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What If There Are More Than
Two Factor Levels?

« The t-test does not directly apply

« There are lots of practical situations where there are
either more than two levels of interest, or there are
several factors of simultaneous interest

« The analysis of variance (ANOVA) is the appropriate
analysis “engine” for these types of experiments

« The ANOVA was developed by Fisher in the early
1920s, and initially applied to agricultural experiments

« Used extensively today for industrial experiments
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An Example (See pg. 66)

* An engineer is interested in investigating the relationship
between the RF power setting and the etch rate for this tool. The
objective of an experiment like this is to model the relationship
between etch rate and RF power, and to specify the power
setting that will give a desired target etch rate.

« The response variable is etch rate.

« She is interested in a particular gas (C2F6) and gap (0.80 cm),
and wants to test four levels of RF power: 160W, 180W, 200W,
and 220W. She decided to test five wafers at each level of RF
power.

« The experimenter chooses 4 levels of RF power 160W, 180W,
200W, and 220W

 The experiment is replicated 5 times — runs made in random
order

Chapter 3 Design & Analysis of Experiments
Montgomery



Gas control pane

AF
ganerator
me o T
[1 [ | Ancde
Gas supply | |-q—— Wafar
| | <+ Cathode

Vacuum pump

m FIGURE 3.1 A single-wafer plasma etching tool
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An Example (See pg. 66)

m TABLE 3.1
Etch Rate Data (in A/min) from the Plasma Etching Experiment

Observations
Power
(W) 1 2 3 4 5 Totals Averages
160 575 542 530 539 370 2756 551.2
180 565 593 590 579 610 2037 5874
200 600 651 610 637 629 3127 625.4
220 725 700 715 683 710 3535 707.0
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m FIGURE 3.2 Box plots and scatter diagram of the etch rate data
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* Does changing the power change the
mean etch rate?

* Is there an optimum level for power?

* We would like to have an objective
way to answer these questions

* The t-test really doesn’t apply here —
more than two factor levels
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The Analysis of Variance (Sec. 3.2, pg. 68)

m TABLE 3.2
Typical Data for a Single-Factor Experiment

Treatment
(Level) Observations Totals Averages

Y ¥Yi2 . Yin ¥y, ¥i.

2 Yo Yoo - Vo, Vi V2.

* In general, there will be a levels of the factor, or a treatments,
and n replicates of the experiment, run in random order...a
completely randomized design (CRD)

« N = an total runs

« \We consider the fixed effects case...the random effects case
will be discussed later

« Objective is to test hypotheses about the equality of the a
treatment means

Chapter 3 Design & Analysis of Experiments 7
Montgomery



The Analysis of Variance

* The name “analysis of variance” stems from a
partitioning of the total variability in the
response variable into components that are
consistent with a model for the experiment

* The basic single-factor ANOVA model is

1=12,..4a
=T &L
ylj ,Ll [ 1] J :1’2’“.’n

w1 = an overall mean, 7, =Iith treatment effect,

¢; = experimental error, NID(0,0°)
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Models for the Data

There are several ways to write a model
for the data:

y; = M+7; +&; Is called the effects model

Let 1. = u+7;, then
y;; = 4 +&; Is called the means model

Regression models can also be employed
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The Analysis of Variance
« Total variability iIs measured by the total

sum of squares:

SST = Zalzn:(yij - 7)2

i=1 j=1

« The basic ANOVA partitioning is:

Zalzn:(Yij — 7)2 = Za‘,zn:[(y — V..)+(yij - Vi.)]2

i=1 j=1 i=1 j=1

— nza:(yl - 7)2 "'Zalzn:(yij - Vi.)2

i=1 j=1

SS, =SS +SS,

Treatments
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The Analysis of Variance

SS, =SS

Treatments SS E

» A large value of SS+,..iments Feflects large differences in
treatment means

* A small value of SS+,..iments lIkely indicates no
differences in treatment means

* Formal statistical hypotheses are:

Ho oy =1, == 4,
H, : At least one mean is different
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331 Decomposition of the Total Sum of Squares

The name analysis of variance is derived from a partitioning of total variability into its com-
ponent parts. The total corrected sum of squares

a r
SSr = 2; 2} ()'fj = ;_-)2
= P

is used as a measure of overall variability in the data. Intuitively, this is reasonable because if
we were to divide SS; by the appropriate number of degrees of freedom (in this case,an — 1 =
N — 1), we would have the sample variance of the y’s. The sample variance is, of course, a
standard measure of variability.

Note that the total corrected sum of squares SS; may be written as

Z E} vy — yy = 2} El [ — 3.3 {3y — yIr 3.5
i=1 j= i=1 j=

or

However, the cross-product term in this last equation is zero, because

1
2 (}’ij — ¥) =5 — AV, =y — alyiin) =0

=

Therefore., we have

> Oy =n T G =T+ D Dy~ TP 3.6)
=1 Y= i= =
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The Analysis of Variance

While sums of squares cannot be directly compared
to test the hypothesis of equal means, mean
squares can be compared.

A mean square Is a sum of squares divided by its
degrees of freedom:

dfTotaI = d-I:Treatments + derror
MSTreatmentS — SSTreatments ’ MSE _ SSE
a-1 a(n—1)

If the treatment means are equal, the treatment and
error mean squares will be (theoretically) equal.

