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Input Modeling

Inputdata provide the driving force for a simulation model. In the simulation of
a queueing system, typical input data are the distributions of time between ar-
rivals and service times. For an inventory system simulation, input data include
the distributions of demand and lead time. For the simulation of a reliability
System, the distribution of time-to-failure of a component is an example of
input data. -

In the examples and exercises in Chapters 2 and 3, the appropriate distri-
butions were specified for you. In real-world simulation applications, however,
determining appropriate distributions for input data is a major task from the
standpoint of time and resource requirements. Regardless of the sophistication
of the analyst, faulty models of the inputs will lead to outputs whose interpre-
tation may give rise to misleading recommendations.

There are four steps in the development of a useful model of input data:

1. Collect data from the real system of interest. This often requires a substan-
tial time and resource commitment. Unfortunately, in some situationsit is
not possible to collect data (for example, when time is extremely limited,
when the input process does not yet exist, or when laws or rules prohibit
the collection of data). When data are not available, expert opinion and
knowledge of the process must be used to make educated guesses.

2. Identify a probability distribution to represent the input process. When
data are available, this step typically begins by developing a frequency
distribution, or histogram; of the data. Based on the frequency distri-
bution and structural knowledge of the process, a family of distributions
is chosen. Fortunately, as described in Chapter 5, several well-known
distributions often provide good approximations in practice.
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3. Choose parameters that determine a specific instance of the distribution
family. When data are available, these parameters may be estimated from
the data. :

4. Evaluate the chosen distribution and the associated parameters for good-
ness-of-fit. Goodness-of-fit may be evaluated informally via graphical
methods, or formally via statistical tests. The chi-square and the Kolmo-
gorov-Smirnov tests are standard goodness-of-fit tests. If not satisfied
that the chosen distribution is a good approximation of the data, then the
analyst returns to the second step, chooses a different family of distribu-
tions, and repeats the procedure. If several iterations of this procedure
fail to yield a fit between an assumed distributional form and the collected
data, the empirical form of the distribution may be used as described in
Section 8.1.5 of the previous chapter.

Each of these steps is discussed in this chapter. Although software is now widely
available to accomplish steps 2, 3 and 4 — including standalone programs such
as ExpertFit®and Stat:Fit™, and integrated programs such as Arena’s Input
Processor and @Risk’s BestFit — it is still important to understand what the
software does so that it can be used appropriately. Unfortunately, software is
not as readily available for input modeling when there is a relationship between
two or more variables of interest, or when no data are available. These two
topics are discussed toward the end of the chapter. |

9.1 Data Collection

Problems are found at the end of each chapter, as exercises for the reader,
in mathematics, physics, chemistry, and other technical subject texts. Years
and years of working these problems may give the reader the impression that
data are readily available. Nothing could be further from the truth. Data
collection is one of the biggest tasks in solving a real problem. It is one of the
most important and difficult problems in simulation. And even when data are
available, they have rarely been recorded in a form that is directly useful for
simulation input modeling. '

“GIGO,” or “garbage-in, garbage-out,” is a basic concept in computer
science and it applies equally in the area of discrete system simulation. Many
are fooled by a pile of computer output or a sophisticated animation, as if these
were the absolute truth. Even if the model structure is valid, if the input data
are inaccurately collected, inappropriately analyzed, or not representative of
the environment, the simulation output data will be misleading and possibly
damaging or costly when used for policy or decision making,

EXAMPLE 9.1 (The Laundromat)

As budding simulation students, the first two authors had assignments to sim-
ulate the operation of an ongoing system. One of these systems, which seemed
to be a rather simple operation, was a self-service laundromat with 10 washing
machines and six dryers.
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period). Additionally, the distribution of time between arrivals during one
week may not have been followed during the next week. Asa compromise,

perspectives. The proportion of customers demanding the various service com-

desiring one washer followed by one dryer. However, a customer might choose
two washing machines followed by one dryer, one dryer only, and so on. Since
the customers used numbered machines, it was possible to follow them us-
ing that reference, rather than remembering them by personal characteristics.
Because of the dependence between washer demand and dryer demand for
an individual customer, it would have been inappropriate to treat the service
times for washers and dryers separately as independent variables,

Some customers waited patiently for their clothes to complete the washing
or drying cycle, and then they removed their clothes promptly. Others left the
premises and returned after theijr clothes had finished their cycle on the machine
being used. In a very busy period, the manager would remove a customer’s
clothes after the cycle and set them aside in a basket. It was decided that
service termination would be measured as the point in time when the machine
was emptied of its contents,

Also, machines would break down from time to time. The length of
the breakdown varied from a few moments, when the manager repaired the
machine, to several days (a breakdown on Friday night, requiring a part not
in the laundromat storeroom, would not be fixed until the following Monday).
The short-term repair times were recorded by the student team. The long-term
repair completion times were estimated by the manager. Breakdowns then
became part of the simulation. <

Many lessons can be learned from an actual experience in data collection.
The first five exercises at the end of this chapter suggest some situationsin which
the student can gain such experience.

The following suggestions may enhance and facilitate data collection, al-
though they are not all-inclusive.

L. A useful expenditure of time js in planning. This could begin by a practice
or preobserving session. Try to collect data while preobserving. Devise
forms for this purpose. It is very likely that these forms will have to be
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modified several times before the actual data collection begins. Watch
for unusual circumstances and consider how they will be handled. When
possible, videotape the system and extract the data later by viewing the
tape. Planning is important even if data will be collected automatically
(e.g., via computer data collection) to insure that the appropriate data are
available. When data have already been collected by someone else, be
sure to allow plenty of time for converting the data into a usable format.

Try to analyze the data as they are being collected. Determine if the data
being collected are adequate to provide the distributions needed as input
to the simulation. Determine if any data being collected are useless to
the simulation. There is no need to collect superfluous data.

Try to combine homogeneous data sets. Check data for homogeneity in
successive time periods and during the same time period on successive
days. For example, check for homogeneity of data from 2:00 em. to 3:00
PM. and 3:00 pM. to 4:00 M., and check to see if the data are homogeneous
for 2:00 pm. to 3:00 M. on Thursday and Friday. When checking for
homogeneity, an initial test is to see if the means of the distributions (the
average interarrival times, for example) are the same. The two-sample ¢
test can be used for this purpose. A more thorough analysis would require
a determination of the equivalence of the distributions using, perhaps, a
quantile-quantile plot (described later).

Be aware of the possibility of data censoring, in which a quan tity of interest
is not observed in its entirety. This problem most often occurs when the
analyst is interested in the time required to complete some process (for
example, produce a part, treat a patient, or have a component fail), but the
process begins prior to, or finishes after the completion of, the observation
period. Censoring can result in especially long process times being left
out of the data sample.

To determine whether there s a relationship between two variables, build
a scatter diagram. Sometimes an eyeball scan of the scatter diagram
will indicate if there is a relationship between two variables of interest.
Section 9.6 describes models for statistically dependent input data.

Consider the possibility that a sequence of observations which appear to
be independent may possess autocorrelation. Autocorrelation may exist
In successive time periods or for successive customers. For example, the
service time for the i th customer may be related to the service time for the
(i +n)th customer, A brief introduction to autocorrelation was provided
in Section 7.4.3, and some input models that account for autocorrelation
are presented in Section 9.6.

Keep in mind the difference between input data and output or perfor-
mance data, and be sure to collect input data. Input data typically rep-
resent the uncertain quantities that are largely beyond the control of the
system and will not be altered by changes made to improve the system.
Output data, on the other hand, represent the performance of the sys-
tem when subjected to the inputs, performance that we may be trying to
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improve. In a queueing simulation, the customer arrival times are usu-
ally inputs, while the customer delay is an output. Performance data are
useful for model validation, however (see Chapter 10).

Again, these are just a few suggestions. As a rule, data collection and analysis
must be approached with great care.

9.2 ldentifying the Distribution with Data

In this section we discuss methods for selecting families of input distributions
when data are available. The specific distribution within a family is specified
by estimating its parameters, as described in Section 9.3. Section 9.5 takes up
the case when no data are available.

9.2.1 Histograms

A frequency distribution or histogram is useful in identifying the shape of a
distribution. A histogram is constructed as follows:

1. Divide the range of the data into intervals (intervals are usually of equal
width; however, unequal widths may be used if the heights of the frequen-
cies are adjusted).

