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Abstruct-This paper summarizes the current state of the art and 
recent trends in software engineering economics. It  provides an over- 
view of economic analysis techniques and their applicability to soft- 
ware engineering and management. It surveys the field of software 
cost estimation, including the major estimation techniques available, 
the state of the art  in algorithmic cost models, and the outstanding 
research issues in software cost estimation. 
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Definitions 

The dictionary defines "economics" as "a social science 
concerned chiefly with description and analysis of the produc- 
tion, distribution, and consumption of goods and services." 
Here is another defmition of economics which I think is more 
helpful in explaining how economics relates to software engi- 
neering. 

Economics is the study of how people make decisions 
.in resource-limited situations. 
This definition of economics fits the major branches of 

classical economics very well. 
Macroeconomics is the study of how people make decisions 

in resource-limited situations on a national or global scale. It 
deals with the effects of decisions that national leaders make 
on such issues as tax rates, interest rates, foreign and trade 
policy. 



Microeconomics is the study of how people make decisions 
in resource-limited situations on a more personal scale. It deals 
with the decisions that individuals and organizations make on 
such issues as how much insurance to buy, which word proc- 
essor to buy, or what prices to charge for their products or 
services. 

Economics and Software Engineering Management 

If we look at the discipline of software engineering, we see 
that the microeconomics branch of economics deals more with 
the types of decisions we need to make as software engineers 
or managers. 

Clearly, we deal with limited resources. There is never 
enough time or money to cover all the good features we would 
like to put into our software products. And even in these days 
of cheap hardware and virtual memory, our more significant 
software products must always operate within a world of lim- 
ited computer power and main memory. If you have been in 
the software engineering field for any length of time, I am sure 
you can think of a number of decision situations in which you 
had to determine some key software product feature as a func- 
tion of some limiting critical resource. 

Throughout the software life cycle,' there are many de- 
cision situations involving limited resources in which software 
engineering economics techniques provide useful assistance. To 
provide a feel for the nature of these economic decision issues, 
an example is given below for each of the major phases in the 
software life cycle. 

Feasibiliw Phase: How much should we invest in in- 
formation system analyses (user questionnaires and in- 

1 Economic principles underlie the overall structure of the software 
Iife cycle, and its primary refinements of prototyping, incremental de- 
velopment, and advancemanship. The primary economic driver of the 
life-cycle structure is the significantly increasing cost of making a soft- 
ware change or fmhg a software problem, as a function of  the phase 
in which the change or fur is made. See [ 11, ch. 41. 



terviews, current-system analysis, workload characteri- 
zations, simulations, scenarios, prototypes) in order 
that we converge on an appropriate definition and con- 
cept of operation for the system we plan t o  imple- 
ment? 
Plans and Requirements Phase: How rigorously should 
we specify requirements? How much should we invest 
iri requirements validation activities (automated com- 
pleteness, consistency, and traceability checks, analytic 
models, simulations, prototypes) before proceeding to 
design and develop a software system? 
Product Design Phase: Should we organize the software 
to make it possible to use a complex piece of existing 
software which generally but not completely meets our 
requirements? 
Programming Phase: Given a choice between three data 
storage and retrieval schemes which are primarily exe- 
cution time-efficient, storage-efficient, and easy-to- 
modify, respectively; which of these should we choose 
to implement? 
Integration and Test Phase: How much testing and for- 
mal verification should we perform on a product be- 
fore releasing it to users? 
Maintenance Phase: Given an extensive list of suggested 
product improvements, which ones should we imple- 
ment first? 
Phaseout: Given an aging, hard-to-modify software 
product, should we replace it with a new product, re- 
structure it, or leave it alone? 

Outline of This Paper 

The economics field has evolved a number of techniques 
(cost-benefit analysis, present value analysis, risk analysis, etc.) 
for dealing with decision issues such as the ones above. Section 



I1 of this paper provides an overview of these techniques and 
their applicability to software engineering. 

One critical problem which underlies all applications of 
economic techniques to software engineering is the problem of 
estimating software costs. Section I11 contains three major 
sections which summarize this field: 

111-A: Major Software Cost Estimation Techniques 
111-B: Algorithmic Models for Software Cost Estimation 
111-C: Outstanding Research Issues in Software Cost Estima- 

tion. 
Section IV concludes by summarizing the major benefits of 

software engineering economics, and commenting on the 
major challenges awaiting the field. 

Overview of Relevant Techniques 

The microeconomics field provides a number of techniques 
for dealing with software life-cycle decision issues such as the 
ones given in the previous section. Fig. 1 presents an overall 
master key to  these techniques and when to use them.* 

As indicated in Fig. 1, standard optimization techniques 
can be used when we can find a single quantity such as dollars 
(or pounds, yen, cruzeiros, etc.) to serve as a "universal sol- 
vent" into which all of our decision variables can be converted. 
Or, if the nondollar objectives can be expressed as constraints 
(system availability must be at least 98 percent; throughput 
must be at least 150 transactions per second), then standard 
constrained optimization techniques can be used. And if cash 
flows occur at different times, then present-value techniques 
can be used to normalize them to a common point in time. 

2 The chapter numben in Fig. 1 refer to the chapters in [ 11 ] , in 
which those techniques are discussed in further detail. 
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Fig. 1. laster key to software engineering economics decision analysis 
techniques! 
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Fig. 2. Cost-effectiveness comparison, transaction processing system 
options. 

More frequently, some of the resulting benefits from the 
software system are not expressible in dollars. In such situa- 
tions, one alternative solution will not necessarily dominate 
another s o h  tion. 

An example situation is shown in Fig. 2, which compares 
the cost and benefits (here, in terms of throughput in trans- 
actions per second) of two alternative approaches to develop- 
ing an operating system for a transaction processing system. 

Option A: Accept an availabIe operating system. This 
will require only $80K in software costs, but will 
achieve a peak performance of 120 transactions per 
second, using five $10K minicomputer processors, be- 
cause of a high multiprocessor overhead factor. 
Option B: Build a new operating system. This system 
would be more efficient and would support a higher 
peak throughput, but would require $180K in soft- 
ware costs. 



The cost-versus-performance curve for these two options 
are shown in Fig. 2. Here, neither option dominates the 
other, and various cost-benefit decision-making techniques 
(maximum profit margin, costlbenefit ratio, return on in- 
vestments, etc.) must be used to choose between Options 
A and B. 

In general, software engineering decision problems are 
even more complex than Fig. 2, as Options A and B will 
have several important criteria on which they differ (e.g., 
robustness, ease of tuning, ease of change, functional 
capability). If these criteria are quantifiable, then some type 
of figure of merit can be defined to  support a comparative 
analysis of the preferability of one option over another. If 
some of, the criteria are unquantifiable (user goodwill, pro- 
grammer morale, etc.), then some techniques for comparing 
unquantifiable criteria need to be used. As indicated in Fig. 1, 
techniques for each of these situations are available, and 
discussed in [ 1 11 . 
Analyzing Risk, Uncertainty, and the Value o f  In formation 

In software engineering, our decision issues are generally 
even more complex than those discussed above. This is be- 
cause the outcome of many of our options cannot be deter- 
mined in advance. For example, building an operating sys- 
tem with a significantly lower multiprocessor overhead may 
be achievable, but on the other hand, it may not. In such cir- 
cumstances, we are faced .with a problem of decision making 
under uncertainty, with a considerable risk of an undesired 
outcome. 

The main economic analysis techniques available to sup- 
port us in resolving such problems are the following. 

1) Techniques for decision making under complete un- 
certainty, such as the maximax rule, the maximin rule, and 
the Laplace rule [38]. These techniques are generally inade- 
quate for practical software engineering decisions. 



2) Expected-value techniques, in which we estimate the 
probabilities of occurrence of each outcome (successful or 
unsuccessful development of the new operating system) and 
complete the expected payoff of each option: 

These techniques are better than decision making under com- 
plete uncertainty, but they still involve a great deal of risk if 
the Prob(fai1ure) is considerably higher than our estimate of it. 

