MENG233 – Rigid Body Dynamics							
Eastern Mediterranean University Faculty of Engineering							
Department:							
Mechanical Engineering							
Mechanical Engineering		Program (Code: 23				
Course Code:	Course Title:	Trogram	Credits:	Vear/Semester:			
MENG233	Rigid body dynar	nics	4 Cr	2017-2018 Fall			
Area Core Area Elective Service Course University Elective Compulsory (offered by other academic units)							
Prerequisite(s): MENG231 or C	IVL211						
Catalog Description: The course covers: Kinematics and Kinetics of Particles and Rigid Bodies. Energy Methods. Impulse and Momentum. Un-Damped Vibration of Single and Two-Degree of Freedom Systems.							
Instructor Name: Assoc. Prof. Dr. Qasim Zeeshan	Office no: ME141		Office Tel: 0392 630 1361				
Course Web Page: <u>http://me.emu.edu.tr/zeeshan/meng233.htm</u>							
 Textbook(s): R. C. Hibbeler, Engineering Mechanics – Dynamics, 10th. Edition. Ferdinand P. Beer E. Russel Johnston, Jr. and Phillip J. Cornwell, Vector Mechanics for Engineers - Dynamics, 9th. Edition in SI units, Mc Graw Hill. 							
Indicative Basic Reading List :							
Topics Covered and Class Schedule: (4 hours of lectures, 1 hour of tutorial and 1 hour of lab work per week) Weeks 1-4 Kinematics of particles							
Week 5 Kinetics of particles (Force and Acceleration)							
Week 6 Kinetics of particles (Work and Energy)							
Weeks 7 Kinetics of particles (Impulse and Momentum)							
Weeks 8-9 Midterm Examination							
Week 10 Plane Kinematics of Rigid Bodies							
Week 11 Plane Kinetics of Rigid Bodies (Force and Acceleration)							
Week 12 Plane Kinetics of Rigid Bodies (Work and Energy)							
Week 13 Plane Kinetics of Rigid Bodies (Impulse and Momentum)							
Week 14 Vibrations							
Week 15 Final Examinatio	n						

Lecture and Tutorial Learning Outcome	Student Outcomes	Performed Assessments and Percentage
 Understand the principles of Newton's laws and their application to the real life physical problems that require knowledge of the relationship between force and motion. Ability to draw free body diagrams Understand and use the vector concepts to describe the motion of particles and rigid bodies Understand the concepts of kinetic, potential and mechanical energies. Understand the concepts of work, energy, power and mechanical efficiency Develop the analytical skills needed to systematically formulate, solve, and analyze a wide range of dynamics problems. Develop equations of motion for simple systems of particles and rigid bodies Model dynamics problems consisting of mechanical systems composed of rigid components. 	a, h, e	HWs: 5% Essay: 5% Project: 5% Quizzes: 5% Midterm Exam: 30% Final Examination: 45%

Lab. Experiment Title and Lab. Equipment Used		Lab Learning Outcome	Student Outcomes	Performed Assessments and Percentage	
•	Conservation of Momentum		b		
•	Measurement of Static and Kinetic Coefficients of Friction			Lab Works %5	

Student Outcomes

\square	a)	Ability to apply mathematics, science and engineering principles.
\boxtimes	b)	Ability to design and conduct experiments, analyze and interpret data.
	c)	Ability to design a system, component, or process to meet desired needs.
	d)	Ability to function on multidisciplinary teams.
\boxtimes	e)	Ability to identify, formulate and solve engineering problems.
	f)	Understanding of professional and ethical responsibility.
	g)	Ability to communicate effectively.
\square	h)	The broad education necessary to understand the impact of engineering solutions in a global and
		societal context.
	i)	Recognition of the need for and an ability to engage in life-long learning.
	j)	Knowledge of contemporary issues.
	k)	Ability to use the techniques, skills and modern engineering tools necessary for engineering practice.

Contribution of Course to Criterion 5

Credit Hours for:

Mathematics & Basic Science : 0

Engineering Sciences and Design : 4 General Education : 0

Important Notes:

University rules and regulations are applied to this course.