
CMPE224 Dıgıtal Logic Systems

MARIE Assembly Language Programming Exercise Samples

IMPORTANT NOTES:

I. Prepare solutions of questions 5 and 6, and demonstrate your solutions to lab. Assistants on 21

MAY, 2019 Tuesday, at 16:30 in CMPE227.

II. Prepare solutions of questions 8 and 10, and demonstrate your solutions to lab. Assistants on 28

MAY, 2019 Tuesday, at 16:30 in CMPE227.

Q.1. Write a Marie Assembly Language Program (MALP) to compute the first 10 elements of the

following sequence: F0=0, F1=1, F2=3, Fi=Fi-1+Fi-2+Fi-3, i > 2.

Q.2. Write a MALP, with a procedure of DivideByTwo, to check if an input integer is either even or

odd.

Q.3. Write a MALP to compute the expression z= (x*y+3x+3y)/x*y -2x -2y) for x=20 and y=10. Keep

the quotient and remainder of division in variablea q and r, respectively. Output values of q and r

before termination.

Q.4. Input numbers A, B, C and D from input register and perform computations A-B, A-B-C and A-B-

C-D using a single procedure SubtractXY which computes (X-Y).

Q.5. (EXP-1) Write a MALP to print the string “I Love CMPE224” to output area.

Q.6. (EXP-1) Write a MALP to compute the sum of integers in the array A=[2,3,5,8,4,8,1,9,3]

Q.7. Write a MALP to compute the sum of elements in two arrays A and B that are defined as follows:

A=[1,2,3,4,5], B=[6,7,8,9,10]. Store the result in Array C.

Q.8. (EX-2) Write a MALP to compute maximum of elements in the two arrays A and B. That is,

Ci=max(Ai,Bi).

Q.9. Write a MALP to compute the absolute values of elements within an array A.

Q.10. (EXP-2) Write a MALP to compute 2’s complements of numbers stored in an array A.

MARIE INSTRUCTION SET

Type Instruction Hex Opcode Summary

Arithmetic

Add X 3
Adds value in AC at address X into AC,

AC ← AC + X

Subt X 4
Subtracts value in AC at address X into AC,

AC ← AC - X

AddI X B
Add Indirect: Use the value at X as the actual address

of the data operand to add to AC. ACM[M[X]]

Clear A AC ← 0

Data Transfer

Load X 1
Loads Contents of Address X into AC.

ACM[X]

Store X 2
Stores Contents of AC into Address X.

M[X]AC.

I/O

Input 5
Request user to input a value.

ACInREG

Output 6
Prints value from AC.

OutREG AC.

Branch

Jump X 9
Jumps to Address X.

PCM[X]

Skipcond (C) 8

Skips the next instruction based on C: if (C) =

- 000: Skips if AC < 0

- 400: Skips if AC = 0

- 800: Skips if AC > 0

Subroutine

JnS X 0

Jumps and Store: Stores value of PC at address X then

increments PC to X+1.

M[X]PC, PCM[X]+1

JumpI X C
Uses the value at X as the address to jump to.

PCM[M[X]]

Indirect Addressing

StoreI X D

Stores value in AC at the indirect address.

e.g. StoreI addresspointer

Gets value from addresspointer, stores the AC value

into the address.

M[M[X]] AC

LoadI X E

Loads value from indirect address into AC

e.g. LoadI addresspointer

Gets address value from addresspointer, loads value at

the address into AC

ACM[M[X]

 Halt 7 End the program