3) Techniques in which we reduce uncertainty by buying 
information. For example, prototyping is a way of buying in- 
formation to reduce our uncertainty about the likely success 
or failure of a multiprocessor operating system; by developing 
a rapid prototype of its high-risk elements, we can get a clearer 
picture of our likelihood of successfully developing the full 
operating system. 

In general, prototyping and other options for buying in- 
formation3 are most valuable aids for software engineering de- 
cisions. However, they always raise the following question: 
"how much information-buying is enough?" 

In principle,. this question can be answered via statistical de- 
cision theory techniques involving the use of Bayes' Law, which 
allows us to calculate the expected payoff from a software 
project as a function of our level of investment in a prototype 
or other information-buying option. (Some examples, of the 
use of Bayes' Law to estimate the appropriate level of invest- 
ment in a prototype are given in [l 1, ch. 201 .) 

Ln practice, the use of Bayes' Law involves the estimation 
of a number of conditional probabilities which are not easy to 

3 Other examples of options for buying information to support 
software engineering decisions include feasibility studies, user sur- 
veys, simulation, testing, and mathematical program verification tech- 
niques. 



estimate accurately. However, the Bayes' Law approach can be 
translated into a number of value-of-in formation guidelines, or 
conditions under which it makes good sense to  decide on in- 
vesting in more information before committing ourselves to  a 
particular course of action. 

Condition 1: There exist attractive alternatives whose pay- 
off vanes greatly, depending on some critical states of nature. 
I f  not, we can commit ourselves to one of the attractive alter- 
natives with no risk of significant loss. 

Condition 2: The critical states of nature .have an appreci- 
able probability of occumng. If not, we can again commit our- 
selves without major risk. For situations with extremely high 
variations in payoff, the appreciable probability level is lower 
than in situations with smaller variations in payoff. 

Condition 3: The investigations have a high probability of 
accurately identioing the occurrence of the critical states of 
nature. If not, the investigations will not do much to reduce 
our risk of loss due to making the wrong decision. 

Condition 4: The required cost and schedule o f  the investi- 
gations do not overly curtail their net value. I t  does us little 
good to obtain results which cost more than they can save us, 
or which arrive too late to help us make a decision. 

Condition 5: There exist significant side benefits derived 
from performing the investigations. Again, we may be able to 
justify an investigation solely on the basis of its value in train- 
ing, team-building, customer relations, or design validation. 

Some Pitfalls Avoided by Using the Value-ofh formation 
Approach 

The guideline conditions provided by the value-of-informa- 
tion approach provide us with a perspective which helps us 
avoid some serious software engineering pitfalls. The pitfalls 
below are expressed in terms of some frequently expressed but 
faulty pieces of software engineering advice. 



Pitfall 1: Always use a simulation to investigate the feasibil- 
ity of complex realtime software. Simulations are often ex- 
tremely valuable in such situations. However, there have been 
a good many simulations developed which were largely an ex- 
pensive waste of effort, frequently under conditions that would 
have been picked up by the guidelines above. Some have been 
relatively useless because, once they were built, nobody could 
tell whether a given set of inputs was realistic or not (picked 
up by Condition 3). Some have been taken so long to develop 
that they produced their first results the week after the pro- 
posal was sent out, or after the key design review was com- 
pleted. (picked up by Condition 4). 

Pitfall 2: Always build the software twice. The guidelines 
indicate that the prototype (or build-it-twice) approach is often 
valuable, but not in all situations. Some prototypes have been 
built of software whose aspects were all straightforward and 
familiar, in which case nothing much was learned by building 
them (picked up by Conditions 1 and 2). 

Pitfall 3: Build the sofnvare purely top-down. When inter- 
preted too literally, the top-down approach does not concern 
itself with the design of low level modules until the higher 
levels have been fully developed. If an adverse state of nature 
makes such a low level module (automatically forecast sales 
volume, automatically discriminate one type of aircraft from 
another) impossible to develop, the subsequent redesign will 
generally require the expensive rework of much of the higher 
level design and code. Conditions 1 and 2 warn us to temper 
our top-down approach with a thorough top-to-bottom soft- 
ware risk analysis during the requirements and product design 
phases. 

Pitfall 4: Every piece of code should be proved correct. 
Correctness proving is still an expensive way to get informa- 
tion on the fault-freedom of software, although it strongly 
satisfies Condition 3 by giving a very high assurance of a pro- 
gram's correctness. Conditions 1 and 2 recommend that proof 



techniques be used in situations where the operational cost of 
a software fault is very large, that is, loss of life, compromised 
national security, major financial losses. But if the operational 
cost of a software fault is small, the added information on 
fault-freedom provided by the proof will not be worth the in- 
vestment (Condition 4). 

Pitfall 5: Nominal-case testing is sufficient. This pitfall is 
just the opposite of Pitfall 4. If the operational cost of poten- 
tial software faults is large, it is highly imprudent not to  per- 
form off-nominal testing. 

Summary: The Economic Value of  lizforrnation 

' Let us step back a bit from these guidelines and pitfalls. Put 
simply, we are saying that, as software engineers: 

"It is often worth paying for information because it 
helps us make better decisions." 
If we look at the statement in a broader context, we can see 

that it is the primary reason why the software engineering field 
exists. It is what practicalIy all of our software customers say 
when they decide to acquire one of our products: that i t  is 
worth paying for a management information system, a weather 
forecasting system, an air traffic control system, an inventory 
controlsystem, etc., because it helps them make better decisions. 

Usually, software engineers are producers of management 
information to be consumed by other people, but during the 
software life cycle we must also be consumers of management 
information to support our own decisions. As we come to  ap- 
preciate the factors which make it attractive for us t o  pay for 
processed information which helps us make better decisions as 
software engineers, we will get a better appreciation for what 
our customers and users are looking for in the information 
processing systems we develop for them. 



Introduction 

All of the software engineering economics decision analysis 
techniques discussed above are only as good as the input data 
we can provide for them. For software decisions, the most 
critical and difficult of these inputs to provide are estimates 
of the cost of a proposed software project. In this section, 
we will summarize: 

1) the major software cost estimation techniques avail- 
able, and their relative strengths and difficulties; 

2) algorithmic models for software cost estimation; 
3) outstanding research issues in software cost estimation. 

A. Major Software Cost Estimation Techniques 

Table I summarizes the relative strengths and difficulties of 
the major software cost estimation methods in use today. 

1 )  Algorithmic Models: These methods provide one or 
more algorithms which produce a software cost estimate as a 
function of a number of variables which are considered to be 
the major cost drivers. 

2) Expert Judgment: This method involves consulting one 
or more experts, perhaps with the aid of an expert-consensus 
mechanism such as the Delphi technique. 

3) Analogy: This method involves reasoning by analogy 
with one or more completed projects to  relate their actual 
costs to an estimate of the cost of a similar new project. 

4)  Parkinson: A Parkinson principle ("work expands to 
fill the available volume") is invoked to  equate the cost esti- 
mate to the available resources. 

5 )  Price-to-Win: Here, the cost estimate is equated. to the 
price believed necessary to win the job (or the schedule be- 
lieved necessary to be first in the market with a new product, 
etc.). 



6 )  Top-Down: An overall cost estimate for the project is 
derived from global properties of the software product. The 
total cost is then split up among the various components. 

7) Bott0.m-Up: Each component of the software job is 
separately estimated, and the resuits aggregated to produce 
an estimate for the overall job. 

The main conclusions that we can draw from Table I are 
the following. 

None of the alternatives is better than the others from 
all aspects. 

The Parkinson and price-to-win methods are unaccept- 
able and do not produce satisfactory cost estimates. 

The strengths and weaknesses of the other techniques 
are complementary (particularly the algorithmic models versus 
expert judgment and top-down versus bottom-up). 

Thus, in practice, we should use combinations of the 
above techniques, compare their results, and iterate on them 
where they differ. 

