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What If There Are More Than
Two Factor Levels?

« The t-test does not directly apply

« There are lots of practical situations where there are
either more than two levels of interest, or there are
several factors of simultaneous interest

« The analysis of variance (ANOVA) is the appropriate
analysis “engine” for these types of experiments

« The ANOVA was developed by Fisher in the early
1920s, and initially applied to agricultural experiments

« Used extensively today for industrial experiments
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An Example (See pg. 66)

* An engineer is interested in investigating the relationship
between the RF power setting and the etch rate for this tool. The
objective of an experiment like this is to model the relationship
between etch rate and RF power, and to specify the power
setting that will give a desired target etch rate.

« The response variable is etch rate.

« She is interested in a particular gas (C2F6) and gap (0.80 cm),
and wants to test four levels of RF power: 160W, 180W, 200W,
and 220W. She decided to test five wafers at each level of RF
power.

« The experimenter chooses 4 levels of RF power 160W, 180W,
200W, and 220W

 The experiment is replicated 5 times — runs made in random
order
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An Example (See pg. 66)

m TABLE 3.1
Etch Rate Data (in A/min) from the Plasma Etching Experiment

Observations
Power
(W) 1 2 3 4 5 Totals Averages
160 575 542 530 539 370 2756 551.2
180 565 593 590 579 610 2037 5874
200 600 651 610 637 629 3127 625.4
220 725 700 715 683 710 3535 707.0
750 750
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m FIGURE 3.2 Box plots and scatter diagram of the etch rate data
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* Does changing the power change the
mean etch rate?

* Is there an optimum level for power?

* We would like to have an objective
way to answer these questions

* The t-test really doesn’t apply here —
more than two factor levels
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The Analysis of Variance (Sec. 3.2, pg. 68)

m TABLE 3.2
Typical Data for a Single-Factor Experiment

Treatment
(Level) Observations Totals Averages

Y ¥Yi2 . Yin ¥y, ¥i.

2 Yo Yoo - Vo, Vi V2.

* In general, there will be a levels of the factor, or a treatments,
and n replicates of the experiment, run in random order...a
completely randomized design (CRD)

« N = an total runs

« \We consider the fixed effects case...the random effects case
will be discussed later

« Objective is to test hypotheses about the equality of the a
treatment means
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The Analysis of Variance

* The name “analysis of variance” stems from a
partitioning of the total variability in the
response variable into components that are
consistent with a model for the experiment

* The basic single-factor ANOVA model is

1=12,..4a
=T &L
ylj ,Ll [ 1] J :1’2’“.’n

w1 = an overall mean, 7, =Iith treatment effect,

¢; = experimental error, NID(0,0°)
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Models for the Data

There are several ways to write a model
for the data:

y; = M+7; +&; Is called the effects model

Let 1. = u+7;, then
y;; = 4 +&; Is called the means model

Regression models can also be employed
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The Analysis of Variance
« Total variability iIs measured by the total

sum of squares:

SST = Zalzn:(yij - 7)2

i=1 j=1

« The basic ANOVA partitioning is:

Zalzn:(Yij — 7)2 = Za‘,zn:[(y — V..)+(yij - Vi.)]2

i=1 j=1 i=1 j=1

— nza:(yl - 7)2 "'Zalzn:(yij - Vi.)2

i=1 j=1

SS, =SS +SS,

Treatments
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The Analysis of Variance

SS, =SS

Treatments SS E

» A large value of SS+,..iments Feflects large differences in
treatment means

* A small value of SS+,..iments lIkely indicates no
differences in treatment means

* Formal statistical hypotheses are:

Ho oy =1, == 4,
H, : At least one mean is different
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331 Decomposition of the Total Sum of Squares

The name analysis of variance is derived from a partitioning of total variability into its com-
ponent parts. The total corrected sum of squares

a r
T 2; 2} ()'ij = .}:..)2
= P

is used as a measure of overall variability in the data. Intuitively, this is reasonable because if
we were to divide SS; by the appropriate number of degrees of freedom (in this case,an — 1 =
N — 1), we would have the sample variance of the y’s. The sample variance is, of course, a
standard measure of variability.

Note that the total corrected sum of squares SS; may be written as

a

2 E (¥ —F) =3 T 5 — 53+ (yy — YOF (3.5)

i=1 j=1 i=1 j=1

or

However, the cross-product term in this last equation is zero, because

1
2 (}’ij — ¥) =5 — AV, =y — alyiin) =0

j=1

Therefore., we have

22— —a B e P+ L I 5P 3.6)
i=1 j=1 i= i=1 j=
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The Analysis of Variance

While sums of squares cannot be directly compared
to test the hypothesis of equal means, mean
squares can be compared.

