EASTERN MEDITERRANEAN UNIVERSITY
DEPARTMENT OF COMPUTER ENGINEERING
CMSE222

LAB # 6
INTRODUCTION TO MIPS

Aim of the Lab Experiment: In this lab experiment, we will examine the MIPS programs, implement
programs using QtSpim and develop assembly programs with MIPS.

1. MIPS Assembler Syntax

Comments in assembler files begin with a sharp sign " # ". Everything from the sharp sign to the end
of the line is ignored.

Identifiers are a sequence of alphanumeric characters, underbars " ", and dots " . " that do not begin
with a number Instruction opcodes are reserved words that cannot be used as identifiers. Labels are
declared by putting them at the beginning of a line followed by a colon, for example:

.data
item: .word 1
.text
.globl main # Must be global
main: lw 35t01,item # loads temp.reg. $t0l1 with item

Numbers are base 10 by default. If they are preceded by Ox, they are interpreted as hexadecimal.
Hence, 256 and 0x100 denote the same value. Strings are enclosed in double quote "...". Special
characters in strings follow the C convention: i.e., newline is \n; tab \t, and quote \" Some important
SPIM (and also MIPS) assembler directives:

.byte bil,...,bn #storen specified values to the memory
.data <address> #setf data segment address.
SPIM uses 0x10000000 as the beginning of the data segment. Set it to
0x10000000 to have correctly matching data labels to their addresses.
.globl sym # makes label globally accessable.
.space n # allocate n bytes of space in the current segment.
.text <address> #subsequentitems are put in the user text segments,
The items In text segment may be only words, or instructions.
.word n # store the listed values of words into the memory.

2. Introduction to QtSpim

QtSpim is software that will help you to simulate the execution of MIPS assembly programs. It does a
context and syntax check while loading an assembly program. In addition, it adds in necessary overhead
instructions as needed, and updates register and memory content as each instruction is executed

Note: you can find this IDE in https://sourceforge.net/projects/spimsimulator/files/ or on google as
well.

3. Getting Started with QtSpim

When QtSpim starts up, it opens a window containing that looks like the one below. (The features in
the window look slightly different on Microsoft Windows than on Linux or Mac OSX, but all the menus
and buttons are in the same place and work the same way).

& QtSpim - 0

ile Simulator Registers Text Segment Data Segment Window Help

_ g 2% »uwal e
FP Regs o X Text
FIR = 9800 WJirs User Text Segment [00400000]..[00440000] N\
FCSR =10 [00400000] 8£a40000 1w $4, 0($29) ; 183: 1v $a0 0($sp) # arge
FCCR =10 [00400004] 27250004 addiu $5, §29, 4 ; 184: addiv §al $5sp 4 # argv
FEXR =10 [00400008] 24a60004 addiu §6, §5, 4 ; 185: addiu $a2 $al 4 # emvp

[0040000c] 00041080 sl11 §2, §4, 2 ; 186: 511 $v0 $ad 2

single Precisiof [00400010] 00c23021 addn §6, $6, §2 ; 187: addu Salhn 53z §vo
FOO =0 [00400014] 0cOO0000 jal Ox00000D000 [main] ; 188: jal main
PGl = 0 [00400018] 00000000 mop ; 189: nop
FG2 = 0 [0040001c] 34020002 ori §2, $0, 10 ;181 11 $vo 10
FG3 =0 [00400020] 0000000c syscall ; 182: syscall # syscall 10 (sxit)
FG4 =10
FG5 =0 Fernel Text Segment [80000000]..[80010000]
FGE =0 [80000180] 0001d821 addu $27, $0, §1 ; 90: move fki fat # Save fat
F37 =10 [B0000184] 3c019000 1umi §1, -28672 ; 92: sw $v0 51 # Not re-entrant and we cqn't
FG8 =10 trust §sp
FG3 =0 [80000188] ac220200 sw $2, 512(51)
FG10 = 0 [8000018c] 3c019000 lmi §1, -28672 ; 93: 5w 530 52 # But ve nesd to uss thes
FG11 = 0 registers
FG12 = 0 [80000190] ac240204 sw $4, 516(51)
FG13 = 0 [B0000194] 40126800 mfeD §26, $13 ; 95: mfcO SkO 513 # Cause register
FG14 = 0 [80000198] 00122082 srl §4, §26, 2 ; 96: srl 5a0 £k0 2 # Extract ExcCode Field
FG15 = 0 [8000019c] 3084001f andi §4, §4, 31 ; 97: andi $a0 5a0 Oxif
FG16 = 0 [800001a0] 34020004 ori §2, $0, 4 ;101: 1i §v0 4 # syscall 4 (print str)
FG17 = 0 kl, deih 0067 . . . - y,

QtSpim's main window has three parts:

e The narrow pane on the left can display integer or floating-point registers. Select the set of
registers by clicking the tab at the top of the pane.

e The wide pane on the right can display the text segment, which contains instructions, and the
data segments. Choose between text and data by clicking the tab at the top of the pane.

e The small pane on the bottom is where QtSpim writes its messages.