TABLE I 
STRENGTHS AND WEAKNESSES OF SOFTWARE 

COST-ESTIMATION METHODS 
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Fundamental Limitations o f  Software Cost Estimution 
Techniques 

Whatever the strengths of a software cost estimation tech- 
nique, there is really no way we can expect the technique to  
compensate for our lack of definition or understanding of the 
software job to be done. Until a software specification is fully 
defined, it actually represents a range of software products, 
and a corresponding range of software development costs. 

This fundamental limitation of software cost estimation 
technology is illustrated in Fig. 3, which shows the accuracy 
within which software cost estimates can be made, as a func- 
tion of the software lifecycle phase (the horizontal axis), or of 
the level of knowledge we have of what the software is in- 
tended to do. This level of uncertainty is illustrated in Fig. 3 
with respect to a human-machine interface component of 
the software. 
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Fig. 3. Software cost estimation accuracy versus phase. 



When we first begin to evaluate alternative concepts for a 
new software application, the relative range of our software 
cost estimates is roughly a factor of four on either the high or 
low side? This range stems from the wide range of uncertainty 
we have at this time about the actual nature of the product. 
For the human-machine interface component, for example, 
we do not know at this time what classes of people (clerks, 
computer specialists, middle managers, etc.) or what classes of 
data (raw or pre-edited, numerical or text, digital or analog) the 
system will have to support. Until we pin down such uncer- 
tainties, a factor of four in either direction is not surprising as 
a range of estimates. 

The above uncertainties are indeed pinned down once we 
complete the feasibility phase and settle on a particular con- 
cept of operation. At this stage, the range of our estimates di- 
minishes to a factor of two in either direction. This range is 
reasonable because we stiU have not pinned down such issues 
as the specific types of user query to be supported, or the spe- 
cific functions to  be performed within the microprocessor in 

! 
4 

the intelligent terminal. These issues will be resolved by the lj 
I 

time we have developed a software requirements specification, 
at which point, we will be able to estimate the software costs 1 1 
within a factor of 1.5 in either direction. i. 

By the time we complete and validate a product design 
specification, we will have resolved such issues as the internal 
data structure of the software product and the specific tech- 
niques for handling the buffers between the terminal micro- 

[ 

processor and the central processors on one side, and between i 

the microprocessor and the display driver on the other. At this : i 
( i  

point, our software estimate should be accurate to within a . , , . 
factor of 1.25, the discrepancies being caused by some remain- i \ ' .  
ing sources of uncertainty such as the specific algorithms to be 

4 These ranges have been determined subjectively, and are intended 
to represent 80 percent confidence limits, that is, "within a factor of 
four on either side, 80 percent of the time." 



used for task scheduling, error handling, abort processing, and 
the like. These will be resolved by the end of the detailed de- 
sign phase, but there will still be a residual uncertainty about 
10 percent based on how well the programmers really under- 
stand the specifications to which they are to code. (This factor 
also includes such consideration as personnel turnover uncer- 
tainties during the development and test phases.) 

B. Algorithmic Models for Software Cost Estimation 

Algorithmic Cost Models: Early Development 

Since the earliest days of the software field, people have 
been trying to develop algorithmic models to estimate soft- 
ware costs. The earliest attempts were simple rules of thumb, 
such as: 

on a large project, each software performer will provide 
an average of one checked-out instruction per man-hour (or 
roughly 150 instructions per man-month); 

each software maintenance person can maintain four 
boxes of cards (a box of cards held 2000 cards, or roughly 
2000 instructions in those days of few comment cards). 

Somewhat later, some projects began collecting quantita- 
tive data on the effort involved in developing a software 
product, and its distribution across the software life cycle. One 
of the earliest of these analyses was documented in 1956 in [8] . 
It indicated that, for very large operational software products on 
the order of 100 000 delivered source instructions (100 KDSI), 
that the overall productivity was more like 64 DSIJman-month, 
that another 100 KDSI of support-software would be required; 
that about 15 000 pages of documentation would be produced 
and 3000 hours of computer time consumed; and that the dis- 
tribution of effort would be as follows: 

Program Specs: 10 percent 
Coding Specs: 30 percent 



Coding: 10 percent 
Parameter Testing: 20 percent 
Assembly Testing: 30 percent 

with an additional 30 percent required to produce operational 
specs for the system. Unfortunately, such data did not become 
well known, and many subsequent software projects went 
through a painful process of rediscovering them. 

During the late 1950's and early 1960's, relatively little 
progress was made in software cost estimation, while the fre- 
quency and magnitude of software cost overruns was becom- 
ing critical to  many large systems employing computers. In 
1964, the U.S. Air Force contracted with System Develop- 
ment Corporation for a landmark project in the software cost 
estimation field. This project collected 104 attributes of 169 
software projects and treated them to extensive statistical anal- 
ysis. One result was the 1965 SDC cost model [41] which was 
the best possible statistical 13-parameter linear estimation 
model for the sample data: 

+ 9.15 (Lack of Requirements) (0-2) 

+ 10.73 (Stability of Design) (0-3) 

+ 0.5 1 (Percent Math Instructions) 

+ 0.46 (Percent S toragelRetrieva1 Instructions) 

+ 0 -40 (Number of Subprograms) 

+ 7.28 (Programming Language) (0-1) 

-2 1.45 (Business Application) (0-1) 

+ 13.53 (Stand-Alone Program) (0.1) 

+ 12-35 (First Program on Computer) (0-1) 

+ 58.82 (Concurrent Hardware Development) (0-1) 

+ 30.6 1 (Random Access Device Used) (0-1) 



+ 29.55 (Difference Host, Target Hardware) (0-1) 

+0.54 (Number of Personnel Trips) 

-25.20 (Developed by Military Organization) (0-1). 

The numbers in parentheses refer to ratings to be made by the 
estimator. 

When applied to its database of 169 projects, this model 
produced a mean estimate of 40 MM and a standard deviation 
of 62 MM; not a very accurate predictor. Further, the applica- 
tion of the model is counterintuitive; a project with all zero 
ratings is estimated at minus 33  MM; changing language from a 
higher order language to assembly language adds 7 MM, inde- 
pendent of project size. The most conclusive result from the 
SDC study was that there were too many nonlinear aspects of 
software development for a linear cost-estimation model to 
work very well. 

Still, the SDC effort provided a valuable base of information 
and insight for cost estimation and future models. Its cumula- 
tive distribution of productivity for 169 projects was a valu- 
able aid for producing or checking cost estimates. The estima- 
tion rules of thumb for various phases and activities have been 
very helpful, and the data have been a major foundation for 
some subsequent cost models. 

In the late 1960's and early 1970's, a number of cost models 
were developed which worked reasonably well for a certain re- 
stricted range of projects to which they were calibrated. Some 
of the more notable examples of such models are those de- 
scribed in [3], [54], [57]. 

The essence of the TRW Wolverton model [57] is shown in 
Fig. 4, which shows a number of curves of software cost per 
object instruction as a function of relative degree of difficulty 
(0 to loo), novelty of the application (new or old), and type 
of project. The best use of the model involves breaking the 
software into components and estimating their cost individu- 
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ally. This, a 1000 object-instruction module of new data man- 
agement software of medium (50 percent) difficulty would be 
costed at $46/instruction, or $46 000. 

This model is well-calibrated to a class of near-real-time 
government command and control projects, but is less ac- 
curate for some other classes of projects. In addition, the 
model provides a good breakdown of project effort by phase 
and activity. 
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In the late 1 9 7 0 ' ~ ~  several software cost estimation models 
were developed which established a significant advance in the 
state of the art. These included the Putnam SLIM Model [44] , 
the Doty Model [27], the RCA PRICE S model [ 2 2 ] ,  the 
COCOMO model [I 11, the IBM-FSD model [53], the Boeing 
model [9] , and a series of models developed by GRC [15]. A 
summary of these models, and the earlier SDC and Wolverton 
models, is shown in Table 11, in terms of the size, program, 
computer, personnel, and project attributes used by each 
model to determine software costs. The first four of these 
models are discussed below. 