2. Label the horizontal axis to conform to the intervals selected.

3. Determine the frequency of occurrences within each interval.

4. Label the vertical axis so that the total occurrences can be plotted for
each interval.

S. Plot the frequencies on the vertical axis.

The number of class intervals depends on the number of observations and the
amount of scatter or dispersion in the data. Hines and Montgomery [1990]
state that choosing the number of class intervals approximately equal to the
square root of the sample size often works well in practice. If the intervals are
too wide, the histogram will be coarse, or blocky, and its shape and other details
will not show well. If the intervals are too narrow, the histogram will be ragged
and will not smooth the data. Examples of a ragged, coarse, and appropriate
histogram using the same data are shown in Figure 9.1. Modern data-analysis
software often allows the interval sizes to be changed easily and interactively
until a good choice is found.

The histogram for continuous data corresponds to the probability density
function of a theoretical distribution. If continuous, a line drawn through the
center point of each class interval frequency should result in a shape like that
of a pdf.

Histograms for discrete data, where there are a large number of data
points, should have a cell for each value in the range of the data. However,
if there are few data points, it may be necessary to combine adjacent cells to
eliminate the ragged appearance of the histogram. If the histogram is associated
with discrete data, it should look like a probability mass function.
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Figure 9.1. Ragged, coarse, and appropriate histograms:
(a) original data — too ragged; (b) combining adjacent cells
— t0o coarse; (c) combining adjacent cells — appropriate.
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ExampLE 9.2 (Discrete Data)

The number of vehicles arriving at the northwest corner of an intersection in a 5-
minute period between 7:00 AM. and 7:05 A.M. was monitored for five workdays
over a 20-week period. Table 9.1 shows the resulting data. The first entry in the
table indicates that there were 12 S-minute periods during which zero vehicles
arrived, 10 periods during which one vehicle arrived, and so on.

Since the number of automobiles is a discrete variable, and since there
are ample data, the histogram can have a cell for each possible value in the
range of the data. The resulting histogram is shown in Figure 9.2. <
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Table 9.1. Number of Arrivals in a 5-
Minute Period

Arrivals - Arrivals
per Period  Frequency per Period Frequency
0 12 6 7
1 10 7 5
2 19 8 5
3 17 9 3
4 10 10 3
5 8 11 1
4
20—
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Number of arrivals per period

Figure 9.2, Histogram of number of arrivals per period.

ExampLE 9.3 (Continuous Data)

Life tests were performed on a random sample of electronic chips at 1.5 times
the nominal voltage, and their lifetime (or time to failure) in days was recorded:

79919 3081 0.062 1961 5845
3.027 6505 0.021 0013 0123
6.769 59.899 1192 34760  5.009

18387  0.141 43.565 24420 0433

144695 2663 17.967 0.091  9.003
0941 0878 3371 2157 7579
0624 5380 3148 7.078 23.960
0590 1.928 0300 0002 0543
7004 31764 1.005 1.147 0219
3217 14382 1.008 2336 4562
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Lifetime, uSuaHy considered a continuous variéble,‘is recorded here to three-
decimal-place accuracy. The histogram is prepared by placing the data in class
intervals. The range of the data is rather large, from 0.002 day to 144.695 days.
However, most of the values (30 of 50) are in the zero-to-5-day range. Using

intervals of width three results in Table 9.2. The data of Table 9.2 are then used
to prepare the histogram shown in Figure 9.3. <

Table 9.2. Electronic Chip Data

Chip Life

(Days) Frequency

0=<x; <3 23

3<x <6 10

6<x <9 5

9<x <12 1
12<x <15 1
1I5<x; <18 2
18<x <21 0
21 <x; <24 1
24 <x; <27 1
27 <x; <30 0
30<x <33 1
3B<x <36 1
42 <x; <45 1
57 <x; <60 1
78 <x; <81 1
144 < x; < 147 1
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Figure 9.3. Histogram of chip life.

9.2.2 Selecting the Family of Distributions

In Chapter 5 some distributions that often arise in simulation were described.
Additionally, the shapes of these distributions were displayed. The purpose of
preparing a histogram is to infer a known pdf or pmf. A family of distributions
is selected on the basis of what might arise in the context being investigated
along with the shape of the histogram. Thus, if interarrival-time data have
been collected, and the histogram has a shape similar to the pdf in Figure 5.9,
the assumption of an exponential distribution would be warranted, Similarly,
if measurements of the weights of pallets of freight are being made, and the
histogram appears symmetric about the mean with a shape like that shown in
Figure 5.12, the assumption of a normal distribution would be warranted.

The exponential, normal, and Poisson distributions are frequently en-
countered and are not difficult to analyze from a computational standpoint.
Although more difficult to analyze, the gamma and Weibull distributions pro-
vide a wide array of shapes and should not be overlooked when modeling an
underlying probabilistic process. Perhaps an exponential distribution was as-
sumed, but it was found not to fit-the data. The next step would be to examine
where the lack of fit occurred. If the lack of fit was in one of the tails of the
distribution, perhaps a gamma or Weibull distribution would more adequately
fit the data.
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Literally hundreds of probability distributions have been created, many
with some specific physical process in mind. One aid to selecting distributions is
to use the physical basis of the distributions as a guide. Here are some examples:

Binomial Models the number of successes in 7 trials, when the trials are
independent with common success probability, p; for example, the number
of defective computer chips found in a lot of n chips.

Negative Binomial (includes the geometric distribution) Models the num-
ber of trials required to achieve % successes; for example, the number of
computer chips that we must inspect to find 4 defective chips.

Poisson Models the number of independent events that occur in a fixed
amount of time or space; for example, the number of customers that arrive
to a store during 1 hour, or the number of defects found in 30 square meters
of sheet metal.

Normal Models the distribution of a process that can be thought of as the
sum of a number of component processes; for example, the time to assemble
aproduct which is the sum of the times required for each assembly operation.
Notice that the normal distribution admits negative values, which may be
impossible for process times.

Lognoermal Models the distribution of a process that can be thought of as
the product of (meaning to multiply together) a number of component pro-
cesses; for example, the rate of return on an investment, when interest is
compounded, is the product of the returns for a number of periods.

Exponential Models the time between independent events, or a process time
which is memoryless (knowing how much time has passed gives no informa-
tion about how much additional time will pass before the process is com-
plete); for example, the times between the arrivals of a large number of
customers who act independently of each other. The €xponential is a highly
variable distribution and is sometimes overused because it often leads to
mathematically tractable models. Recall that, if the time between events
is exponentially distributed, then the number of events in a fixed period of

time is Poisson.

Gamma An extremely flexible distribution used to model nonnegative ran-
dom variables. The gamma can be shifted away from 0 by adding a constant.

Beta An extremely flexible distribution used to model bounded (fixed upper
and lower limits) random variables, The beta can be shifted away from 0 by
adding a constant and can have a larger range than [0, 1] by multiplying by
a constant.

Erlang Models processes that can be viewed as the sum of several exponen-
tially distributed processes; for example, a computer network fails when a
computer and two backup computers fail, and each has a time to failure that
is exponentially distributed. The Erlang is a special case of the gamma.

Weibull Models the time to failure for components; for example, the time to
failure for a disk drive. The exponential is a special case of the Weibull,

s R e e
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Discrete or Continuous Uniform Models complete uncertainty, since all out-
comes are equally likely. This distribution is often overused when there are
no data.

Triangular Models a process when only the minimum, most-likely, and maxi-
mum values of the distribution are known; for example, the minimum, most-
likely, and maximum time required to test a product.

Empirical Resamples from the actual data collected; often used when no
theoretical distribution seems appropriate.

Do not ignore physical characteristics of the process when selecting distribu-
tions. Is the process naturally discrete or continuous valued? Is it bounded or is
there no natural bound? This knowledge, which does not depend on data, can
help narrow the family of distributions from which to choose, And keep in mind
that there is no “true” distribution for any stochastic input process. An input
model is an approximation of reality, so the goal is to obtain an approximation
that yields useful results from the simulation experiment.

'The reader is encouraged to complete Exercises 6 through 11 to learn
more about the shapes of the distributions mentioned in this section. Examinin g
the variations in shape, as the parameters change will be very instructive.

9.2.3 Quantile-Quantile Plots

The construction of histograms, as discussed in Section 9.2.1, and the recog-
nition of a distributional shape, as discussed in Section 9.2.2, are necessary
ingredients for selecting a family of distributions to represent a sample of data.
However, a histogram is not as useful for evaluating the fir of the chosen dis-
tribution. When there are a small number of data points, say 30 or fewer, a
histogram can be rather ragged. Further, our perception of the fit depends on
the widths of the histogram intervals. But even if the intervals are well chosen,
grouping data into cells makes it difficult to compare a histogram to a continu-
ous probabiliy density function. A quantile-quantile (q-q) plot is a useful tool
for evaluating distribution fit that does not suffer from these problems.

If X is a random variable with cdf F . then the g-quantile of X is that
value y such that F(y) = P(X < ¥Y) =¢q,for 0 < g < 1. When F has an
inverse, we write y = F~1(g).

