Design of Engineering Experiments
— The Blocking Principle

« Text Reference, Chapter 4
 Blocking and nuisance factors

« The randomized complete block design or
the RCBD

e Extension of the ANOVA to the RCBD

* Other blocking scenarios...Latin square
designs
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The Blocking Principle

 Blocking is a technique for dealing with nuisance factors

« A nuisance factor is a factor that probably has some effect
on the response, but it’s of no interest to the
experimenter...however, the variability 1t transmits to the
response needs to be minimized

 Typical nuisance factors include batches of raw material,
operators, pieces of test equipment, time (shifts, days, etc.),
different experimental units

« Many industrial experiments involve blocking (or should)

« Failure to block is a common flaw in designing an
experiment (consequences?)
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The Blocking Principle

If the nuisance variable i1s known and controllable, we use
blocking

If the nuisance factor is known and uncontrollable,
sometimes we can use the analysis of covariance (see
Chapter 15) to remove the effect of the nuisance factor
from the analysis

If the nuisance factor is unknown and uncontrollable (a
“lurking” variable), we hope that randomization
balances out its impact across the experiment

Sometimes several sources of variability are combined in
a block, so the block becomes an aggregate variable
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The Hardness Testing Example

Text reference, pg 139, 140

We wish to determine whether 4 different tips produce
different (mean) hardness reading on a Rockwell hardness
tester

Gauge & measurement systems capability studies are
frequent areas for applying DOX

Assignment of the tips to an experimental unit; that is, a
test coupon

Structure of a completely randomized experiment
The test coupons are a source of nuisance variability

Alternatively, the experimenter may want to test the tips
across coupons of various hardness levels

The need for blocking
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The Hardness Testing Example

To conduct this experiment as a RCBD, assign all 4 tips to
each coupon

Each coupon is called a “block”; that is, it’s a more
homogenous experimental unit on which to test the tips

Variability between blocks can be large, variability within
a block should be relatively small

In general, a block is a specific level of the nuisance factor

A complete replicate of the basic experiment is conducted
In each block

A block represents a restriction on randomization
All runs within a block are randomized
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To illustrate the general idea, suppose we wish to determine whether or not four
different tips produce different readings on a hardness testing machine. An experiment
such as this might be part of a gauge capability study. The machine operates by pressing
the tip into a metal test coupon, and from the depth of the resulting depression, the
hardness of the coupon can be determined. The experimenter has decided to obtain four
observations for each tip. There 15 only one factor—tip type—and a completely random-
1zed single-factor design would consist of randomly assigning each one of the 4 X 4 =
16 runs to an experimental unit, that is, a metal coupon, and observing the hardness
reading that results. Thus, 16 different metal test coupons would be required in this
experiment, one for each run in the design.

There 15 a potentially serious problem with a completely randomized experiment in
this design situation. If the metal coupons differ slightly in their hardness, as might
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Table 4-1 Randomized Complete Block Design
for the Hardness Testing Experiment

Test Coupon
Type of Tip 1 2 3 4
1 9.3 9.4 9.6 10.0
2 9.4 9.3 9.8 9.9
3 9.2 9.4 9:3 9.1
4 9.7 9.6 10.0 10.2

happen if they are taken from ingots that are produced in different heats, the experimental
units (the coupons) will contribute to the variability observed in the hardness data. As a
result, the experimental error will reflect both random error and variability between

coupons.

We would like to make the experimental error as small as possible; that is, we would
like to remove the variability between coupons from the experimental error. A design
that would accomplish this requires the experimenter to test each tip once on each of
four coupons. This design, shown in Table 4-1, is called a randomized complete block
design (RCBD). The observed response is the Rockwell C scale hardness minus 40.
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The Hardness Testing Example

« Suppose that we use b = 4 blocks:

m TABLE 4.1

Randomized Complete Block Design for the Hardness Testing Experiment

Test Coupon (Block)

1 2 3 4

Tip 3 Tip 3 Tip 2 Tip 1
Tip 1 Tip 4 Tip 1 Tip 4
Tip 4 Tip 2 Tip 3 Tip 2
Tip 2 Tip 1 Tip 4 Tip 3