The Pu tnam SLIM Model [44], [45] 

The Putnam SLIM Model is a commercially available (from 
Quantitative Software Management, Inc.) software product 
based on Putnam's analysis of the software life cycle in terms 
of the Rayleigh distribution of project personnel level versus 
time. The basic effort macro-estimation model used in SLLM 
is 

where 

Ss = number of delivered source instructions 
K = life-cycle effort in man-years 
td = development time in years 
Ck = a "technology constant." 

Values of Ck typically range between 6 10 and 57 3 14. The 
current version of SLIM allows one to calibrate Ck to past 
projects or to past projects'or to estimate it as a function of a 
project's use of modern programming practices, hardware con- 
straints, personnel experience, interactive development, and 
other factors. The required development effort, DE, is esti- 
mated as roughly 40 percent of the life-cycle effort for large 



-- ., . 
TABLE ll . . . - - - . - 

FACTORS USED IN VARIOUS COST MODELS . 
SDC. TRW. WTNAM. RCA. BOEING. GRC. 

GRWP FACTOR 1%5 1971 SLIM DOTY PRICES IBM I977 IS79 COCOMO SOFCOST DSN JENSEI 

SIZE SOURCE lNnRuCTlONS x x X  X  x X X X  
ATTRIBUTES OBJECT INSTRUCTIONS X  X  X  X  

NUMBER OF ROUTINES x x X  

NUMBER OF DATA ITEMS X  X  X  

NUMBER OF OUTPUT FORMATS X  X  
DOCUMENTATION X  X  X X  

NUMBER OF PERSONNEL X X  X X X  

PROGRAM TYPE X X X  X  X X  X  X  

ATTRIBUTES COMPLEXITY X  X  X  X  X X X X  
UNGUAGE X X  X  X  X  X  

REUSE X  X  X  X  X  X X X  
REOUIRED RELIABILITY X X  X  X  X  

DISPLAY REQUIREMENTS X  X  X  

COMPUTER TIME CONSTRAINT X X X  X  X  X  X  
x X i I X  

X X X  
ATTRIBUTES STORAGE CONSTRAINT X  X  X X X  

HARDWARE CONFIGURATION X  
CONCURRENT HARDWARE 
DEVELOPMENT X  X  X X  X  X X X  

INTCRFACING EWIPMENT, S M  X X  

PERSONNEL PERSONNEL CAPABILITV X x  X  X X X X  

I ATlRIBUTES PERSONNEL CONTINUITY X X  
HARDWARE EXPERIENCE X  X  X  X X  X X X  
APPLICATIONS EXPERIENCE X  X  x x x  x x x  
CANGUAGE EXPERIENCE X  X  X  X I  X  X X X  

PROJECT TOOLS AND TECHNIQUES X X X X  X  X X X  

ATTRIB~ES CUSTOMER INTERFACE x x x x 
REOUIREMENTS DEFINITION X  X X  X X X  
REOUIREMENTS VOLATILITY X  X  X X  X  X  X X X  
SCUEDULE X  X  X  X X X  

SECURITV X  x X  
COMPUTER ACCESS X  X  X  X  X  X X X  
TRAVELIREHOSTINGNULTI~SITE X X  X  X X X  
SUPPORT SOFTWARE MATIJRITY X  X  

CALIBRATION 
FACTOR X  X  X  

EFFORT mNOM ~ c ~ M o ~ ,  X  . 
EOUATION 

t.0 1.047 0.91 1.0 t .06-I  1 1.0 1.2 

SCHEDULE ID c IMMI~. x = 
EOUATION 

0.35 0.31 - 0.38 0.360 0.333 



systems. For smaller systems, the percentage varies as a func- 
tion of system size. 

The SLIM model includes a number of useful extensions to 
estimate such quantities as manpower distribution, cash flow, 
major-milestone schedules, reliability levels, computer time, 
and documentation costs. 

The most controversial aspect of the SLIM model is its 
tradeoff relationship between development effort K and be- 
tween development time td .  For a software product of a given 
size, the SLIM software equation above gives 

constant 
K =  

C 
For example, this relationship says that one can cut the 

cost of a software project in half, simply by increasing its de- 
velopment time by 19 percent (e.g., from 10 months to 12 
months). Fig. 5 shows how the SLIM tradeoff relationship com- 
pares with those of other models; see [ l l ,  ch. 271 for further 
discussion of this issue. 

On balance, the SLIM approach has provided a number 
of useful insights into software cost estimation, such as the 
Rayleigh-curve distribution for one-shot software efforts, the 
explicit treatment of estimation risk and uncertainty, and the 
cube-root relationship defining the minimum development time 
achievable for a project requiring a given amount of effort. 

The Doty Model [2 71 

This model is the result of an extensive data analysis activ- 
ity, including many of the data points from the SDC sample. 
A number of models of similar form were developed for dif- 
ferent application areas. As an example, the model for general 
application is 
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Fig. 5. Comparative effort-schedule tradeoff relationships. 

MM = 5.288 ( K D s I ) ' . ~ ~ ~ ,  for KDSI 2 10 

MM = 2.060 ( K D S I ) ~ - O ~ ~  (n f i ) ,  for KDSI < lo .  
j= 1 

The effort multipliers fi are shown in Table 111. This model has 
a much more appropriate functional form than the SDC 
model, but it has some problems with stability, as it exhibits a 
discontinuity at KDSI = 10, and produces widely varying esti- 
mates via the f factors (answering "yes" to "first software de- 
veloped on CPU" adds 92 percent to the estimated cost). 

The R CA PRICE S Model [22] 

PRICE S is a commercially available (from RCA, Inc.) 
macro cost-estimation model developed primarily for embed- 



TABLE I11 
DOTY MODEL FOR SMALL PROGRAMS* 

PI* 
MM = 2.060 P" A'1 

Factor '1 Yes No 

sg.oj.l-' A 1-11 1 .00 
~.t~ddomliond-- 6 1.00 1.11 
c-wtO'Jp--='- 4 1.05 1.00 
-m 4 1.33 1.00 
w m w n a ~ m  4 1.43 1.00 
Wcine- 4 1.33 1.00 
F i . 1 ~ d m b P . d m W  ir 1.02 1.00 
Cawumtdwdopmtd~~~- 1 1 s  1.00 
T i w m s h W p r o e a r h g h  
6nb9mml 6 0.83 1.00 

~ u i p c a r p r r C r . t ~ i . a l t y  6 1 .a 1.00 
D.nbpm(.t-.k &a 1 s  1 .00 
-compuar-mntrg.t - 6 s  125 1.00 
Dmbemc.tmonamon* fu 115 1 .00 

ded system applications. It has improved steadily with experi- 
ence; earlier versions with a widely varying subjective complex- 
ity factor have been replaced by versions in which a number of 
computer, personnel, and project attributes are used to modu- 
late the complexity rating. 

PRICE S has extended a number of costiestimating relation- 
ships developed in the early 1970's such as the hardware con- 
straint function shown in Fig. 6 [ lo] .  It was primarily devel- 
oped to handle military software projects, but now also in- 
cludes rating levels to cover business applications. 

PRICE S also provides a wide range of useful outputs on 
gross phase and activity distributions analyses, and monthly 
project cost-schedule-expected progress forecasts. Price S uses 
a two-parameter beta distribution rather than a Rayleigh curve 
to  calculate development effort distribution versus calendar 
time. 

'PRICE S has recently added a softwae life-cycle support 
cost estimation capability called PRICE SL [34]. It involves 
the definition of three categories of support activities. 
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Fig. 6 .  RCA PRICE S model: Effect of hardware constraints. 

Growth: The estimator specifies the amount of code to  
be added to the product. PRICE SL then uses its standard 
techniques to estimate the resulting life-cycle-effort distribu- 
tion. 

Enhancement: PRICE SL estimates the fraction of the 
existing product which will be momed (the estimator may 
provide his own fraction), and uses its standard techniques to 
estimate the resulting life-cycle effort distribution. 

Maintenance: The estimator provides a parameter indi- 
cating the quality level of the developed code. PRICE SL uses 
this to estimate the effort required to eliminate remaining er- 
rors. 

