Solution-Key for selected exercises from chapter-7

Exercise 3.

How could random numbers that are uniform on the interval [0,1] be transformed into random numbers that are uniform on the interval [-11,17]?

Solution:

Let
$$X = -11 + 28 R$$
 Where: $R \sim U[0, 1]$

Exercise 4.

Use the linear congruential method to generate a sequence of three two-digit random integers. Let Xo=27, a=8, c=47, and m=100.

Solution:

Xo=27, a=8, c=47, m=100
X1=(8x27+47) mod 100 = 63,
$$\rightarrow$$
 R1=63/100=0.63
X2=(8x63+47) mod 100 = 51, \rightarrow R2=51/100=0.51
X3=(8x51+47) mod 100 = 55, \rightarrow R1=55/100=0.55

Exercise 7.

The sequence of numbers 0.54, 0.73, 0.98, 0.11, and 0.68 has been generated. Use the Kolmogorov-Smirnov test with α =0.05 to determine if the hypothesis that the numbers are uniformly distributed on the interval [0,1] can be rejected.

Solution:

i	1	2	3	4	5
R_{i}	0.11	0.54	0.68	0.73	0.98
i/N	0.20	0.40	0.60	0.80	1.0
(i/N)-R _i	0.09			0.07	0.02
R_{i} -[(i-1)/N]	0.11	0.34	0.28	0.13	0.18

Therefore: $D^+=0.09$ and $D^-=0.34$

 \rightarrow D=0.34 and D_{0.05} = 0.565 \rightarrow Numbers are uniformly distributed [0,1].

Exercise 8.

Consider the following 50 two-digit values:

0.34	0.90	0.25	0.89	0.87	0.44	0.12	0.21	0.46	0.67
0.83	0.76	0.79	0.64	0.70	0.81	0.94	0.74	0.22	0.74
0.96	0.99	0.77	0.67	0.56	0.41	0.52	0.73	0.99	0.02
0.47	0.30	0.17	0.82	0.56	0.05	0.45	0.31	0.78	0.05
0.79	0.71	0.23	0.19	0.82	0.93	0.65	0.37	0.39	0.42

Use the chi-square test, with α =0.05, to determine if the hypothesis that the numbers are uniformly distributed on the interval [0, 1] can be rejected.

Solution:

Let's have 10 intervals \rightarrow $E_i=50/10=5$.

Interval	Oi	Ei	$[(O_i-E_i)^2]/E_i$
[0-0.1)	3	5	0.8
[0.1-0.2)	3	5	0.8
[0.2-0.3)	4	5	0.2
[0.3-0.4)	5	5	0
[0.4-0.5)	6	5	0.2
[0.5-0.6)	3	5	0.8
[0.6-0.7)	4	5	0.2
[0.7-0.8)	10	5	5
[0.8-0.9)	6	5	0.2
[0.9-1)	6	5	0.2
Total:	50	50	8.4

Since $\chi^2_0 = 8.4 < \chi^2_{.05,9} = 16.9 \Rightarrow$ We fail to reject the null hypothesis of no difference between the sample distribution and the uniform distribution.

Exercise 9.

Consider the following 50 two-digit values:

Consi	Consider the following 50 two-digit values.								
0.34	0.90	0.25	0.89	0.87	0.44	0.12	0.21	0.46	0.67
0.83	0.76	0.79	0.64	0.70	0.81	0.94	0.74	0.22	0.74
0.96	0.99	0.77	0.67	0.56	0.41	0.52	0.73	0.99	0.02
0.47	0.30	0.17	0.82	0.56	0.05	0.45	0.31	0.78	0.05
0.79	0.71	0.23	0.19	0.82	0.93	0.65	0.37	0.39	0.42

Based on runs up and runs down, determine whether the hypothesis of independence can be rejected, where α =0.05.

Solution:

Runs up and Runs down \rightarrow

$$a=27, N=50$$

Therefore;
$$\mu_a = (2N-1)/3 = 33$$
, and $\delta^2_a = (16N-29)/90 = 8.57$

$$Z_o = (a - \mu_a)/ \delta_a = -2.05, Z_{.025} = 1.96$$

Reject the Null Hypothesis of Independence.

Exercise 10. Consider the following 50 two-digit values:

0.99	0.17	0.99	0.46	0.05	0.66	0.10	0.42	0.18	0.49
0.37	0.51	0.54	0.01	0.81	0.28	0.69	0.34	0.75	0.49
0.72	0.43	0.56	0.97	0.30	0.94	0.96	0.58	0.73	0.05
0.06	0.39	0.84	0.24	0.40	0.64	0.40	0.19	0.79	0.62
0.18	0.26	0.97	0.88	0.64	0.47	0.60	0.11	0.29	0.78

Determine whether there is an excessive number of runs above or below the mean. Use α =0.05.

Sloution: Runs above or below the mean →

b=31 runs,
$$n_1$$
=24, n_2 =26, $N=n_1+n_2=50$

$$\mu_b {=} \left[(2 \ n_1 \ n_2)/N \right] + 1/2 {=} 25.46$$

$$6^2_b = [2 n_1 n_2 (2 n_1 n_2 - N)]/[N^2(N-1)] = 12.21$$

$$Z_o = (b - \mu_b) / \delta_b = 1.59, Z_{.025} = 1.96$$

Therefore; we fail to reject the Null Hypothesis of Independence.