 Notice the two-way structure of the experiment

« Once again, we are interested in testing the equality of
treatment means, but now we have to remove the
variability associated with the nuisance factor (the blocks)
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Extension of the ANOVA to the RCBD

« Suppose that there are a treatments (factor levels)
and b blocks

« A statistical model (effects model) for the RCBD

IS .
1=12,..a

yij = U+T +,Bj +gij{j :1’2,__.,b

» The relevant (fixed effects) hypotheses are

H,:p =, == p, where i =(1/b)2k_;:1(,u+fi +f;) =p+7,
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Extension of the ANOVA to the RCBD
ANOVA partitioning of total variability:

> (-0 =Y XI5 -5)+(7,-7)

"‘(yij _ yi. - V.j T 7)]2
=bY(7, -7 +aY. (7, - V.)

+Za:Z(yij —Y, =Y+ 7)2

i=1 j=1
SS, =SS +SS +SS,
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Extension of the ANOVA to the RCBD

The degrees of freedom for the sums of squares in

SS, =SS +8S,. .. +SS.

are as follows:
ab—1=a-1+b-1+(a—-1)(b-1)

Therefore, ratios of sums of squares to their degrees of
freedom result in mean squares and the ratio of the mean
square for treatments to the error mean square is an F
statistic that can be used to test the hypothesis of equal
treatment means

Treatments
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ANOVA Display for the RCBD

mn TABLE 4.2
Analysis of Variance for a Randomized Complete Block Design

Source Degrees
of Variation Sum of Squares of Freedom Mean Square I,
. SSTreatments M5y s
TI'B{'I[ITIBT'I[F SSTmmnwm a— I y re_*ltm]e nt fm;:;l;lent
S S Blocks
Blocks S S Blocks h—1 Blocks
b—1
SSe
Error AN (a—1)b—1)
£ {” - ]}(f? - ]j
Total SSr N—1
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Manual computing:

and the error sum of squares is obtained by subtraction as

Chapter 4

LSSE = SST - SSTJ'eatmcntﬁ - SSEI-[-:-:R:;
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EXAMPLE 4.1 :ccccccceenecvennnncinnnsssnnnssnnnssnsces cesererseennae .o

Consider the hardness testing experiment described in Section 4-1. There are four tips
and four available metal coupons. Each tip is tested once on each coupon, resulting in a
randomized complete block design. The data obtained are repeated for convenience in
Table 4-3. Remember that the order in which the tips were tested on a particular coupon
was determined randomly. To simplify the calculations, we code the original data by

Table 4-3 Randomized Complete Block Design
for the Hardness Testing Experiment

Coupon (Block)
Type of Tip 1 2 3 4
] 9.3 9.4 9.6 10.0
2 94 9.3 9.8 9.9
3 9.2 9.4 93 9.7
4 91 9.6 10.0 10.2
Chapter 4 Design & Analysis of Experiments
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Table 4-4 Coded Data for the Hardness Testing Experiment
Coupon (Block)

Type of Tip 1 2 3 4 Yi.
1 —2 =] 1 5 3
2 = - 3 4 4
3 —3 —~ 0 2 —
4 2 1 5 7 15
v, —4 -3 L2 18 20 =y,

subtracting 9.5 from each observation and multiplying the result by 10. This yields the
data in Table 4-4. The sums of squares are obtained as follows:

4 4 y2
SST = = yt_} N
2
= 154.00 — ), = 129.00
16
e X 2 yf
SSTreatments == b le Yi. N
1 20 2
= 21 + @ + 27 + a5 - EF = 3850
I & y>
AN ocks — e
Blocks aj; y._[ N
1 20 2
= 2 I—2 + (=37 + 07 + 18] - 22 = 8250

SSE = SST — SSTreatments - SSBlocks
= 129.00 — 38.50 — 82.50 = 8.00
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The analysis of variance 1s shown in Table 4-5. Using a = 0.05, the critical value of F
1S Foos30 = 3.86. Because 14.44 > 3.86, we conclude that the type of tip affects the
mean hardness reading. The P-value for the test is also quite small. Also, the coupons
(blocks) seem to differ significantly, because the mean square for blocks is large relative
to error.