Now let {x;,i = 1,2, .. ., n} be a sample of data from X. Order the
observations from the smallest to the largest, and denote these as { Yi,j =
L2,...,n},where y; <y, < ... < Yn- Let j denote the ranking or order
number. Therefore, j = 1 for the smallest and J = n for the largest. The q-q
plot is based on the fact that yj is an estimate of the (j — 1/2)/n quantile of
X. In other words,

-

] 1
y; is approximately F~! ( !..____z_)
n
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Now suppose that we have chosen a distribution with cdf F asa possible
representation of the distribution of X. If F is a member of an appropriate
family of distributions, then a plotof y; versus F~1((j —1 /2)/n) will be approx-
imately a straight line. If F is from an appropriate family of distributions and
also has appropriate parameter values, then the line will have slope 1. On the
other hand, if the assumed distribution is inappropriate, the points will deviate
from a straight line, usually in a systematic manner. The decision of whether
or not to reject some hypothesized model is subjective.

EXAMPLE 9.4 (Normal Q-Q Plot)

Arobotis used toinstall the doors on automobiles along an assembly line. It was
thought that the installation times followed a normal distribution. The robot is
capable of accurately measuring installation times, A sample of 20 installation
times was automatically taken by the robot with the following results, where
the values are in seconds:

99.79 9956 100.17 100.33
10026 10041 9998 9983
100.23 10027 10002 100.47

99.55 9962 9965 99.82

99.96  99.90 10006 99.85

'The sample mean is 99.99 seconds, and the sample variance is (0.2832)? sec-
onds®. These values can serve as the parameter estimates for the mean and
variance of the normal distribution. The observations are now ordered from
smallest to largest as follows:

j  Value j  Value i Value J Value
1 99.55 6 9982 11 99.98 16 10026
2 9956 7 9983 12 100.02 17 10027
3 99.62 8 9985 13 100.06 18  100.33
4 9965 9 99.90 14  100.17 19 100.41
5 99.79 10 99.96 15 100.23 20 10047

'The ordered observations are then plotted versus F~1((j — 1 /2)/20), for j =
1,2,...,20, where F is the cdf of the normal distribution with mean 99.99
and variance (0.2832)2 to obtain a q-q plot. The plotted values are shown in
Figure 9.4, along with a histogram of the data that has the density function of
the normal distribution superimposed. Notice that it is difficult to tell if the data
are well represented by a normal distribution by looking at the histogram, but
the general perception of a straight line is quite clear in the q-q plot, supporting
the hypothesis of a normal distribution. |
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Figure 94. Histogram and q-q plot of the installation times.

In the evaluation of the linearity of a q-q plot, the following should be
considered:

1. The observed values will never fall exactly on a straight line.

2. The ordered values are not independent, since they have been ranked.
Hence, if one point is above a straight line, it is likely that the next point
will also lie above the line. And it is unlikely that the points will be
scattered about the line.

3. The variances of the extremes (largest and smallest values) are much
higher than the variances in the middle of the plot. Greater discrepancies
can be accepted at the extremes. The linearity of the points in the middle
of the plot is more important than the linearity at the extremes.

Modern data-analysis software often includes tools for generating g-q plots,
especially for the normal distribution. The g-q plot can also be used to compare
two samples of data to see if they can be represented by the same distribution
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(that is, they are homogeneous). If x1, x2, ..., X, are a sample of the random
variable X, and z1, 22, ..., 2z are a sample of the random variable Z, then
plotting the ordered values of X versus the ordered values of Z will reveal
approximately a straight line if both samples are well represented by the same
distribution (Chambers, Cleveland, Kleiner, and Tukey [1983]).

9.3 Parameter Estimation

After a family of distributions_has been selected, the next step is to estimate
the parameters of the distribution. Estimators for many useful distributions
are described in this section. In addition, many software packages—some of
them integrated into simulation languages—are now available to compute these
estimates.

9.3.1 Freliminary Statistics: Sample Mean and Sample Variance

In a number of instances the sample mean, or the sample mean and sample
variance, are used to estimate the parameters of a hypothesized distribution;
see Example 9.4. In the following paragraphs, three sets of equations are given
for computing the sample mean and sample variance. Equations (9.1) and (9.2)
can be used when discrete or continuous raw data are available. Equations (9.3)
and (9.4) are used when the data are discrete and have been grouped in a
frequency distribution. Equations (9.5) and (9.6) are used when the data are
discrete or continuous and have been placed in class intervals. Equations (9.5)
and (9.6) are approximations and should be used only when the raw data are
unavailable.

If the observations in a sample of size n are X, X3,..., Xn, the sample
mean ( X ) is defined by |

- n Xi ’
X = Z—-‘—-:j—-—-——w 9.1)
and the sample variance, S, is defined by
T X2 - nX?
SZ — Z —-Iﬁ L - (9-2)

If the data are discrete and grouped in a frequency distribution, Equa-
tions (9.1) and (9.2) can be modified to provide for much greater computational
efficiency. The sample mean can be computed by

k
_ < £X;
7 - iz fiXi (9.3)

n
and the sample variance by

k : U
Zj=l f}ij - an
n—1

§? =

(9.4)
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where k is the number of distinct values of X and J; 1s the observed frequency
of the value X; of X.

EXAMPLE 9.5 (Gu')uped Data)
The data in Table 9.1 can be analyzed to obtain n = 100, i =12, X; = 0,

S2=10,X=1,..., ;2.-1 fiX; = 364, and Z;;l = f,ij = 2080. From
Equation (9.3),
- 364
X = — = 3.64
100
and from Equation (9.4),

__ 2080 — 1003.64)>
= % =

The sample standard deviation, S, is just the square root of the sample variance.
In this case § = /7.63 = 2.76. Equations (9.1) and (9.2) would have yielded
exactly the same results for X and §2. ’ <

It is preferable to use the raw data, if possible, when the values are contin-
uous. However, the data may have been received after they have been placed
in class intervals. Then it is no longer possible to obtain the exact sample
mean and variance. In such cases, the sample mean and sample variance are
approximated from the following equations:

$2 7.63

<
- . M ;
X = f";ﬁ ] (9.5)
and
2 . Z;:l ffmjz — nX?
§2 = p— (9.6)

where f; is the observed frequency in the jth class interval, m; is the midpoint
of the jth interval, and c is the number of class intervals.

EXAMPLE 9.6 (Continuous Data in Class Intervals)

Assume that the raw data on chip life shown in Example 9.3 were either dis-
carded or lost. However, the datashownin Table 9.2 are stii] available. Todeter-
mine approximate values of X and §2 Equations (9.5) and (9.6) are used. The
following values are determined: H=23,m =15, = 10, my = 4.5, ...,
¥ fimj = 614, and o1 fim? = 37,226.5. With = 50, X is approxi-
mated from Equation (9.5) as '

- 614
X = — = 1228
50

Then, 52 is approximated from E(‘;uation (9.6) as

g2 - 372265 — 50(12.28)
- 49

= 605.849
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and
S = 24.614

Applying Equations (9.1) and (9.2) to the vriginal data in Example 9.3 results
in X =11.894 and § = 24.953. Thus, when the raw data are either discarded or
lost, some inaccuracies may result, |

9.3.2 Suggested Estimators

Numerical estimates of the distribution parameters are needed to reduce the
family of distributions to a specific distribution and to test the resulting hy-
pothesis. Table 9.3 contains suggested estimators for distributions often used
in simulation, all of which were described in Chapter 5. Except for an adjust-
ment to remove bias in the estimate of o2 for the normal distribution, these
estimators are the maximum-likelihood estimators based on the raw data. (If
the data are in class intervals, these estimators must be modified.) The reader is
referred to Fishman [1973] and Law and Kelton [2000] for parameter estimates
for the beta, uniform, binomial, and negative binomial distributions. The tri-
angular distribution is usually employed when no data are available, with the
parameters obtained from educated guesses for the minimum, most likely, and
maximum possible values: the uniform distribution may also be used in this
way if only minimum and maximum values are available. -

Examples of the use of the estimators are given in the following para-
graphs. The reader should keep in mind that a parameter is an unknown con-
stant, but the estimator is a statistic or random variable because it depends on
the sample values. To distinguish the two clearly, if, say, a parameter is derioted
by e, the estimator will be denoted by @.