If treatment means differ, the treatment mean square

will be larger than the error mean square.
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The Analysis of Variance Is
Summarized in a Table

m TABLE 3.3
The Analysis of Variance Table for the Single-Factor, Fixed Effects Model

Sum of Degrees of Mean

Source of Variation Squares Freedom Square Fy
SSTrentment::
N , M STreatments

Between treatments = n 2 (v, — v a—1 MSteamens  Fo = M

i=1 J“V.II-SE
Error (within treatments) S8 = 557 — SS7reatments N-—a MSg

o n -
Total SSy=2 2 —¥.) N—1

i=1 j=1

« Thereference distribution for Fyis the F,; ;.4 distribution
* Reject the null hypothesis (equal treatment means) if

|:0 > I:oc,a—l,a(n—l)
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ANOVA Table
Example 3-1

4 3 1’2 SSE = SST - SSTreatnwnts
SSr = - -
T El 2] Yi TN = 72,209.75 — 66,870.55 = 5339.20
=1 j=
12,355) Isually culati :
— (575 + (5422 + -+ + (T10)} — ( ) Usually, t.he:se: calculations would .be performec.l on a
20 computer, using a software package with the capability to
= TZZE@.? ) analyze data from designed experiments.
S ratments = 1 z v — i The ANOVA is summarized in Table 3.4. Note that the
St N RF power or between-treatment mean square (22,290.18) is
_ 1 2756) + -+ + (3535)2 (12,355)° many times larger than the within-treatment or error mean
-5 (2756 (3535)] 20 square (333.70). This indicates that it is unlikely that the
= 66.870.55 treatment means are equal. More formally, we can compute

m TABLE 3.4
ANOVA for the Plasma Etching Experiment

Sum of Degrees of Mean
Source of Variation Squares Freedom Square Fy P-Value
RF Power 66,870.55 3 22,200.18 F, = 66.80 <0.01
Error 5339.20 16 333.70
Total 72.209.75 19
-]
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3.34 Unbalanced Data

In some single-factor experiments the number of observations taken within each treat-
ment may be different. We then say that the design is unbalanced. The analysis of
variance described above may still be used, but slight modifications must be made i the
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sum of squares formulas. Let n; observations be taken under treatment i (i = 1, 2,.
a) and N = 27, n;. The manual computational formulas for SS; and SSeaments become

i

= ke 3.14
2 2 - (3-14)
and
a 2 2
SSTreatments = & % = % (3'15)

No other changes are required in the analysis of variance.

There are two advantages in choosing a balanced design. First, the test statistic is
relatively insensitive to small departures from the assumption of equal variances for the
a treatments if the sample sizes are equal. This is not the case for unequal sample sizes.
Second, the power of the test is maximized if the samples are of equal size.

Chapter 3 Design & Analysis of Experiments 18
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Model Adequacy Checking in the ANOVA
Text reference, Section 3.4, pg. 80

* Checking assumptions is important
* Normality

« Constant variance

* Independence

« Have we fit the right model?

« Later we will talk about what to do If
some of these assumptions are
violated
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Model Adequacy Checking in the ANOVA

Examination of
residuals (see text, Sec.

3'4, . 80 .ulj‘lln{-f| U)S}IEI “3]:
pg ) :Ilut u; Ir:*si(l u(;lllslfc;r
e . . A Example 3.1 99 |-
i =Y Vi
=Y, i Yi

Normal % probability

Computer software
generates the residuals

Residual plots are very

useful
Normal prObab|||ty plot -2|5.4 —12|.65 0_.|1 12.|85 25|.8
of residuals

Chapter 3 Design & Analysis of Experiments 20
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4-1 Model Adequacy Checking 97 ( 98 4 More About Single Factor Experiments
i
Table 4-1 Data and Residuals from Example 3-1 i 1 -
5 s
Percentage of bservations Ll 2 - 98
Cotton 1 2 3 4 5 Vo =Y
5
95
[-2.8 | 58 [ s I L -0 ¥
15 7 (s | 7 uw 15 @y |noun |9 W 9.8 10 g0
[ =34 L 1o [ -3.4 2.6 | 2.6 55 o
20 12 @ |17 a9 |12 M jsodn j19o» 15.4 .' &0
30
[-36] Los L o4 L1 L1 g K 2
25 “oaw 118 oy s o fvo@ |19 @ | 176 8 : -
x 50 50
l -2.6 | 3.4 | 0.4 I -2.6 I 1.4 = 6o b -
30 19 (22) {25 (5) 22 (2) 19 24) |23 (0 21.6 1 55 H 3
: = 30
[-38 | -08 Lo | A Lo Z o, - %
35 7 @7y o @y |11 @ 15 (o) |1 (23) 10.8 £ 60 . 20 |~
' 1 s .
+ The residuals are shown in the box in each cell. The numbers in parentheses indicate the order o1 data collecuon. Ly & 80 - 10
‘_ 2 95 5
bution. Since the F test is only slightly affected, we say that the analysis of i &
variance (and related procedures such as mulliple comparisons) is robust to the L 98 t 2
normality assumption. Departures from normality usually cause both the true 99 1
significance level and the power to dilffer slightly from the advertised values, with
the power generally being lower. The random effects model is more severely - 5
impacted by nonnormality. In particular, the true confidence levels on interval . 99'9 ’
estimates of variance components may differ greatly from the advertised values. ’
g I - - 99.99 o1
Tabie 4-2 Ordered Residuals and Probability Points for the Tensile Strength Data
Order Residual o= Order Residual Po=
k e, (k — 4725 k e, tk — 1725
1 ~3.8 .0200 14 0.4 .5400 . .
2 -3.6 .0600 15 0.4 .5800 FTHIDH L d3s afel 2 o ls o
3 -3.4 L1000 16 1.2 L6200 -6 -4 -2 0 +2 +4 +6
4 =34 -1400 17 1.4 -66L00 Figure 4-1. Normal probability ptot and dot diagram of residuals for Example 3-1.
5 -2.8 L1800 14 1.4 7000
6 —-2.8 .2200 19 1.4 7400 .
-2.8 200 y. i .7800 -~ .
; _ﬁ o fmog f!)l]) ],2 18200 A very common defect that often shows up on normal probability plots is
9 —0.8 3400 29 26 8600 one residual that is very much larger than any of the others. Such a residual is
10 -0.8 31800 23 3.4 9000 often called an outlier. The presence of one or more outliers can seriously distort
1 0.2 4200 24 4.2 9400 the analysis of variance, so when a potential outlier is located, careful investi-
12 0.2 4600 25 5.2 9800 gation is called for. Frequently, the cause of the outlier is a mistake in calculations
13 0.4 .5000 or a data coding or copying error. If this is not the cause, then the experimental
circumstances surrounding this run must be carefully studied. If the outlying
Chapter 3 Design & Analysis of Experiments 21
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Other Important Residual Plots