L OtSpim L QtSpim
; . . i File | Simulator Registers Text Segment Data Segment Window Hel
File Simulator Registers Text Segment Data Segment Window - -
; | % ClearRegisters <:j.| - = @
Load Flle- S m] = 71 = # Reinitialize Simulator e ===
Recent Files > —_— T FP Rey Run Parameters o
=1 Reinitialize and Load File FIr P Run/Continue F5 <]
Text FCSE || Pause ooboo) sfa4co00 1w §4,
H Save Log File FCCE & sto 000041 27a50004 addiua |
- FEXF = OQPOS] 24260004 addin
=4 Print [00400000]) Sfa20000 1w =: Single Step A <0041050 s11 s2
00400004 2TaS0004 s 2302
{0040000’1 faasoooq ﬂcic Sind Display Symbols o01a] cecomons aoaom
- o a adc
Exit = FGO N
[0040000c) 00041080 =11 PGl | [:] Settings gggi;% 29000000 mem o2
PR Foz = 2
Single Precision [00400010) 00s23021 ade FG3 =Z [00400020] 0000000c syscal
FGO =0 [00400014] COcOQOOQQOO0Q Jal Fca = 0O
1 = [00400018] 00000000 mnog FGs = o

File Menu Simulator Menu

L OtSpim

Pow @ =@

File = Simulator Registers Text Segment Data Segment Window e

e L . —a = Data L OtSpim Settings ? =

- g il] =z Ll

H# Reinitialize Simulator

F Data Text
FP Ry Run Parameters Lenath of Recent P st [+
FIr P Run/Continue F5 -
Quiet

FCSE] Pause 200000] SEfa40000 1w
FCCE o Stop 800004] 27a50004 add Recloter Windows
FEXF 800008] Z2Z494a60004 add

=% Single Step FI0 ic000c] ocoo41080 s11 Font [Couner][] color [zaasstt
. 200010] 00c23021 add Background Color [arfTFr |
Sind Display Symbeol around Color |
PGO | '=play symbels 800014] OcOO000O0 Jal t
Fol [L] Settings] = 00000000 nop Text and Data Windows Ik
FG2 T=O == T=1 32020002 ori Font [Couwer][] color [00000 d
FG3 = o [00400020] 0000000 sys ;
PG4 = O Background Color [<FFFAF |]
oS = 0 [TE£EFac] o

(7£regaac
Settings in Menu Settings Window

MIPS Settings
It changes the way that QtSpim operates:

e Bare machine make QtSpim simulate a bare MIPS processor.

e Accept pseudo instructions enables QtSpim to accept assembly instructions that MIPS does
not actually execute, to make programming easier.

e Enable delayed branches causes QtSpim to execute the instruction immediately after a branch
instruction before transferring control and to calculate the new PC from the address of this
next instruction.

e Enable delayed loads causes QtSpim to delay the value loaded from memory for one
instruction after the load instructions.

e Enable mapped IO turns on memory-mapped IO.

3.1.Loading a Program

Your program should be stored in a file. Assembly code files usually have the extension ".s", as in filel.s.
To load a file, go to the File menu and select Load File. The screen will change as the file is loaded, to
show the instructions and data in your program.

Another very useful command on the File men is Reinitialize and Load File. It first clears all changes
made by a program, including deleting all of its instructions, and then reloads the last file. This
command works well when debugging a program, as you can change your program and quickly test it
in a fresh computer without closing and restarting QtSpim.

3.2.Running a Program

To start a program running after you have loaded it, go to the Simulator menu and click Run/Continue.
Your program will run until it finishes or until an error occurs. Either way, you will see the changes that
your program made to the MIPS registers and memory, and the output your program writes will appear
in the Console window.

If your program does not work correctly, there are several things you can do. The easiest is to single
step between instructions, which lets you see the changes each instructions makes, one at a time. This
command is also on the Simulator menu and is named Single Step.

