IZATION

MENG515 – MULTIDISCIPLINARY DESIGN OPTIMIZATION						
Department: Mechanical E	ngineering					
Program Name: Mechanical Engineering			Program Code: 23			
Course Numb MENG515	ber:	Credits: 3 (3,0)			Year/Semester: 2018-2019 Fall	
Required	Course 🛛 Ele	ective Course	Service	Course		
Prerequisite (s N/A	s):					
between the di Mechatronics, The topics cov Optimization,	ifferent disciplines. Energy, Electrical, vered include: Introo KKT Conditions, C Iybrid Optimization	It has application Electronics, Aero duction to Optimi Genetic Algorithm	n potential i ospace, Ma ization, Des n, Particle S	n all fields of e nufacturing an sign Architectu Swarm Optimiz	system accounting for the interaction engineering especially, Mechanical, d Industrial Engineering. arres, Unconstrained & Constrained exation, Simulated Annealing, Multi- Meta-Modeling, FMEA, VMEA, Po	
Course Web I https://staff.en	Page: nu.edu.tr/qasimzees	han/en/teaching/1	meng-515			
Textbook(s): Course notes/ _I	presentations are av	ailableon the web	osite			
	sic Reading List : Optimization Theory	and Practice by	Singiresu S	S. Rao, JOHN V	WILEY & SONS, INC., 2009	
	ed and Class Sche ctures per week)	dule:				
Week 1 Weeks 2-3 Weeks 4-5	Classical Optim	ry Design Optimi nization Methods tic Optimization I				

- Week 6 Structural Optimization
- Aerodynamic Shape Optimization Week 7
- Weeks 8-9 **Mid-Term Examination**
- Multidisciplinary Design Optimization Architectures Week 10
- Multidisciplinary Design Aspects Of Complex Systems Week 11
- Multi-Objective, Hybrid & Hyper-Heuristic Optimization Week 12
- Week 13 Robust Design
- Week 14 Post Optimality Analysis
- Week 15: **Final Examination & Project Presentation**

Term Assignment:

Each student is expected to choose a term project and produce a paper at the end of the semester. Students are also required to make presentations during the semester. Completion of the term assignment is a requirement to pass the course.

Course Learning Outcomes: Upon successful completion of the course, the student will demonstrate competency by being able to:

- 1. Learn how MDO can support the product design process of complex, multidisciplinary engineering systems
- 2. Learn how to rationalize and quantify a system architecture or product design problem by selecting appropriate objective functions, design parameters and constraints
- 3. Subdivide a complex system into smaller disciplinary models, manage their interfaces and reintegrate them into an overall system model
- 4. Gain an understanding of the principles and developments in Optimization
- 5. Learn practical methods for solving Optimization problems
- 6. Learn to implement Optimization Algorithms to practical design problems
- 7. Perform a critical evaluation and interpretation of analysis and optimization results, including sensitivity analysis and exploration of performance and cost.
- 8. Be familiar with the basic concepts of multi-objective optimization, including the conditions for optimality and Pareto front computation techniques
- 9. Practice oral and written communication skills in a team environment.

Assessment	Method		Percentage
	Midterm Exam(s)	1	20 %
	Assignment	1	20 %
	Design Project report and Presentation **	1	20 %
	Final Examination	1	40 %
Contribution (of Course to Criterion 5		
Credit Hours for:			
Mathematics & Basic Science : 0			
Engineering Sciences and Design : 3			

Relationship of Course to Program Outcomes

The course has been designed to contribute to the following program outcomes:

- a. an ability to apply knowledge of mathematics, science, and engineering.
- c. design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability
- d. an ability to function on multi-disciplinary teams
- e. an ability to identify, formulate, and solve engineering problems.
- f. an understanding of professional and ethical responsibility.
- g. an ability to communicate effectively.
- i. a recognition of the need for, and an ability to engage in life-long learning.
- k. use the techniques, skills, and modern engineering drawing and Design tools necessary for engineering practice

Prepared by: Associate Prof. Dr. Qasim Zeeshan	Date Prepared: September 2019
--	-------------------------------

Important Notes:

General Education : 0

University rules and regulations are applied to this course. **For details, please see** <u>http://mevzuat.emu.edu.tr</u>

* Submission of the project report on the designated topic in the format of a paper.

** Short presention on the selected topic (30 mins)

Late Submissions of the Assignments and Project will be graded as zero.

There is no make-up or resit for the Mid term or Final.

NG Policy: Students who do not attend any of the above assessment activities (such as mid-term exam, project report, presentation etc.) will be given **NG (Nil Grade).**