A mean square Is a sum of squares divided by its
degrees of freedom:

dfTotaI = d-I:Treatments + derror
MSTreatmentS — SSTreatments ’ MSE _ SSE
a-1 a(n—1)

If the treatment means are equal, the treatment and
error mean squares will be (theoretically) equal.

If treatment means differ, the treatment mean square

will be larger than the error mean square.
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The Analysis of Variance Is
Summarized in a Table

m TABLE 3.3
The Analysis of Variance Table for the Single-Factor, Fixed Effects Model

Sum of Degrees of Mean
Source of Variation Squares Freedom Square Fy

‘S‘STrentment::

S , M STeatments
Between treatments = n 2 (v, — v a—1 "W‘STre;ument:; FD = M

i=1 J“V.II-SE
Error (within treatments) S8 = 557 — SS7reatments N-—a MSg

[ n -
Total SSy=2 2 —¥.) N—1

i=1 j=1

« Computing...see text, pp 69
« Thereference distribution for Fyis the F,; ;.4 distribution
* Reject the null hypothesis (equal treatment means) if
|:0 > I:oc,a—l,a(n—l)
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ANOVA Table
Example 3-1

4 3 1’2 SSE = SST - SSTreatnwnts
SSr = - -
T El 2] Yi TN = 72,209.75 — 66,870.55 = 5339.20
=1 j=
12,355) Isually culati :
— (575 + (5422 + -+ + (T10)} — ( ) Usually, t.he:se: calculations would .be performec.l on a
20 computer, using a software package with the capability to
= TZZE@.? ) analyze data from designed experiments.
S ratments = 1 z v — i The ANOVA is summarized in Table 3.4. Note that the
St N RF power or between-treatment mean square (22,290.18) is
_ 1 2756) + -+ + (3535)2 (12,355)° many times larger than the within-treatment or error mean
-5 (2756 (3535)] 20 square (333.70). This indicates that it is unlikely that the
= 66.870.55 treatment means are equal. More formally, we can compute

m TABLE 3.4
ANOVA for the Plasma Etching Experiment

Sum of Degrees of Mean
Source of Variation Squares Freedom Square Fy P-Value
RF Power 66,870.55 3 22,200.18 F, = 66.80 <0.01
Error 5339.20 16 333.70
Total 72.209.75 19
-]
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Model Adequacy Checking in the ANOVA
Text reference, Section 3.4, pg. 80

* Checking assumptions is important
* Normality

« Constant variance

* Independence

« Have we fit the right model?

« Later we will talk about what to do If
some of these assumptions are
violated
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Model Adequacy Checking in the ANOVA

Examination of
residuals (see text, Sec.

3'4, . 80 .{Elllﬁu)zlfl “3]:
pg ) :Ilut u; Ir:*si(l u(;lllslfc;r
A Example 3.1 99 |-
€ =VYi Vi
— yij —Yi

Normal % probability

Computer software
generates the residuals

Residual plots are very

useful
Normal prObab|||ty plot -2|5.4 —12|.65 0_.|1 12.|85 25|.8
of residuals
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4-1 Model Adequacy Checking 97

Table 4-1 Data and Residuals from Example 3-1+

Observations (j)
Percentage of

Cotton 1 2 3 4 5 Yy =Y.
[c28] L-2s 50 [ 12 [ —os

15 7 (15) 7 gy s @9 (1 a2 9 (L) 9.8
’ | =g [ 16 [-3.4 2.6 | 2.6

20 12 W 117 au |12 m fwoan 1y 15.4
[=36] Lou [ 04 Y [ 14

25 v ETSRETEVIE BT RRNCTONE ST RENFIIN B CRENCY 17.6
EYET [ 04 | =2 b g

30 19 @2 125 6 |22 @ |19 @4 [23 1o | 216
t i [ o8 [ o2 [42 ] Lo

35 7 Q7 J10 @y |11 @ |15 (o [11o@y) | 108

4 The residuals are shown in the box in each cell. The numbers in parentheses indicate the vrder o1 data collecuon.

bution. Since the F test is only slightly affected, we say that the analysis of
variance (and related procedures such as mulliple comparisons) is robust to the
normality assumption. Departures from normality usually cause both the true
significance level and the power to differ slightly from the advertised values, with
the power generally being lower. The random effects model is more severely
impacted by nonnormality. In particular, the true confidence levels on interval
estimates of variance components may differ greatly from the advertised values.

Tabie 4-2 Ordered Residuals and Probability Points for the Tensile Strength Data

Order Residual Po= Order Residual Po=
k e (k — 425 k e, k = hr2s
1 ~3.8 .0200 14 0.4 .5400
2 -3.6 .0600 15 0.4 5800
3 -3.4 L1000 16 1.2 .6200
4 -3.4 .1400 17 1.4 .6LO0
5 =28 L1800 18 1.4 .7000
6 —-2.8 .2200 19 1.4 7400
7 -2.8 2000 20 1.6 .7800
8 ~2.6 .3000 21 2.6 8200
9 -0.8 .3400 22 2.6 .8600
10 -0.8 3800 23 3.4 L9000
11 0.2 .4200 24 4.2 L9400
12 0.2 4600 25 552 .9800
13 0.4 L5000
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Figure 4-1. Normal probability ptot and dot diagram of residuals for Example 3-1.

