
Cost Models for Future Software Life Cycle Processes:

COCOMO 2.0*

Barry Boehm, Bradford Clark, Ellis Horowitz, Chris Westland

USC Center for Software Engineering

Ray Madachy

USC Center for Software Engineering and Litton Data Systems

Richard Selby

UC Irvine and Amadeus Software Research

Abstract
Current software cost estimation models, such as the 1981 Constructive Cost Model

(COCOMO) for software cost estimation and its 1987 Ada COCOMO update, have been
experiencing increasing difficulties in estimating the costs of software developed to new
life cycle processes and capabilities. These include non-sequential and rapid-development
process models; reuse-driven approaches involving commercial off the shelf (COTS)
packages, reengineering, applications composition, and applications generation
capabilities; object-oriented approaches supported by distributed middleware; and
software process maturity initiatives.

This paper summarizes research in deriving a baseline COCOMO 2.0 model tailored
to these new forms of software development, including rationales for the model
decisions. The major new modeling capabilities of COCOMO 2.0 are a tailorable family
of software sizing models, involving Object Points, Function Points, and Source Lines of
Code; nonlinear models for software reuse and reengineering; an exponent-driver
approach for modeling relative software diseconomies of scale; and several additions,
deletions, and updates to previous COCOMO effort-multiplier cost drivers. This model is
serving as a framework for an extensive current data collection and analysis effort to
further refine and calibrate the model’s estimation capabilities.

1. INTRODUCTION

1.1 Motivation

* To appear in Annals of Software Engineering Special Volume on Software Process and Product
Measurement, J.D. Arthur and S.M. Henry Eds., J.C. Baltzer AG, Science Publishers, Amsterdam, The
Netherlands, 1995.

“We are becoming a software company,” is an increasingly-repeated phrase in
organizations as diverse as finance, transportation, aerospace, electronics, and
manufacturing firms. Competitive advantage is increasingly dependent on the
development of smart, tailorable products and services, and on the ability to develop and
adapt these products and services more rapidly than competitors' adaptation times.

Dramatic reductions in computer hardware platform costs, and the prevalence of
commodity software solutions have indirectly put downward pressure on systems
development costs. This situation makes cost-benefit calculations even more important in
selecting the correct components for construction and life cycle evolution of a system,
and in convincing skeptical financial management of the business case for software
investments. It also highlights the need for concurrent product and process determination,
and for the ability to conduct trade-off analyses among software and system life cycle
costs, cycle times, functions, performance, and qualities.

Concurrently, a new generation of software processes and products is changing the
way organizations develop software. These new approaches—evolutionary, risk-driven,
and collaborative software processes; fourth generation languages and application
generators; commercial off-the-shelf (COTS) and reuse-driven software approaches; fast-
track software development approaches; software process maturity initiatives—lead to
significant benefits in terms of improved software quality and reduced software cost, risk,
and cycle time.

However, although some of the existing software cost models have initiatives
addressing aspects of these issues, these new approaches have not been strongly matched
to date by complementary new models for estimating software costs and schedules. This
makes it difficult for organizations to conduct effective planning, analysis, and control of
projects using the new approaches.

These concerns have led the authors to formulate a new version of the Constructive
Cost Model (COCOMO) for software effort, cost, and schedule estimation. The original
COCOMO [Boehm 1981] and its specialized Ada COCOMO successor [Boehm and
Royce 1989] were reasonably well-matched to the classes of software project that they
modeled: largely custom, build-to-specification software [Miyazaki and Mori 1985,
Boehm 1985, Goudy 1987]. Although Ada COCOMO added a capability for estimating
the costs and schedules for incremental software development, COCOMO encountered
increasing difficulty in estimating the costs of business software [Kemerer 1987, Ruhl
and Gunn 1991], of object-oriented software [Pfleeger 1991], of software created via
spiral or evolutionary development models, or of software developed largely via
commercial-off-the-shelf (COTS) applications-composition capabilities.

1.2 COCOMO 2.0 Objectives

The initial definition of COCOMO 2.0 and its rationale are described in this paper.
The definition will be refined as additional data are collected and analyzed. The primary
objectives of the COCOMO 2.0 effort are:

• To develop a software cost and schedule estimation model tuned to the life
cycle practices of the 1990's and 2000's.

