Design of Engineering Experiments
Chapter 2 — Some Basic Statistical Concepts

 Describing sample data
— Random samples
— Sample mean, variance, standard deviation
— Populations versus samples
— Population mean, variance, standard deviation
— Estimating parameters
« Simple comparative experiments
— The hypothesis testing framework

— The two-sample t-test
— Checking assumptions, validity
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Portland Cement Formulation (page 26)

m TABLE 2.1

Tension Bond Strength Data for the Portland
Cement Formulation Experiment

Modified Unmuodified
Mortar Mortar
J Yy Y3
1 16.85 16.62
2 16.40 16.75
3 17.21 17.37
4 16.35 17.12
5 16.52 16.98
6 17.04 16.87
7 16.96 17.34
8 17.15 17.02
9 16.59 17.08
10 16.57 17.27

Chapter 2 Design & Analysis of Experiments
8E 2012 Montgomery



Graphical View of the Data
Dot Diagram, Fig. 2.1, pp. 26
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m FIGURE 2.1

Chapter 2

Dot diagram for the tension bond strength data in Table 2.1
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If you have a large sample, a
histogram may be useful
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m FIGURE 2.2 Histogram for 2(0) observations on metal recovery (yield) from
a smelting process
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Box Plots, Fig. 2.3, pp. 28
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m FIGURE 2.3 Box plots for the Portland cement
tension bond strength experiment
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The Hypothesis Testing Framework

o Statistical hypothesis testing Is a useful
framework for many experimental
situations

 Origins of the methodology date from the
early 1900s

* We will use a procedure known as the two-
sample t-test
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The Hypothesis Testing Framework
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Factor level 1 Factor level 2

m FIGURE 2.9 The sampling situation for the two-sample 7-test

« Sampling from a normal distribution
« Statistical hypotheses: H, o, =,

A, T #
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Estimation of Parameters

1< . .
y = y. estimates the population mean u

n =1

‘ -

5% =

=212 (yI y)? estimates the variance o~
n-—
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Summary Statistics (pg. 38)

Modified Mortar Unmodified Mortar
“New recipe” “Original recipe”
y, =16.76 y, =11.04
52 =0.100 S; =0.061
S, =0.316 S, =0.248
n, =10 n, =10
Chapter 2 Design & Analysis of Experiments
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How the Two-Sample t-Test Works:
Use the sample means to draw inferences about the population means
y,—-Y,=16.76-17.04 =-0.28

Difference in sample means
Standard deviation of the difference in sample means

2 2 2
(o) o, _ — .
o,=—, ando;_, =—1+-2y andy, independent
1~Y2
n n, )
This suggests a statistic:
Zo — 71 B 72

02 0'2

©1 4, %

nl n2

If the variances were known we could use the normal distribution as the basis of a test
Z, has a N(0,1) distribution if the two population means are equal
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If we knew the two variances how would we use Z,to test H,?
Ho: pl-u2=0
H1: ul-u240

Suppose that g, = g, = 0.30. Then we can calculate

L _ %Y, _ 028 028 _
R PRI \/0.32 032 0.1342
01,0 n
n n, 10 10

How “unusual” is the value Z, = -2.09 if the two population means are equal?

It turns out that 95% of the area under the standard normal curve (probability)
falls between the values Z, 5, = 1.96 and - Z 5, = -1.96.

So the value Z, = -2.09 is pretty unusual in that it would happen less that 5%
of the time if the population means were equal
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I Cumulative Standard Normal Distribution’

Standard Normal Table (see appendix)

I Cumulative Standard Normal Distribution (Continued)

o

D7) = ] ™2 gy
(Z) I \('12;

z 0.00 0.01 0.02 0.03 0.04 z

0.0 0.50000 0.50399 0.50798 051197 0.51595 0.0
0.1 0.53083 0.54379 0.54776 0.55172 0.55567 0.1
0.2 0.57926 0.58317 0.58706 0.59095 0.59483 0.2
0.3 01.61791 0.62172 0.62551 0.62930 0.63307 0.3
0.4 0.65542 0.65910 0.66276 0.66640 0.67003 04
0.5 0.60146 0.69497 0.60847 0.70194 0.70540 0.5
0.6 0.72575 0.72907 0.73237 0.73565 0.73891 0.6
0.7 0.75803 076115 0.76424 076730 0.77035 0.7
0.8 0.78814 0.79103 0.79389 0.79673 0.79954 0.8
0.9 0.81594 0.81859 0.82121 0.82381 0.82639 09
1.0 0.84134 0.84375 0.84613 0.84840 (0.85083 1.0
1.1 0.86433 0.86650 0.86864 087076 (0.87285 1.1
1.2 (1.884093 0.88686 0.88877 0.89065 0.89251] 1.2
1.3 0.90320 0.90490 0.90658 090824 0.90088 13
1.4 0.91924 0.92073 0.92219 092364 0.92506 14
1.5 0.93319 0.93448 0.93574 0.93690 0.93822 1.5
1.6 0.94520 0.94630 094738 004845 (0.94950 1.6
1.7 0.95543 0.95637 0.95728 005818 0.95007 1.7
1.8 0.96407 0.96485 0.96562 096637 096711 18
1.9 097128 097193 0.97257 097320 0.97381 19
2.0 0.97725 0.97778 0.97831 097882 0.97932 2.0
2.1 0.98214 0.98257 0.98300 098341 0.93882 2.1
22 0.98610 0.98645 0.98679 098713 0.98745 22
23 0.98028 0.98956 0.98983 099010 0.99036 23
24 1.99180 0.99202 0.99224 099245 0.99266 24
25 0.99379 0.99396 0.99413 0.99430 0.99446 25
2.6 0.99534 0.99547 0.99560 099573 0.99585 26
27 0.99653 0.99664 0.99674 009683 0.90693 2.7
28 01.99744 0.99752 0.99760 099767 0.99774 28
29 01.99813 0.99519 0.99825 099831 0.99836 29
3.0 0.99865 0.99869 0.99874 0.99878 0.99882 30
31 0.99903 0.99906 0.99910 099913 0.90916 KN
32 0.99931 0.99934 0.99936 009938 (0.99040 32
33 (1.99952 0.99953 0.99955 0.99957 0.99958 33
34 1.99966 0.99968 0.99969 099970 0.99971 34
35 0.99977 090078 090078 099979 099050 35
36 0.99984 0.90085 0.90085 0.99986 0.99986 16
37 0.99989 0.99990 0.99990 0.99990 (0.9909] a7
38 0.99993 0.99993 0.99993 0.99994 0.99994 LR
39 1.99995 0.99995 0.99996 099996 0.99996 39