It 1s interesting to observe the results we would have obtained had we not been aware
of randomized block designs. Suppose we used four coupons, randomly assigned the tips
to each, and (by chance) the same design resulted as in Table 4-3. The incorrect analysis
of these data as a completely randomized single-factor design is shown in Table 4-6.

Table 4-5 Analysis of Variance for the Hardness Testing Experiment

Source of Sum of Degrees of Mean

Variation Squares Freedom Square F, P-Value
Treatments (type

of tip) 38.50 3 12.83 14.44 0.0009

Blocks (coupons) 82.50 3 27.50
Error 8.00 9 0.89
Total 129.00 15
Chapter 4 Design & Analysis of Experiments 16
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Table 4-6 Incorrect Analysis of the Hardness Testing Experiment
as a Completely Randomized Design

Source of Sum of Degrees of Mean

Variation Squares Freedom Square Fy
Type of tip 38.50 3 12.83 1.70
Error 90.50 12 1.54
Total 129.00 13

Because Fo gs 3., = 3.49, the hypothesis of equal mean hardness measurements from the
four tips cannot be rejected. Thus, the randomized block design reduces the amount of
noise in the data sufficiently for differences among the four tips to be detected. This
illustrates a very important point. If an experimenter fails to block when he or she should
have, the effect may be to inflate the experimental error so much that important differ-
ences among the treatment means may be undetectable.

Chapter 4 Design & Analysis of Experiments 17
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Other Aspects of the RCBD
See Text, Section 4.1.3, pg. 132

« The RCBD utilizes an additive model — no
Interaction between treatments and blocks

 Treatments and/or blocks as random effects
» Missing values

« \What are the consequences of not blocking If we
should have?

« Sample sizing in the RCBD? The OC curve
approach can be used to determine the number of
blocks to run.

Chapter 4 Design & Analysis of Experiments 18
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Random Blocks and/or Treatments

Assuming that the RCBD model Equation 4.1 is appropriate, if the blocks are random
and the treatments are fixed we can show that:

Eygj) =p + 1 i=1, 2..... a
e — - o]
Vi) i) = og + o
Covlyy yep) =0, j#] (4.14)
Covivg, yep) = o i # i’
Thus, the variance of the observations is constant, the covariance between any two observa-
tions in different blocks is zero, but the covariance between two observations from the same

block is Lll_g The expected mean squares from the usual ANOVA partitioning of the total sum
of squares are

b7

i=1

E{-'l"'f-s'l'.n;um-:us} = LI‘: +

a— |
E(MSgs.) = o + acg (4.15)
E(MS,) = o
Chapter 4 Design & Analysis of Experiments
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The appropriate statistic for testing the null hypothesis of no treatment effects (all
T, = 0)is

= MStoumen
. M5,

which is exactly the same test statistic we used in the case where the blocks were fixed. Based

on the expected mean squares, we can obtain an ANOVA-type estimator of the variance com-
ponent for blocks as

. MSy... — MS;
g =—— (4.16)

For example, for the vascular graft experiment in Example 4.1 the estimate of cré ]

2 _ MSp, — M5y 3845 — 7.33

9 = a 4

= T.78

Chapter 4 Design & Analysis of Experiments
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4-1.2 Model Adequacy Checking

We have previously discussed the importance of checking the adequacy of the assumed
model. Generally, we should be alert for potential problems with the normality assump-
tion, unequal error variance by treatment or block, and block—treatment interaction. As
in the completely randomized design, residual analysis is the major tool used in this
diagnostic checking. The residuals for the randomized block design in Example 4-1 are
listed at the bottom of the Design-Expert output in Figure 4-2. The coded residuals would
be found by multiplying these residuals by 10. The observations, fitted values, and re-
siduals for the coded hardness testing data in Example 4-1 are as follows:

Yij Vi e
—2.00 —1.50 —0.50
—1.00 —1.25 0.25

1.00 1.75 —0.75

5.00 4.00 1.00
—1.00 —1.25 0.25
—2.00 —1.00 —1.00

3.00 2.00 1.00

4.00 4.25 —0.25
—3.00 =275 —0.25
—1.00 —2.50 1.50

0.00 0.50 —0.50

2.00 2.75 —0.75

2.00 1.50 0.50

1.00 1.75 —0.75

5.00 4.75 0.25

7.00 7.00 0.00

A normal probability plot and a dot diagram of these residuals are shown in Figure
4-4 on page 136. There is no severe indication of nonnormality, nor is there any evidence
pointing to possible outliers. Figure 4-5 (page 137) shows plots of the residuals by type

Chapter 4 Design & Analysis of Experiments
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Figure 4-4 Normal probability plot of residuals for Example 4-1.
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Figure 4-S Plot of residuals by tip type (freatment) and by
coupon (block) for Example 4-1.
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is completely additive. This says that, for example, if the first treatment causes the
expected response to increase by five units (7; = 5) and if the first block increases the
expected response by 2 units (3, = 2), the expected increase in response of both treatment
1 and block 1 togetheris E(y;)) = p+n+ B =p+5+2=pu+ 7 In general,

1.50 - L
1.00 - ® ®
0.50 @
@8 ®
& 0.00 | | | | | | |
-4 -2 0 2 4 6 8
° ~ e
¥y
-050 — - ® . ® 5
o o
-1.00 [

-1.50 |~

Figure 4-6 Plot of residuals versus ¥;; for Example 4-1.

Chapter 4 Design & Analysis of Experiments
8E 2012 Montgomery

24



Choice of Sample Size

Choosing the sample size, or the number of blocks to run, is an important decision
when using an RCBD. Increasing the number of blocks increases the number of replicates
and the number of error degrees of freedom, making the design more sensitive. Any of
the techniques discussed in Chapter 3 (Section 3-7) for selecting the number of replicates
to run i a completely randomized single-factor experiment may be applied directly to
the RCBD. For the case of a fixed factor, the operating characteristic curves in Appendix
Chart V may be used with

e
D=
q
~

¢ = — (4-14)

where there are @ — 1 numerator degrees of freedom and (@ — 1)(b — 1) denominator
degrees of freedom,
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EXAMPLE i) wosveesnvansassmsasnasts sassoss i Bess s shi Bein i Sosnoes s hives

Consider the hardness testing problem described in Example 4-1. Suppose that we wish
to determine the appropriate number of blocks to run if we are interested in detecting a
true maximum difference in mean hardness readings of 0.4 with a high probability and
a reasonable estimate of the standard deviation of the errors is & = 0.1. (These values
are given in the original units; recall that the analysis of variance was performed using
coded data.) From Equation 3-49, the minimum value of ®? is (writing b, the number of
blocks, for n)

o = B

2ac?

where D is the maximum difference we wish to detect. Thus,

,  b0.4y
©2(4)(0.1)

If we use b = 3 blocks, ® = V2.0b = V2.0(3) = 2.45,and thereare (a — 1)(b — 1) =
3(2) = 6 error degrees of freedom. Appendix Chart V with »;, =a — 1 = 3 and a = 0.05
indicates that the B risk for this design is approximately 0.10 (power = 1 — 8 = 0.90).
If we use b = 4 blocks, ® = V2.0b = V2.0(4) = 2.83, with (@ — 1)(b — 1) = 3(3) =
9 error degrees of freedom, and the corresponding S risk is approximately 0.03 (power =
1 — B = 0.97). Either three or four blocks will result in a design having a high probability
of detecting the difference between the mean hardness readings considered important.
Because coupons (blocks) are inexpensive and readily available and the cost of testing
is low, the experimenter decides to use four blocks.