• To develop software cost database and tool support capabilities for continuous
model improvement.

• To provide a quantitative analytic framework, and set of tools and techniques
for evaluating the effects of software technology improvements on software
life cycle costs and schedules.

These objectives support the primary needs expressed by software cost estimation
users in a recent Software Engineering Institute survey [Park et al. 1994]. In priority
order, these needs were for support of project planning and scheduling, project staffing,
estimates-to-complete, project preparation, replanning and rescheduling, project tracking,
contract negotiation, proposal evaluation, resource leveling, concept exploration, design
evaluation, and bid/no-bid decisions. For each of these needs, COCOMO 2.0 will provide
more up-to-date support than its COCOMO and Ada COCOMO predecessors.

1.3 Topics Addressed

Section 2 describes the future software marketplace model being used to guide the
development of COCOMO 2.0. Section 3 presents the overall COCOMO 2.0 strategy and
its rationale. Section 4 summarizes the COCOMO 2.0 software sizing approach,
involving a tailorable mix of Object Points, Function Points, and Source Lines of Code,
with new adjustment models for reuse and re-engineering. Section 5 discusses the new
exponent-driver approach to modeling relative project diseconomies of scale, replacing
the previous COCOMO development modes. Section 6 summarizes the revisions to the
COCOMO effort-multiplier cost drivers, including a number of additions, deletions, and
updates. Section 7 presents the resulting conclusions based on COCOMO 2.0’s current
state.

2. FUTURE SOFTWARE PRACTICES MARKETPLACE MODEL
Figure 1 summarizes the model of the future software practices marketplace that we

are using to guide the development of COCOMO 2.0. It includes a large upper “end-user
programming” sector with roughly 55 million practitioners in the U.S. by the year 2005; a
lower “infrastructure” sector with roughly 0.75 million practitioners; and three
intermediate sectors, involving the development of applications generators and
composition aids (0.6 million practitioners), the development of systems by applications
composition (0.7 million), and system integration of large-scale and/or embedded
software systems (0.7 million)†.

† These figures are judgement-based extensions of the Bureau of Labor Statistics moderate-growth labor
distribution scenario for the year 2005 [CSTB 1993; Silvestri and Lukaseiwicz 1991]. The 55 million End-
User programming figure was obtained by applying judgement based extrapolations of the 1989 Bureau of
the Census data on computer usage fractions by occupation [Kominski 1991] to generate end-user
programming fractions by occupation category. These were then applied to the 2005 occupation-category

End-User Programming

 (55M performers in US)

Application Generators Application System

and Composition Aids Composition Integration

(0.6M) (0.7M) (0.7M)

Infrastructure

(0.75M)

Figure 1. Future Software Practices Marketplace Model

End-User Programming will be driven by increasing computer literacy and
competitive pressures for rapid, flexible, and user-driven information processing
solutions. These trends will push the software marketplace toward having users develop
most information processing applications themselves via application generators. Some
example application generators are spreadsheets, extended query systems, and simple,
specialized planning or inventory systems. They enable users to determine their desired
information processing application via domain-familiar options, parameters, or simple
rules. Every enterprise from Fortune 100 companies to small businesses and the U.S.
Department of Defense will be involved in this sector.

Typical Infrastructure sector products will be in the areas of operating systems,
database management systems, user interface management systems, and networking
systems. Increasingly, the Infrastructure sector will address “middleware” solutions for
such generic problems as distributed processing and transaction processing.
Representative firms in the Infrastructure sector are Microsoft, NeXT, Oracle, SyBase,
Novell, and the major computer vendors.

In contrast to end-user programmers, who will generally know a good deal about their
applications domain and relatively little about computer science, the infrastructure
developers will generally know a good deal about computer science and relatively little
about applications. Their product lines will have many reusable components, but the pace
of technology (new processor, memory, communications, display, and multimedia
technology) will require them to build many components and capabilities from scratch.