"Reproduced with permission from Probability and Statistics in Engineering and Management Science, 3rd edition, by W. W. Hines
and D. C. Montgomery. Wiley, New Yark, 1990
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O(z) = ’ L e gy
S N 2ar

z 0.05 0.06 0.07 0.08 0.09 z
0.0 051004 052302 052790 0.53188 3 0.0
0.1 055062 056356 056749 0.57142 057534 0.1
02 050871 060257 060642 0.61026 0.61400 0.2
03 063683 064038 064431 0.64803 0.65173 0.3
04 067364 067724 068082 0.68438 0.68703 0.4
05 0.70884 071226 0.71566 0.71904 0.72240 0.5
0.6 0.74215 0.74537 0.74857 0.75175 0.75490 0.6
0.7 0.77337 0.77637 0.77935 0.78230 0.78523 0.7
08 0.80234 0.80510 0.80785 0.81057 081327 0.8
09 0.82894 083147 0.83397 083646 0.83891 0.9
10 085314 0.85543 0.85769 0.85003 0.86214 L0
ZO 025 = 1.96 1 0.87493 0.87697 0.87900 0.88100 083297 L1
: 12 0.89435 0.89616 0.80796 0.89973 090147 1.2
13 091149 091308 0.91465 0.91621 091773 L3
14 092647 002785 092022 0.93056 0.93189 L4
093043 090462 094179 0.94295 0.94408 L5
: 005154 005254 0.05352 0.95448 16
17 0.96080 096164 0.96246 0.96327 17
18 HI685G 096026 0.96995 0.97062 1.8
19 097441 097538 0.97615 0.97670 1.9
20 097982 TR 098077 0.98124 098169 20
2.1 098422 098461 0.98500 0.98537 098574 21
22 098778 098509 098840 0.98870 0.98899 22
23 099061 099086 099111 0.99134 099158 2.3
24 099286 009305 099324 0.09343 0.99361 24
25 099461 009477 099492 0.99506 0.99520 25
26 0.99508 0.99609 099621 0.99632 0.99643 26
27 099702 009711 099720 0.09728 099736 27
28 099781 099788 099795 0.99801 0.99807 2.8
29 099841 099846 099851 0.99856 0.99861 2.9
30 099886 099889 0.99893 0.99897 0.99900 3.0
3.1 099918 099921 099924 0.99926 099929 31
32 099042 000944 099946 0.09948 0.99950 32
33 099960 099961 0.99962 0.99964 0.99965 3.3
34 099972 099973 099974 0.99975 099976 34
35 099081 09981 099982 0.09083 0.99083 3.5
36 0.99087 009087 0.99088 0.99988 0.99989 36
37 099991 009992 099992 0.99992 0.99992 37
38 099994 0.09994 0.99905 0.09995 0.99995 3.8
39 099996 0.09996 099906 0.99997 0.99997 3.9
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So if the variances were known we would conclude that we should reject
the null hypathesis at the 5% level of significance

Ho oy = 14
Hyfm # 1
and conclude that the alternative hypothesis is true.

This is called a fixed significance level test, because we compare the value
of the test statistic to a critical value (1.96) that we selected in advance
before running the experiment.

The standard normal distribution is the reference distribution for the test.

Another way to do this that is very popular is to use the P-value approach.
The P-value can be thought of as the observed significance level.

