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12-2 THE TWO-FACTOR FACTORIAL WITH RANDOM FACTORS

Suppose that we have two factors, A and B, and that both factors have a large number
of levels that are of interest (as in the previous section, we will assume that the number
of levels is infinite). We will choose at random « levels of factor A and b levels of factor
B and arrange these factor levels in a factorial experimental design. If the experiment is
replicated » times, we may represent the observations by the linear model

i=1,2,...,a
Y =pt 7+ B+ (B + € §=1,2,...,b (12-15)
k=1,2,...,n

where the model parameters 7,, 8;, (78);;, and €;; are all independent random variables.
We are also going to assume that the random variables 7;, B;, (18),;, and €, are normally



distributed with mean zero and variances given by V(1)) = g, V(B = 0%, VI(B),] =
025, and V(e;;) = o Therefore the variance of any observation is
V(yu) = 02+ 05 + 0% + 02 (12-16)
and 02, 03, 02, and o’ are the varlance components. The hypotheses that we are
interested in testing are Hy:02 = 0, Hy: 0',3 = 0, and Hy: a',B = 0. Notice the similarity
to the single-factor random effects model.
The numerical calculations in the analysis of variance remains unchanged; that is,
S84, SSz, SSag, SS7, and SSy; are all calculated as in the fixed effects case. However, to

form the test statistics, we must examine the expected mean squares. It may be shown
that

EMS,) = a* + nalg + bno?

EMSz) = a* + no’s + anoj

EMS,p) = 0* + no’g (12-17)
and

EMSg) = o?
From the expected mean squares, we see that the appropriate statistic for testing the
no-interaction hypothesis Ho: 055 = 0 is
MS 4

Fg ==~ 12-18
° = Ms, ( )



_ MS 4

F,
O MS;

(12-18)

because under H, both numerator and denominator of F, have expectation o?, and only
if H, is false is E(MS,z) greater than E(MSg). The ratio F, is distributed as
F a1y 1y.abn—1y- Similarly, for testing Hy: o2 = 0 we would use

MS,

=F.. 3 12-
Fo MS,., (12-19)

which is distributed as F,_; (,—1)»—1), and for testing Hy: 0',23 = 0 the statistic is

MSg

F,= —Z2
" MS,.

(12-20)
which is distributed as F,_; ,—1y—1)- These are all upper-tail, one-tail tests. Notice that
these test statistics are not the same as those used if both factors A and B are fixed. The
expected mean squares are always used as a guide to test statistic construction.



In many experiments involving random factors, interest centers at least as much on
estimating the variance components as on hypothesis testing. The variance components
may be estimated by the analysis of variance method, that is, by equating the observed
mean squares in the lines of the analysis of variance table to their expected values and
solving for the variance components. This yields

&% = MSg
6’2 — MSAB = MSE
= n (12-21)
A2 MSB - MSAB
T an
A MSA o MSAB
G =

bn



as the point estimates of the variance components in the two-factor random effects model.
We will discuss other methods for obtaining point estimates of the variance components
and procedures for constructing confidence intervals in Section 12-7.

EXAMPLE 12-2 «vceee R — I 0 R S i 6 3

A Measurement Systems Capability Study

Statistically designed experiments are frequently used to investigate the sources of vari-
ability that affect a system. A common industrial application is to use a designed exper-
iment to study the components of variability in a measurement system. These studies are
often called gauge capability studies or gauge repeatability and reproducibility
(R&R) studies, because these are the components of variability that are of interest.

A typical gauge R&R experiment [from Montgomery (1996)] is shown in Table
12-3. An instrument or gauge is used to measure a critical dimension on a part. Twenty
parts have been selected from the production process, and three randomly selected op-
erators measure each part twice with this gauge. The order in which the measurements
are made is completely randomized, so this is a two-factor factorial experiment with
design factors parts and operators, with two replications. Both parts and operators are
random factors. The variance component identity in Equation 12-15 applies; namely,

2

ay

=02+ 0§+ 0% + o



where o} is the total variability (including variability due to the different parts, variability
due to the different operators, and variability due to the gauge), o2 is the variance com-
ponent for parts, o3 is the variance component for operators, 0% is the variance com-
ponent that represents interaction between parts and operators, and o2 is the random