= 2.0b
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8E 2012 Montgomery

26



Bstimating Missing Values

When using the RCBD, sometumes an observation 1n one of the blocks 15 missing, This
may happen because of carelessness or error or for reasons beyond our control, such as
unavoidable damage o an experimental unit. A missing observation introduces a new
problem into the analysts because treatments are no longer orthogonal to blocks; that

Chapter 4 Design & Analysis of Experiments
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Table 4-7 Randomized Complete Block Design for the Hardness
Testing Experiment with One Missing Value

Coupon (Block)
Type of Tip 1 2 3 4
1 2 | 1 5
2 =] ~2 X 4
3 ~3 =] 0 2
4 2 1 b} ;)

is, every treatment does not occur in every block. There are two general approaches to
the missing value problem. The first is an approximate analysis in which the missing
observation is estimated and the usual analysis of variance is performed just as if the
estimated observation were real data, with the error degrees of freedom reduced by 1.
This approximate analysis is the subject of this section. The second is an exact analysis,
which is discussed in Section 4-1.4.

Suppose the observation v;; for treatment i in block 7 is missing. Denote the missing

Chapter 4 Design & Analysis of Experiments
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Chapter 4

Suppose the observation y;; for treatment 7 in block j is missing. Denote the missing
observation by x. As an illustration, suppose that in the hardness testing experiment of
Example 4-1 coupon 3 was broken while tip 2 was being tested and that data point could
not be obtained. The data might appear as in Table 4-7.

In general, we will let y’ represent the grand total with one missing observation,
y:. represent the total for the treatment with one missing observation, and y’; be the total
for the block with one missing observation. Suppose we wish to estimate the missing
observation x so that x will have a minimum contribution to the error sum of squares.

Because SS; = ?=12§’=1(y,-j -y -y, t y.)%, this is equivalent to choosing x to
minimize
a b 1 a b 2 1 b a 2 1 a 2
5515 (3x) 13 (20) 5 (22)
i=1 j=1 = =1 a j=1 \i=1 ab \;=1 j=1
or

1 1 1
SSg = x* — E()’E. + aF ~ . (v, +2° + o (vl +a* + R (4-15)

where R includes all terms not involving x. From dSS;/dx = 0, we obtain

oy 0 — 3,
@— DG -1

(4-16)

as the estimate of the missing observation.
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as the estimate of the missing observation.
For the data in Table 4-7, we find that y5, = 1,y'; = 6, and y’ = 17, Therefore,
from Equation 4-16,

41) + 46) - 17
(3)3)
The usual analysis of variance may now be performed using y,; = 1.22 and reducing

the eror degrees of freedom by 1. The analysis of variance is shown in Table 4-8 on the
facing page. Compare the results of this approximate analysis with the results obtatned

for the full data set (Table 4-3).

1.2

Y= =

Chapter 4 Design & Analysis of Experiments 30
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Table 4-8 Approximate Analysis of Variance for Example 4-1 with One Missing Value

Source of Sum of Degrees of Mean

Variation Squares Freedom Square Fy P-Value
Type of tip 39.98 3 1353 17.12 0.0008
Specimens (blocks) 79.53 3 26.51
Error 6.22 8 0.78
Total 125.73 14

If several observations are missing, they may be estimated by writing the error sum
of squares as a function of the missing values, differentiating with respect to each missing
value, equating the results to zero, and solving the resulting equations. Alternatively, we
may use Equation 4-16 iteratively to estimate the missing values. To illustrate the iterative
approach, suppose that two values are missing. Arbitrarily estimate the first missing
value, and then use this value along with the real data and Equation 4-16 to estimate the
second. Now Equation 4-16 can be used to re-estimate the first missing value, and fol-
lowing this, the second can be re-estimated. This process is continued until convergence
is obtained. In any missing value problem, the error degrees of freedom are reduced by
one for each missing observation.
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The Latin Square Design

» Text reference, Section 4.2, pg. 158

» These designs are used to simultaneously control
(or eliminate) two sources of nuisance
variability

A significant assumption is that the three factors
(treatments, nuisance factors) do not interact

« |f this assumption is violated, the Latin square
design will not produce valid results

« Latin squares are not used as much as the RCBD
In Industrial experimentation
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The Rocket Propellant Problem —
A Latin Square Design

mn TABLE 4.9
Latin Square Design for the Rocket Propellant Problem

Operators

Batches of

Raw Material 1 2 L) 4 5
I A=24 B=20 C=19 D=2 E=24
2 B=17 C=24 =30 E=127 A=36
i C=18 D =138 E=126 A=127 B=21
4 D=26 E =131 A=126 B=123 cC=2
5 E=122 A =30 B=120 C =20 D =31

« Thisisa 5x5 Latin square design
o Statistical analysis?