A very common defect that often shows up on normal probability plots is
one residual that is very much larger than any of the others. Such a residual is
often called an outlier. The presence of one or more outliers can seriously distort
the analysis of variance, so when a potential outlier is located, careful investi-
gation is called for. Frequently, the cause of the outlier is a mistake in calculations
or a data coding or copying error. If this is not the cause, then the experimental
circumstances surrounding this run must be carefully studied. If the outlying
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Other Important Residual Plots
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m FIGURE 3.5 Plot of residuals versus
run order or time
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Post-ANOVA Comparison of Means

The analysis of variance tests the hypothesis of equal
treatment means

Assume that residual analysis is satisfactory

If that hypothesis is rejected, we don’t know which
specific means are different

Determining which specific means differ following an
ANOVA is called the multiple comparisons problem

There are lots of ways to do this...see text, Section 3.5,

pPg. 89
We will use pairwise t-tests on means...sometimes

called Fisher’s Least Significant Difference (or Fisher's
LSD) Method and Tukey Method

Chapter 3 Design & Analysis of Experiments 20
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Tukey’s Test. Suppose that, following an ANOVA in which we have rejected the null
hypothesis of equal treatment means, we wish to test all pairwise mean comparisons:

Hy:pi = py
Hyp #

for all i # j. Tukey (1953) proposed a procedure for testing hypotheses for which the over-
all significance level is exactly @ when the sample sizes are equal and at most @ when the
sample sizes are unequal. His procedure can also be used to construct confidence intervals on
the differences in all pairs of means. For these intervals, the simultaneous confidence level is
100(1 — a) percent when the sample sizes are equal and at least 100(1 — a) percent when
sample sizes are unequal. In other words, the Tukey procedure controls the experimentwise
or “family” error rate at the selected level a. This is an excellent data snooping procedure
when interest focuses on pairs of means.
Tukey’s procedure makes use of the distribution of the studentized range statistic

o ;mux - ymin

- VMSgn

where y,.,, and y,;, are the largest and smallest sample means, respectively, out of a group of
p sample means. Appendix Table VII contains values of g,(p, f), the upper a percentage
points of g, where f is the number of degrees of freedom associated with the MS;. For equal
sample sizes, Tukey’s test declares two means significantly different if the absolute value of
their sample differences exceeds
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/Ms
= gola.f) L (3.35)

Equivalently, we could construct a set of 100(1 — «) percent confidence intervals for all pairs
of means as follows:

X 5-1 = g la. 1) i — M

L /Ms o
=3 — 5 ¥ gla) E i+ (3.36)

When sample sizes are not equal, Equations 3.35 and 3.36 become

T, = q"(a f ) \/MSE(,1 n) (3.37)

=Y, — 3T %j—izﬁ \/MSE(% + %)J #* J (3.38)

respectively. The unequal sample size version is sometimes called the Tukey—Kramer
procedure.
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Tukey’s Test. Suppose that, following an ANOVA in which we have rejected the null
hypothesis of equal treatment means, we wish to test all pairwise mean comparisons:

Ho:pi = 1y
Hy:p #

forall i # j. Tukey (1953) proposed a procedure for testing hypotheses for which the over-
all significance level is exactly @ when the sample sizes are equal and at most a when the
sample sizes are unequal. His procedure can also be used to construct confidence intervals on
the differences in all pairs of means. For these intervals, the simultaneous confidence level is
100(1 — ) percent when the sample sizes are equal and at least 100(1 — a) percent when
sample sizes are unequal. In other words, the Tukey procedure controls the experimentwise
or “family” error rate at the selected level @. This is an excellent data snooping procedure
when interest focuses on pairs of means.
Tukey’s procedure makes use of the distribution of the studentized range statistic
o ;mux - j;min

B VMSgn

where y,.,, and y,, are the largest and smallest sample means, respectively, out of a group of
p sample means. Appendix Table VII contains values of g, (p, f), the upper a percentage
points of g, where f is the number of degrees of freedom associated with the MSg. For equal
sample sizes, Tukey’s test declares two means significantly different if the absolute value of
their sample differences exceeds
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IMS
To = qufa.f) | —= (3.35)

Equivalently, we could construct a set of 100(1 — «) percent confidence intervals for all pairs
of means as follows:

o = - [msg
=% — %+t @@ J 5> &+ (3.36)