Table 12-3 The Measurement Systems Capability Experiment
in Example 12-2

Part
Number Operator 1 Operator 2 Operator 3

1 21 20 20 20 19 21
24 23 24 24 23 24
3 20 21 19 21 20 22
4 27 27 28 26 27 28
5 19 18 19 18 18 21
6 23 21 24 21 23 22
7 22 21 22 24 22 20
8 19 17 18 20 19 18
9 24 23 25 23 24 24
10 25 23 26 25 24 25
11 21 20 20 20 21 20
12 18 19 17 19 18 19
13 23 25 25 25 25 25
14 24 24 23 25 24 25
15 29 30 30 28 31 30
16 26 26 25 26 25 27
17 20 20 19 20 20 20
18 19 21 19 19 21 23
19 25 26 25 24 25 25

20 19 19 18 17 19 17




experimental error. Typically, the variance component o is called the gauge repeata-
bility, because o can be thought of as reflecting the variation observed when the same
part is measured by the same operator, and

is usually called the reproducibility of the gauge, because it reflects the additional vari-
ability in the measurement system resulting from use of the instrument by the operator.
These experiments are usually performed with the objective of estimating the variance
components.

Table 12-4 (on the facing page) shows the analysis of variance for this experiment.
The computations were performed using the Balanced ANOVA routine in Minitab. Based
on the P-values, we conclude that the effect of parts is large, operators may have a small
effect, and that there is no significant part—operator interaction. We may use Equation
12-21 to estimate the variance components as follows:

62.39 — 0.71
F=————=1078
3@
1.31 — 0.71
§2 = ~———— = 0.015
75T 200
0.71 — 0.99
gy = e {114

and



6% = 0.99

The bottom portion of the Minitab output in Table 12-4 contains the expected
mean squares for the random model with numbers in parentheses representing the vari-
ance components [(4) represents o>, (3) represents o2, etc.]. The estimates of the va-
riance components are also given, along with the error term that was used in testing that
variance component in the analysis of variance. We will discuss the terminology unre-
stricted model later; it has no relevance in random models.

Notice that the estimate of one of the variance components, 6'33, is negative. This is
certainly not reasonable because by definition variances are nonnegative. Unfortunately,
negative estimates of variance components can result when we use the analysis of vari-
ance method of estimation (this is considered one of its drawbacks). There are a variety
of ways to deal with this. One possibility is to assume that the negative estimate means
that the variance component is really zero and just set it to zero, leaving the other non-
negative estimates unchanged. Another approach is to estimate the variance components
with a method that assures nonnegative estimates (we will discuss this briefly in Section
12-7). Finally, we could note that the P-value for the interaction term in Table 12-4 is
very large, take this as evidence that 0'3,3 really is zero, that there is no interaction effect,
and fit a reduced model of the form

Yie = Mt 7 F B + €y

that does not include the interaction term. This is a relatively easy approach and one that
often works nearly as well as more sophisticated methods.
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Table 12-5 Analysis of Variance for the Reduced Model, Example 12-2

Analysis of Variance (Balanced Designs)

Factor Type Levels Values
part random 20 1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20
operator random 3 1 2 3
Analysis of Variance for y
Source DF SS MS F P
part 19 1185.425 62.391 70.64 0.000
operator 2 2.617 1.308 1.48 0.232
Error 98 86.550 0.883
Total 119 1274.592
Source Variance Error Expected Mean Square for Each Term
component term (using unrestricted model)
1 part 10.2513 3 (3) + 6(1>
2 operator 0.0106 3 (3) + 40(2)
3 Error 0.8832 3

there is no interaction term in the model, both main effects are tested against the error
term, and the estimates of the variance components are

., _ 6239 — 088

o 4 = 10.25
(3X2)
1.31 — 0.88
63 = ——— = 0.0108
& (20)(2)
2

5° = 0.88



Finally, we could estimate the variance of the gauge as the sum of the variance component
estimates 6> and & as
é-éauge = 6-2 + a’é
0.88 + 0.0108
= 0.8908

The variability in the gauge appears small relative to the variability in the product. This
is generally a desirable situation, implying that the gauge is capable of distinguishing
among different grades of product.

il
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12.3 THE TWO-FACTOR MIXED MODEL