For the Z-test it is easy to find the P-value.
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Normal Table

I Cumulative Standard Normal Distribution (Continued)

. [ 1 _en
P(z) = — " du

S\ 27

z 0.05 0.06 0.07 0.08 0.09 z . I
0.0 051004 052302 052790 0.53188 0.53586 0.0 Flnd the prObabIIIty above ZO
0.1 0.55062 056356 056740 0.57142 0.57534 0.1
02 050871 060257 0.60642 0.61026 0.61400 0.2 —_ _2 09 f m th t bl
03 0.63683 0.64058 0.64431 0.64803 065173 0.3 . ro e a e
04 0.67364 067724 0.68082 0.68438 0.68703 0.4
0.5 0.70854 071226 0.71566 0.71904 0.72240 0.5 . .
06 0.74215 074537 0.74857 075175 075490 0.6 Th IS IS 1 _ O 98169 — O 01832
07 0.77337 0.77637 0.77935 0.78230 078523 0.7 . .
08 0.80234 0.80510 0.80785 0.81057 081327 0.8
09 0.82894 0.83147 0.83397 0.83646 0.83891 0.9
1.0 0.85314 085543 0.85760 0.85003 086214 1.0 Th P_ I t th
1.1 0.87493 0.87697 0.87900 0.88100 088207 L1 e Va- ue IS che IS
12 0.89435 089616 0.89796 0.80073 090147 1.2 _—
13 0.01149 001308 0.01465 0.91621 0.91773 1.3 prObablllty Or O 03662
14 092647 092785 092922 0.93056 093189 1.4 ! - -
1.5 0.93043 000462 0.04179 0.04205 0.94408 L3
16 0.95053 005154 0.05254 0.05352 095448 L6 .

9590 9 g 9624 2 .
17 oswes osew sl oW 0w L So we would reject the null
18 0.96784 006856 0.06926 0.96995 097062 1.8
19 0.97441 097500 0.07558 0.97615 097670 1.9 h h - I I f
2.0 097982 0.98030 0.98077 0.98124 0.98169 2.0 ypOt ESIS at any eve O
2.1 0.98422 098461 0.98500 0.98537 098574 21 : L. .
22 0.98778 098500 0.98840 0.98870 0.98899 22 f th t I th
23 0.99061 099086 099111 0.99134 099158 23 Slgnl ICance a IS arger a.n
24 0.00286 009305 0.00324 0.00343 0.99361 2.4
2.5 0.99461 0.99477 0.09492 0.00506 0.99520 2.5 Or equal to O 03662
26 0.99508 0.09600 0.99621 0.00632 0.99643 26 ' *
27 0.99702 099711 0.09720 0.00728 099736 27
28 0.99781 009788 0.09705 0.99801 0.99807 28 . .
209 0.99841 099546 099851 0.09356 099861 29 Typlca”y O 05 IS used aS the
3.0 0.99886 099889 0.99893 0.99897 0.99900 3.0 -
3.1 0.99918 099921 0.99924 0.99926 0.99929 3l
32 0.99942 099944 0.99946 0.99948 0.99950 32 CutOI I .
33 0.99960 099961 0.99962 0.99964 0.99965 3.3
34 0.99972 099973 0.99974 0.99975 0.99976 3.4
35 0.09081 009981 0.00082 0.00083 0.99983 3.5
36 0.99087 0.09987 0.09088 0.90088 099989 3.6
3.7 0.99901 099992 0.99992 0.99992 0.99902 37
38 0.09904 099904 0.00005 0.00005 0.99905 3.8
39 0.99996 099996 0.99996 0.99997 0.99997 3.0
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The t -Test

« The Z-test just described would work perfectly if we knew
the two population variances.

e Since we usually don’t know the true population variances,
what would happen if we just plugged in the sample
variances?

« The answer is that if the sample sizes were large enough
(say both n > 30 or 40) the Z-test would work just fine. It
IS @ good large-sample test for the difference in means.

« But many times that isn’t possible.

It turns out that if the sample size is small we can no longer
use the N(0,1) distribution as the reference distribution for
the test.

Chapter 2 Design & Analysis of Experiments 15
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How the Two-Sample t-Test Works:
Use S7 and S? to estimate o, and o
71 . 72
S/ S’
Vn "n,
However, we have the case where ¢ = o, = o°
Pool the individual sample variances:
_ (nl _1)812 T (nz _1)822

n+n,—-2

The previous ratio becomes

SZ

p

Chapter 2 Design & Analysis of Experiments 16
8E 2012 Montgomery



How the Two-Sample t-Test Works:

The test statistic IS
to — 71 o 72

Sp\/1+1
nl n2

Values of t, that are near zero are consistent with the null
hypothesis

Values of t,that are very different from zero are consistent
with the alternative hypothesis

t,is a “distance” measure-how far apart the averages are
expressed in standard deviation units

Notice the interpretation of t,as a signal-to-noise ratio

Chapter 2 Design & Analysis of Experiments 17
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The Two-Sample (Pooled) t-Test

gz _ (0 ~1)SZ+(n,-1)SZ?  9(0.100) +9(0.061) 0.081
° n +n,—2 10+10-2 |
S, =0.284
t -y, _ 16.76-17.04 590

S, 1+1 0.284,/1+l
n n, 10 10

The two sample means are a little over two standard deviations apart
Is this a "large™ difference?

