
CHAPTER 1 Introduction to Simulation 

>es of Simulation Models 

In this book we study two distinct types of simulation models: Monte Carlo simula­
tion models and system simulation models. Monte Carlo simulation is basically a 
sampling experiment whose purpose is to estimate the distribution of an outcome 
variable that depends on several probabilistic input variables. For example, we might 
be interested in the distribution of profit for the financial model in Figure 1-2 when 
sales, costs, and inflation factors are random variables. The term Monte Carlo simula­
tion was first used during the development of the atom bomb as a code name for 
computer simulations of nuclear fission. Researchers coined this term because of the 
similarity to random sampling in games of chance such as roulette in the famous 
casinos of Monte Carlo. Monte Carlo simulation is often used to evaluate the ex­
pected impact of policy changes and risk involved in decision making. Risk is often 
defined as the probability of occurrence of an undesirable outcome. Thus, we might 
be interested in the probability that 3-year profit will be less than a required amount. 
Monte Carlo simulation is the principal focus of Chapters 2 through 5. 

Systems simulation, on the other hand, explicitly models sequences of events 
that occur over time. Thus, inventory, queueing, manufacturing, and material-han­
dling problems are among the types of situations addressed with systems simula­
tion. Systems simulation models are discussed in detail in Chapters 6, 7, and 8. 

We illustrate a Monte Carlo simulation first using the following example. 

EXAMPLE OF MONTE CARLO SIMULATION 

Dave's Candies is a small family-owned business that offers gourmet chocolates 
and ice cream fountain service. For special occasions such as Valentine's Day, the 
store must place orders for special packaging several weeks in advance from their 
supplier. One product, Valentine's Day Chocolate Massacre, is bought for $7.50 a 
box and sells for $12.00. Any boxes that are not sold by February 14 are dis­
counted by 50% and can always be sold easily. Historically, Dave's Candies has 
sold between 40 and 90 boxes each year with no apparent trend (either increasing 
or decreasing). Dave's dilemma is deciding how many boxes to order for the 
Valentine's Day customers. If demand exceeds the purchase quantity, Dave loses 
profit opportunity. On the other hand, if too many boxes are purchased, he will 
lose money by discounting them below cost. 

We can easily develop an expression for Dave's profit if Q boxes are pur­
chased and sales demand is D: 

fi 
_ { 12D - 7.50Q + 6(Q - D) 

pro t - 12Q - 7.50Q 
ifD~Q 

ifD>Q 
(1.1) 
(1.2) 

In the first case, if demand is less than the amount ordered, Dave receives full rev­
enue from the sales of D boxes, must pay for the Q boxes purchased, and receives 
half revenue for the surplus. In the second case, if demand exceeds the amount or­
dered, Dave can sell only Q boxes and makes a net profit of $12.00 - $7.50 = 
$4.50 per box. 

The inputs to a simulation model of this situation would be: 

1. The order quantity, Q (the decision variable) 

2. The various revenue and cost factors (constants) 

3. The demand, D (uncontrollable and probabilistic) 

The model output we seek is the net profit. 
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If we know the demand, we can use equation (1.1) or (1.2) to compute the 
profit. Since demand is probabilistic, we need to be able to "sample" a value from 
the probability distribution of demand. For now, we simplify this problem by as­
suming that demand will be either 40, 50, 60, 70, 80, or 90 boxes with equal proba­
bility (t )· This will allow us to generate samples by rolling a die. (In a later chapter 
we will see how to do this quite easily on a spreadsheet.) The following table asso­
ciates the value of the roll of a die with one of the demand outcomes: 

Roll of Die Demand 

1 40 
2 50 
3 60 
4 70 
5 80 
6 90 

We will perform a Monte Carlo simulation for an order quantity Q = 60. 
The simulation proceeds as follows: 

1. Roll a die. 

2. Determine the demand, D from the foregoing table. 

3. Using Q = 60, compute the profit using equation (1.1) or (1.2). 

4. Record the profit. 

For example, suppose that the first roll of the die is 4. This corresponds to a 
demand of 70. Since D = 70 > Q = 60, we use equation (1.2) to compute the 
profit: 

profit= 12(60) - 7.50(60) = $270 

By repeating the simulation, we can develop a distribution of profit and assess 
risk. Table 1-1 summarizes the results for 10 replications of this experiment. From 
the table, the average profit that Dave might expect using Q = 60 is $246. We may 

Replication Role of Die Demand Profit 

1 5 80 $270 
2 3 60 270 
3 2 50 210 
4 4 70 270 
5 1 40 150 
6 3 60 270 
7 5 80 270 
8 6 90 270 
9 2 50 210 

10 3 60 270 

Average $246 

,/ 
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also construct a frequency distribution of profits. We also see that 10% of the time 
profit is $150, 20% of the time it is $210, and 70% of the time it is $270. This fre­
quency distribution of profit provides an assessment of the risk involved in mak­
ing the decision to order 60 boxes. 

We might observe that if we repeated the simulation again, we could expect to 
roll different values of the die and will probably obtain a different value for the av­
erage profit as well as a different frequency distribution. This is an important insight 
into the nature of simulation: It is a sampling experiment that is itself uncertain. 
Therefore, we need to be able to quantify the uncertainty in our simulated results. 
Later in the book we shall see how to do this using basic statistical principles. 