EXAMPLE 9.7 (Poisson Distribution)

Assume that the arrival data in Table 9.1 require analysis. By comparison
to Figure 5.7, an examination of Figure 9.2 suggests a Poisson distributional
assumption with unknown parameter . From Table 9.3, the estimator of «
is X, which was determined in Example 9.5. Thus, @ = 3.64. Recall that the
true mean and variance are equal for the Poisson distribution. In Example 9.5,
the sample variance was estimated by §? = 7.63. However, it should never be
expected that the sample mean and the sample variance will be precisely equal,
since both are random variables, <

ExampLE 9.8 (Lognormal Distribution)

The percentage rates of return on 10 investments in a portfolio are 18.8, 27.9,
21.0, 6.1, 374, 5.0, 229, 1.0, 3.1, and 8.3. To estimate the parameters of a
lognormal model of this data, we first take the natural log of the data to obtain
29,33,30, 1.8, 36, 1.6,3.1,0, 1.1, and 2.1. Thenset i = ¥ = 2.3 and

0°=52=13. .
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ExamMpPLE 9.9 (Normal Distribution)

The parameters of the normal distribution, x and o2, are estimated by X and
S2, as shown in Table 9.3. The q-q plot in Example 9.4 leads to a distributional
assumption that the installation times are normal. Using Equations (9.1) and
(9.2), the datain Example 9.4 yield i = X = 99.9865 and 62 = §2 — (0.2832)2
second?, . <

ExXAMPLE 9.10 (Gamma Distribution)

The estimator, 3 for the gamma distribution is determined by the use of Table
A.9 from Choi and Wette [1969]. Table A.9 requires the computation of the
quantity 1/M, where

_ 1
M = ¥tnX — - inX; 9.7
M=ok =15 e 67

i=]1

Also, it can be seen in Table 9.3 that 6 is given by

0= =  (9.8)

In Chapter 5 it was stated that lead time is often gamma distributed.
Suppese that the lead times (in days) associated with 20 orders have been

Table 9.3. Suggested Estimators for Distributions Often Used in

Simulation
Distribution Parameter(s) Suggested Estimaror(s)
Poisson o &=X
- ) - 1
Exponential A= 3
Gamma B, 8 B (see Table A9)
A1
0 = —
X
Normal i, o2 p=X
6% = §? (unbiased)
Lognormal u, ot fi = X (after taking €n of the data)
: 6% = §? (after taking fn of the data)
Weibull with v = 0 @, B Bo = -‘?-S,(—
5 _ o Bi-v)
Bi =81~ ~f-,—-;1—-1--
f'(Bi-1)
« See Equations (9.12) and (9.15)
for f(B) and f'(B).
- Iterate until convergence:
1 n =\B
& = (- z X;")
ni=




340 Chap.9 Input Modeling

accurately measured as follows:

Lead Time Lead Time
Order (Days) Order (Days)
1 70.292 11 30.215
2 10.107 12 17.137
3 48.386 13 44.024
4 20.480 14 10.552
5 13.053 15 37.298

6 25.292 16 16314
7 14.713 17 28.073
8 39.166 18 39.019
9 17.421 19 32.330
10 13.905 20 36.547

To determine B and 8, it is first necessary to determine M using Equation (9.7).
Here, X is determined from Equation (9.1) to be

s 564.32
= — = 2822
X 0 8
Then, _
inX = 3.34
Next,
20
D enX; = 63.99
i=}
Then, 63.99
M =334 - —— = 0.14
- 20 ‘
and
1/M = 7.14
By interpolation in Table A.9, B = 3.728. Finally, Equation (9.8) results in
-~ 1
= —— = 0.035
¢ 28.22 0.03

|

ExampLE 9.11 (Exponential Distribution)

Assuming that the data in Example 9.3 come from an exponential distribution,
the parameter estimate, A, can be determined. In Table 9.3, A is obtained using
X as follows: .

1 |
A= }.Z = m = 0084perday <4
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ExamrLE 9.12 (Weibull Distribution)

Suppose that a random sample of size n, X;, X3, ..., X,, has been taken, and
the observations are assumed to come from a Weibull distribution. The like-
lihood function derived using the pdf given by Equation (5.46) can be shown

to be . .
_ £ (8- (%)
La, B) = B HX:' exp Z . (9.9)
i=]1

=1

The maximum-likelihood estimates are those values of @ and 3 that maximize
L(a, B), or equivalently maximize £nL(a, B), denoted by I(«, 8). The maxi-
mum value of /e, B) is obtained by taking the partial derivatives 3l(«, B)/da
and 0l(x, B)/3dp, setting each to zero, and solving the resulting equations, which
after substitution become

fB) =0 ‘ (9.10)
and
18 , 1/8
where S p
n - ny -« . X'enX; ,
=2 4 Y tnx, - D=t l 9.12
f(8) B L n 5 Xf" (9.12)

The maximum-likelihood estimates, @ and B, are the solutions of Equa-
tions (9.10) and (9.11). First B is determined through the iterative procedure
explained below. Then @ is determined using Equation (9.11) with 8 = ﬁ

Since Equation (9.10) is nonlinear, it is necessary to use a numerical anal-
ysis technique to solve it. In Table 9.3 an iterative method for determining B
1s given as

(9.13)

Equation (9.13) employs Newton’s method in reaching B, where ,Bj is the jth
iteration beginning with an initial estimate for 50, given in Table 9.3, as follows:
~ X
po = 3

If the initial estimate, ﬁg, is sufﬁcxentiy close to the solution ﬁ then ,BJ ap-
proaches ﬁ as j —> o0o. When using Newton’s method, ﬁ is approached
through increments of size f (ﬂ, 1)/f'(Bj-1). Equation (9.12) is used to com-
pute f (,B, 1) and Equation (9. 15) is used to compute f’ (ﬂ, 1) as follows:

(9.14)

n B
nooonyig X;ﬂ(enXi)z N n (Zi:l X; EnXi)

A S oy

By = -

=]
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Equation (9.15) can be derived from Equation (9.12) by d differentiating f(B)
with respect to 8. The iterative process continues until f@ ;) = 0, for example,
until }f(,Bj)i < 0.001.

Consider the data given in Example 9. 3. These data concern the failure
of electronic components and may come from an exponential distribution. In
Example 9.11, the parameter  was estimated on the hypothesis that the data
were from an exponential distribution. If the hypothesis that the data came
from an exponential distribution is rejected, an alternative hypothesis is that the
data come from a Weibull distribution. The Weibull distribution is suspected,
since the data pertain to electronic component failures which occur suddenly.

Equatxon (9.14) is used to determine ,60 For the data in Example 9.3,

n =50, X = 11.894, X2 = 141.467,and Y ;0, X? = 37,575.850, so that §? is
found by Equation (9.2) to be

o _ 31.578.850 — 50(141.467)

= 622.650
49
and S = 24.953. Thus,
. 11.894
bo = 53555 = 0477

To compute B, using Equation (9.13) requires the determination of f (Bo) and
f'(Bo) using Equations (9.12) and (9.15). The following additional values

are needed: Y0, X% = 115.125, Y50 enX; = 38294, ¥, xPunx; =
292.629,and Y20, X:B"(enx,-)2 = 1057.781. Thus,

50 50(292.629)
- 4 — DNETED7)  16.024
f o) 047y 8% 115.125 16
and
- -50 50(1057.781)  50(292.629)%
1By — _ = —356.110
1 (Po) (0.477)2 115125 T 1512502
Then, by Equation (9.13),
- 16.024
= 0477 — ——_ = 0.522
Br= 0471 - =376 = 9°

After four iterations, | f (33)} < 0.001, at which point 3 = 34 = 0.525
is the approximate solution to Equation (9.10). Table 9.4 contains the values
needed to complete each iteration.

Now, @ can be determined using Equation (9.11) with 8 = B = 0.525 as
follows:

= 6.227

_ T130.6087Y0%
* =[ 50 }

If B, is sufficiently close to B, the procedure converges quickly, usually
in four to five iterations. However, if the procedure appears to be diverging,
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Table 9.4. Iterative Estimation of Parameters of the Weibull Distribution

R 0 B S0 3 50 B, . R "
ik EX EXPmX SXV@XY 1@y Py b

0 0477 115125 292.629 1057.781 16.024 356110 0.522
1 0522 129.489 344,713 1254.111 1.008 ~313.540 0.525
2 0525 130.603 348.769 1269.547 0004 -310.853 0525
3 0525 130608 348.786 1269.614 0.000 —310.841 0.525

try other initial guesses for B, — for example, one-half the initial estimate or
twice the initial estimate.

The difficult task of determining parameters for the Weibull distribution
by hand emphasizes the value of having software support for input model-
ing. ’ >

9.4 Goodness-of-Fit Tests

Hypothesis testing was discussed in Section 7.4 with respect to testing random
numbers. In Section 7.4.1 the Kolmogorov-Smirnov test and the chi-square
test were introduced. These two tests are applied in this section to hypotheses
about distributional forms of input data.