Chapter 2 Design & Analysis of Experiments 18
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The Two-Sample (Pooled) t-Test

We need an objective
basis for deciding how
large the test statistic t,
really is

In 1908, W. S. Gosset
derived the reference
distribution for t, ...
called the t distribution

Tables of the t distribution e

— see textbook appendix
page 614

t, = -2.20

m FIGURE 2.10 The/  distribution with 18 degrees of freedom
with the critical region = £ 4,5 ;s = * 2.101

Chapter 2 Design & Analysis of Experiments 19
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IT  Percentage Points of the ¢t Distribution®

v N 0.40 0.25 0.10 0.05 0.025 0.01 0.005 0.0025 0.001 0.0005
1 0.325 1000 3.078 6.314 12.706 31.821 63.657 127.32 31831 636.62
2 0.289 0816 1.886 2.920 4.303 6.965 9.925 14.089 23326 31.598
3 0.277 0.765 1.638 2.353 3182 4.541 5.841 7453 10.213 12.924
4 0.271 0.741 1.533 2.132 2776 3.747 4.604 5.598 7.173 8.610
5 0.267 0,727 1.476 2.015 2.571 3.365 4.032 4.773 5.893 6.869
6 0.265 0,727 1.440 1.943 2.447 3.143 3.707 4.317 5.208 5.959
7 0.263 0711 1.415 1.895 2.365 2.098 3.499 4.019 4.785 5.408
8 0.262 0.706 1.397 1.860 2.306 2.896 3.355 3833 4.501 5.041
9 0.261 0.703 1.383 1.833 2.262 2.821 3.250 3.690 4.297 4.781

10 0.260 0.700 1.372 1.812 2.228 2.764 3.169 3.581 4.144 4.587
11 0.260 0.697 1.363 1.796 2.201 2718 3.106 3497 4.025 4.437
12 0.259 0.695 1.356 1.782 2.179 2.681 3.055 3428 3.930 4318
13 0.259 0.694 1.350 1.771 2.160 2.650 3.012 3.372 3.852 4221
14 0.258 0.692 1.345 1.761 2.145 2.624 2.977 3.326 3.787 4.140
15 0.258 0.691 1.341 1.753 2.131 2.602 2.947 3.286 3.733 4.073
16 0.258 0.690 1.337 1.746 2.120 2.583 2.921 3.252 3.686 4.015
17 0.257 0.689 1.333 1.740 2.110 2.567 2.898 3.222 3.646 3.965
18 0.257 0.688 1.330 1.734 2.101 2.552 2.878 3.197 3610 3.922
19 0.257 0.688 1.328 1.729 2.003 2.539 2.861 3174 3.579 3883
20 0.257 0.687 1.325 1.725 2.086 2.528 2.845 3153 3552 3.850
21 0.257 0.686 1.323 1.721 2.080 2518 2.831 3.135 3.527 3819
22 0.256 0.686 1.321 1717 2.074 2308 2.819 3119 3505 3.792
23 0.256 0.685 1.319 1.714 2.069 2.500 2.807 3.104 3.485 3.767
24 0.256 0.685 1.318 1711 2.064 2492 2.797 3.091 3467 3.745
25 0.256 0.684 1.316 1.708 2.060 2.485 2,787 3.078 3.450 3.725
26 0.256 0.684 1.315 1.706 2.056 2479 2.779 3.067 3435 3.707
27 0.256 0.684 1.314 1703 2.052 2473 2.771 3.057 3.421 3.690
28 0.256 0.683 1.313 1.701 2,048 2467 2.763 3.7 3.408 3.674
29 0.256 0.683 1.311 1.699 2.045 2462 2.756 3038 3.396 3.659
30 0.256 0.683 1.310 1.697 2.042 2457 2.750 3.030 3.385 3.646
40 0.255 0.681 1.303 1.684 2.021 2423 2.704 2971 3.307 3.551
60 0.254 0.679 1.296 1.671 2.000 2300 2.660 2915 3.232 3.460
120 0.254 0.677 1.289 1.658 1980 2358 2.617 2.860 3.160 3373
e 0.253 0.674 1.282 1.645 1.960 2326 2.576 2.807 3.000 3.291

¥ = Degrees of freedom.

! Adapted with permission from Biametrika Tables for Statisticians, Vol. 1. 3rd edition. by E. 5. Pearson and H. O. Hartley, Cambridge University Press, Cambridge,
1966,
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The Two-Sample (Pooled) t-Test

A value of t, between
—2.101 and 2.101 is t, = -2.20
consistent with

equality of means

It is possible for the
means to be equal and
t, to exceed either
2.101 or —2.101, leads :
to the conclusion that o
the means are

different T i i i it 8 gt i

Could also use the
P-value approach

Probability density
(=]
[(%]
[

Critical ]
region
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The Two-Sample (Pooled) t-Test

0.“-1 | T 1 T T 1 T
tO =-2.20 5 03F -
s [ ]
=
Q - —
= — —
z 02|~ .
S i
. \:’u’cm Critical ]
n region region ]
B -2.101 2.101 il
C A ~ N~ ]
0 | | L L | | | | | | | | | | | | | 1 L | |
-6 -4 -2 0 2 4 6

o

m FIGURE 2.10 The/  distribution with 18 degrees of freedom
with the critical region = £ 4,5 ;s = * 2.101

« The P-value is the area (probability) in the tails of the t-distribution beyond -2.20 + the
probability beyond +2.20 (it’s a two-sided test)

- The P-value is a measure of how unusual the value of the test statistic is given that the null
hypothesis is true

»  The P-value the risk of wrongly rejecting the null hypothesis of equal means (it measures
rareness of the event)

«  The exact P-value in our problem is P = 0.042 (found from a computer)

Chapter 2 Design & Analysis of Experiments 22
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Approximating the P-value

Our t-table only gives probabilities greater than positive values of t.
So take the absolute value of t, = -2.20 or |t,|= 2.20.

Now with 18 degrees of freedom, find the values of t in the table that
bracket this value.