Performers in the three intermediate sectors in Figure 1 will need to know a good deal
about computer science-intensive Infrastructure software and also one or more

populations (e.g., 10% of the 25M people in “Service Occupations”; 40% of the 17M people in “Marketing
and Sales Occupations”). The 2005 total of 2.75 M software practitioners was obtained by applying a factor
of 1.6 to the number of people traditionally identified as “Systems Analysts and Computer Scientists”
(0.829M in 2005) and “Computer Programmers (0.882M). The expansion factor of 1.6 to cover software
personnel with other job titles is based on the results of a 1983 survey on this topic [Boehm 1983].The
2005 distribution of the 2.75 M software developers is a judgement-based extrapolation of current trends.

applications domains. Creating this talent pool is a major national challenge.

The Application Generators sector will create largely prepackaged capabilities for
user programming. Typical firms operating in this sector are Microsoft, Lotus, Novell,
Borland, and vendors of computer-aided planning, engineering, manufacturing, and
financial analysis systems. Their product lines will have many reusable components, but
also will require a good deal of new-capability development from scratch. Application
Composition Aids will be developed both by the firms above and by software product-
line investments of firms in the Application Composition sector.

The Application Composition sector deals with applications which are too diversified
to be handled by prepackaged solutions, but which are sufficiently simple to be rapidly
composable from interoperable components. Typical components will be graphic user
interface (GUI) builders, database or object managers, middleware for distributed
processing or transaction processing, hypermedia handlers, smart data finders, and
domain-specific components such as financial, medical, or industrial process control
packages.

Most large firms will have groups to compose such applications, but a great many
specialized software firms will provide composed applications on contract. These range
from large, versatile firms such as Andersen Consulting and EDS, to small firms
specializing in such specialty areas as decision support or transaction processing, or in
such applications domains as finance or manufacturing.

The Systems Integration sector deals with large scale, highly embedded, or
unprecedented systems. Portions of these systems can be developed with Application
Composition capabilities, but their demands generally require a significant amount of up-
front systems engineering and custom software development. Aerospace firms operate
within this sector, as do major system integration firms such as EDS and Andersen
Consulting, large firms developing software-intensive products and services
(telecommunications, automotive, financial, and electronic products firms), and firms
developing large-scale corporate information systems or manufacturing support systems.

3. COCOMO 2.0 STRATEGY AND RATIONALE
The four main elements of the COCOMO 2.0 strategy are:

• Preserve the openness of the original COCOMO;

• Key the structure of COCOMO 2.0 to the future software marketplace sectors
described above;

• Key the inputs and outputs of the COCOMO 2.0 submodels to the level of
information available;

• Enable the COCOMO 2.0 submodels to be tailored to a project's particular
process strategy.

COCOMO 2.0 follows the openness principles used in the original COCOMO. Thus,
all of its relationships and algorithms will be publicly available. Also, all of its interfaces

are designed to be public, well-defined, and parametrized, so that complementary
preprocessors (analogy, case-based, or other size estimation models), post-processors
(project planning and control tools, project dynamics models, risk analyzers), and higher
level packages (project management packages, product negotiation aids), can be
combined straightforwardly with COCOMO 2.0.

To support the software marketplace sectors above, COCOMO 2.0 provides a family
of increasingly detailed software cost estimation models, each tuned to the sectors' needs
and type of information available to support software cost estimation.

3.1 COCOMO 2.0 Models for the Software Marketplace Sectors

The User Programming sector does not need a COCOMO 2.0 model. Its applications
are typically developed in hours to days, so a simple activity-based estimate will
generally be sufficient.

The COCOMO 2.0 model for the Application Composition sector is based on Object
Points. Object Points are a count of the screens, reports and third-generation-language
modules developed in the application, each weighted by a three-level (simple, medium,
difficult) complexity factor [Banker et al. 1994, Kauffman and Kumar 1993]. This is
commensurate with the level of information generally known about an Application
Composition product during its planning stages, and the corresponding level of accuracy
needed for its software cost estimates (such applications are generally developed by a
small team in a few weeks to months).

The COCOMO 2.0 capability for estimation of Application Generator, System
Integration, or Infrastructure developments is based on a tailorable mix of the Application
Composition model (for early prototyping efforts) and two increasingly detailed
estimation models for subsequent portions of the life cycle.

3.2 COCOMO 2.0 Model Rationale and Elaboration

The rationale for providing this tailorable mix of models rests on three primary
premises.