Goodness-of-fit tests provide helpful guidance for evaluating the suit-
ability of a potential input model. However, since there is no single correct
distribution in a real application, you should not be a slave to the verdict of
such tests. It is especially important to understand the effect of sample size. If
very little data are available, then a goodness-of-fit test is unlikely to reject any
candidate distribution; but if a lot of data are available, then a goodness-of-fit
test will likely reject all candidate distributions, Therefore, failing to reject a
candidate distribution should be taken as one piece of evidence in favor of that
choice, while rejecting an input model is only one piece of evidence against the
choice.

9.4.1 Chi-Square Test

One procedure for testing the hypothesis that a random sample of size n of
the random variable X follows a specific distributional form is the chi-square
goodness-of-fit test. This test formalizes the intuitive idea of comparing the
histogram of the data to the shape of the candidate density or mass function.
The test is valid for large sample sizes, for both discrete and continuous distri-
butional assumptions, when parameters are estimated by maximum likelihood.
The test procedure begins by arranging the n observations into a set of k class
intervals or cells. The test statistic is given by

k
(0; — E;)?
XK= (9.16)
-

E;
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where O; is the observed frequency in the ith class interval and E; is the
expected frequency in that class interval. The expected frequency for each
classintervalis computed as E; = npi, where p; is the theoretical, hypothesized
probability associated with the i th class inferval.

It can be shown that xg approximately follows the chi-square distribution
with & — 5 — 1 degrees of freedom, where s represents the number of param-
eters of the hypothesized distribution estimated by the sample statistics. The
hypotheses are:

Hy: the random variable, X, conforms to the distributional assumption with
the parameter(s) given by the parameter estimate(s)
Hy: the random variable X does not conform

The critical value xi t—s—1 1s found in Table A.6. The null hypothesis, Hy, is
rejected if x¢ > x2, . ..

In applying the test, if expected frequencies are too small, X(% will reflect
not only the departure of the observed from the expected frequency but the
smallness of the expected frequency as well. Although there is no general
agreement regarding the minimum size of E;, values of 3,4, and 5 have been
widely used. In Section 7.4.1, when the chi-square test was discussed, the
minimum expected frequency of five was suggested. If an E; value is too small,
it can be combined with expected frequencies in adjacent class intervals. The
corresponding O; values should also be combined, and & should be reduced by
one for each cell that is combined.

If the distribution being tested is discrete, each value of the random vari-
able should be a class interval, unless it is necessary to combine adjacent class
intervals to meet the minimum expected cell-frequency requirement. For the
discrete case, if combining adjacent cells is not required,

pi = p(xi) = P(X = x;)

Otherwise, p; is determined by summing the probabilities of appropriate ad-
jacent cells. ‘

If the distribution being tested is continuous, the class intervals are given
by [a;_1, a;), where a;_; and a; are the endpoints of the i th class interval. For
the continuous case with assumed pdf f(x), or assumed cdf F(x), pi can be
computed by: *

a; :
pi = fx)dx = Fl(a;) — F(a;_y)

Aj—1

For the discrete case, the number of class intervals is determined by the
number of cells resulting after combining adjacent cells as necessary. How-
ever, for the continuous case the number of class intervals must be specified. -
Although there are no general rules to be followed, the recommendations in
Table 9.5 are made to aid in determining the number of class intervals for con-
tinuous data.
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Table 9.5. Recommendations for
Number of Class Intervals
for Continuous Data

Sample Size, ~ Number of Class Intervals,
n k
20 Do not use the chi-square test
50 5t010
100 10to 20
>100 Jnton/5

ExampLE 9.13 (Chi-Square Test Applied to Poisson Assumptionj

In Example 9.7, the vehicle-arrival data presented in Example 9.2 were ana-
lyzed. Since the histogram of the data, shown in Figure 9.2, appeared to follow
a Poisson distribution, the parameter, @ = 3.64, was determined. Thus, the
following hypotheses are formed:

Hy: the random variable is Poisson distributed
H,: the random variable is not Poisson distributed
The pmf for the Poisson distribution was given in Equation (5.18) as follows:
e a* |
p(x) = ‘ i 0,1,2,... (9.17)
0, otherwise

For « = 3.64, the probabilities associated with various values of x are obtained
using Equation (9.17) with the following results:

p(0) = 0.026, p(6) = 0.085
p(1) =0.09, p(7) = 0.044
p2) =0.174, p(®) =0.020
p(3) =0211, p(9) = 0.008
p(4) = 0.192, p(lO) = 0.003 .
p(5) = 0.140, p(11) = 0.001

With this information, Table 9.6 is constructed. The value of E 1 is given by npg =
100(0.026) = 2.6. In a similar manner, the remaining E; values are determined.
Since E; = 2.6 < 5, E; and E, are combined. In that case 01 and O; are
also combined and k is reduced by one. The last five class intervals are also
combined for the same reason, and  is further reduced by four.

'The calculated xg is 27.68. The degrees of freedom for the tabulated
value of x?isk —s—1=7—-1—1=5. Here, s = 1, since one parameter,
o, was estimated from the data._ At the 0.05 level of significance, the critical
value x§05’5 is 11.1. Thus, Hp would be rejected at level of significance 0.05.
The analyst may therefore want to search for a better-fitting model or use the
empirical distribution of the data. <
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Table 9.6. Chi-Square Goodness-of-Fit Test for Example 9.2

x;  Observed Frequency, O; Expected Frequency, E; M(Oi ; E;)*
i
0 12} o 2.6} 122 } 587
1 10 | 9.6
2 19 17.4 0.15
3 17 21.1 0.80
4 10 19.2 4.41
5 8 14.0 2.57
6 7 8.5 0.26
7 5 44
8 5 2.0
o 317 08¢ 7.6 }11.62
10 3 0.3
11 1 _01 .
100 100.0 27.68

9.4.2 Chi-Square Test with Equal Probabilities

If a continuous distributional assumption is being tested, class intervals that
are equal inl probability rathér than equal in width of interval should be used.
This has been recommended by a number of authors (Mann and Wald [1942];
Gumbel [1943]; Law and Kelton [2000]; Stuart, Ord, and Arnold [1998]). It
should be noted that the procedure is not applicable to data collected in class
intervals, where the raw data have been discarded or lost.

Unfortunately, there is as yet no method for determining the probability
associated with each interval that maximizes the power for a test of a given size.
(The power of a test is defined as the probability of rejecting a false hypothesis.)

However, if using equal probabilities, then p; = 1/k. Since we recommend

E, = np; > 5
substituting for p; yields
no_ 5
k=
and solving for k yields
n
k< = 9.18
< 2 (9.18)

Equation (9.18) was used in determining the recommended maximum number
of class intervals in Table 9.5. .

If the assumed distribution is normal, exponential, or Weibull, the method
described in this section is straightforward. Example 9.14 indicates how the
procedure is accomplished for the exponential distribution. If the assumed
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distribution is gamma (but not Erlang), or certain other distributions, then
the computation of endpoints for class intervals is complex and may require
numerical integration of the density function. Statistical-analysis software is
very helpful in such cases.

ExampPLE 9.14 (Chi-Square Test for Exponential Djstribution)

In Example 9.11, the failure data presented in Example 9.3 were analyzed.
Since the histogram of the data, shown in Figure 9.3, appeared to follow an
exponential distribution, the parameter 2 = 1/X =.0.084 was determined.
Thus, the following hypotheses are formed:

Hy: the random variable is exponentially distributed

Hiy: the random variable i$ not exponentially distributed
In order to perform the chi-square test with intervals of equal probability, the
endpoints of the class intervals must be determined. Equation (9.18) indicates
that the number of intervals should be less than or equal to n/5. Here, n =50, so
that k < 10. In Table 9.5, it is recommended that 7 to 10 class intervals be used.
Let k = 8, then each interval will have probability p =(.125. The endpomts for
each interval are computed from the cdf for the exponential distribution, given
in Equation (5.27), as follows: :

Fla)=1-e?% (9.19)

where a; represents the endpoint of the ith interval, i = 1,2, ..., k. Since
F(a;) is the cumulative area from Zero to a, , F (a,) =i ip, SO Equatlon (9.19)
can be written as

—Aaj

ip ='1 — e

or
e =1—ip

Taking the logarithm of both sides and solving for a; gives a general result
for the endpoints of k equiprobable intervals for the exponentlal distribution,

namely .
a; = —-—-ﬁn(l —ip), i =01, ...,k (9.20)

Regardless of the value of A, Equation (9.20) will always result in ag = 0 and
ax = 00. With A = 0.084 and k = 8, a; is determined from Equation (9.20) as