The Constnative Cost Model (COCOMO) [ I  I ]  

The primary motivation for the COCOMO model has been 
to help people understand the cost consequences of the de- 
cisions they will make in commissioning, developing, and sup- 
porting a software product. Besides providing a software cost 
estimation capability, COCOMO therefore provides a great 



deal of material which explains exactly what costs the model 
is estimating, and why it comes up with the estimates it does. 
Further, it provides capabilities for sensitivity analysis and 
tradeoff analysis of many of the common software engineering 
decision issues. 

COCOMO is actually a hierarchy of three increasingly de- 
tailed models which range from a single macroestimation 
scaling model as a function of product size to a microestirna- 
tion model with a three-level work breakdown structure and 
a set of phase-sensitive multipliers for each cost driver attri- 
bute. To provide a reasonably concise example of a current 
state of the art cost estimation model, the intermediate level 
of COCOMO is described below. 

Intermediate COCOMO estimates the cost of a proposed 
software product in the following way. 

1) A nominal development effort is estimated as a func- 
tion of the product's size in delivered source instructions in 
thousands (KDSI) and the project's development mode. 

2) A set of effort multipliers are determined from the 
product's ratings on a set of 15 cost driver attributes. 

3) The estimated development effort is obtained by mul- 
tiplying the nominal effort estimate by all of the  product?^ 
effort multipliers. 

4) Additional factors can be used to determine dollar 
costs, development schedules, phase and activity distributions, 
computer costs, annual maintenance costs, and other elements 
from the development effort estimate. 

Step I-Nominal Effort Estimation: First, Table IV is used 
to determine the project's development mode. Organic-mode 
projects typically come from stable, familiar, forgiving, rela- 
tively unconstrained environments, and were found in the 
COCOMO data analysis of 63 projects have a different scaling 
equation from the more ambitious, unfamiliar, unforgiving, 
tightly constrained embedded mode. The resulting scaling 
equations for each mode are given in Table V; these are used 



determine the nominal development effort for the project 
man-months as a function of the project's size in KDSI 

and the project's development mode. 
For example, suppose we are estimating the cost to develop 

the microprocessor-based communications processing software 
for a highly ambitious new electronic funds transfer network 
with high reliability, performance, development schedule, and 
interface requirements. From Table IV, we determine 
that these characteristics best fit the profile of an 
embedded-mode project. 

We next estimate the size of the product as 10 000 delivered 
source instructions, or 10 KDSI. From Table V, we then deter- 
mine that the nominal development effort for this Embedded- 
mode project is 

TABLE IV 
COCOMO SOFTWARE DEVELOPMENT MODES 

Mode 

Feature Organtc Semdetached Embedded 

Oganizational understanding of 
product objectives 

in worktng with related 
som~are systems 

Need for software conformance 
with preestablished require- 
ments 

Need tor software conformance 
rrim external ~nterface specifics- 
Wns 

Concunent development of associ- 
ated new hardware and opera- 
tional procedures 

Need tor innovative data processing 
architectures. algorithms 

Premium on early completion 
Roducl sae range 
-@es 

Thorough 

Extensive 

Basic 

Basic 

Minimal 
Low 
<SO KDSI 
Batch data 

reduct~on 
Scientific 

models 
Busmess 

models 
Famil~ar 

OS, compler 
S~mple inven- 

tory. produc- 
tton control 

Sari 
Medrun 
QM) KDSl 
Moa wansaction 

pmcesvng SYS- 
tenu 

Ne- OS. DBMS 
Amhbous tnven- 

t u y .  wuct lon  
m u d  

Smote command- 
m u d  

General 

Moderate 

Full 

Extensive 

Cons~derable 
High 
All wzes 
Large. complex 

transaction 
processing 

systems 
Amb~t~ous, very 

large OS 
Avtoncs 
Amb~tlous com- 

mand-control 



TABLE V 
COCOMO NOMINAL EFFORT AND SCHEDULE EQUATIONS 

DEVELOPMENT htODE NOMINAL EFFORT SCHEDULE 

Organic (?dhl) NO,! = 3.2(KDSI)  TDEV = 2.5(hlh1DEv)038 

Semidetached = 3. OIKDSI) ' . I2  TDEV = 2.S(MMDE,,) 0.35 
(h'hl) NOU 

Embedded = : . ~ ( K D s I )  TDEV = 2. 5(hlhlDEy) 0.  32 
(t\h\! Nc,,, 

( K D S I  = thousands o f  delivered source instructions) 

2.8(10)' -2 O = 44 man-months (MM). 

Step 2-Detemine Effort Multipliers: Each of the 15 cost 
driver attributes in COCOMO has a rating scale and a-set of ef- 
fort multipliers which indicate b y  how much  the nominal ef- 
fort estimate must be multiplied to  account for the project's 
having to work at its rating level for the attribute. 

These cost driver attributes and their corresponding effort 
multipliers are shown in Table VI. The summary rating scales 
for each cost driver attribute are shown in Table VII, except 
for the complexity rating scale which is shown in Table VIII 
(expanded rating scales for the other attributes are provided 
in [ I l l ) .  

The results of applying these tables t o  our microprocessor 
communications software example are shown in Table IX. The 
effect of a software fault in the electronic fund transfer system 
could be a serious financial loss; therefore, the project's RELY 
rating from Table VII is High. Then, from Table VI, the effort 
multiplier for achieving a High level of required reliability is 
1.15, or 15 percent more effort than it would take to  develop 
the software to a nominal level of required reliability. 



TABLE VI 
TERMEDIATE COCOMO SOFTWARE DEVELOPMENT EFFORT 

MULTIPLIERS 

-- 

Ralucl Atmbutes 
RELY Requred r d t w u e  rekabilily 
DATA Data base sue 
CPLX Producl complexity 

Computer Attribrtes 
TIME Exeartcon twne ~ l r n i n t  
STOR Mam storage constraint 
VlRT Vwtual maclune vdelYtp 
TURN Complier lwnaround tlme 

Personnel Allribules 
ACAP Analyst capalnlity 1.46 1.19 1.00 .86 .71 
AEXP Applicel~ons expcwience 1.29 1.13 1.00 9 1  .82 
PCAP Pro~amrner capebtllty 142 1.17 1.00 .86 .70 
VEXP V~flual machlne experiencrr 1.21 1-10 1.00 .90 
LEXP Programm~ng language e x p e r m  1.14 1.07 1.00 .95 

Prop3 Atlnbules 
MOOP Use of modern programrmng practices 124 1.10 1.00 .91 .82 
TOOL Use of software tools 1.24 1.10 1.00 9 1  .83 
SCED Required development scbdule 1.n 1.00 $1.00 1.04 1.10 

F a  a gwm soflwwa product, hs ~ n d  m)rr mlh. oFplu d nd .O))r~e (0s. 
DBMS. etc ) 11 calls on IO .ccompksh as hrhr 

The effort multipliers for the other cost driver attributes 
are obtained similarly, except for the Complexity attribute, 
which is obtained via Table VIII. Here, we first determine that 
communications processing is best classified under device-de- 
pendent operations (column 3 in Table VIII). From this col- 
umn, we determine that communication line handling typi- 
cally has a complexity rating of Very High; from Table VI, 
then, we determine that its corresponding effort multiplier is 
1.30. 

Step 3-Estimate Development Effort: We then compute 
the estimated development effort for the microprocessor com- 
munications software as the nominal development effort (44 
MM) times the product of the effort multipliers for the 15 cost 
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TABLE VIII 

COCOMO MODULE COMPLEXXY RATINGS VERSUS TYPE OF 
MODULE 

i. 
; - Data 

Connot Commtanmal k l ccda~enden t  Managemn! 