Sometimes, however, you need to run your program for a while before something goes wrong, and
single stepping would be too slow. QtSpim lets you set a breakpoint at a specific instruction, which
stops QtSpim before the instruction executes. So, if you think your problem is in a specific function in
your program, set a breakpoint at the first instruction in the function, and QtSpim will stop every time
the function is invoked. You set a breakpoint by right-clicking on the instruction where you want to

stop, and selecting Set Breakpoint. When you are done with the breakpoint, you can remove it by
selecting Clear Breakpoint instead.

If you want to stop your program while it is running, go to the Simulator menu and click Pause. This
command stops your program, let you look around, and continue execution if you want. If you do not
want to continue running, click Stop instead.

When QtSpim stops, either because of an error in your program, a breakpoint, after clicking Pause, or
after single stepping, you can continue the program running by clicking on Run/Continue (or you can
continue single stepping by clicking Single Step). If you click Stop, instead of Pause, then clicking
Run/Continue will restart your program from the beginning, instead of continuing from where it
stopped. (This is roughly the same way that a music player operates; you can pause and restart a song,
but if you stop the music, you need to start playing at the beginning.)

3.3.Display Options

The three other menus -- Registers, Text Segment, and Data Segment -- control QtSpim's displays. For
example, the Register menu controls the way QtSpim displays the contents of registers, either in binary,
base 8 (octal), base 10 (decimal), or base 16 (hexadecimal). It is often quite convenient to flip between
these representations to understand your data.

L OtSpim L OtSpim

File Simulator Registers Text Segment Data Segrment W File Simulator Registers = Text Segment Data Segment Window Help

r= = | Binary Poom o m = | & Hd 3 =iy E: ©
~ Hex ~ Kernel Text
FP Regs Data Te FP Regs Int Rea Text
Decimal = <
FP Regs —ee | Diata FP Regs ~ Comments
FIR * || User data segment [Instruction Value E0Ecee6f 6f687

T73555c3a 5c737
74614470 &f4cs

[10000000] .. [1003EE

[TEEEEdc0]

[TEEE££dd0] e6eef736f €9575

User Stack [TEEEff96 [TEEE££de0] 3243373 T46cE

[TEEEfo6c] Q0000 [TEEEEAEO] 5c317073 65646

Single Precision [TEEEEST0O] Qooao sion [TEEE£fe00] 6269775c &€cel3

FGO = C [FTEEEES20] TEEEE v [TEfffel0] 6f646269 4e5£7
Register Menu Text Segment Menu

These menus also let you turn off the display of various parts of the machine, which can help reduce
clutter on the screen and let you concentrate on the parts of the program or data that really matter.

3.4.Changing Registers and Memory

You can change the contents of either a register or memory location by right-clicking on it and selecting
Change Register Contents or Change Memory Contents, respectively.

.

RO (x0] =0 00400020] 0000000
Rl [at] = 0 . 201 ©
R2 [vPL— o

R3 [V Copy Ctrl+C

R4 [al Q000ldez2l
RE [a] Select All Ctrl+A 3c018000
RE [a]

R7 [a Binary 2c220200
RE [t Decimal 3c018000
RS [t]

R1D [t ¥ | Hex ac240204
R11 [ty . 401a6800
R12 :t- Change Register Contents 00122082

R13 [t5] = 0 [8000019c] 3084001f

4. EXPERIMENTAL WORK
Part 1: Run the below code and observe the results

Following program multiplies two unsigned integers in the registers R8 by R9 and writes the
32-bit product to register R10. In order to understand the operation of your simulator program,
type and execute the following MIPS assembly program in non-pseudo-instruction mode.

.data 9x10000000
.text 90x00400000
main:
addi $8,%0,6
addi $9,%0,12
add $2,%0,$8
add $10,%0, %0
multiplication of $8 * $9 -> %10
mulloop:
beq $2,%$0,mulexit # if zero exit
addi $2,%2,-1
add $10,%10,%9
j mulloop

mulexit:
multiplication loop is over,
is the result in $10 correct?

sl1l $0,%0,0
syscall

e First set the PC (prog.counter) to the starting address of the program if SPIM is set
correctly the starting address is 0x00400000. To set the value use the key-sequence alt-
s,v (or menu simulator>set value) to open the register-value assignment dialog box.
Enter PC and the starting address in hexadecimal format.

e Next, use the Fn10 key to execute one instruction at each key-press. You can also use the
Fn5 key to execute the complete program at once. Correct the starting address to
0x00400000 before clicking the OK button.

LAB TASK

Write a MIPS program that finds the summation of odd numbers between 11 and 37
(both included)

Store start value 11 in register t4, end value 37 in register t5 and the result value in register
t6.