1.
= - 0.12 1.59
a 0084En(l 0.125) = 1.590
Continued application of Equauon (9.20)fori = 2,3, ..., 7resultsina,, ..., a;

as 3.425, 5.595, 8.252, 11.677, 16.503, and 24.755. Since k = 8, ag = oco. The
first interval is [0, 1.590), the second interval is [1.590, 3.425), and so on. The
expectation is that 0.125 of the observations will fall in each interval. The ob—
servations, expectations, and the contributions to the calculated value of xg

are shown in Table 9.7. The calculated value of x is 39.6. The degrees of
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Table 9.7. Chi-Square Goodness-of-Fit Test for Example 9.14

R
Class Interval ~ Observed Frequency, O;  Expected Frequency, E; (0; — E;)

i

0, 1.590) 19 6.25 26.01
11.590,3.425) 10 6.25 225
[3.425, 5.595) 3 6.25 0.81
[5.595,8.252) 6 6.25 0.01
[8.252,11.677) 1 6.25 4.41
[11.677, 16.503) 1 625 4.41
[16.503, 24.755) 4 6.25 0.81
[24.755,.00) - 6 6.25 0.01

50 50 396

freedom are given by k+5—1=8—-1-1=6. Aty 0.05, the tabulated
value of x7.. . is 12.6. Since X§ > x3os4- the null hypothesis is rejected. (The

value of Xéz.m,s is 16.8, so the null hypothesis would also be rejected at level of
significance o = 0.01.) |

9.4.3 Kolmogorov-Smirnov Goodness-of-Fit Test

The chi-square goodness-of-fit test Can accommodate the estimation of param-
eters from the data with a resultant decrease in the degrees of freedom (one for
each parameter estimated). The chi-square test requires that the data be placed
in class intervals, and in the case of a continuous distributional assumption, this
grouping is arbitrary. Changing the number of classes and the interval width
affects the value of the calculated and tabulated chi-square. A hypothesis may
be accepted when the data are grouped one way but rejected when grouped
another way. Also, the distribution of the chi-square test statistic is known only
approximately, and the power of the test is sometimies rather low, As a result
of these considerations, goodness-of-fit tests, other than the chi-square, are de-
sired. The Kolmogorov-Smirnov test formalizes the idea behind examining a

q-q plot.

The Kolmogorov-Smirnov test was presented in Section 7.4.1 to test for
the uniformity of numbers and again in Section 7.4.4 to perform the gap test.
Both of these uses fall into the category of testing for goodness-of-fit. Any
continuous distributional assumption can be tested for goodness-of-fit using
the method of Section 7.4.1, while discrete distributional assumptions can be
tested using the method of Section 7.4.4.

The Kolmogorov-Smirnov test is particularly useful when sample sizes
are small and when no parameters have been estimated from the data. When
parameter estimates have been made, the critical values in Table A.8are biased:
in particular, they are too conservative. In this context “conservative” means
that the critical values will be too large, resulting in smaller Type I (@) errors
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than those specified. The exact value of « can be determined in some instances
as discussed at the end of this section.

The Kolmogorov-Smirnov test does not take any special tables when an
exponential distribution is assumed. The following example indicates how the
test is applied in this instance. (Notice that it is not necessary to estimate the
parameter of the distribution in this example, permitting the use of Table A.8.)

EXAMPLE 9.15 (Kolmogorov-Smirnov Test for
Exponential Distribution)

Suppose that 50 interarrival times (in minutes) are collected over the following
100-minute interval (arranged in order of occurrence):

&%4# 0.53‘r 2.04 274 200 030 254 052 2.02 I.BZ 1.53 -0.21
280 0.04 135 832 234 195 010 1.42 046 0.07 1.09 076
555 393 1.07 226 288 067 1.12 026 4.57 537 012 3.19
163 146 1.08 206 0.85 083 244 2:11 315 290 6.58 0.64

The null hypothesis and its alternate are formed as follows:

Hy: the interarrival times are exponentially distributed
Hy: the interarrival times are not exponentially distributed

The data were collected over the interval 0 to T — 1Q0 minutes. It can be
shown that if the underlying distribution of interarrival times {I1,75,...}is
exponential, the arrival times are uniformly distributed on the interval 0, 7).
The arrival times 7y, Ty + T», T; + L+T;,..., Ty + - + Ty are obtained
by adding interarrival times. The arrival times are then normalized to a (0, 1)
interval so that the Kolmogorov-Smirnov test, as presented in Section 7.4.1, can
be applied. Ona (0, 1) interval, the points will be [T/ T, (T, + )/T,... (T3+
+++ + Ts0)/ T]. The resulting 50 data points are as follows:

0.0044 0.0097 0.0301 0.0575 0.0775 0.0805 0.1059 0.1111 0.1313 0.1502
0.1655 0.1676 0.1956 0.1960 02095 0.2927 03161 0.3356 0.3366 0.3508
0.3553 0.3561 0.3670 0.3746 0.4300 0.4694 04796 0.5027 0.5315 0.5382
0.5494 0.5520 0.5977 0.6514 0.6526 0.6845 0.7008 0.7154 0.7262 0.7468
0.7553 0.7636 0.7880 0.7982 0.8206 0.8417 08732 0.9022 0.9680 0.9744

Following the procedure in Example 7.6 yields a D* of 0.1054 and a D~ of
0.0080. Therefore, the Kolmogorov-Smirnov statistic is D = max(0.1054,
0.0080) = 0.1054. The critical value of D obtained from Table A.8 for a
level of significance of « = 0.05 and n=50is Dygs = 1.36//n = 0.1923.
Since D = 0.1054, the hypothesis that the interarrival times are exponentially
distributed cannot be rejected. 4
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The Kolmogorov-Smirnov test has been modified so that it can be used in
several situations where the parameters are estimated from the data. The com-
putation of the test statistic is the same, but different tables of critical values
are used. Different tables of critical values are required for different distribu-
tional assumptions. Lilliefors [1967] developed a test for normality. The null
hypothesis states that the population is one of the family of normal distributions
without specifying the parameters of the distribution. The interested reader
may wish to study Lilliefors’ original work, as he describes how simulation was
used to develop the critical values.

Lilliefors [1969] also modified the critical values of the Kolmogorov-
Smirnov test for the exponential distribution. Lilliefors again used random
sampling to obtain approximate critical values, but Durbin [1975] subsequently
obtained the exact distribution. Connover [1980] gives examples of Kolmogo-
rov-Smirnov tests for the normal and exponential distributions. He also refers
to several other Kolmogorov-Smimov-type tests which may be of interest to
the reader. ‘

A test that is similar in spirit to the Kolmogorov-Smirnov test is the
Anderson-Darling test. Like the Kolmogorov-Smirnov test, the Anderson-
Darling test is based on the difference between the empirical cdf and the fitted
cdf; unlike the Kolmogorov-Smirnov test, the Anderson-Darling test is based
on a more comprehensive measure of difference (not just the maximum dif-
ference) and is more sensitive to discrepancies in the tails of the distributions,
The critical values for the Anderson-Darling test also depend on the candidate
distribution and on whether or not parameters have been estimated. Fortuy-
nately, this test and the Kolmogorov-Smirnov test have been implemented in a
number of software packages that support simulation input modeling.

9.4.4 p-Values and “Best Fits”

To apply a goodness-of-fit test a significance level must be chosen. Recall
that the significance level is the probability of falsely rejecting Hy: the random
variable conforms to the distributional assumption. The traditional significance
levels are 0.1, 0.05, and 0.01. Prior to the availability of high-speed computing,
having a small set of standard values made it possible to produce tables of
useful critical values. Now most statistical software computes critical values as
needed, rather than storing them in tables. Thus, if the analyst prefers a level
of significance of, say, 0.07, then he or she can choose it.

However, rather than require a prespecified significance level, many soft-
ware packages compute a p-value for the test statistic. The p-value is the
significance level at which one would Just reject Hy for the given value of the
test statistic. Therefore, a large p-value tends to indicate a good fit (we would
have to accept a large chance of error in order to reject), while a small p-value
Suggests a poor fit (to accept we would have to insist on almost no risk).

Recall Example 9.13, in which a chi-square test was used to check the
Poisson assumption for the vehicle arrival data. The value of the test statistic




5ec. 9.5 Selecting Input Models without Data 351

was x5 = 27.68 with 5 degrees of freedom. The p-value for this test statistic is
0.00004, meaning that we would reject the hypothesis that the data are Poisson
at the 0.00004 significance level (recall that we rejected the hypothesis at the
0.05 level; now we know that we would also reject it at even lower levels).