Shqtmim code 
rnth a few non- 
rla8I.d sp*o#r- 
atom DOs. 
US& 
IlTHENRSEs. 
Simple 
Utes 

SbUghfforWVd 
nesting of SP op. 
uators. MosUy 
vmpk 

MuInoIe resource 
scheduling wrn 
bF.m-lly 
dangtng pnon- 
nos. Mrrocoda 
Ieve~ control 

mticult and un- 
RNCMd N.A.: 
tngnly -te 
.Mlvos of rony. 
ROCnasDt dam 

No cogmame 
needed of par- 
ticular pro- 
cessor or 110 
6.na chuu- 
tamka. I10 
dona at GET/ 
PUT Iwd. No 
c w " ' w - o f  
w=m 

R o u a m  for mtw- 
ruot dpgnoJs. 
semcmg. mask- 
tng. Communc 
cam line 
handing 

W R k  inRlt uld 
sngle M. art- 
w Simgle 
suucwal 
dlmws. 
edits 

S g s c l . 1 ' ~  
urtnuuanes ac- 
mated by data 
sueam con- 
tents. Comolex 
aata resw. y- 
mg at mmru 
Iewl 

A p o m l m d w -  
~ t w ~  
file sauctwmg 
rwnne. Fib 
lnnldlng. com- 
mand praeu- 
trig. - 
OD-rn 

nishs -. 
mmr rota- 
nonal s m .  
mas. Nacunl 
lurgruge aata 
management 



Cost 
D r i v e r  S i tuat ion  R a t i n g  

E f f o r t  
M u l t i p l i e r  

RELY 

D A T A  

CPLX 

TIME 

STOR 

V l R T  

TURN 

ACAP 

4EXP 

PCAP 

VEXP 

LE X P 

h10DP 

TOOL 

SCED 

Ser ious f inancial consequences o f  sof tware fau l ts  

20,000 by tes  

Communications process ing 

Wi ! l  use 70; o f  available t ime 

45K o f  64K store (70%)  

Based o n  commercial microprocessor hardware 

Two- -hou r  average t u r n a r o u n d  time 

Cood senior analysts 

T h r e e  years 

Cood senior programmers 

S ix  months 

Twelve months 

Most techniques in use ove r  one yea r  

A t  basic minicomputer tool leve l  

N ine  months 

H i g h  

Low 

V e r y  H i g h  

H i g h  

H i g h  

Nominal  

Nominal  

H i g h  

Nominal  

H i g h  

Low 

Nominal  

H i g h  

Low 

Nominal  

E f f o r t  adjustment factor ( p r o d u c t  o f  e f f o r t  mu l t i p l i e rs )  1 .  35 
- . - 
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er attributes in Table D< (1.3 5, in Table IX). The resulting 
dte&effort for the project is then 

(44 MM) (1.35) = 59 MM. 
- Step 4-Estimate Related Project Factors: COCOMO has 
, Mditional cost estimating relationships for computing the re- 
8dting dollar cost of the project and for the breakdown of 

: coost and effort by life-cycle phase (requirements, design, etc.) 
md by type of project activity (programming, test planning, 
management, etc.). Further relationships support the estima- 
tion of the project's schedule and its phase distribution. For 
example, the recommended development schedule can be ob- 
tained from the estimated development man-months via the 
embedded-mode schedule equation in Table V: 

TDEv = 2.5(59)0.32 = 9 months. 

As mentioned above, COCOMO also supports the most com- 
mon types of sensitivity analysis and tradeoff analysis involved 
in scoping a software project. For example, from Tables VI 
and VII, we can see that providing the software developers 
with an interactive computer access capability (Low turn- 
around time) reduces the TURN effort multiplier from 1.00 to 
0.87, and thus reduces the estimated project effort from 59 
MM to 

(59 MM) (0.87) = 51 MM. 

The COCOMO model has been validated with respect to a 
sample of 63 projects representing a wide variety of business, 
scientific, systems, real-time, and support software projects. 
For this sample, Intermediate COCOMO estimates come 
within 20 percent of the actuals about 68 percent of the time 
(see Fig. 7). Since the residuals roughly follow a normal 
distribution, this is equivalent to a standard deviation of 
roughly 20 percent of the project actuals. This level of accu- 
racy is representative of the current state of the art in soft- 
ware cost models. One can do somewhat better with the- aid 
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Fig. 7. Intermediate COCOMO estimates versus project actuals. 

of a calibration coefficient (also a COCOMO option), or within 
a limited applications context, but it is difficult to improve 
significantly on this level of accwacy while the accuracy of 
software data collection remains in the "+20 percent" range. 

A Pascal version of COCOMO is available for a nominal dis- 
tribution charge from the Wang Institute, under the name WI- 
COMO [18]. 

Recent Software Cost Estimation Models 

Most of the recent software cost estimation.models tend to  
f d o w  the Doty and COCOMO models in having a nominal 
scaling equation of the form MMNoM = c (KDSI)X and a set 
of multiplicative effort adjustment factors determined by a 
number of cost driver attribute ratings. Some of them use the 
Rayleigh curve approach to estimate distribution across the 



software life-cycle, but most use a more conservative effort/ 
schedule tradeoff relation than the SLIM model. These aspects 
have been summarized for the various models in Table I1 and 
Fig. 5. 

The Bailey-Basili meta-model [4] derived the scaling equa- 
tion 

and used two additional cost driver attributes (methodology 
level and complexity) to model the development effort of 18 
projects in the NASA-Goddard Software Engineering Labora- 
tory to within a standard deviation of 15 percent. Its accuracy 
for other project situations has not been determined. 

The Grumrnan SOFCOSTModel [19] uses a similar but un- 
published nominal effort scaling equation, modified by 30 
multiplicative cost driver variables rated on a scale of 0 to 10. 
Table I1 includes a summary of these variables. 

The Tausworthe Deep Space Network (DSNj model [SO] 
uses a linear scaling equation (MMNOM = ~ ( K D S I ) ~  .') and a 
similar set of cost driver attributes, also summarized in Table 
11. It also has a well-considered approach for determining the 
equivalent KDSI involved in adapting existing software within 
a new product. It uses the Rayleigh curve to determine the 
phase distribution of effort, but uses a considerably more con- 
servative version of the SLIM effort-schedule tradeoff relation- 
ship (see Fig. 5). 

The Jensen model [30] , [3 11 is a commercially available 
model with a similar nominal scaling equation, and a set of cost 
driver attributes very similar to the Doty and COCOMO models 
(but with different effort multiplier ranges); see Table 11. Some 
of the multiplier ranges in the Jensen model vary as functions 
of other factors; e.g., increasing access to computer resources 
widens the multiplier ranges on such cost drivers as personnel 
capability and use of software tools. It uses the Rayleigh curve 
for effort distribution, and a somewhat more conservative ef- 



fort-schedule tradeoff relation than SLIM (see Fig. 5). As with 
the other commercial models, the Jensen model produces a 
number of useful outputs on resource expenditure rates, prob- 
ability distributions on costs and schedules, etc. 

C Outstanding Research Issues in Software Cost Estimation 

Although a good deal of progress has been made in software 
cost estimation, a great deal remains to be done. This section 
updates the state-of-the-art review published in [ 1 1 ] , and sum- 
marizes the outstanding issues needing further research: 

1) Software size estimation; 
2) Software size and complexity metrics; 
3) Software cost driver attributes and their effects; 
4) Software cost model analysis and refinement; 
5 )  Quantitative models of software project dynamics; 
6 )  Quantitative models of software life-cycle evolution; 
7) Software data collection. 

1)  Software Size Estimation: The biggest difficulty in us- 
ing today's algorithmic software cost models is the problem of 
providing sound sizing estimates. Virtually every model re- 
quires an estimate of the number of source or object instruc- 
tions to be developed, and this is an extremely difficult quan- 
tity to determine in advance. It would be most useful to have 
some formula for determining the size of a software product in 
terms of quantities known early the software life cycle, such 
as the number and/or size of the files, input formats, reports, 
displays, requirements specification elements, or design specifi- 
cation elements. 