We now consider the situation where one of the factors A is fixed and the other B
is random. This is called the mixed model analysis of variance. The linear statistical
model is

i=1,2,...,a
yijk = i + T; + Bj+ (TB)U + Eijk ] 1, 2,...,b (12'22)
k=1,2,...,hn

M
-



Here 7; is a fixed effect, f; is a random effect, the interaction (7B); is assumed to be a
random effect, and €;; is a random error. We also assume that the {7} are fixed effects
such that S ,7, = 0 and B;is a NID(O, O'f;) random variable. The interaction effect,
(1B);, 1s a normal random variable with mean O and variance [(a — 1)/a]0'33; however,
summing the interaction component over the fixed factor equals zero. That is,

;(ﬂrﬁ>i,=<frﬁ).,-=o §e= 1, D anb

This restriction implies that certain interaction elements at different levels of the fixed
factor are not independent. In fact, we may show (see Problem 12-25) that

1
Covi(mB)s (TR} = 3 o2y GBET

The covariance between (7f3); and (1B); for j # j' is zero, and the random error € is
NID(0, o). Because the sum of the interaction effects over the levels of the fixed factor
equals zero, this version of the mixed model is often called the restricted model.

e o S e s e paids R
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equals zero, this version of the mixed model is often called the restricted model.

In this model the variance of (78);; is defined as [(@ — 1)/a]o-i,3 rather than 0'3,3 to
simplify the expected mean squares. The assumption (73),; = 0 also has an effect on the
expected mean squares, which we may show are

a
bn D,
i=1

EMS,) = 0* + noig + ——lj——
a~—1

E(MSg) = o2 + ano
EMSss) = 0 + no’g (12-23)

and
EMSz) = o

Therefore, the appropriate test statistic for testing that the means of the fixed factor effects
are equal, or Hy:7; = 0, is
MS
F() = —4

MS 4z
for which the reference distribution is Fo i a-1yp-1) FOI testing H0:0,23 = 0, the test
statistic is
_ MSg

F_
O MSg

with reference distribution Fy1 ap(n—1)- Finally, for testing the interaction hypothesis
Hy: 0% = 0, we would use

_ MSas

F., =
° T MS:

which has reference distribution F,— 15— 1).abtn—1)-
In the mixed model, it is possible to estimate the fixed factor effects as

~ (12-24)

~5 =15

>
I
w2l i<l



The variance components o3, 025, and o* may be estimated using the analysis of vari-
ance method. Eliminating the first equation from Equations 12-23 leaves three equations
in three unknowns, whose solutions are

&% — MSB = MSE
an
MS,; — M
625 = —2£ Bl (12-25)
n
and
62 = MSg

This general approach can be used to estimate the variance components in any mixed
model. After eliminating the mean squares containing fixed factors, there will always be
a set of equations remaining that can be solved for the variance components.

In mixed models the experimenter may be interested in testing hypotheses or con-
structing confidence intervals about individual treatment means for the fixed factor. In
using such procedures, care must be exercised to use the proper standard error of the
treatment mean. The standard error of the fixed effect treatment mean is

Mean square for testing the fixed effect i _ [MS,p
Number of observations in each treatment mean bn
Notice that this is just the standard error that we would use if this was a fixed effects
model, except that MS, has been replaced by the mean square used for hypothesis testing.




EXAMPLE 12-3 +cvccecostsoetsosensosacacsassecscssoacssonaccs

The Measurement Systems Capability Experiment Revisited

Reconsider the gauge R&R experiment described in Example 12-2. Suppose now that
there are only three operators that use this gauge, so the operators are a fixed factor.
However, because the parts are chosen at random, the experiment now involves a mixed
model.