256 o
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m FIGURE 3.5 Plot of residuals versus
run order or time
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Statistical Tests for Equality of Variance. Although residual plots are frequently
used to diagnose inequality of variance, several statistical tests have also been proposed. These
tests may be viewed as formal tests of the hypotheses

Hyoi=0; = "=g,
H,:above not true for at least one o;
A widely used procedure is Bartlett’s test. The procedure involves computing a statis-
tic whose sampling distribution is closely approximated by the chi-square distribution with

a — | degrees of freedom when the a random samples are from independent normal popula-
tions. The test statistic is

X5 = 23026 7 (3.19)
where
q = (N — a)log, Slz; . 2 (n; — I)Iog,(,S,-z
i=1
1 u P 5
p= ] e ])(;] (n,— 1) (N — a) )
2 (B — l)S,-2
- i=1
Sy N—a
Chapter 3 Design & Analysis of Experiments 23
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and $: i the sample variance of the ith population

The quantity ¢ is large when the sample variances S differ greatly and is equal to zero
when all §? are equal. Therefore, we should reject H, on values of y; that are too large; that
Is, we reject H, only when

X {7D @ X i.a =
where -, is the upper a percentage point of the chi-square distribution with @ — 1 degrees
of freedom. The P-value approach to decision making could also be used.
Bartlett's test is very sensitive to the normality assumption. Consequently, when the
validity of this assumption is doubtful, Bartlet's test should not be used.

Chapter 3 Design & Analysis of Experiments
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Post-ANOVA Comparison of Means

« The analysis of variance tests the hypothesis of equal
treatment means

« Assume that residual analysis is satisfactory

« If that hypothesis is rejected, we don’'t know which
specific means are different

« Determining which specific means differ following an
ANOVA is called the multiple comparisons problem

« We will use pairwise t-tests on means...sometimes
called Fisher’s Least Significant Difference (or Fisher's
LSD) Method and Tukey Method

Chapter 3 Design & Analysis of Experiments
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Tukey’s Test. Suppose that, following an ANOVA in which we have rejected the null
hypothesis of equal treatment means, we wish to test all pairwise mean comparisons:

Hy:pi = py
Hyp #

for all i # j. Tukey (1953) proposed a procedure for testing hypotheses for which the over-
all significance level is exactly @ when the sample sizes are equal and at most @ when the
sample sizes are unequal. His procedure can also be used to construct confidence intervals on
the differences in all pairs of means. For these intervals, the simultaneous confidence level is
100(1 — a) percent when the sample sizes are equal and at least 100(1 — a) percent when
sample sizes are unequal. In other words, the Tukey procedure controls the experimentwise
or “family” error rate at the selected level a. This is an excellent data snooping procedure
when interest focuses on pairs of means.
Tukey’s procedure makes use of the distribution of the studentized range statistic

o ;mux - ymin

- VMSgn

where y,.,, and y,;, are the largest and smallest sample means, respectively, out of a group of
p sample means. Appendix Table VII contains values of g,(p, f), the upper a percentage
points of g, where f is the number of degrees of freedom associated with the MS;. For equal
sample sizes, Tukey’s test declares two means significantly different if the absolute value of
their sample differences exceeds

Chapter 3 Design & Analysis of Experiments
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/m
= ga(a.f) SE (3.35)

Equivalently, we could construct a set of 100(1 — «) percent confidence intervals for all pairs
of means as follows:

X 5; = g la. 1) i — M

L /Ms o
=3 — 5 ¥ gla) E i+ (3.36)

When sample sizes are not equal, Equations 3.35 and 3.36 become

T, = "“(“ f ) \/MSE(” n) (3.37)

=% —3.+F %j—izﬁ \/MSE(% * ’%)’ [ # (3.38)

respectively. The unequal sample size version is sometimes called the Tukey—Kramer
procedure.
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Tukey’s Test. Suppose that, following an ANOVA in which we have rejected the null
hypothesis of equal treatment means, we wish to test all pairwise mean comparisons:

Ho:pi = 1y
Hy:p #

forall i # j. Tukey (1953) proposed a procedure for testing hypotheses for which the over-
all significance level is exactly @ when the sample sizes are equal and at most a when the
sample sizes are unequal. His procedure can also be used to construct confidence intervals on
the differences in all pairs of means. For these intervals, the simultaneous confidence level is
100(1 — ) percent when the sample sizes are equal and at least 100(1 — a) percent when
sample sizes are unequal. In other words, the Tukey procedure controls the experimentwise
or “family” error rate at the selected level @. This is an excellent data snooping procedure
when interest focuses on pairs of means.
Tukey’s procedure makes use of the distribution of the studentized range statistic
o ;mux - j;min

B VMSgn

where y,.,, and y,, are the largest and smallest sample means, respectively, out of a group of
p sample means. Appendix Table VII contains values of g, (p, f), the upper a percentage
points of g, where f is the number of degrees of freedom associated with the MSg. For equal
sample sizes, Tukey’s test declares two means significantly different if the absolute value of
their sample differences exceeds
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IMS
To = qufa.f) | —= (3.35)

Equivalently, we could construct a set of 100(1 — «) percent confidence intervals for all pairs
of means as follows:

_ MS,
¥ — ¥ —qlar )\/ s

A

Hi = M

o = - [msg
¥ =¥ @l J 5 &AL (3.36)

IA

When sample sizes are not equal, Equations 3.35 and 3.36 become

k. L) 1 1
F. = Y- \/ MSE(,Ti I Fj) (3.37)

and

= = P qa(asf) - 1 1
Yi. = Y 7 \/;I‘SE()T; i }r_j = =

respectively. The unequal sample size version is sometimes called the Tukey—Kramer
procedure.
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exavpLE 3.7 [

To illusire Tukey’s tésl, we use the dala from the plasma and Lhe dilTergnees n avérages are
clehing experiment in Example 3.1. With & = 005 and =

o s = e *
16 degrees of freedom for ermor, Appendix Table VII gives i~ ¥ = 5012 — 3874 36.20
Qs 16) = 4.05. Thercfore, from Equation 3.35, ¥y, — ¥3, = 5512 — 6254 = =74.20*
¥i. — ¥y = 551.2 — 707.0 = —155.8%
(M5 fsss.vo IENALE
Toos = qoostd, 16) [— = 4.0 e = B ¥ — ¥, = 5874 — 6254 = ~38.0%
_}'—‘3 ) 5’4' = 35874 — 7070 = —| |9,ﬁ*
Thus, any paics of treatment averages that differ in absolute Yo — o = 6254 — T07.0 = —81.60%

value by more than 33.09 would imply that the correspon-
ding pair of population means are sipnificandy differcnt.  The starmed values indicate the pirs of means thal are sig-

T'he four treatment averages ans mifivantly different. Note that the Tukey procedure indicaes
_ [} that all paars of means differ. Therefore. cach power setting
Y. =3512 = 5874 results in a mean ctch rate that differs from the méan elch
¥, = 6254 3, = 7070 race at any other power setting,

When using any procedure for pairwise testing of means, we oceasionally find that the
overall F test from the ANOVA 15 significant, but the pairwise comparison of means fails to
reveal any significant differences, This situation occurs becavse the F test is simultancously
considering all possible contrasts mvolving the tweatment means, not just pairwise compar-
isons. That is, in the data a1 hand, the significant contrasts may 1ot be of the form g, — p.

Chapter 3 Design & Analysis of Experiments
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The denvation of the Tukey confidence interval of Equation 3.36 for equal samnple sizes
is straighiforward. For the studentized range statistic g, we have

P(maX(i-. — Mg} —min(y — u)

\/m Eq“(a.f)) =1 -«

W max( ¥, — M;3 — min{ y. — ) is loss than or cqual to g {a, f )V MSZn, it must be true that
[KF, — 1) — (3 — m)| = gla. fFYV MSg/n for every pair of means. Therefore

2%
MS, _ o ’M.S'
P(_qo(a’f}J nr <= LT }'). = (Ju‘f = .u’j) = fg’u(“,f)\/ nf) - 1 Lo bY 1 2

Rearranging this expression to isolate g; — u, between the incqualities will lead to the set of
100(] — ) percent simultaneous confidence intervals given in Equation 3.38.

The Fisher Least Significant Difference (LSD) Method. The Fisher method for
comparing all pairs of mmeans controls the eror rate o for each individual pairwisc compan-
som but docs not control the experimentwisc or family creor rate. This procedure uses the r sta-
tistic for testing Hy: g = #;

fies / e il {3.39)
1 ’
v MS“(’T- i E)
Chapter 3 Design & Analysis of Experiments
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Assuming a two-sided alternative, the pair of means u, and g, would be declared significant-
ly different if |5, — ¥,| = tynn-o VMS(1/n; + 1/n)). The quantity

1.SD = 1,500 \/ M.sf(,lli + ni)) (3.40)

is called the lcast significant diffcrence. If the design is balanced, ny, = n, =+« -=a, =n,
and
{2MS
SD = gy \/Tz (341)

To use the Fisher LLSD procedure, we simply compare the observed difference between
each pair of averages to the corresponding LSD. It |5, — %;,| = LSD, we conclude that the
population means u&; and u; differ. The 7 statistic in Equation 3.39 could also be used.

exampLE 3.3

To illustratc the procedure, if we vse the data from the Y. — ¥ = 551.2 — 6254 = —74.2%
experiment in Example 3.1, the LSD at &« = 0.05 is