Some useful steps in this direction are the function-point 
approach in [2] and the sizing estimation model of [29] , both 
of which have given reasonably good results for small-to-medium 
sized business programs within a single data processing organiza- 
tion. Another more general approach is given by DeMarco in 
[17]-. It has the advantage of basing its sizing estimates on the 
properties of specifications developed in conformance with 
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'hMarco's paradigm models for software specifications and de- 
dgns: number of functional primitives, data elements, input 

- elements, output elements, states, transitions between states, 
-.relations, modules, data tokens, control tokens, etc. To date, 
.however, there has been relatively little calibration of the for- 
;mulas to project data. -4 recent IBM study [14] shows some 
..correlation between the number of variables defined in a state- 
:machine design representation and the product size in source 
instructions. 

Although some useful results can be obtained on the soft- 
ware sizing problem, one should not expect too much. A wide 
range of functionality can be implemented beneath any given 
specification element or 110 element, leading to a wide range 
of sizes (recall the uncertainty ranges of this nature in Fig. 3). 
For example, two experiments, involving the use of several 
teams developing a software program to the same overall 
functional specification, yielded size ranges of factors of 3 t o  
5 between programs (see Table X). 

TABLE X 
SIZE RANGES OF SOFTWARE PRODUCTS PERFORMING 

SAME FUNCTION 

No. of Size Range 
Experirnen t Product Teams (source-instr.) 
- - 

Weinberg Simultaneous 6 33-1 65 
& Schulman [55] linear equations 

Boehrn, Gray, Interactive 7 15 14-4606 
& Seewaldt [ 131 cost model 

The primary implication of this situation for practical soft- 
ware sizing and cost estimation is that there is no royal road to  
software sizing. This is no magic formula that will provide an 
easy and accurate substitute for the process of thinking 
through and fully understanding the nature of the software 
product to be developed. There are still a number of useful 



things that one can do to improve the situation, including the 
following. 

Use techniques which explicitly recognize the ranges 01'  
variability in software sizing. The PERT estimation technique 
[56] is a good example. 

Understand the primary sources of bias in software 
sizing estimates. See [ l l ,  ch. 211 . 

Develop and use a corporate memory on the nature and 
size of previous software products. 

2) Software Size and Complexity Metrics: Delivered source 
instructions (DSI) can be faulted for being too low-level a 
metric for use in early sizing estimation. On the other hand, 
DSI can also be faulted for being too high-level a metric for 
precise software cost estimation. Various complexity metrics 
have been formulated to more accurately capture the relative 
information content of a program's instructions, such as the 
Halstead Software Science metrics 1241 , or to capture the rela- 
tive control complexity of a program, such as the metrics for- 
mulated by McCabe in [39]. A number of variations of these 
metrics have been developed; a good recent survey of them is 
given in [26]  . 

However, these metrics have yet to exhibit any practical 
superiority t o  DSI as a predictor of the relative effort required 
t o  develop software. Most recent studies [48], [32] show a 
reasonable correlation be tween these complexity me trics and 
development effort, but no better a correlation than that be- 
tween DSI and development effort. 

Further, the recent [25] analysis of the software science re- 
sults indicates that many of the published software science 
"successes" were not as successful as they were previously con- 
sidered. It indicates that much of the apparent agreement be- 
tween software science formulas and project data was due to 
factors overlooked in the data analysis: inconsistent defini- 
tions and interpretations of software science quantities, unreal- 
istic or inconsistent assumptions about the nature of the proj- 



acts analyzed, overinterpretation of the significance of statisti- 
cal measures such as the correlation coefficient, and lack of in- 
vestigation of alternative explanations for the data. The software 
science use of psychological concepts such as the Stroud num- 
ber have also been seriously questioned in [16] . 

The overall strengths and difficulties of software science are 
summarized in [47]. Despite the difficulties, some of the soft- 
ware science metrics have been useful in such areas as identify- 
ing error-prone modules. In general, there is a strong intuitive 
argument that more definitive complexity metrics will eventu- 
dy serve as better bases for definitive software cost estimation 
than will DSI. Thus, the area continues to be an attractive one 
for further research. 

3) Software Cost Driver Attributes and Their Effects: Most 
of the software cost models discussed above contain a selec- 
tion of cost driver attributes and a set of coefficients, func- 
tions, or tables representing the effect of the attribute on soft- 
ware cost (see Table II). Chapters 24-28 of [ l l ]  contain 
summaries of the research to date on about 20 of the most 
significant cost driver attributes, plus statements of nearly 100 
outstanding research issues in the area. 

Since the publication of [ l  11 in 1981, a few new results 
have appeared. Lawrence [35] provides an analysis of 278 
business data processing programs which indicate a fairly uni- 
form development rate in procedure lines of code per hour, 
some significant effects on programming rate due to batch 
turnaround time and level of experience, and relatively little 
effect due to use of interactive operation and modern pro- 
gramming practices (due, perhaps, to the relatively repetitive' 
nature of the software jobs sampled). Okada and Azuma [42] 
analyzed 30 CAD/CAM programs and found some significant 
effects due to type of software, complexity, personnel skill 
level, and requirements volatility. 

4)  Sofn~are Cost Model Analysis and Refinement: The 
most useful comparative analysis of software cost models to 



date is the Thibodeau [52] study performed for the US .  Alr 

Force. This study compared the results of several models ( t h t t  

Wolverton, Doty, PRICE S, and SLIM models discussed earlier. 
plus models from the Boeing, SDC, Tecolote, and Aerospace 
corporations) with respect to 45 project data points from 
three sources. 

Some generally useful comparative results were obtained, 
but the results were not definitive, as models were evaluated 
with respect to larger and smaller subsets of the data. Not too 
surprisingly, the best results were generally obtained using 
models with calibration coefficients against data sets with few 
points. In general, the study concluded that the models with 
calibration coefficients achieved better results, but that none 
of the models evaluated were sufficiently accurate to  be used 
as a definitive Air Force software cost estimation model. 

Some further comparative analyses are currently being con- 
ducted by various organizations, using the database of 63 soft- 
ware projects in [ l l ] ,  but to date none of these have been 
published. 

In general, such evaluations play a useful role in model re- 
finement. As certain models are found to be inaccurate in cer- 
tain situations, efforts are made to determine the causes, and 
to  refine the model to eliminate the sources of inaccuracy. 

Relatively less activity has been devoted to the formulation, 
evaluation, and refinement of models to cover the effects of 
more advanced methods of software development (prototyp- 
ing, incremental development, use of application generators, 
etc.) or to estimate other software-related life-cycle costs (con- 
version, maintenance, installation, training, etc.). An exception 
is the excellent work on software conversion cost estimation 
performed by the Federal Conversion Support Center [28] . 
An extensive model to estimate avionics software support 
costs using a weighted-multiplier technique has recently been 
developed [49]. Also, some initial experimental results have 
been obtained on the quantitative impact of prototyping in 
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] and on the impact of very high level nonprocedural lan- 
ages in [58]. In both studies, projects using prototyping and 
HLL's were completed with significantly less effort. 
5)  Quantitative Models of  Software hoject Dynamics: Cur- 

- Wnt software cost estimation models are limited in their abil- 
' i t y  to  represent the internal dynamics of a software project, 
md to estimate how the project's phase distribution of effort 
and schedule will be affected by environmental or project a 

management factors. For example, it would be valuable to 
have a model which would accurately predict the effort and 
schedule distribution effects of investing in more thorough 

! design verification, of pursuing an incremental development - 
( strategy, of varying the staffing rate or experience mix, of re- 

ducing module size, etc. 
Some current models assume a universal effort distribution, 

such as the Rayleigh curve [44] or the activity distributions in 
[57], which are assumed to hold for any type of project situa- 
tion. Somewhat more realistic, but still limited are models 
with phase-sensitive effort multipliers such as PRICE S [22] 
and Detailed COCOMO [l 11 . 