The p-value can be viewed as a measure of fit, with larger values being
better. This suggests that we could fit every distribution at our disposal, com-
pute a test statistic for each fit, and then choose the distribution that yields
the largest p-value. While we know of no input modeling software that im-
plements this specific algorithm, many such packages do include a “best-fit”
option in which the software recommends an input model to the user based on
evaluating all feasible models. While the software may also take into account
other factors — such as whether the data are discrete or continuous, bounded
or unbounded — in the end some summary measure of fit, like the p-value, is
used to rank the distributions. There is nothing wrong with this, but there are
several things to keep in mind:

1. 'The software may know nothing about the physical basis of the data, and
that information can suggest distribution families that are appropriate
(see the list in Section 9.2.2). Remember that the goal of input modeling
is often to fill in gaps or smooth the data, rather than find an input model
that conforms as closely as possible to the given sample.

2. Recall that both the Erlang and the exponential distributions are special
cases of the gamma, while the exponential is also a special case of the more
flexible Weibull. Automated best-fit procedures tend to choose the more
flexible distributions (gamma and Weibull over Erlang and exponential)
because the extra flexibility allows closer conformance to the data and a
better summary measure of fit. But again, close conformance to the data
may not always lead to the most appropriate input model.

3. A summary statistic, like the p-value, is just that, a summary measure. It
says little or nothing about where the lack of fit occurs (in the body of the
distribution, in the right tail or in the left tail). A human, using graphical
tools, can see where the lack of fit occurs and decide whether or not it is
important for the application at hand.

Our recommendation is that automated distribution selection be used as one of
several ways to suggest candidate distributions. Always inspect the automatic
selection using graphical methods, and remember that the final choice is yours. -

*

9.5 Selecting Input Models without Data

Unfortunately, it is often necessary in practice to develop a simulation model
—perhaps for demonstration piirposes or a preliminary study—before any
process data are available. In this case the modeler must be resourceful in
choosing input models and must carefully check the sensitivity of results to the
chosen models.
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There are a number of ways to obtain information about a process even
if data are not available:

Engineering data Often a product or process has performance ratings pro-
vided by the manufacturer (for example; the mean time to failure of a disk
drive is 5000 hours; a laser printer can produce 4 pages/minute; the cutting
speed of a tool is 1 inch/second, etc.). Company rules may specify time
or_production standards. These values provide a starting point for input
modeling by fixing a central value.
Expert option Talk to people who are experienced with the process or similar
processes. Often they can provide optimistic, pessimistic, and most likely
times. They may also be able to say if the process is nearly constant or highly
variable, and they may be able to define the source of variability.
Physical or conventional limitations Most real processes have physical limits
on performance (for example, computer data entry cannot be faster than a
person can type). Because of company policies, there may be upper limits
on how long a process may take. Do not ignore obvious limits or bounds
that narrow the range of the input process.
The nature of the process The description of the distributions in Section 9.2.2
can be used to justify a particular choice even when no data are available.

When data are not available, the uniform, triangular, and beta distributions are
often used as input models. The uniform can be a poor choice, because the
upper and lower bounds are rarely just as likely as the central values in real
processes. If, in addition to upper and lower bounds, a most-likely value can be
given, then the triangular distribution can be used. The triangular distribution
places much of its probability near the most-likely value and much less near
the extremes (see Section 5.4). If a beta distribution is used, then be sure to
plot the density function of the selected distribution, since the beta can take
unusual shapes.

A useful refinement is obtained when a minimum, maximum, and one or
more “breakpoints” can be given. A breakpoint is an intermediate value and
a probability of being less than or equal to that value. The following example
illustrates how breakpoints are used. ~

EXAMPLE 9.16

For a production planning simulation, the sales volume of various products is
“ required. The salesperson responsible for product XYZ-123 says that no fewer
than 1000 units will be sold because of existing contracts, and no more than 5000
units will be sold because that is the entire market for the product. Based on
her experience, she believes that there is a 90% chance of selling more than
2000 units, a 25% chance of selling more than 3500 units, and only a 1% chance
of selling more than 4500 units. | | V o
Table 9.8 summarizes this information. Notice that the chances of exceed-
ing certain sales goals have been translated into the cumulative probability of
being less than or equal to those goals. With the information in this form the
method of Section 8.1.5 can be employed to generate simulation inputdata. <
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Table 9.8. Summary of Sales Information

Interval Cumulative

i (Hours) Frequency, ¢;
1 1000 < x < 2000 0.10
2 2000 < x < 3500 0.75
3 3500 < x < 4500 0.99
4 4500 < x < 5000 1.00

When input models have been selected without data, it is especially impor-
tant to test the sensitivity of simulation results to the distribution chosen. Check
sensitivity not only to the center of the distribution but also to the variability
or limits. Extreme sensitivity of output results to the input model provides a
convincing argument against making critical decisions based on the results, and
in favor of undertaking data collection.

For additional discussion of input modeling in the absence of data, see
Pegden, Shannon, and Sadowski [1995].

9.6 Multivariate and Time-Series Input Models

In Sections 9.1-9.4, the random variables presented were considered to be in-
dependent of any other variables within the context of the problem. However,
variables may be related, and if the variables appear in a simulation model as
inputs, the relationship should be determined and taken into consideration.

ExAamMPLE 9.17

An inventory simulation includes the lead time and annual demand for indus-
trial robots. An increase in demand results in an increase in lead time, since the
final assembly of the robots must be made according to the specifications of the
purchaser. Therefore, rather than treat lead time and demand as independent
random variables, a multivariate input model should be developed. |

ExAMPLE 9.18

A simulation of the web-based trading site of a stock broker includes the time
between arrivals of orders to buy and sell. Since investors tend to react to what
other investors are doing, these buy and sell orders arrive in bursts. Therefore,
rather than treat the time between arrivals as independent random variables,
a time-series model should be developed. <

We distinguish between multivariate input models of a fixed, finité num-
ber of random variables (such as the two random variables lead time and an-
nual demand in Example 9.17), and time-series input models of a (conceptually
infinite) sequence of related random variables (such as the successive times
between orders in Example 9.18). We describe input models appropriate for
these examples after reviewing two measures of dependence, the covariance
and correlation.
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EXERCISES

1. Gotoasmall appliance store and determine the interarrival and service-time distri-
butions. Ifthere are several workers, how do the service-time distributions compare
to each other? Do service-time distributions need to be constructed for each type
of appliance? (Make sure that the management gives permission to perform this
study.)

2. Go to a cafeteria and collect data on the distributions of interarrival and service
times. The distribution of interarrival times is probably different for each of the
three daily meals and may also vary during the meal; that is, the interarrival time
distribution for 11:00 A.M. to 12:00 noon may be different than from 12:00 noon to
1:00 p.M. Define service time as the time from when the customer reaches the point
at which the first selection could be made until he or she exits from the cafeteria
line. (Any reasonable modification of this definition is acceptable.) The service-
time distribution probably changes for each meal. Can times of the day or days
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of the week for either distribution be grouped due to homogeniety of the data?
(Make sure that the management gives permission to perform this study.)

Go to a major traffic intersection and determine the interarrival-time distributions
from each direction. Some arrivals want to go straight, some turn left, some turn
right. The interarrival-time distribution varies during the day and by day of the
week. Every now and then an accident occurs. '

Go to a grocery store and determine the interarrival and service distributions at
the checkout counters. These distributions may vary by time of day and by day of
week. Record, also, the number of service channels available at all times. (Make
sure that the management gives permission to perform this study.)

Go to a laundromat and “relive” the authors’ data-collection experience as dis-
cussed in Example 9.1. (Make sure that the management gives permission to per-
form this study.) .

Prepare four theoretical normal density functions, all on the same figure, each
distribution having mean zero, but let the standard deviations be 1/4, 1/2, 1, and 2.
On one figure, draw the pdfs of the Erlang distribution where # = 1/2 and k =
1,2,4, and 8. ‘

On one figure, draw the pdfs of the Erlang distribution where § =2 and k = 1,2, 4,
and 8.

Draw the pmf of the Poisson distribution that results when the parameter « is equal
to the following:

(@) a=1/2
b)) a=1
(©) =2
d a=4

On one figure draw the two exponential pdf’s that result when the parameter, A,
equals 0.6 and 1.2.

On one figure draw the three Weibull pdf’s which result when v = 0, @ = 1/2, and
B=1,2, and 4

The following data are randomly generated from a gamma distribution:

1.691 1437 8221 5.976
1.116 4435 2345 1782
3810 4589 5313 1090
2649 2432 1581 2432
1.843 2466 2833 2361

Determine the maximum-likelihood estimatorsﬁ and 8.

- The following data are randomly generated from a Weibull distribution where

v=20_0:

7936 5224 3937 6.513
4599 ~ 7.563 7172 5132
5259 2759 4278 2.69
6212 2407 1.857 S5.002
4612 2.003 6.908 3326
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Determine the maximum-likelihood estimators & and 8. (This exercise requires a
programmable calculator, a computer, or a lot of patience.)

