

EASTERN MEDITERRANEAN UNIVERSITY
DEPARTMENT OF COMPUTER ENGINEERING

CMSE222

LAB # 6
INTRODUCTION TO MIPS

Aim of the Lab Experiment: In this lab experiment, we will examine the MIPS programs, implement

programs using QtSpim and develop assembly programs with MIPS.

1. MIPS Assembler Syntax

Comments in assembler files begin with a sharp sign " # ". Everything from the sharp sign to the end

of the line is ignored.

Identifiers are a sequence of alphanumeric characters, underbars "_", and dots " . " that do not begin

with a number Instruction opcodes are reserved words that cannot be used as identifiers. Labels are

declared by putting them at the beginning of a line followed by a colon, for example:

Numbers are base 10 by default. If they are preceded by 0x, they are interpreted as hexadecimal.

Hence, 256 and 0x100 denote the same value. Strings are enclosed in double quote "...". Special

characters in strings follow the C convention: i.e., newline is \n; tab \t, and quote \" Some important

SPIM (and also MIPS) assembler directives:

2. Introduction to QtSpim

QtSpim is software that will help you to simulate the execution of MIPS assembly programs. It does a

context and syntax check while loading an assembly program. In addition, it adds in necessary overhead

instructions as needed, and updates register and memory content as each instruction is executed

Note: you can find this IDE in https://sourceforge.net/projects/spimsimulator/files/ or on google as

well.

3. Getting Started with QtSpim

When QtSpim starts up, it opens a window containing that looks like the one below. (The features in

the window look slightly different on Microsoft Windows than on Linux or Mac OSX, but all the menus

and buttons are in the same place and work the same way).

QtSpim's main window has three parts:

• The narrow pane on the left can display integer or floating-point registers. Select the set of

registers by clicking the tab at the top of the pane.

• The wide pane on the right can display the text segment, which contains instructions, and the

data segments. Choose between text and data by clicking the tab at the top of the pane.

• The small pane on the bottom is where QtSpim writes its messages.

File Menu Simulator Menu

Settings in Menu Settings Window

MIPS Settings

It changes the way that QtSpim operates:

• Bare machine make QtSpim simulate a bare MIPS processor.

• Accept pseudo instructions enables QtSpim to accept assembly instructions that MIPS does

not actually execute, to make programming easier.

• Enable delayed branches causes QtSpim to execute the instruction immediately after a branch

instruction before transferring control and to calculate the new PC from the address of this

next instruction.

• Enable delayed loads causes QtSpim to delay the value loaded from memory for one

instruction after the load instructions.

• Enable mapped IO turns on memory-mapped IO.

3.1. Loading a Program

Your program should be stored in a file. Assembly code files usually have the extension ".s", as in file1.s.

To load a file, go to the File menu and select Load File. The screen will change as the file is loaded, to

show the instructions and data in your program.

Another very useful command on the File men is Reinitialize and Load File. It first clears all changes

made by a program, including deleting all of its instructions, and then reloads the last file. This

command works well when debugging a program, as you can change your program and quickly test it

in a fresh computer without closing and restarting QtSpim.

3.2. Running a Program

To start a program running after you have loaded it, go to the Simulator menu and click Run/Continue.

Your program will run until it finishes or until an error occurs. Either way, you will see the changes that

your program made to the MIPS registers and memory, and the output your program writes will appear

in the Console window.

If your program does not work correctly, there are several things you can do. The easiest is to single

step between instructions, which lets you see the changes each instructions makes, one at a time. This

command is also on the Simulator menu and is named Single Step.

Sometimes, however, you need to run your program for a while before something goes wrong, and

single stepping would be too slow. QtSpim lets you set a breakpoint at a specific instruction, which

stops QtSpim before the instruction executes. So, if you think your problem is in a specific function in

your program, set a breakpoint at the first instruction in the function, and QtSpim will stop every time

the function is invoked. You set a breakpoint by right-clicking on the instruction where you want to

stop, and selecting Set Breakpoint. When you are done with the breakpoint, you can remove it by

selecting Clear Breakpoint instead.

If you want to stop your program while it is running, go to the Simulator menu and click Pause. This

command stops your program, let you look around, and continue execution if you want. If you do not

want to continue running, click Stop instead.

When QtSpim stops, either because of an error in your program, a breakpoint, after clicking Pause, or

after single stepping, you can continue the program running by clicking on Run/Continue (or you can

continue single stepping by clicking Single Step). If you click Stop, instead of Pause, then clicking

Run/Continue will restart your program from the beginning, instead of continuing from where it

stopped. (This is roughly the same way that a music player operates; you can pause and restart a song,

but if you stop the music, you need to start playing at the beginning.)

3.3. Display Options

The three other menus -- Registers, Text Segment, and Data Segment -- control QtSpim's displays. For

example, the Register menu controls the way QtSpim displays the contents of registers, either in binary,

base 8 (octal), base 10 (decimal), or base 16 (hexadecimal). It is often quite convenient to flip between

these representations to understand your data.

Register Menu Text Segment Menu

These menus also let you turn off the display of various parts of the machine, which can help reduce

clutter on the screen and let you concentrate on the parts of the program or data that really matter.

3.4. Changing Registers and Memory

You can change the contents of either a register or memory location by right-clicking on it and selecting

Change Register Contents or Change Memory Contents, respectively.

4. EXPERIMENTAL WORK

Part 1: Run the below code and observe the results

Following program multiplies two unsigned integers in the registers R8 by R9 and writes the

32-bit product to register R10. In order to understand the operation of your simulator program,

type and execute the following MIPS assembly program in non-pseudo-instruction mode.

.data 0x10000000

.text 0x00400000
main:

addi $8,$0,6
addi $9,$0,12
add $2,$0,$8
add $10,$0,$0

multiplication of $8 * $9 -> $10

mulloop:
beq $2,$0,mulexit # if zero exit
addi $2,$2,-1
add $10,$10,$9
j mulloop

mulexit:
multiplication loop is over,
is the result in $10 correct?

sll $0,$0,0
syscall

• First set the PC (prog.counter) to the starting address of the program if SPIM is set

correctly the starting address is 0x00400000. To set the value use the key-sequence alt-

s,v (or menu simulator>set value) to open the register-value assignment dialog box.

Enter PC and the starting address in hexadecimal format.

• Next, use the Fn10 key to execute one instruction at each key-press. You can also use the

Fn5 key to execute the complete program at once. Correct the starting address to

0x00400000 before clicking the OK button.

LAB TASK

Write a MIPS program that finds the summation of odd numbers between 11 and 37
(both included)
Store start value 11 in register t4, end value 37 in register t5 and the result value in register
t6.

