often a much different story when we go to 

apply the results of our dimensional analysis to experimental data.  

The problem is that it is not always possible to match all the ’s of 

a model to the corresponding ’s of the prototype, even if we are 

careful to achieve geometric similarity.  

This situation is called incomplete similarity. 

Fortunately, in some cases of incomplete similarity, we are still 

able to extrapolate model test data to obtain reasonable full-scale 

predictions. 
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Wind Tunnel Testing 

Measurement of aerodynamic drag on a model 

truck in a wind tunnel equipped with a drag 

balance and a moving belt ground plane. 

We illustrate incomplete similarity with 

the problem of measuring the 

aerodynamic drag force on a model truck 

in a wind tunnel. 

One-sixteenth scale.  

The model is geometrically similar to the 

prototype.  

The model truck is 0.991 m long. Wind 

tunnel has a maximum speed of 70 m/s. 

The wind tunnel test section is 1.0 m tall 

and 1.2 m wide. 
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To match the Reynolds number between model and prototype, the wind 

tunnel should be run at 429 m/s. This is impossible in this wind tunnel.  

What do we do? There are several options: 

(1) Use a bigger wind tunnel. Automobile manufacturers typically test 

with three-eighths scale model cars and with one-eighth scale model 

trucks and buses in very large wind tunnels. 

(2) We could use a different fluid for the model tests. For example, 

water can achieve higher Re numbers, but more expensive. 

(3) We could pressurize the wind tunnel and/or adjust the air 

temperature to increase the maximum Reynolds number capability. 

(4) If all else fails, we could run the wind tunnel at several speeds near 

the maximum speed, and then extrapolate our results to the full-scale 

Reynolds number. 

Fortunately, it turns out that for many wind tunnel tests the last option is 

quite viable. 
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(a) The Langley full-scale wind tunnel (LFST) 

is large enough that full-scale vehicles can be 

tested. (b) For the same scale model and 

speed, water tunnels achieve higher Reynolds 

numbers than wind tunnels. 

For many objects, the drag coefficient levels 

off at Reynolds numbers above some 

threshold value. This fortunate situation is 

called Reynolds number independence. It 

enables us to extrapolate to prototype 

Reynolds numbers that are outside of the 

range of our experimental facility. 
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Measurement of aerodynamic 

drag on a model truck in a 

wind tunnel equipped with a 

drag balance and a moving 

belt ground plane. 
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Aerodynamic drag 

coefficient as a 

function of the 

Reynolds number. 

The values are 

calculated from 

wind tunnel test 

data on a model 

truck (Table 7–7). 
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Flows with Free Surfaces 

For the case of model testing of flows with free surfaces (boats and ships, 

floods, river flows, aqueducts, hydroelectric dam spillways, interaction of 

waves with piers, soil erosion, etc.), complications arise that preclude 

complete similarity between model and prototype. 

For example, if a model river is built to study flooding, the model is often 

several hundred times smaller than the prototype due to limited lab space. 

Researchers often use a distorted model in which the vertical scale of 

the model (e.g., river depth) is exaggerated in comparison to the 

horizontal scale of the model (e.g., river width).  

In addition, the model riverbed slope is often made proportionally steeper 

than that of the prototype.  

These modifications result in incomplete similarity due to lack of geometric 

similarity.  

Model tests are still useful under these circumstances, but other tricks 

(like deliberately roughening the model surfaces) and empirical 

corrections and correlations are required to properly scale up the model 

data. 
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In many flows involving a liquid with 

a free surface, both the Reynolds 

number and Froude number are 

relevant nondimensional parameters. 

Since it is not always possible to 

match both Re and Fr between 

model and prototype, we are 

sometimes forced to settle for 

incomplete similarity. 

To ensure complete similarity we would need to use a 

liquid whose kinematic viscosity satisfies this equation. 
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A NACA 0024 airfoil being 

tested in a towing tank at Fr  

(a) 0.19, (b) 0.37, and (c) 0.55. 

In tests like this, the Froude 

number is the most important 

nondimensional parameter. 
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In many experiments involving 

free surfaces, we cannot match 

both the Froude number and the 

Reynolds number. However, we 

can often extrapolate low Re 

model test data to predict high 

Re prototype behavior. 

We mention the importance of similarity in the production of Hollywood movies in 

which model boats, trains, airplanes, buildings, monsters, etc., are blown up or 

burned.  

Movie producers must pay attention to dynamic similarity in order to make the 

small-scale fires and explosions appear as realistic as possible. 

You may recall some low-budget movies where the special effects are 

unconvincing.  

In most cases this is due to lack of dynamic similarity between the small model 

and the full-scale prototype.  

If the model’s Froude number and/or Reynolds number differ too much from those 

of the prototype, the special effects don’t look right, even to the untrained eye.  

The next time you watch a movie, be on the alert for incomplete similarity! 
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Summary 

• Dimensions and units 

• Dimensional homegeneity 

 Nondimensionalization of Equations 

 Vapor Pressure and Cavitation 

• Dimensional analysis and similarity 

• The method of repeating variables and the 

Buckingham pi theorem 

• Experimental testing, modeling and, incomplete 

similarity 

 Setup of an Experiment and Correlation of 

Experimental Data 

 Incomplete Similarity 

 Wind Tunnel Testing 

 Flows with Free Surfaces 