Vo — ¥ = 551.2 — 707.0 = —155.8*

LSD = fyc16 /u:s,; = 2.120 /w = 2449 ¥y — ¥, = 587.4 ~ 6254 = —38.0*

Vo = Vo = 5874 — 707.0 = —119.6*

Thus, any pair of treatment averages that differ in absolute

valuc by more than 24.49 would imply that the correspon- Vi — ¥ =0254 — 7070 = —81.6™
ding pair of population mwans are significantly different. £t : o
The differences in averages are The starred values indicate pairs of mcans that arc signifi-
cantly differcnt. Clearly, all pairs of mcans differ signifi-
Y. — ¥i. = 551.2 — 5874 = —36.2* cantly.
Chapter 3 Design & Analysis of Experiments
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Note that the overall « risk may be considerably inflated using this method. Specifically,
as the number of treatments a gets larger, the experimentwise or family type I ereror rate (the
ratio of the number of experiments in which at least one type I error is made to the total num-
ber of experiments) becomes large.

Which Pairwise Comparison Method Do I Use? Certainly, a logical question at
this point 15, Which one of these procedures should I use? Unfortunately, there is no clear-
cut answer to this question, and professional statisticians often disagree over the utility of
the vanous procedures. Carmer and Swanson (1973) have conducted Monte Carlo simula-
tion studies of a number of multiple companison procedures, including others not discussed
here. They report that the least significant difference method is a very effective test for
detecting true differences in means if it is applied onfy after the F test in the ANOVA is sig-
nificant at § percent. However, this method does not contain the experimentwise error rate,
Because the Tukey method does control the overall error rate, many statisticians prefer (o
use it

As indicated above, there arc several other multiple comparison procedures. For articles
desctibing these methods, see O'Neill and Wetherill (1971), Miller (1977), and Nelson
(1989). The books by Miller (1991) and Hsu {1996) are also recommended.
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Why Does the ANOVA Work?

We are sampling from normal populations, so
SS

2
O

Cochran's theorem gives the independence of
these two chi-square random variables

_ SSTreatments /(a _1) B Z:—l /(a _1)

. . SS
Treatments [} o2 if H,, is true, and G—ZED X ainn

oF F
PSS /a(n-1] Al /la(n-p] A

nzn: r?

)=0’+—2 — and E(MS.) =0~

Finally, E(MS

Treatments

Therefore an upper-tail F test is appropriate.
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Sample Size Determination
Text, Section 3.7, pg. 105

 FAQ In designhed experiments

« Answer depends on lots of things; including
what type of experiment is being
contemplated, how it will be conducted,
resources, and desired sensitivity

« Sensitivity refers to the difference in means
that the experimenter wishes to detect

* Generally, increasing the number of
replications increases the sensitivity or it
makes It easier to detect small differences In
means

Chapter 3 Design & Analysis of Experiments
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Sample Size Determination
Fixed Effects Case

« Can choose the sample size to detect a specific
difference in means and achieve desired values of
type | and type Il errors

* Type | error —reject H, when it is true (¢ )
 Type Il error — fail to reject Hy when it is false ( S )
- Power=1-/

« Operating characteristic curves plot f against a
parameter @ where
ny
I

ao’

(D2
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Sample Size Determination

Fixed Effects Case---use of OC Curves

The OC curves for the fixed effects model are in the
Appendix, Table V

A very common way to use these charts is to define a
difference in two means D of interest, then the minimum

value of @p?is
D2 nD?

 2ac0?
Typically work in term of the ratio of D/o and try values
of n until the desired power is achieved

Most statistics software packages will perform power and
sample size calculations — see page 108

There are some other methods discussed in the text

Chapter 3 Design & Analysis of Experiments

Montgomery

37



Example:

« EXAMPLE: Consider the tensile strength
experiment described earlier. Suppose
that the experimenter Is interested In
rejecting the null hypothesis with a
probability of at least

* 0.90 If the five treatment means are

o u1=11, p2=12, u3=15, y4=18, and us5=19

* She plans to use a = 0.01. In this case,
because 2, = 75.
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Therefore, the mean average = (1/5)75 =15 and,

1 =
To =
T3 =
T4 =
TE =

U1-
2-
13-
U4 -

U5-

p=11-15=-4
y=12-15=-3
u=15-15=0
y=18-15=3
p=19-15=4

"hus, 2, T2 = 50. Suppose the experimenter feels
that the standard deviation of tensile strength at

any particular level of cotton weight percentage will
be no larger than o = 3 psi. Then, by using the
Equation, we have:

Chapter 3
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®?= nx1?/ ac? =1.11n

We use the operating characteristic curve fora-1 =5 -1 =4 with,

N -a =a(n -1)=5(n -1) error degrees of freedom and a = 0.01 (see

OC curves at Appendix). As a first guess at the required sample size,

try n =4 replicates. This yields ®?=1.11(4) = 4.44, ®=2.11, and 5(3) =

15 error degrees of freedom. Consequently,

« from Chart V, we find that 8 = 0.30. Therefore, the power of the test
IS approximately

 1-R=1-0.30=0.70, which is less than the required 0.90, and so we
conclude that

* n =4 replicates are not sufficient. Proceeding in a similar manner,
we can construct the

« following display:
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n D2 () a(n -1) R Power (1- )
4 4.44 2.11 15 0.30 0.70
5 555 2.36 20 0.15 0.85
6 6.66 2.58 25 0.04 0.96