When sample sizes are not equal, Equations 3.35 and 3.36 become

_ 4u(a. f) 1 1
and

= = P qa(asf) - 1 1
Yi. = Y 7 \/;I‘SE()T; i }r_j = =

S, —F, %f—) \/MSE(% 4 ;]Tj) i %)  (3.38)

respectively. The unequal sample size version is sometimes called the Tukey—Kramer
procedure.
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exavpLE 3.7 [

To illusire Tukey’s tésl, we use the dala from the plasma  aad thé dilfe@nees in avérages are
clehing experiment in Example 3.1. With & = 005 and =

S = = ¥
16 degrees of freedom for crror, Appendix Table VII gives Y~ ¥ = 5512 — 5874 = —36.20
Qi 16) = 4.05. Thercfore, from Equation 3.35, ¥ — ¥y, = 3512 — 6254 = ~74.20*
Y — ¥y = 5512 = 707.0 = —155.8%
(M5 f333.70 A
Toos = qoostd, 16) [— = 4.0 e = B ¥ — ¥, = 5874 — 6254 = ~38.0%
}'—‘3‘ oy 5’4, =35874 - 7070 = -1 lg.ﬁ*
Thus, any pairs of treatment averages that differ in absolute Yo — o = 6254 — T07.0 = —81.60%

value by more than 33.09 would imply that the correspon-
ding pair of population means are sipnificandy differcnt.  The starmed values indicate the pirs of means thal are sig-

The four treatment averages ane nificantly different, Note that the Tukey procedure indicaces
_ [} that all paars of means differ. Therefore. cach power setting
Y. =312 y, =5874 results in a mean ctch rate that differs from the méan élch
¥, = 6254 3, = 7070 race at any other power setting,

When using any procedure for pairwise testing of means, we oceasionally find that the
overall F test from the ANOVA 15 significant, but the pairwise comparison of means fails to
reveal any significant differences, This situation occurs becavse the F test is simultancously
considering 4ll possible contrasts mvolving the tweatment means, not just pairwise compar-
isons. That is, in the data a1 hand, the significant contrasts may 1ot be of the form g, — p.
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The denvation of the Tukey confidence interval of Equation 3.36 for equal samnple sizes
is straighiforward. For the studentized range statistic g, we have

P(maX(i-. — Mg} —min(y — u)

\/M Eq“(a.f)) =1 -«

W max( ¥, — M;3 — min{ y. — ) is loss than or cqual to g {a, f )V MSZn, it must be true that
(¥, — ) — (7 — p)| = g.fa. fYV MS/n for every pair of means. Therefore

2%
MS, _ o ’M.S'
P(_qo(a’f}J nr <= LT y). = (Ju‘f = .u'j) = fg’u(“sf)\/ nf) - 1 Lo bY 1 2

Rearranging this expression to isolate g; — u, between the incqualities will lead to the set of
100(] — ) percent simultaneous confidence intervals given in Equation 3.38.

The Fisher Least Significant Difference (LSD) Method. The Fisher method for
comparing all pairs of mmeans controls the eror rate o for each individual pairwisc compan-
som but docs not control the experimentwisc or family creor rate. This procedure uses the r sta-
tistic for testing Hy: g = #;

- f 4 (3.39)
1 ’
y MS“(F- % 7'3)
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Assuming a two-sided alternative, the pair of means u, and g, would be declared significant-
ly different if |5, — ¥,| = tynn-o VMS(1/n; + 1/n)). The quantity

1.SD = 1,500 \/ M'sf(,lzi + ni)) (3.40)

is called the lcast significant diffcrence. If the design is balanced, ny, = n, =+« -=a, =n,
and
{2MS
SD = gy \/TE (341)

To use the Fisher LLSD procedure, we simply compare the observed difference between
each pair of averages to the corresponding LSD. It |5, — %;,| = LSD, we conclude that the
population means u&; and u; differ. The 7 statistic in Equation 3.39 could also be used.

exampLE 3.3

To illustratc the procedure, if we vse the data from the Y. — ¥ = 551.2 — 6254 = —74.2%
experiment in Example 3.1, the LSD at &« = 0.05 is

Y. — ¥, = 551.2 — 707.0 = —155.8°

LSD = 45016 /2“:& = 2.120 /w = 24.49 V). — 5, = 587.4 ~ 6254 = —38.0*

Vo = Fo = 5874 — 707.0 = —119.6*

Thus, any pair of treatment averages that differ in absolute

valuc by more than 24.49 would imply that the correspon- Vi — ¥ =0254 — 7070 = —81.6™
ding pair of population mwans are significantly different. £t : o
The differences in averages are The starred values indicate pairs of mcans that arc signifi-
cantly differcnt. Clearly, all pairs of mcans differ signifi-
Y. — ¥i. = 551.2 — 5874 = —36.2* cantly.
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