14. The highway between Atlanta, Georgia, and.Athens, Georgia, has a high incidence
of accidents along its 100 kilometers. Public safety officers say that the occurrence
of accidents along the highway is randomly (uniformly) distributed, but the news
media say otherwise. The Georgia Department of Public Safety published records
for the month of September. These records indicated the point at which 30 accidents
involving an injury or death occurred, as follows (the data points represent the

-distance from the city limits of Atlanta):

883 407 363 273 368
917 673 70 452 233
98.8 901 172 237 974
324 878 698 626 997
206 731 216 60 453
76.6 732 273 876 872

Use the Kolmogorov-Smirnov test to determine whether the distribution of location
of accidents is uniformly distributed for the month of September.

15, Show that the Kolmogorov-Smirnov test statistic for Example 9.15is D = 0.1054.

16. Records pertainingto the monthly number of job-related injuries at an underground
coal mine were being studied by a federal agency. The values for the past 100 months
were as follows:

Injuries per Month  Frequency of Occurrence
0 35
40
13

e -

(a) Apply the chi-square test to these data to test the hypothesis that the under-
~ lying distribution is Poisson. Use a level of significance of o =0.05.

(b) Apply the chi-square test to these data to test the hypothesis that the distri-
bution is Poisson with mean 1.0. Again let @ = 0.05. .

b et

(¢) What are the differences in parts (a) and (b), and when might each case arise?

17. The time required for 50 different employees to compute and record the number of
hours worked during the week was measured with the following results in minutes:
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Time Time
Employee  (Minutes) Employee (Minutes)
y 1 1.88 26 - 0.04
2 0.54 27 - 149
3 1.90 28 0.66
4 0.15 29 2.03
5 0.02 30 1.00
6 281 31 0.39
7 1.50 32 0.34
8 0.53 33 0.01
9 2.62 34 0.10
10 2.67 35 1.10
11 - 353 36 0.24
12 : 0.53 37 0.26
13 1.80 38 0.45
14 0.79 39 0.17
15 0.21 40 4.29
16 0.80 41 0.80
17 0.26 42 5.50
18 0.63 43 491
19 0.36 44 0.35
20 2.03 45 0.36
21 1.42 46 0.90
22 1.28 47 1.03
23 0.82 48 1.73
24 2.16 49 0.38
25 0.05 50 0.48

Use the chi-square test (as in Example 9.14) to test the bypothesis that these service
times are exponentially distributed. Let the number of class intervals be k = 6.
Use a level of significance of o = 0.05.

18. Studentwiser Beer Company is trying to determine the distribution of the breaking
strength of their glass bottles. Fifty bottles are selected at random and tested for
breaking strength, with the following results (in pounds per square inch):

21895 23275 212.80 231.10 215.95

237.55 23545 22825 21865 212.80

23035 22855 21610 22975 229.00 B
199.75 22510 20815 213.85 20545

21940 208.15 19840 238.60 219.55

24310 198.85 22495 21220 222.90 .

218.80 20335 22345 21340 206.05

22930 23920 20125 216.85 20725

20485 219.85 22615 23035 21145

227.95 22930 22525 20125 21610

Using input modeling sofware, apply as many tests for normality as are available in
the software. If the chi-square test is available, apply it with at least two different
choices for the number of intervals. Do all of the tests reach the same conclusion?
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19. The Crosstowner is a bus that cuts a diagonal path from northeast Atlanta to south-
west Atlanta. The time required to complete the route is maintained by the bus
operator. The bus runs Monday through Fnday The times of the last fifty 8:00 A.M.
runs, in minutes, are as follows:

923 928 1068 1089 106.6
1152 948 1064 1100 909
1046 720 860 1024 998

875 1114 1059 90.7 99.2

978 883 975 974 937

99.7 1227 1002 106.5 105.5

80.7 107.9 1032 1164 101.7

848 1019 991 1022 1025
1117 1015 951 928 885

744 989 1119 965 959

How are these run times distributed? Develop and test a suitable model.

20. The time required for the transmission of a message (in minutes) is sampled elec-
tronically at a communications center. The last 50 values in the sample are as
follows:

7.936 4.612 2407 4278 5.132
4599 5224 2003 1.857 2.696
5.259 7563 3.937 6.908 5.002
6212 2759 7.172 6513 3.326
8.761 4.502 6.188 2.566 5.515
3785 3.742 4.682 4.346 5.359
3535 5.061 4.629 5298 6.492
3.502 4266 3.129 1298 3.454
5.289 6.805 3.827 3912 2.969
4646 5.963 3.829 4.404 4.924

How are the transmission times distributed? Develop and test an appmpriate
model.

21. The time (in minutes) between requests for the hookup of electric service was ac-
curately maintained at the Gotwatts Flash and Flicker Company with the following
results for the last 50 requests:

0.661 4910 8989 12.801 20.249
5124 15.033 58.091 1543 3.624
13509 5745 0.651 0965 62.146
15512 27758 17.602 6.675 11.209
2731 6892 16713 5692 6.636
2420 2984 10.613 3.827 10244
6255 27969 12107 4.636 7.093
6.892 13243 12711 3411  7.897
12413 2169 0921 1900 0315
4370 0377 9.063 1875 0.790
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How are the times between requests for service distributed? Develop and test a

suitable model.

22. Daily demands for transmission overhaul kits for the D-3 dragline were maintained

23.

by Earth Moving Tractor Company with the following results:
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How are the daily demands distributed? Develop and test an appropriate model.

A simulation is to be conducted of a job shop that performs two operations, milling
and planing, in that order. It would be possible to collect data about processing
times for each operation, then generate random occurrences from each distribution.
However, the shop manager says that the times might be related; large milling jobs

take lots of planing. Data are collected for the next 25 orders with the foll

results in minutes:

Milling Planing Milling  Planing
Time Time Time Time
Order  (Minutes) (Minutes) Order (Minutes) (Minutes)
1 12.3 10.6 14 24.6 16.6
2 204 13.9 15 28.5 21.2
3 18.9 14.1 16 11.3 9.9
4 16.5 10.1 17 13.3 10.7
5 83 8.4 18 21.0 14.0
6 6.5 8.1 19 19.5 13.0
7 25.2 16.9 20 15.0 11.5
8 17.7 13.7 21 12.6 99
9 10.6 10.2 22 14.3 132
10 13.7 12.1 23 17.0 12.5
11 26.2 16.0 24 21.2 14.2
12 304 18.9 25 28.4 19.1
13 9.9 7.7

owing

(a) Plot milling time on the horizontal axis and planing time on the vertical axis.
Do these data seem dependent?

(b) Compute the sample correlation between milling time and planing time.
(¢) Fit a bivariate normal distribution to this data.
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24. Write a computer program to compute the maximum-likelihood estimates (@, B)
of the Weibull distribution. Inputs to the program should include the sample size,
n; the observations, x;, x, .. ., Xn; a Stopping criterion, € (stop when | f (ﬁj) | < €);
and a print option, OPT (usually set = 0). Output would be the estimates & and B.
If OPT =1, additional output would be printed as in Table 9.4 showing convergence.
Make the program as “user friendly” as possible.

25. Examine a computer software library or simulation support environment to which
you have access. Obtain documentation on data-analysis software that would be
useful in solving Exercises 7 through 24. Use the software as an aid in solving
selected problems.

26. The numbers of patrons staying at a small hotel on 20 successive nights were ob-
served to be 20, 14, 21, 19, 14, 18, 21, 25, 27, 26, 22, 18, 13, 18, 18, 18, 25, 23, 20,
21. Fit both an AR(1) and an EAR(1) model to this data. Decide which model
provides a better fit by looking at a histogram of the data.

27. The following data represent the time to perform transactions in a bank, measured
in minutes: 0.740, 1.28, 1.46, 2.36, 0.354, 0.750, 0.912, 4.44, 0.114, 3.08, 3.24, 1.10,
1.59,1.47,1.17,1.27,9.12, 11.5,2.42,1.77. Develop an input model for this data.

28. Two types of jobs (A and B) are released to the input buffer of a job shop as orders
arrive, and the arrival of orders is uncertain. The following data are available from
the last week of production:

Day  Number of Jobs Number of A’s

1 83 53
2 93 62
3 112 66
4 65 41
5 78 55

Develop an input model for the number of new arrivals of each type each day.

29. The following data are available on the processing time at a machine (in minutes):
0.64,0.59,1.1, 3.3, 0.54, 0.04, 0.45, 0.25, 4.4,2.7,2.4,1.1,3.6,0.61,0.20, 1.0, 0.27, 1.7,
0.04, 0.34. Develop an input model for the processing time.
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