Thus, at least n = 6 replicates must be run to obtain a
test with the required power.
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The only problem with this approach to using the operating
characteristic curves is that it is usually difficult to select a
set of treatment means on which the sample size decision
should be based. An alternate approach is to select a
sample size such that if the difference between any two
treatment means exceeds a specified value the null hy
pothesis should be rejected.If the difference between any
two treatment means is as large as D, it can be shown that
the minimum value of ®2is: %= nD?/ 2ac2
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To lllustrate this approach, suppose that in the
tensile strength experiment Example, the
experimenter wished to reject the null hypothesis
with probability at least 0.90 if any two treatment
means differed by as much as 10 psi. Then,
assuming that o = 3 psi, we find the minimum
value of @2 to be:

®?=n (10)?/2(5)(3%) =1.11 n
from the analysis in Example 3-11, we conclude

that n = 6 replicates are required to give the
desired sensitivity when a = 0.01.
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3.8 Other Examples of Single-Factor Experiments

351 Chocolate and Cardiovascular Health

An article in Nature describes an experiment to investigate the effect of consuming chocolate
on cardiovascular health (“Plasma Antioxidants from Chocolate.” Nature, Vol. 424, 2003,
pp. 1013). The experiment consisted of using three different types of chocolates: 100 g of dark
chocolate, 1M g of dark chocolate with 200 mL of full-fat milk, and 200 g of milk chocolate.
Twelve subjects were used. 7 women and 5 men, with an average age range of 32.2 = | years,
an average weight of 65.8 = 3.1 kg, and body-mass index of 21.9 = 0.4 kg m ™ ". On different
days a subject consumed one of the chocolate-factor levels and one hour later the total antiox-
idant capacity of their blood plasma was measured in an assay. Data similar to that summarized
in the article are shown in Table 3.12.

m TABLE 3.12
Blood Plasma Levels One Hour Following Chocolate Consumption

Subjects (Observations)

Factor 1 2 3 4 5 6 7 8 9 10 11 12

DC 1188 1226 1156 1136 1195 1159 1158 1151 1169 1154 1156 1079

DC+MK 1054 1011 1027 971 1019 989 1000 998 1026 1009 1045 935

MC 102.1 1058 996 1027 988 1009 1028 987 947  OTE 997  ORé
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m TABLE 3.13
Minitab ANOVA Output, Chocolate Consumption Experiment

One-way ANOVA: DC, DC+MEK, MC

Source DF s M5 F P

8
Factor Z 1952.6 976.3 93_.58 0.000
Error 33 344.3 10. 4

g

Total 35 2296.

Conclusions?

5 = 3.230 R-5gq = 85.01% R-5q(adj? = 84.10%

Individual 95% CIs Faor Mean Based on
Pooled 5tDew

Level N Mean Sthevw ———t—m——————— +to————————— o= +——————
bc 12 116.086 3.53 (===%—==)
DC+MK 12 100.70 3.24 (==}
MC 12 100.18 2.89 (—=F*—==3
———dm - tommm Fommm——— - $—————=
100.0 105.0 110.0 115.0

Pooled StDhev = 3.23

Fisher 95% Individual Confidence Intervals
ALL Pairwise Comparisons

Simultaneous confidence level = B8.02

DC subtracted from:

Lower Center Upper e o ————— mm————— b——
DC+MK -18.041 -=15.358 -12.675 (===%====]}
MC -18.558 -15.875 -13.192 (————%——=]
—m———————— o ——— Fmm—————— +——=
-18.0 -12.0 -6.0 0.0
DC+MK subtracted from:
Lower Center Upper —fm———————— te———————- tm———————— Femmm—————
MC -3.200 -0.517 2.166 (——%———)
—————————— Fmmmm————— Fmmmm————— m———————
-18.0 -12.0 -6.0 0.0
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Designed experiments have had tremendous impact on manufacturing industries, including
the design of new products and the improvement of existing ones, development of new man-
ufacturing processes, and process improvement. In the last 15 years, designed experiments
have begun to be widely used outside of this traditional environment. These applications are
in financial services, telecommunications, health care, e-commerce, legal services. marketing,
logistics and transporation, and many of the nonmanufacturing components of manufactur-
ing businesses. These types of businesses are sometimes referred to as the real economy. It
has been estimated that manufacturing accounts for only about 20 percent of the total US
economy, so applications of experimental design in the real economy are of growing impor-
tance. In this section, we present an example of a designed experiment in marketing.

Chapter 3 _ . . 48
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Example:

A soft drink distributor knows that end-aisle displays are an effective way to increase
sales of the product. However, there are several ways to design these displays: by varying the
text displayed, the colors used, and the visual images. The marketing group has designed
three new end-aisle displays and wants to test their effectiveness. They have identified 15
stores of similar size and type to participate in the study. Each store will test one of the dis-
plays for a period of one month. The displays are assigned at random to the stores, and each
display is tested in five stores. The response variable is the percentage increase in sales activ-
ity over the typical sales for that store when the end-aisle display 1s not in use. The data from
this experiment are shown in Table 3.13.

m TABLE 3.13
The End-Aisle Display Experimental Design

Display

Design Sample Observations, Percent Increase in Sales

I 5.43 5.71 6.22 6.01 5.29

2 6.24 6.71 5.98 5.66 6.60

3 8.79 Q.20 1.90 8.15 1.55

L]
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Residual by Predicted Plot
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3.9 The Random Effects Model