First, unlike the initial COCOMO situation in the late 1970's, in which there was a
single, preferred software life cycle model (the waterfall model), current and future
software projects will be tailoring their processes to their particular process drivers.
These process drivers include COTS or reusable software availability; degree of
understanding of architectures and requirements; market window or other schedule
constraints; size; and required reliability (see [Boehm 1989, pp. 436-37] for an example
of such tailoring guidelines).

Second, the granularity of the software cost estimation model used needs to be
consistent with the granularity of the information available to support software cost
estimation. In the early stages of a software project, very little may be known about the
size of the product to be developed, the nature of the target platform, the nature of the
personnel to be involved in the project, or the detailed specifics of the process to be used.

Figure 2, extended from [Boehm 1981, p. 311], indicates the effect of project
uncertainties on the accuracy of software size and cost estimates. In the very early stages,

one may not know the specific nature of the product to be developed to better than a
factor of 4. As the life cycle proceeds, and product decisions are made, the nature of the
products and its consequent size are better known, and the nature of the process and its
consequent cost drivers are better known. The earlier “completed programs” size and
effort data points in Figure 2 are the actual sizes and efforts of seven software products
built to an imprecisely-defined specification [Boehm et al. 1984]‡. The later “USAF/ESD
proposals” data points are from five proposals submitted to the U.S. Air Force Electronic
Systems Division in response to a fairly thorough specification [Devenny 1976].

Figure 2. Software Costing and Sizing Accuracy vs. Phase

Third, given the situation in premises 1 and 2, COCOMO 2.0 enables projects to
furnish coarse grained cost driver information in the early project stages, and increasingly
fine-grained information in later stages. Consequently, COCOMO 2.0 does not produce
point estimates of software cost and effort, but rather range estimates tied to the degree of
definition of the estimation inputs. The uncertainty ranges in Figure 2 are used as starting
points for these estimation ranges.

With respect to process strategy, Application Generator, System Integration, and
Infrastructure software projects will involve a mix of three major process models. The
appropriate sequencing of these models will depend on the project’s marketplace drivers

‡ These seven projects implemented the same algorithmic version of the Intermediate COCOMO cost
model, but with the use of different interpretations of the other product specifications: produce a “friendly
user inter-face” with a “single-user file system.”

and degree of product understanding.

The Application Composition model involves prototyping efforts to resolve potential
high-risk issues such as user interfaces, software/system interaction, performance, or
technology maturity. The costs of this type of effort are best estimated by the
Applications Composition model.

The Early Design model involves exploration of alternative software/system
architectures and concepts of operation. At this stage, not enough is generally known to
support fine-grain cost estimation. The corresponding COCOMO 2.0 capability involves
the use of function points and a small number of additional cost drivers.

The Post-Architecture model involves the actual development and maintenance of a
software product. This model proceeds most cost-effectively if a software life-cycle
architecture has been developed; validated with respect to the system's mission, concept
of operation, and risk; and established as the framework for the product. The
corresponding COCOMO 2.0 model has about the same granularity as the previous
COCOMO and Ada COCOMO models. It uses source instructions and / or function
points for sizing, with modifiers for reuse and software breakage; a set of 17
multiplicative cost drivers; and a set of 5 factors determining the project's scaling
exponent. These factors replace the development modes (Organic, Semidetached, or
Embedded) in the original COCOMO model, and refine the four exponent-scaling factors
in Ada COCOMO.

To summarize, COCOMO 2.0 provides the following three-model series for
estimation of Application Generator, System Integration, and Infrastructure software
projects:

1. The earliest phases or spiral cycles will generally involve prototyping, using
Application Composition capabilities. The COCOMO 2.0 Application
Composition model supports these phases, and any other prototyping activities
occurring later in the life cycle.

2. The next phases or spiral cycles will generally involve exploration of
architectural alternatives or incremental development strategies. To support
these activities, COCOMO 2.0 provides an early estimation model. This uses
function points for sizing, and a coarse-grained set of 5 cost drivers (e.g., two
cost drivers for Personnel Capability and Personnel Experience in place of the
6 current Post-Architecture model cost drivers covering various aspects of
personnel capability, continuity and experience). Again, this level of detail is
consistent with the general level of information available and the general level
of estimation accuracy needed at this stage.