Chapter 4 Design & Analysis of Experiments
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Statistical Analysis of the
Latin Square Design
 The statistical (effects) model is

(i=12,..,p
Vix =u+a+7,+ B +&,11=12,..,p
k=12,..,p

 The statistical analysis (ANOVA) is much like the
analysis for the RCBD.

« The analysis for the rocket propellant example
follows
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anTABLE 4.10
Analysis of Variance for the Latin Square Desi

Source of Sum of Degrees of Mean
Variation Squares Freedom Square Fa
) o - 1 . _1 1'5 jljl'l'r-.'::.mu.-:.l.-: S J!":ir-l;'l'l'r-.':r.i.-\u.-.'.|_-:
Treatments .3.31_-..._“.-"_."-.,_ = F-; ¥i— F r— 1 ﬁ .IL|:| = T
- g _LF 2 _E . Ss}hw
Rows A ——— .“',-E; Vi N p—1 P |
T 5o, V.. 55 -0l mms
Columns S8 ol = 7 Vi~ p—1 .”[‘I i
- ) S P 55;.;
Error 58g (by subtraction) (p—2p—1) 7 =D -1
" 1 1'_ 7
Total S8 = E?E‘, Vik — 3 p—1
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mnTABLE 4.12
Analysis of Variance for the Rocket Propellant Experiment

Source of Sum of Degrees of Mean

Variation Squares Freedom Square Fy P-Value
Formulations 330.00 4 82.50 1.73 0.0025
Batches of raw matenal 68.00 4 1 7.00

Operators 150,00 4 37.50

Error 128.00 12 10,67

Total 676.00 24

As in any design problem, the experimenter should investigate the adequacy of the model by
inspecting and plotting the residuals. For a Latin square, the residuals are given by

Cie = Ygr — Vi
— V.

-y, —yit 2y,

Vigk Vi
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Occasionally, one observation in a Latin square is missing, For ap X p Latin square,
the missing value may be estimated by

Py Tyt -,
Yijk = : : (4-24)
(p-2p-1)

where the primes indicate totals for the row, column, and treatment with the missing
value, and y' is the grand total with the missing value.

Latin squares can be useful in situations where the rows and columns represent
factors the experimenter actually wishes to study and where there are no randomization
restrictions. Thus, three factors (rows, columns, and letters), each at p levels, can be
investigated in only p" runs, This design assumes that there is no interaction between the
factors, More will be said later on the subject of interaction.

Chapter 4 Design & Analysis of Experiments
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4-4 BALANCED INCOMPLETE BLOCK DESIGNS

In certain experiments using randomized block designs, we may not be able to run all
the treatment combinations in each block. Situations like this usually occur because of
shortages of experimental apparatus or facilities or the physical size of the block. For
example, in the hardness testing experiment (Example 4-1), suppose that because of their
size each coupon can be used only for testing three tips. Therefore, each tip cannot be
tested on each coupon. For this type of problem it is possible to use randomized block
designs in which every treatment is not present in every block. These designs are known
as randomized incomplete block designs.

When all treatment comparisons are equally important, the treatment combinations
used in each block should be selected in a balanced manner, that is, so that any pair of
treatments occur together the same number of times as any other pair. Thus, a balanced
incomplete block design (BIBD) is an incomplete block design in which any two treat-
ments appear together an equal number of times. Suppose that there are a treatments and
that each block can hold exactly k£ (k < a) treatments. A balanced incomplete block
design may be constructed by taking (%) blocks and assigning a different combination of
treatments to each block. Frequently, however, balance can be obtained with fewer than
(%) blocks. Tables of BIBDs are given in Fisher and Yates (1953), Davies (1956), and
Cochran and Cox (1957).
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As an example, suppose that a chemical engineer thinks that the time of reaction for
a chemical process is a function of the type of catalyst employed. Four catalysts are
currently being investigated. The experimental procedure consists of selecting a batch of
raw material, loading the pilot plant, applying each catalyst in a separate run of the pilot
plant, and observing the reaction time. Because variations in the batches of raw material
may affect the performance of the catalysts, the engineer decides to use batches of raw
material as blocks. However, each batch is only large enough to permit three catalysts