Recently, some more realistic models of software project 
dynamics have begun to appear, although to date none of 
them have been calibrated to software project data. The Phister 
phase-by-phase model in [43] estimates the effort and schedule 
required to  design, code, and test a software product as a func- 
tion of such variables as the staffing level during each phase, 
the size of the average module to be developed, and such 
factors as interpersonal communications overhead rates and 
error detection rates. The Abdel Hamid-Madnick model [ I ] ,  
based on Forrester's System Dynamics world-view, estimates 
the time distribution of effort, schedule, and residual defects 
as a function of such factors as staffing rates, experience mix, 
training rates, personnel turnover, defect introduction rates, 
and initial estimation errors. Tausworthe [51] derives and 
calibrates alternative versions of the SLIM effort-schedule 



tradeoff relationship, using an intercommunication-overhead 
model of project dynamics. Some other recent models of 
software project dynamics are the Mitre SWAP model and 
the Duclos [2 11 total software life-cycle model. 

6) Quantitative Models of Software Life-Cycle Evolution: 
Although most of the software effort is devoted t o  the soft- 
ware maintenance (or life-cycle support) phase, only a few sig- 
nificant results have been obtained to date in formulating 
quantitative models of the software life-cycle evolution proc- 
ess. Some basic studies by Belady and Lehman analyzed data 
on several projects and derived a set of fairly general "laws of 
program evolution" [7] , [37] . For example, the first of these 
laws states: 

"A program that is used and that as an implementation 
of its specification reflects some other reality, undergoes 
continual change or becomes progressively less useful. 
The change or decay process continues until it is judged 
more cost effective to replace the system with a re- 
created version." 

Some general quantitative support for these laws was obtained 
in several studies during the 1 9 7 0 ' ~ ~  and in more recent studies 
such as [33]. However, efforts to refine these general laws into 
a set of testable hypotheses have met with mixed results. For 
example, the Lawrence [36] statistical analysis of the Belady- 
Lahman data showed that the data supported an even stronger 
form of the first law ("systems grow in size over their useful 
life"); that one of the laws could not be formulated precisely 
enough to  be tested by the data; and that the other three laws 
did not lead to hypotheses that were supported by the data. 

However, it is likely that variant hypotheses can be found 
that are supported by the data (for example, the operating 
system data supports some of the hypotheses better than does 
the applications data). Further research is needed to clarify 
this important area. 
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! 7) Software Data Collection: A fundamental limitation t o  
rlgnificant progress in software cost estimation is the lack of 
unambiguous, widely-used standard definitions for software 
data. For example, if an organization reports its "software 
development man-months," do these include the effort de- 
voted to requirements analysis, to  training, t o  secretaries, to  
quality assurance, to technical writers, t o  uncompensated 
overtime? Depending on one's interpretations, one can easily 
cause variations of over 20 percent (and often over a factort 
of 2) in the meaning of reported "software development man- 
months" between organizations (and similarly for "delivered 
instructions," "complexity," "storage constraint," etc.) Given 
such uncertainties in the ground data, it is not surprising that 
software cost estimation models cannot do much better than 
"within 20 percent of the actuals, 70 percent of the time." 

Some progress towards clear software data definitions has 
been made. The LBM FSD database used in [53] was carefully 
collected using thorough data definitions, but the detailed 
data and definitions are not generally available. The NASA- 
Goddard Software Engineering Laboratory database [5] , [6], 
[40] and the COCOMO database [ l l ]  provide both clear 
data definitions and an associated project database which are 
available for general use (and reasonably compatible). The re- 
cent Mitre SARE report [59] provides a good set of data defi- 
nitions. 

But there is still no commitment across organizations to 
establish and use a set of clear and uniform software data defi- 
nitions. Until this happens, our progress in developing more 
precise software cost estimation methods will be severely lim- 
ited. 

IV. SOFTWARE ENGINEERING ECONOMICS BENEFITS AND 

CHALLENGES 
This final section summarizes the benefits to  software engi- 

neering and software management provided by a software engi- 
needng economics perspective in general and by software cost 



estimation technology in particular. It concludes with son I c ,  

observations on the major challenges awaiting the field. 

Benefits of a Software Engineering Economics Perspective 

The major benefit of an economic perspective on softwan, 
engineering is that it provides a balanced view of candidate 
software engineering solutions, and an evaluation framework 
which takes account not only of the programming aspects of 
a situation, but also of the human problems of providing the 
best possible information processing service within a resource- 
limited environment. Thus, for example, the software engi- 
neering economics approach does not say, "we should use 
these structured structures because they are mathematically 
elegant" or "because they run like the wind" or "because 
they are part of the structured revolution." Instead, it says 
"we should use these structured structures because they pro- 
vide people with more benefits in relation to their costs 
than do other approaches." And besides the framework, of 
course, i t  also provides the techniques which help us to arrive 
a t  this conclusion. 

Benefits of Software Cost Estimation Technology 

The major benefit of a good software cost estimation model 
is that it provides a clear and consistent universe of discourse 
within which t o  address a good many of the software engineer- 
ing issues which arise throughout the software life cycle. It can 
help people get together to  discuss such issues as the following. 

Which and how many features should we put into the 
software product? 

0 Which features should we put in first? 
How much hardware should we acquire to support the 

software product's development, operation, and maintenance? 
0 How much money and how much calendar time should 

we allow for software development? 
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How much of the product should we adapt from exist- 

f How much should we invest in tools and training? 
Further, a well-defined software cost estimation model can 

kelp avoid the frequent misinterpretations, underestimates, 
sverexpectations, and outright buy-ins which still plague the 
software field. In a good cost-estimation model, there is no 
way of reducing the estimated software cost without changing 
some objectively verifiable property of the software project. 
This does not make it impossible to create an unachievable 
buy-in, but it significantly raises the threshold of credibility. 

A related benefit of software cost estimation technology 
is that it provides a powerful set of insights on how a software 
organization can improve its productivity. Many of a software 
cost model's cost-driver attributes are management control- 
lable~: use of software tools and modem programming prac- 
tices, personnel capability and experience, available computer 
speed, memory, and turnaround time, software reuse. The cost 
model helps us determine how to  adjust these management 
controllables to increase productivity, and further provides an 
estimate of how much of a productivity increase we are likely 
to achieve with a given level of investment. For more informa- 
tion on this topic, see [ l  l, ch. 333 , [12] and the recent plan 
for the U.S. Department of Defense Software Initiative [20]. 

Finally, software cost estimation technology provides an 
absolutely essential foundation for software project planning 
and control. Unless a software project has clear definitions of 
its key milestones and realistic estimates of the time and 
money it will take to achieve them, there is no way that a 
project manager can tell whether his project is under control 
or not. A good set of cost and schedule estimates can provide 
realistic data for the PERT charts, work breakdown structures, 
manpower schedules, earned value increments, etc., necessary 
to establish management visibility and control. 



Note that this opportunity to  improve management visibil- 
ity and control requires a complementary management com- 
mitment to define and control the reporting of data on software 
progress and expenditures. The resulting data are therefore 
worth collecting simply for their management value in compar- 
ing plans versus achievements, but they can serve another valu- 
able function as well: they provide a continuing stream of cali- 
bration data for evolving a more accurate and refined software 
cost estimation models. 

Software Engineering Economics Challenges 

The opportunity t o  improve software project management 
decision making through improved software cost estimation, 
planning, data collection, and control brings us back full-circle 
to the original objectives of software engineering economics: 
to provide a better quantitative understanding of how software 
people make decisions in resource-limited situations. 

The more clearly we as software engineers can understand 
the quantitative and economic aspects of our decision situa- 
tions, the more quickly we can progress from a pure seat-of- 
the-pants approach on software decisions to a more rational 
approach which puts all of the human and economic decision 
variables into clear perspective. Once these decision situations 
are more clearly illuminated, we can then study them in more 
detail to address the deeper challenge: achieving a quantitative 
understanding of how people work together in the software 
engineering process. 

Given the rather scattered and imprecise data currently 
available in the software engineering field, it is remarkable how 
much progress has been made on the software cost estimation 
problem so far. But, there is not much further we can go until 
better data becomes available. The software field cannot hope 
to have its Kepler or  its Newton until it has had its army of 
Tycho Brahes, carefully preparing the well-defined observa- 
tional data from which a deeper set of scientific insights may 
be derived. 
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