The analysis of variance for the mixed model is shown in Table 12-6 on the facing
page. The computations were performed using the Balanced ANOVA routine in Minitab.
We specified that the restricted model be used in the Minitab analysis. Minitab also
generated the expected mean squares for this model. In the Minitab output, the quantity
Q[2] indicates a quadratic expression involving the fixed factor effect operator. That is,
Q2] = Z_,B/(b — 1). The conclusions are similar to Example 12-2. The variance
components may be estimated from Equation (12-25) as

_ MSps — MSg _ 62.39 — 0.99

G Parts = = 10.23
e an B
MS sXoperators MS 0.71 — 0.9
(ﬁ'%’artonperalors = Farts Xop nt £ = 2 4 = —0.14

6> = MSg = 0.99

These results are also given in the Minitab output. Once again, a negative estimate of
the interaction variance component results. An appropriate course of action would be to
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12-4 SAMPLE SIZE DETERMINATION WITH RANDOM EFFECTS

The operating characteristic curves in the Appendix may be used for sample size deter-
mination in experiments with random factors. We begin with the single-factor random
effects model of Section 12-1. The type II error probability for the random effects model
is

B =1 — P{Reject Hy|H, is false}
= 1 - P{FO > Fa,a—l,N—ala-‘iz' > 0} (12-28)

Once again, the distribution of the test statistic Fy = MStcamments/MS g under the alternative
hypothesis is needed. It can be shown that if H, is true (o2 > 0), the distribution of F,
is central F with a — 1 and N — a degrees of freedom.

Because the type II error probability of the random effects model is based on the
usual central F distribution, we could use the tables of the F distribution in the Appendix
to evaluate Equation 12-28. However, it is simpler to determine the sensitivity of the test
through the use of operating characteristic curves. A set of these curves for various values
of numerator degrees of freedom, denominator degrees of freedom, and « of 0.05 or 0.01
is provided in Chart VI of the Appendix. These curves plot the probability of type II
error against the parameter A, where

2
A= 1+ ”:; (12-29)

Note that A involves two unknown parameters, o> and oz. We may be able to estimate
o2 if we have an idea about how much variability in the population of treatments it is
important to detect. An estimate of o> may be chosen using prior experience or judgment.
Sometimes it is helpful to define the value of o2 we are interested in detecting in terms
of the ratio /o>



Suppose we have five treatments selected at random with six observations per treatment
and o = 0.05, and we wish to determine the power of the test if o2 is equal to o”.
Because a = 5, n = 6, and o2 = ¢°, we may compute

A=VI1+6(1) = 2.646

From the operating characteristic curve witha — 1 = 4, N — a = 25 degrees of freedom,
and a = 0.05, we find that

B =020

and thus the power is approximately 0.80.

466066 0000006000008 00060000809000050000050 0500060000000 0E050006006006060600000000e000000

We can also use the percentage increase in the standard deviation of an observation
method to determine sample size. If the treatments are homogeneous, then the standard
deviation of an observation selected at random is o. However, if the treatments are
different, the standard deviation of a randomly chosen observation is

Vo + 0'3



If P is the fixed percentage increase in the standard deviation of an observation beyond
which rejection of the null hypothesis is desired,

—— =1+ 0.01P
ag
or
0_2
?‘_—; =(1+001PY -1

Therefore, using Equation 12-29, we find that

2
A= 1+ 22 =T+ all + 0.01PY — 1] (12-30)
g

For a given P, the operating characteristic curves in Appendix Chart VI can be used to
find the desired sample size.

We can also use the operating characteristic curves for sample size determination
for the two-factor random effects model and the mixed model. Appendix Chart VI is
used for the random effects model. The parameter A, numerator degrees of freedom, and
denominator degrees of freedom are shown in the top half of Table 12-8. For the mixed
model, both Charts V and VI in the Appendix must be used. The appropriate values for
®? and A are shown in the bottom half of Table 12-8.




Table 12-8 Operating Characteristic Curve Parameters for Tables V and VI of the Appendix
for the Two-Factor Random Effects and Mixed Models

The Random Effects Model
Numerator Denominator
Degrees of Degrees of
Factor A Freedom Freedom
A | 4 bnor - @-1o-1
o+ na'fB
2
B [ oot b—1 @a—DB-
0% + no’g
2
AB 1 + 29 @a- -1 ab(n — 1)
P
The Mixed Model
Numerator Denominator
Degrees of Degrees of Appendix
Factor Parameter Freedom Freedom Chart
b 7
A (Fixed) “ ,=21 a—1 a—-DB-1D A"

2 T et ———
alo* + no’g

B (Random) f= M1 %‘2’% b—1 ab(n — 1) VI

AB A= |1+ ”"jfﬂ (@a—DB-1) ab(n — 1) VI
a
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