These are 2.101 < |t;|= 2.20 < 2.552. The right-tail probability for t =
2.101 15 0.025 and for t = 2.552 is 0.01. Double these probabilities
because this is a two-sided test.

Therefore the P-value must lie between these two probabilities, or
0.05 < P-value < 0.02
These are upper and lower bounds on the P-value.

We know that the actual P-value is 0.042.

Chapter 2 Design & Analysis of Experiments
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Checking Assumptions —
The Normal Probability Plot

Percent (cumulative normal probability =< 100)

m FIGURE 2.11 Normal
probability plots of tension bond
strength in the Portland cement
experiment

|

Variable
e [\ clified
medims | nmodified

16.0

Chapter 2

16.2

16.4

16.6

16.8 170 172 174 176 178

Strength (kgffcm?)
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Importance of the t-Test

* Provides an objective framework for simple
comparative experiments

« Could be used to test all relevant hypotheses
In a two-level factorial design, because all
of these hypotheses involve the mean
response at one “side” of the cube versus
the mean response at the opposite “side” of
the cube

Chapter 2 Design & Analysis of Experiments 25
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Confidence Intervals (See pg. 43)

» Hypothesis testing gives an objective statement
concerning the difference in means, but 1t doesn’t
specify “how different” they are

« General form of a confidence interval
L<O&<U whereP(L<O<U)=1-«

 The 100(1- a)% confidence interval on the
difference in two means:

Yi— Y, _ta/2,n1+n2—28p\/(1/ n)+@/n,) <y —p, <

71 B VZ +ta/2,n1+n2—28p\/(1/ nl) + (1/ nz)

Chapter 2 Design & Analysis of Experiments 26
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The actual 95 percent confidence interval estimate for the difference in mean tension
bond strength for the formulations of Portland cement mortar is found by substituting in
Equation 2.30 as follows:

16.76 — 17.04 — (2.101)0.284V~ +

A

My = M
16.76 — 17.04 + (2.101)0.284V5 + 15
—028 - 027 = p, — w, = —028 +0.27

=

IA

—055 = p — pm = —0.0I

Thus, the 95 percent confidence interval estimate on the difference in means extends from
—0.35 to —0.01 kgl}’cnﬁ Put another way, the confidence interval is pu;, — p, = —0.28 =
0.27 kgffem®, or the difference in mean strengths is —0.28 kgf/cm®, and the accuracy of this
estimate is = 0.27 kgf/cm?. Note that because u, — w, = 01is not included in this interval, the
data do not support the hypothesis that w;, = w, at the 5 percent level of significance (recall
that the P-value for the two-sample 7-test was 0.042, just slightly less than 0.05). It is likely
that the mean strength of the unmodified formulation exceeds the mean strength of the mod-
ified formulation. Notice from Table 2.2 that both Minitab and JMP reported this confidence
interval when the hypothesis testing procedure was conducted.
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What If the Two Variances are Different?

exavpLE 2.1 [

Nerve preservation is important in surgery because acci-
dental injury to the nerve can lead to post-surgical problems
such as numbness, pain, or paralysis. Nerves are usually
identified by their appearance and relationship to nearby
structures or detected by local electrical stimulation (elec-
tromyography), but it is relatively easy to overlook them.
An article in Nature Biotechnology (“Fluorescent Peptides

Highlight Peripheral Nerves During Surgery in Mice.” Vol.
29, 2011) describes the use of a fluorescently labeled pep-
tide that binds to nerves to assist in identification. Table 2.3
shows the normalized fluorescence afier two hours for
nerve and muscle tissue for 12 mice (the data were read
from a graph in the paper).

We would like to test the hypothesis that the mean normalized fluorescence after two hours is
greater for nerve tissue then for muscle tissue. That is, if p; is the mean normalized fluorescence

for nerve tissue and 15 the mean normalized Auorescence for muscle tissue, we want to test

Hypy = s
Hy:py > py

Chapter 2 Design & Analysis of Experiments
8E 2012 Montgomery
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TABLE 2.3
Normalized Fluorescence After Two Hours

Ohbservation Nerve Muscle
1 6625 3000 -
N 3300 The descriptive statistics output from Minitab is shown below:
3 5450 3450
4 5200 3200
- - —
. S.l?n ;%[] Variable N HMeanm Sthew Hinimum Median Maximum
6 4‘;’{’” ;{f“” Nerve 12 4228 1918 450 4825 6625
7 s Ll Non-nerve 12 2534 961 1130 2650 3900
) 4500 2400
9 3985 2200
10 900 1200
11 450 1150
12 2800 1130
Variabla
—— [Erve
== Mon-narve
1 1 1 1 1 1 1 1 T T T
0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Mormalized Fluorescence
m FIGURE 2.14 Normalized Fluorescence Data from Tahble 2.3
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If we are testing
Hyipy = pg
H,; T F s

and cannot reasonably assume that the variances o] and o are equal, then the two-sample
-test must be modified slightly. The test statistic becomes

Yy — ¥
fy = ———— (2.31)
578
— 4+ —=
m 3

Thas statistic is not distributed exactly as . However, the distribution of t; is well approximat-

o L
U =—
(S, ) + (83/n, )

ed by t if we use

(2.32)

as the number of degrees of freedom. A strong indication of unequal variances on a normal
probability plot would be a situation calling for this version of the f-test. You should be able
to develop an equation for finding that confidence interval on the difference in mean for the
unequal variances case easily.