Table 4-22 Balanced Incomplete Block Design
for Catalyst Experiment

Block (Batch of Raw Material)

Teratment
(Catalyst) 1 2 3 4 ¥i.
1 13 74 — 71 218
2 — 75 67 72 214
3 L 75 68 — 216
4 75 — 12 75 222
Y., 221 224 207 218 870 =y,
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to be run. Therefore, a randomized incomplete block design must be used. The balanced
incomplete block design for this experiment, along with the observations recorded, is
shown in Table 4-22 at the bottom of the previous page. The order in which the catalysts
are run in each block is randomized.

4-4.1 Statistical Analysis of the BIBD

As usual, we assume that there are a treatments and b blocks. In addition, we assume
that each block contains k treatments, that each treatment occurs r times in the design
(or is replicated r times), and that there are N = ar = bk total observations. Furthermore,
the number of times each pair of treatments appears in the same block is

_r(k—l)
d— 1

A

If a = b, the design is said to be symmetric.

The parameter A must be an integer. To derive the relationship for A, consider any
treatment, say treatment 1. Because treatment 1 appears in r blocks and there are k — 1
other treatments in each of those blocks, there are r(k — 1) observations in a block
containing treatment 1. These r(k — 1) observations also have to represent the remaining
a — 1 treatments A times. Therefore, A(a — 1) = r(k — 1).
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The statistical model for the BIBIj 18
Yo =t @k B + €; (4-26)

where y,; is the ith observation in the jth block, u is the overall mean, 7; is the effect of
the ith treatment, B, is the effect of the jth block, and ¢;; is the NID (O, o?) random error
component. The total variability in the data is expressed by the total corrected sum of
squares:

2
sSr=3 23— % 4-27)
i J

Total variability may be partitioned into
SST = SSTreatments(adjusted) g SSBlocks ¥ SSE

where the sum of squares for treatments is adjusted to separate the treatment and the
block effects. This adjustment is necessary because each treatment is represented in a
different set of r blocks. Thus, differences between unadjusted treatment totals y,,
¥, ..., Yq are also affected by differences between blocks.

The block sum of squares is

1, & y?
- 2 us
SO Hlacks = ;{‘FEl ¥i N (4-28)
where y ; is the total in the jth block. SSgjocs has b — 1 degrees of freedom. The adjusted
treatment sum of squares is

SSTrcatmcms(adjusted) = T (4"29)
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Table 4-23 Analysis of Variance for the Balanced Incomplete Block Design

Source of Degrees of

Variation Sum of Squares Freedom Mean Square Fy
Treatments k 2 Ql’z == SSTrcauncnt;(adjusled) - MSTrealn‘lcnts(adjusted)

(adjusted) Aa fit—s g MS,

1 y2 SSBiocks
Blocks z 2 v — N b1 [y
Error SSg (by subtraction) N b+ 1 s
. . S
&0 - N—a—b+1
y2

Total 22)’§—ﬁ N—1

where Q; is the adjusted total for the ith treatment, which is computed as

I _
Q=y—p Xy, i=L2....a (4-30)

with n;; = 1 if treatment i appears in block j and n;; = O otherwise. The adjusted treatment
totals will always sum to zero. SSt catmentscadjusteay Nas @ — 1 degrees of freedom. The error
sum of squares is computed by subtraction as

SSE S SST - SSTreatments(a.djusted) - SSB!ucks (4'31)

and has N — a — b + 1 degrees of freedom.
The appropriate statistic for testing the equality of the treatment effects is

M S Treatments(adjusted)

MS

F0=

The analysis of variance is summarized in Table 4-23.
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EXAMPLE 445 ...................................................