* There are a large number of possible

levels for the factor (theoretically an infinite
number)

* The experimenter chooses ‘a’ of these
evels at random

* Inference will be to the entire population of
evels
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The linear statistical model i1s
i =

1.2,...,
=Rt {;‘=I;1,---,z (3.47)

where both the treatment effects 7; and €; are random variables. We will assume that the treat-
ment effects 1, are NID (0, o2) random variables' and that the errors are NID (0, o), random
variables, and that the 7, and €; are independent. Because 7; is independent of €, the vanance

of any observation is

Viyy) = o+ o’

Variance components
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The basic ANOVA sum of squares identity
551 = 85rcarmenss T+ S5k (3.48)

15 still valid. That is, we partition the total variability in the observations into a component
that measures the vanation between treatments (554, ...} and a component that measures
the variation within treatments (55;). Testing hypotheses about individual treatment effects is
not very meaningful because they were selected randomly, we are more interested in the pop-
ulation of treatments, so we test hypotheses about the variance component a2,

Hy:a? =0
Hy: ol =0 (3.49)
If r? = 0, all treatments are identical; but if 2 = 0, variability exists between treatments.

As before, S50 is distributed as chi-square with N — a degrees of freedom and, under the
null hypothesis, S.S'T,.:mm-"cr: 15 distributed as chi-square with a — 1 degrees of freedom. Both

random variables are independent. Thus, under the null hypothesis o> = 0, the ratio
35 T rmmens
a— |1 L —
= = q
Fy S5, .HEE (3.50)
N—a

15 distributed as F with a — | and N — a degrees of freedom. However, we need to examine
the expected mean squares to fully descnbe the test procedure.
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| | Sy Y
E['HSTF__‘dmu'] = — 1 E{S‘il'm:lmmu.} = a — 1 EI:E m - E]

il

_ E[%i(i_u+n+eg) —P—L(ii#*fﬁfu)]

=1 1 j=1 =1 j=1

= l : [INu* + No + aoc® — Np* — no? — o]

EMS;,_ o) = o + ner?
E(MS;) = o

ANOVA F-test is identical to the fixed-effects case
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Estimating the variance components using the ANOVA method:

£ £
MS, . . =0 + no;

MS, = o’

&1 = MS,

M S Taimenss — Mg
fl

=
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 The ANOVA variance component
estimators are moment estimators

* Normality not required
* They are unbiased estimators

* Finding confidence intervals on the variance
components is “clumsy”

* Negative estimates can occur — this Is
“embarrassing’, as variances are always
non-negative
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exampLE 3.11

A textile company weaves a fabric on a large number of
looms. It would like the looms to be homogeneous so that it
obtains a fabric of uniform strength. The process engineer
suspects that, in addition to the usual variation in strength
within samples of fabric from the same loom, there may also

m TABLE 3.17

be significant variations in strength between looms. To
investigate this, she selects four looms at random and makes
four strength determinations on the fabric manufactured on
each loom. This experiment is run in random order, and the
data obtained are shown in Table 3.17. The ANOVA is con-

Strengh Drata for Emmele 311

Ohservations
Looms 1 2 K 4 ¥:
| a8 a7 a4 a6 390
2 a1 o0 03 a2 366
3 06 05 a7 a5 383
4 a5 96 a4 a8 388

ducted and is shown in Table 3.18. From the ANOVA, we
conclude that the looms in the plant differ significantly.

The varance components are estimated by & = 1.90 and
2073 — 1.90

:f:&%

4 1

Lig

m TABLE 3.18
Analysis of Variance for the Strength Data

1527 =y
Therefore, the variance of any observation on strength is
estimated by
d,=a?+ &7 =190 + 696 = 8.86.
Most of this variability is attributable to differences
between looms.

Source of Variation Sum of Squares Degrees of Freedom Mean Square Fy P-Value
Looms §9.19 3 29.73 15.68 <(1.001
Error 2275 12 1.90

Total [11.94 15
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 Confidence Interval for the error variance:

(N — a)M5; , AN — a)M5;

= o ==

: o |
XanN—a X 1-i@N-a

 Confidence interval for the interclass

correlation:
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Il
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|. ..'l1"f5'|'_'|_'_|]_'|1|.'l1L'i | _ ]}
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Estimation of the Overall Mean . In many random effects experiments the exper-
imenter is interested in estimating the overall mean p. From the basic model assumptions it
15 easy to see that the expected value of any observation is just the overall mean.
Consequently, an unbiased estimator of the overall mean is

A=Y,

So for Example 3.11 the estimate of the overall mean strength is

It is also possible to find a 100(] — @)% confidence interval on the overall mean. The

variance of y is
iﬁh_r
i=1j=1 _ ucrf +a

Wy)=¥ an an

The numerator of this ratio is estimated by the treatment mean square, so an unbiased estima-
tor of V(¥ )is

. MSp._
V(y) = %

Therefore, the 100(1 — a)% CI on the overall mean is

— { M STn:.-lrrm:

¥~ I'-|:|.'1 aln U‘HII (IR

|M5
=pu=7 +1 | Troatments

a2, ain 1]1~ill - an (3.61)
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311

Nonparametric Methods in the Analysis of Variance

Chapter 3

3111 The Kruskal-Wallis Test

In situations where the normality assumption is unjustified, the experimenter may wish to use
an alternative procedure to the F test analysis of variance that does not depend on this assump-
tion. Such a procedure has been developed by Kruskal and Wallis (1952). The Kruskal-Wallis
fest i used to test the null hypothesis that the  treatments are identical against the alterative
hypothesis that some of the treatments generate observations that are larger than others. Because
the procedure is designed to be sensitive for testing differences in means, 1t is sometimes con-
venient to think of the Kruskal-Wallis test as & test for equality of treatment means. The
Kruskal-Wallis test is a nonparametric alternative to the usual analysis of variance.