(1918) t (961
12 12
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The number of degrees of freedom are calculated from Equation 2.32:
£+E - HQIEJ'_I_ (961)°\*
m 12 12

V= + ¥ ) = 9 = = 5
(§7 7 ) i (53 /my  [(1918) s 12F N [(961)y s 12F
m— 1 n — 1 11 1

= 16.1955

If we are going to find a P-value from a table of the -distribution, we should round the degrees
of freedom down to 16. Most computer programs interpolate to determine the P-value. The
Minitab output for the two-sample f-test is shown below. Since the P-value reported is small
(0.015), we would reject the null hypothesis and conclude that the mean normalized fluores-
cence for nerve tissue is greater than the mean normalized Huorescence for muscle tissue.

Difference = mu {(Nerwe}) - mu (Non-nerwvel

Ezstimate for difference: 1694

25% Llower bound for difference: 613

T-Test of difference = 0 €ws *>}: T-Value = 2.74 P-Value = 0.007 DF

]
==
[
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Other Chapter Topics

« Hypothesis testing when the variances are
known

« One sample inference (t and Z tests)
» Hypothesis tests on variances (F tests)

Chapter 2 Design & Analysis of Experiments
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2-4.3 Confidence Intervals

Although hypothesis testing is a useful procedure, it sometimes does not tell the entire
story. It is often preferable to provide an interval within which the value of the parameter
or parameters in question would be expected to lie. These interval statements are called
confidence intervals. In many engineering and industrial experiments, the experimenter
already knows that the means pu, and u, differ; consequently, hypothesis testing on
W = M, is of little interest. The experimenter would usually be more interested in a
confidence interval on the difference in means u; — u,.

To define a confidence interval, suppose that 6 is an unknown parameter. To obtain
an interval estimate of @, we need to find two statistics L and U such that the probability
statement

PL=0=U)=1—-« 2-27)
is true. The interval
L=so<sU (2-28)

is called a 100(1 — ) percent confidence interval for the parameter 6. The interpre-
tation of this interval is that if, in repeated random samplings, a large number of such
intervals are constructed, 100(1 — «) percent of them will contain the true value of 6.
The statistics L and U are called the lower and upper confidence limits, respectively,
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and 1 — « is called the confidence coefficient. If & = 0.05, Equation 2-28 is called a
05 percent confidence interval for 6. Note that confidence intervals have a frequency
interpretation; that is, we do not know if the statement is true for this specific sample,
but we do know that the merhod used to produce the confidence interval yields correct
statements 100(1 — «) percent of the time.

Suppose that we wish to find a 100(1 — «) percent confidence interval on the true
difference in means u; — u, for the portland cement problem. The interval can be derived
in the following way. The statistic

Yi = Y2 (g — )

1 1
S, |— + —
P my n,

is distributed as ¢, +,, 5. Thus,
Vi = Yo — (W — )
1 2 1 IJJll H2) tajzmam—2 | =1 — a

S, [—+ —
p”] )

P _ta/2,n1+n2“2 =

or

_ _ /1 1
P(}’l — Y2 ta/2,n1+n2—2Sp n_ + n_ = M T Mo
1 2
1 1

= yl - yz + ta/z’n1+n2_2sp — + _) = 1 - (2'29)
LR ()

Comparing Equations 2-29 and 2-27, we see that

_ _ 1 1
Vi = Y2 — fafz,nﬁnrzsp n_ + n_ s U T M
1 2
- 1 1

=Y — Y2t tapuen,S, |—+ — (2-30)
iy Rz
is a 100(1 — «) percent confidence interval for pu;, — u,.
The actual 95 percent confidence interval estimate for the difference in mean tension
bond strength for the formulations of portland cement mortar is found by substituting in
Equation 2-30 as follows:

16.76 — 17.92 — (2.101)0.284V% + & < pu, — w
16.76 — 17.92 + (2.101)0.284V % + &
—1.16 — 027 < u, — pp < —1.16 + 0.27

< u

A

Thus, the 95 percent confidence interval estimate on the difference in means extends
from —1.43 kgf/cm® to —0.89 kgf/cm®. Put another way, the confidence interval is
w — pp = —1.16 kgf/crn2 + (.27 kgf/cm?, or the difference in mean strengths is
—1.16 kgf/em?, and the accuracy of this estimate is +0.27 kgf/cm?. Note that because
iy, — wp = 01s not included in this interval, the data do not support the hypothesis that
1, = M, at the 5 percent level of significance. It is likely that the mean strength of the
unmodified formulation exceeds the mean strength of the modified formulation. Notice
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from Table 2-2 that Minitab also reported this confidence interval when the hypothesis
testing procedure was conducted. -

2.4.4 The Case Where o? # o3

If we are testing
Hotpy = o
Hyipy # pp

and cannot reasonably assume that the variances o} and o3 are equal, then the two-
sample #-test must be modified slightly. The test statistic becomes

by = _11_222_2 (2-31)
Si, 52
ny Ao

This statistic is not distributed exactly as . However, the distribution of f, is well-
approximated by ¢ if we use
2
§2 53
I
n, n;

v =
STy 53n)
Ry — 1 Ry — 1

(2-32)

as the degrees of freedom. A strong indication of unequal variances on a normal prob-
ability plot would be a situation calling for this version of the #-test. You should be able
to develop an equation for finding that confidence interval on the difference in mean for
the unequal variances case easily.