Consider the data in Table 4-22 for the catalyst experiment. This is a BIBD with a = 4,
b=4k=3r=3 A=2and N = 12. The analysis of this data is as follows. The

total sum of squares 1s

(870)°
12

= 63,156 - = 81.00

The block sum of squares is found from Equation 4-28 as

< y:
= - - ER
SSBlocks 3 j:zl y-j 12
1 870)°
= 3 [(221)* + (207)* + (224)* + (218)1] - ( 1 2) = 355.00
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Table 4-24 Analysis of Variance for Example 4-5

Source of Sum of Degrees of Mean
Variation Squares Freedom Square Fo P-Value
Treatments (adjusted 22.75 3 7.58 11.66 0.0107
for blocks)
Blocks 55.00 3 —
Error 3.25 S 0.65
Total 81.00 11

To compute the treatment sum of squares adjusted for blocks, we first determine the
adjusted treatment totals using Equation 4-30 as

O: = (218) — (221 + 224 + 218) = —9/3
Q> = (214) — 3(207 + 224 + 218) =3
Qs = (216) — 3(221 + 207 + 224) —4/3
O, = (222) — 3(221 + 207 + 218) = 20/3

The adjusted sum of squares for treatments is computed from Equation 4-29 as

4
2
k >, OF
i=1
SSTreatments(adjusted) =

Aa
3[(=93) + (—7/3)° -+ {—4/3)" + (0/3)"]
= = 22.75
2)@)

The error sum of squares is obtained by subtraction as

SSg = SSr — SSTreatments(adjusted) — SSBiocks
= 81.00 — 22.75 — 55.00 = 3.25

The analysis of variance is shown in Table 4-24. Because the P-value is small, we
conclude that the catalyst employed has a significant effect on the time of reaction.
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If the factor under study is fixed, tests on individual treatment means may be of
interest. If orthogonal contrasts are employed, the contrasts must be made on the adjusted
treatment totals, the {(,] rather than the {y; }. The contrast sum of squares 1s

k(i CiQi)

a
Aa 2 G
i=1

where {c;} are the contrast coefficients. Other multiple comparison methods may be
used to compare all the pairs of adjusted treatment effects, which we will find in Section

SSC =
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4-4.2, are estimated by % = kQ.,/(Aa). The standard error of an adjusted treatment effect

[kM
S = Se (4-32)
Aa

is

In the analysis that we have described the total sum of squares has been partitioned
into an adjusted sum of squares for treatments, an unadjusted sum of squares for blocks,
and an error sum of squares. Sometimes we would like to assess the block effects. To
do this, we require an alternate partitioning of SSr, that is,

SST = SSTreatments + SSBlocks(adjusted) .3 SSE

Here SStrearments 15 uUnadjusted. If the design is symmetric, that is, if a = b, a simple
formula may be obtained for SSgiockscadjusteay- 1he adjusted block totals are

1 < .
=Yy = ; nyy.. j=12....b daa

and

b
r Z (%
SSBlocks(adjusled) — —JW)_ (4-34)
The BIBD in Example 4-5 is symmetric because a = b = 4. Therefore,
Q) = (221) — 3218 + 216 + 222) = 7/3
0, = (224) — (218 + 214 + 216) = 24/3
Q4 = (207) — 3(214 + 216 + 222) = —31/3
Q. = (218) — 3(218 + 214 + 222) = 0
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and

3[(7/3)* + 437 + (—31/3)° + (0)°
SS Blockstadijusted) = L )(2) ( 4)( B + O] = 66.08

Also,

218)F + (214)* + (216)* + (222>  (870)
SSTreatments = ( ) ( ) 3 ( ) ( ) - ( 12) = 1167

Table 4-25 Analysis of Variance for Example 4-5, Including Both Treatments and Blocks

Sum of Degrees of Mean

Source of Variation Squares Freedom Square Fy P-Value
Treatments (adjusted) 22,75 3 7.58 11.66 0.0107
Treatments (unadjusted) 11.67 3
Blocks (unadjusted) 55.00 3
Blocks (adjusted) 66.08 3 22.03 33.90 0.0010
Error 3.25 5 0.65
Total 81.00 11
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