To perform a Kruskal-Wallis test, first rank the observations y, in ascending order and
replace each observation by its rank, say R, with the smallest observation having rank 1. In

ly
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Chapter 3

3.11 Nonparametric Methods in the Analysis of Variance 129

the case of ties (observations having the same value), assign the average rank to each of the
tied observations. Let R; be the sum of the ranks in the ith treatment. The test statistic is

_ 1| RN+ 1Y
where n; is the number of observations in the ith treatment, N is the total number of observa-
tions, and
< NV + 1)
$? [2 2R M} (3.68)
i=1j=1

Note that $ is just the variance of the ranks. If there are no ties, > = N(V + 1)/12 and the
test statistic simplifies to

2 3 R2
NN+ 1) &
When the number of ties is moderate, there will be little difference between Equations 3.68

and 3.69, and the simpler form (Equation 3.69) may be used. If the n; are reasonably large,
say n; = 5, H is distributed approximately as y>_, under the null hypothesis. Therefore, if

H= — 3N+ 1) (3.69)

H> Xi,a—l

the null hypothesis is rejected. The P-value approach could also be used.
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exampLE 3.12

The data from Example 3.1 and their corresponding ranks and the test statistic is
are shown in Table 3.20. There are ties, s0 we use Equation

a R2 2
3.67 as the test statistic. From Equation 3.67 H= %l:z % — M]
i=1 ™
_1 2021y | _ =1 =
St = E[2869.50 — = | =% 34,97 [2796-30 — 2205]
= 16.91

m TABLE 3.20
Data and Ranks for the Plasma Etching Experiment in Example 3.1

Power
160 180 200 220
yy Ry Yy Ry Yy Ry Y4 Ry
575 6 565 4 600 10 725 20
542 3 593 9 651 15 700 17
530 1 590 8 610 11.5 715 19
539 2 579 7 637 14 685 16
570 5 610 115 629 13 710 18
R 17 39.5 63.5 90

Because H > xjo3 = 11.34, we would reject the null  valuefor H = 16.91is P = 7.38 X 107*) This is the same
hypothesis and conclude that the treatments differ. (The P-  conclusion as given by the usual analysis of variance F test.
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Problem. A manufacturing engineer was concerned about the density of bricks. He
conducted an experiment on the brick-manufacturing process, to determine the effects of
firing temperatures on the density of a certain type of brick.

Four specific firing temperatures were selected to be used in this experiment. This
experiment led to the following data:

Temperature

(oF) Density
100 153 153 15.2 153 154
130 15.7 154 155 155 -
160 159 158 158 15.6 155
190 159 15.7 158 15.7 -

Q1- Does the firing temperature affect the density of the brick? What the experimenter
should do to decrease the Type | Error? Analyze the residuals from the experiment.
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QL-Anser: Ho: o= = psso= paso and H: Not.

ANOVA | SS g (M5 |Fo

Treatment | 0693111100 {3 | 0.207704 | 1501405

Error | 0.203 4 100145

Total | 0856111111 | 17 F0.03,14: | 3.34

Therefore, reject Ho.
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Q2- Assuming that the normality assumption of ANOVA is unjustified, test
the null hypothesis that the ‘a treatments’ are identical? Did you obtain a
similar decision to the one obtained from ANOVA?

Q2- Answer: Let’s, first, sort the density from minimum to maximum.

Density
15.2

15.3
15.3
15.3
15.4
15.4
15.5

15.5
15.5
15.6

15.7
15.7

Chapter 3

100

100
100
100
100
130
130

130
160
160

130
190

N = B 00BN 0 EN R W —

Rank
1

3

3

3
5.5

5.5
8

8
8
10

12
12
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Density i j Rank

15,7 190 4 12
15.8 160 2 15
15.8 160 3 15
15.8 190 3 15
15.9 160 1 17.5
15.9 190 1 17.5

Tempzraturs Yi R, Yi R Yi R ¥, R ¥ R,
100 15.3 3 153 3 15.2 1 15.3 3 154 6o
130 15.7 1 154 5 15.5 5 155 5
150 15, 175 158 15 15. 15 158 10 155 5
130 15, 175 157 1 15. 15 157 12

Sum o 0.2 o ai.1 309

Ha: pl=p?=y3=pd

HI: Not.
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There are ties.

Yij R1j i | Ry | V3 | Ry | V4 Rdj
15.3 3| 15.7 12| 15.9 17.5 15.9 17.5
15.3 3| 154 5,5/ 15.8 15| 15.7 12
15.2 1] 15.5 8| 15.8 15/ 15.8 15
15.3 3| 155 8 15.6 10| 15.7 12

15.4 5.5 15.5 8

SUM:i:
SM2=  [1/(18-1)]¥[SUMI SUM Rij"2 -(18*(19)2)/4]=

1/SA2*(SUMI ((Ri.A2)/ni) - (18*1972)/4)=

X20,05,3:7.81

Since H=12.8787 > 7.81 We reject Ho.
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765.5
40825

515

317

94,25

2100

21.97

12.8787