Exercise 11. Consider the 50 two-digit values below. Can the hypothesis that the numbers are independent be rejected on the basis of the length of runs up and down when α =0.05?

$$0.34, 0.90, 0.25, 0.89, 0.87, 0.44, 0.12, 0.21, 0.46, 0.67$$

$$0.83, 0.76, 0.79, 0.64, 0.70, 0.81, 0.94, 0.74, 0.22, 0.74$$

$$0.96,\,0.99,\,0.77,\,0.67,\,0.56,\,0.41,\,0.52,\,0.73,\,0.99,\,0.02$$

$$0.47, 0.30, 0.12, 0.82, 0.56, 0.05, 0.45, 0.31, 0.78, 0.95$$

Solution:

Therefore, the length of runs up and down→

$$E(y_i) = \begin{cases} (2/(i+3)!)[N(i2+3i+1)-(i3+3i2-i-4)], & \text{for all } i \leq N-2 \\ \{2/N!, & \text{for } i=N-1 \end{cases}$$

Therefore;
$$E(y_1) = (2/24) [50(5) - (-1)] = 20.92$$

 $E(y_2) = 8.93$, $E(y_3) = 2.51$
 $\mu_a = (2N-1)/3 = 99/3 = 33$
 $E(y_{i \ge 4}) = \mu_a - E(y_1) - E(y_2) - E(y_3) = 0.64$

Run Length	Observed Runs	Expected Runs	$[O_i-E(y_i)]^2$
(i)	(O_i)	$E(y_i)$	$E(y_i)$
1	14	20.92	2.29
2	6	8.93	
3	5	2.51	0.07
≥4	2	0.64	

$$\chi^2_{0} = 2.36$$

Since $\chi^2_{.05,1}=3.84 \rightarrow$ Independence Null Hypothesis cannot be rejected.

Exercise 12. Consider the 50 two-digit values in exercise-11 (above). Can the hypothesis that the numbers are independent be rejected on the basis of the length of runs above and below the mean, when α =0.05?

Solution: Length of runs above and below the mean \rightarrow 1, 1, 1, 2, 4, 9, 1, 6, 1, 3, 4, 2, 3, 1, 1, 2, 2, 3, 3

Therefore; $n_1=29$, $n_2=21$, b=19 runs, N=50

	$-\gamma$, 112			
Run Length	1	2	3	≥4
(i)				
Observed	7	4	4	4
Runs (O _i)				

$$\begin{split} w_1 &= 2(29/50) \ (21/50) = 0.24 \\ w_2 &= (29/50)^2 (21/50) + (29/50) \ (21/50)^2 = 0.24 \\ w_3 &= (29/50)^3 (21/50) + (29/50) \ (21/50)^3 = 0.12 \\ E(I) &= 29/21 + 21/29 = 2.11, \quad E(A) = 50/2.11 = 23.7, \\ E(y_1) &= [50(0.24)/2.11] = 5.68, \quad E(y_2) = [50(0.24)/2.11] = 5.69, \\ E(y_3) &= [50(0.12)/2.11] = 2.84 \\ EY) &\geq 4 = 23.7 - (5.68 + 5.69 + 2.84) = 9.49 \end{split}$$

Run Length	Observed	Expected	$[O_i-E(y_i)]^2$
(i)	Runs (O _i)	Runs $(E(y_i))$	$E(y_i)$
1	19	5.68	3.41
2	8	5.69	0.5
3	2	2.84	
≥4	2	9.49	0.83
		2	171

$$\chi^2_{o} = 4.74$$

Run Length	Observed	Expected	$[O_i-E(y_i)]^2$
(i)	Runs (O _i)	Runs $(E(y_i))$	$E(y_i)$
1	19	5.68	3.41
2	8	5.69	0.5
≥3	4	12.33	5.63
		2	0.54

 $\chi^2_{o} = 9.54$

Since $\chi^2_{.05,2}$ =5.99 \rightarrow Independence Null Hypothesis should be rejected.

Exercise 15 (b). Develop the poker test for five-digit numbers.

Solution:

P(5 different digits)=0.9x0.8x0.7x0.6=0.3024

P(exactly one triplet)= $\binom{5}{3}$ (0.1)(0.1)(0.9(0.8)=0.072

P(triplet and a pair)= $\binom{5}{3}(0.1)(0.1)(0.9)(0.1)=0.009$

P(4 like digits)= $\binom{5}{4}$ (0.1)(0.1)(0.1)(0.9)=0.0045

P(5 like digits) = (0.1)(0.1)(0.1)(0.1) = 0.0001

P(exactly one pair)= $\binom{5}{2}(0.1)(0.9)(0.8)(0.7)=0.504$

P(2 different pairs) = 1 - (0.3024 + 0.072 + 0.009 + 0.0045 + 0.0001 + 0.504) = 0.108