2-4.5 The Case Where % and 0% Are Known

If the variances of both populations are known, then the hypotheses
Horpy = W
Hitpn # po

may be tested using the statistic

Zy = ——— (2-33)

If both populations are normal, or if the sample sizes are large enough so that the central
limit theorem applies, the distribution of Z, is N(0, 1) if the null hypothesis is true. Thus,
the critical region would be found using the normal distribution rather than the ¢. Spe-
cifically, we would reject H, if | Zo| > Z,, 5, where Z,, is the upper a/2 percentage point
of the standard normal distribution.
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Unlike the #-test of the previous sections, the test on means with known variances
does not require the assumption of sampling from normal populations. One can use the
central limit theorem to justify an approximate normal distribution for the difference in
sample means y; — ¥..

The 100(1 — «) percent confidence interval on p; — u, where the variances are
known is

2 2 2 2

_ —_ a (0 _ _ o o>
V1= Fo = Zap |—m+ =S @ — o SP = o+ Zap | — + = (2-34)

ny Hy ny %)

As noted previously, the confidence interval is often a useful supplement to the hypothesis
testing procedure.

2.4.6 Comparing a Single Mean to a Specified Value

Some experiments involve comparing only one population mean w to a specified value,
say, uo. The hypotheses are

Hoipp = pio
Hy:p # po

If the population is normal with known variance, or if the population is nonnormal but
the sample size is large enough so that the central limit theorem applies, then the hy-
pothesis may be tested using a direct application of the normal distribution. The test
statistic is

_ Y~ Mo
a/\V'n

If Hy: . = po 1s true, then the distribution of Z; is N(0, 1). Therefore, the decision rule
for Hy: i = o is to reject the null hypothesis if | Z,| > Z,,. The value of the mean i,
specified in the null hypothesis is usually determined in one of three ways. It may result
from past evidence, knowledge, or experimentation. It may be the result of some theory
or model describing the situation under study. Finally, it may be the result of contractual
specifications.

The 100(1 — a) percent confidence interval on the true population mean is

Y= Zapa/NO < u <5y + Zopo/Nn (2-36)

Zi (2-35)

EXAMPLE 201 55 %o s vs s s wa s wio s o oo ol o 6 o6 ol 6.0 50 006 0 o 8 978 05 50 90 & 905 6 0 o

A vendor submits lots of fabric to a textile manufacturer. The manufacturer wants to
know if the lot average breaking strength exceeds 200 psi. If so, she wants to accept the
lot. Past experience indicates that a reasonable value for the variance of breaking strength
is 100(psi)*. The hypotheses to be tested are

Ho:p = 200
Hl:I.L > 200

Note that this is a one-sided alternative hypothesis. Thus, we would accept the lot only
if the null hypothesis Hy: u = 200 could be rejected (i.e., if Z, > Z,).
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Four specimens are randomly selected, and the average breaking strength observed
is ¥ = 214 psi. The value of the test statistic is

¥ — pe 214 — 200
a/N'n 10/\V4

If a type I error of & = 0.05 is specified, we find Z, = Z;ys = 1.645 from Appendix
Table 1. Thus Hj is rejected, and we conclude that the lot average breaking strength
exceeds 200 psi.

= 2.80

Zy

If the variance of the population is unknown, we must make the additional assump-
tion that the population is normally distributed, although moderate departures from nor-
mality will not seriously affect the results.

To test Hy: s = o in the variance unknown case, the sample variance S is used to
estimate o. Replacing o with § in Equation 2-35, we have the test statistic

fy = Yy — Mo
S/W

The null hypothesis Hy: & = o would be rejected if | 15| > 242, 1, Where t, 5, denotes
the upper a/2 percentage point of the ¢ distribution with # — 1 degrees of freedom. The
100(1 — «) percent confidence interval in this case is

Y — tapaSINVIE S w<J + typ,1SIVn (2-38)

(2-37)

2-4.7 Summary

Tables 2-3 and 2-4 summarize the test procedures discussed above for sample means.
Critical regions are shown for both two-sided and one-sided alternative hypotheses.

Table 2-3 Tests on Means with Variance Known

Hypothesis Test Statistic Criteria for Rejection
Ho:p = pio
Lyt > Z,
Hy:p # po | Ot &
Hoip = po Y~ Mo
Ly = —= Zo < —Z,
Hi:u < uy 0 al\'n °
Hotp = po 7 >7
0 o
Hi:p > po
Hoipy = po
Zyl > Z,
Hy py # o ] 0| &
Hotpt = o 7 = Y1 = Y2 Zy < ~Z,
Hytpy < ° ol 5 o3
n n
Hoi oy = po

Zy > Z,
Hiip > o ¢
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Table 2-4 Tests on Means of Normal Distributions,
Variance Unknown

Hypothesis

Criteria for Rejection

Hoip = po
Hytp # po
Hyip = po
Hiip < po
Horp = po
Hiip>po

Hotpy = po
Hytpy # po

Hotjy = o
Hitpy < o

Ho:py = pr
Hytpy >y

Test Statistic
B = Y~ Mo
* SWVn
itar = o=
o = Yi — Y2
1 1
8 [— 4 —
n n,

U=n1+n2_2

if 02 # o2

_ yl_yz

by = ——ry
$i 5
ny hs
sz 82\
it
ny ns

SIm)P Yy’

n —1 n — 1

| t0| > ta/’Z,nfl
tO < _ta,n—l

tO > [cr.n—l

[ 10} > toyae

to < _ta’v

tO > toe.u
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2-6 INFERENCES ABOUT THE VARIANCES
OF NORMAL DISTRIBUTIONS