We might also observe that 10 replications will provide only limited results. 
For a larger number of replications, we would expect roughly an equal number of 
rolls of each value of the die. In this small experiment, we rolled a 2, 3, and 5 twice 
as often as a 1, 4, or 6. Thus, we might expect that our conclusions about the aver­
age profit and risk are somewhat biased and that the frequency distribution we 
obtained does not represent the true distribution of profit. We replicated this sim­
ulation 100 times and obtained the following frequency distribution: 

Profit Frequency 

$150 20 
210 22 
270 58 

with an average profit of $232.80. This average probably will be closer to the true ex­
pected value than what we obtained by using only 10 replications. Therefore, to ob­
tain valid results with Monte Carlo simulation, we need to make a sufficiently large 
number of replications. Again, in a later chapter, we address this issue statistically. 

Finally, the results in Table 1-1 are only descriptive; they do not tell us whether 
the order quantity Q = 60 is best. To find the best decision, we would have to exper­
iment with different order quantities. Using a spreadsheet (which we describe in 
Chapter 2), we replicated the simulation 100 times for order quantities of 40, 50, 60, 
70, 80, and 90. The summary results are shown in Figure 1-3. We see that the order 
quantity that maximizes the average profit is Q = 80, yielding an average profit of 

FIGURE 1-3 Summary Results of 100 Replications 
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$251.40. Although the optimal order quantity can easily be determined analytically 
(see Problem 7 at the end of the chapter), simulation provides insights that an ana­
lytic model cannot. From Figure 1-3 we also see that as the order quantity increases, 
the standard deviation of profit, as well as the range of profits, also increases. 
This suggests that ordering high quantities, while providing more opportunity to re­
alize higher profits, also increases the risk of obtaining a much lower profit. An or­
der quantity of Q = 80, for example, might result in a profit as high as $360 or as 
low as $120. If Dave requires a certain contribution to profit to meet other ex­
penses, the risk of gaining only a $120 profit by ordering 80 boxes might not seem so 
attractive. Simulation helps to provide an assessment of such risks. 

This example showed the nature of Monte Carlo simulation: repeated sam­
pling from probability distributions to develop the distribution of an output vari­
able. The next example illustrates the nature of a systems simulation model, one · 
that depends on the sequence of prior events and the passage of time. 

EXAMPLE OF SYSTEMS SIMULATION 

Mantel Manufacturing supplies various automotive components to major automo­
bile assembly divisions on a just-in-time basis. The company has received a new con­
tract for water pumps. Plarmed production capacity for water pumps is 100 units per 
shift. Because of fluctuations in customers' assembly operations, demand fluctuates 
and is historically between 80 and 130 units per day. To maintain sufficient inventory . 
to meet its just-in-tim~ commitments, Mantel's management is considering a policy 
to run a second shift if inventory falls to 50 or below. For the annual budget planning 
process, managers need to know how many additional shifts will be needed. 

We may use simulation to analyze this situation. In this case, however, the 
inventory level depen9s on prior events, and we must simulate the passage of 
time in order to answer the question. The fundamental equation that governs this 
process each day is 

ending inventory = beginning inventory + production - demand (1.3) 

Suppose that we begin with an inventory of 100 units. As in the preceding 
example, we simplify the problem by assuming that demand occurs in increments 
of 10 so that we may use the roll of a die to randomly generate the demand each 
day. Thus, we associate the demand with the roll of a die as follows: 

Roll of Die Demand 

1 80 
2 90 
3 100 
4 110 
5 120 
6 130 

The simulation process would proceed as follows: 

1. Begin a new day. 

2. Set the beginning inventory equal to the ending inventory from the previous day. 

3. Determine the demand by rolling the die. 

4. If the beginning inventory is 50 or less, the day's production is 200 units; otherwise, pro­
duction is 100 units. 
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TABLE 1-2 Results of Five Simulated Days for Mantel Manufacturing Example 

Day Beginning Inventory Roll of Die Demand Production Ending Inventory 

1 100 5 120 100 80 
2 80 4 110 100 70 
3 70 6 130 100 40 
4 40 6 130 200 110 
5 110 1 80 100 130 

S. Use equation (1.3) to compute the ending inventory. 

6. Stop if enough days have been simulated; otherwise, return to step 1. 

Table 1-2 shows five simulated days. We see that the inventory falls below 50 
on day 4, so a second shift is run, increasing the day's production to 200. Of 
course, five simulated days provide little meaningful information. Figure 1-4 
shows the result of simulating this process for 100 days. The graph shows that six 
additional shifts were needed over the 100 days to maintain the desired inventory 
level. Extrapolating this to a 250-day working year, the company should expect to 
need about 2.5(6) = 15 additional shifts. As we noted in the preceding example, 
we should expect some variability in this result if we repeated the simulation or 
ran it for a longer period. Statistical methods will help us to quantify this varia­
tion. Management may also wish to experiment with different overtime policies 
to weigh the risks of running out of stock versus the costs of additional shifts. 

The Simulation Process 

Using simulation effectively requires careful attention to the modeling and imple­
mentation process. The simulation process consists of five essential steps: 

1. Develop a conceptual model of the system or problem under study. This step begins 
with understanoing and defining the problem, identifying the goals and objectives of the 
study, determining the important input variables, and defining output measures. It might 
also include a detailed logical description of the system that is being studied. Simulation 

FIGURE 1-4 100-Day Production and Inventory Simulation 

230 

180 

"' 130 
:i= 

:5 80 

30 

Mantel Manufacturing Simulation 

-2Q. 11;1 "" ..._11;1 ~ ~ lb" i:§:i ~" .,, ~" ~ 11;1" r8' "" '\11;1 ~" <S> ~" r§> 
Day 

I-+-Inventory - Production I 