In many experiments, we are interested in possible differences in the mean response for
two treatments. However, in some experiments it is the comparison of variability in the
data that is important. In the food and beverage industry, for example, it is important
that the variability of filling equipment be small so that all packages have close to the
nominal net weight or volume of content. In chemical laboratories, we may wish to
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compare the variability of two analytical methods. We now briefly examine tests of
hypotheses and confidence intervals for variances of normal distributions. Unlike the
tests on means, the procedures for tests on variances are rather sensitive to the normality
assumption. A good discussion of the normality assumption is in Appendix 2A of Davies
(1956).

Suppose we wish to test the hypothesis that the variance of a normal population
equals a constant, for example, 0. Stated formally, we wish to test

H0:0.2 = 0'(2)
H,:0? # o0} (2-44)

The test statistic for Equation 2-44 is

8 _ (n— 1s?

a3 a5

Xo = (2-45)

where SS = 27_,(y; — y)* is the corrected sum of squares of the sample observations.
The appropriate reference distribution for x§ is the chi-square distribution with n — 1
degrees of freedom. The null hypothesis is rejected if X3 > xa.—1 or if x§ <
X1—(asyn—1> Where x2p,—1 and X3 _(az,.—1 are the upper a/2 and lower 1 — (a/2)
percentage points of the chi-square distribution with » — 1 degrees of freedom, respec-
tively. Table 2-7 (on the facing page) gives the critical regions for the one-sided alter-
native hypotheses. The 100(1 — a) percent confidence interval on ¢~ is

(n—DS*_ , _ (- 1S

<o’ < (2-46)

2 2
Xa/2n—1 X1—(a/2).n—1

Now consider testing the equality of the variances of two normal populations. If
independent random samples of size n, and n, are taken from populations 1 and 2,
respectively, the test statistic for

AN, » A 2
H0.0'1 = 0>

H,:0? # o3 (2-47)
is the ratio of the sample variances
SZ
Fo=% (2-48)
S2

The appropriate reference distribution for F, is the F distribution with #, — 1 numerator
degrees of freedom and n, — 1 denominator degrees of freedom. The null hypothesis
would be rejected if Fo > Fop 10,1 OF if Fo < Fi—(a/2yn,~ 10015 where Fopn— 1,1
and F\ _(a/2),n,—1.1,—1 denote the upper a/2 and lower 1 — («/2) percentage points of the
F distribution with n, — 1 and n, — 1 degrees of freedom. Table IV of the Appendix
gives only upper-tail percentage poins of F; however, the upper- and lower-tail points
are related by

1
Fl—a,vl,vz = F.ﬂ’vz,v1 (2—49)
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Table 2-7 Tests on Variances of Normal Distributions

Hypothesis Test Statistic Criteria for Rejection
yp )
H0:0'2 = U% X(z) > leflnfl or
H,:0% # o3 Xo < X1-aj2n—1

-
Hy:0? = 3} 5 = (n — 1S? R g
H1:0_2 < 0_% 0 0_(2) [¢] l—a,n—1
Hy:0? = oi .
H :.o*>a} ayr—d
Hy 0t = o3 Fo= S_% Fo > Fopn~1.,n,-1 OF
H,:0? # o3 0 S2 Fo < Fiwom—1m-1
Hozol = o3 Fo = Fo>F
leo_i < o_% 0 S% 0 a1 —1
Mo = o Fo =31 Fy>F
HIIO'% -~ 0'% 0 S% 0 an =~ liny—1

Test procedures for more than two variances are discussed in Chapter 3, Section 3-4.3.
We will also discuss the use of the variance or standard deviation as a response variable
in more general experimental settings.

EXAMPLE 2.2 ssssesvascsesnanonnsvnsnsns

A chemical engineer is investigating the inherent variability of two types of test equip-
ment that can be used to monitor the output of a production process. He suspects that
the old equipment, type 1, has a larger variance than the new one. Thus, he wishes to
test the hypothesis

Hy: 0% = o3
-2 2
H1.0'1>0'2

Two random samples of n; = 12 and n, = 10 observations are taken, and the sample
variances are S7 = 14.5 and S5 = 10.8. The test statistic is

§2 145
=—=—=134
°  $2 108
From Appendix Table IV we find that £ s 1,9 = 3.10, so the null hypothesis cannot be

rejected. That is, we have found insufficient statistical evidence to conclude that the
variance of the old equipment is greater than the variance of the new equipment.

The 100(1 — «) confidence interval for the ratio of the population variances oi/c3
is
S3 o1 57

§2 Fy s —15—1 55 0__?2_ = Eg Fomim 1 i1 (2-50)
2
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To illustrate the use of Equation 2-50, the 95 percent confidence interval for the ratio of

variances o3/d3 in Example 2-2 is, using Fo 5011 = 3.59 and Fogr5911 = 1/Fo0s.11.9
= 1/3.92 = 0.255,
14.5 o7 145
—(0255) = — < — (3.59
10.8 ( ) o3 108 ( )
ol
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