3. Once the project is ready to develop and sustain a fielded system, it should
have a life-cycle architecture, which provides more accurate information on
cost driver inputs, and enables more accurate cost estimates. To support this
stage of development, COCOMO 2.0 provides a model whose granularity is
roughly equivalent to the current COCOMO and Ada COCOMO models. It
can use either source lines of code or function points for a sizing parameter, a
refinement of the COCOMO development modes as a scaling factor, and 17

multiplicative cost drivers.

The above should be considered as current working hypotheses about the most
effective forms for COCOMO 2.0. They will be subject to revision based on subsequent
data analysis. Data analysis should also enable the further calibration of the relationships
between object points, function points, and source lines of code for various languages and
composition systems, enabling flexibility in the choice of sizing parameters.

3.3 Other Major Differences Between COCOMO and COCOMO 2.0

The tailorable mix of models and variable-granularity cost model inputs and outputs
are not the only differences between the original COCOMO and COCOMO 2.0. The
other major differences involve size-related effects involving reuse and re-engineering,
changes in scaling effects, and changes in cost drivers. These are summarized in Table 1,
and elaborated in Sections 4, 5, and 6 below. Explanations of the acronyms and
abbreviations in Table 1 are provided in Section 9.

4. Cost Factors: Sizing
This Section provides the definitions and rationale for the three sizing quantities used

in COCOMO 2.0: Object Points, Unadjusted Function Points, and Source Lines of Code.
It then discusses the COCOMO 2.0 size-related parameters used in dealing with software
reuse, re-engineering, conversion, and maintenance.

4.1 Applications Composition: Object Points

Object Point estimation is a relatively new software sizing approach, but it is well-
matched to the practices in the Applications Composition sector. It is also a good match
to associated prototyping efforts, based on the use of a rapid-composition Integrated
Computer Aided Software Environment (ICASE) providing graphic user interface
builders, software development tools, and large, composable infrastructure and
applications components. In these areas, it has compared well to Function Point
estimation on a nontrivial (but still limited) set of applications.

The [Banker et al. 1994] comparative study of Object Point vs. Function Point
estimation analyzed a sample of 19 investment banking software projects from a single
organization, developed using ICASE applications composition capabilities, and ranging
from 4.7 to 71.9 person-months of effort. The study found that the Object Points
approach explained 73% of the variance (R

2
) in person-months adjusted for reuse, as

compared to 76% for Function Points.

A subsequent statistically-designed experiment [Kaufman and Kumar 1993] involved
four experienced project managers using Object Points and Function Points to estimate
the effort required on two completed projects (3.5 and 6 actual person-months), based on
project descriptions of the type available at the beginning of such projects. The
experiment found that Object Points and Function Points produced comparably accurate
results (slightly more accurate with Object Points, but not statistically significant). From
a usage standpoint, the average time to produce an Object Point estimate was about 47%
of the corresponding average time for Function Point estimates. Also, the managers
considered the Object Point method easier to use (both of these results were statistically

significant).

Thus, although these results are not yet broadly-based, their match to Applications
Composition software development appears promising enough to justify selecting Object
Points as the starting point for the COCOMO 2.0 Applications Composition estimation
model.

Table 1: Comparison of COCOMO, Ada COCOMO, and COCOMO 2.0
 COCOMO Ada COCOMO COCOMO 2.0: Stage 1 COCOMO 2.0: Stage 2 COCOMO 2.0: Stage 3

Size Delivered Source Instructions
(DSI) or Source Lines Of Code
(SLOC)

DSI or SLOC Object Points Function Points (FP) and
Language

FP and Language or SLOC

Reuse Equivalent SLOC =

Linear f(DM, CM, IM)

Equivalent SLOC =

Linear f(DM, CM, IM)

Implicit in model % unmodified reuse: SR
% modified reuse:
nonlinear
f(AA,SU,DM,CM,IM)

Equivalent SLOC =
nonlinear
f(AA,SU,DM,CM,IM)

Breakage Requirements Volatility rating:
(RVOL)

RVOL rating Implicit in model Breakage %: BRAK BRAK

Maintenance Annual Change Traffic (ACT) =
%added + %modified

ACT Object Point Reuse
Model

Reuse model Reuse model

Scale (b) in

MM NOM = a(Size)b

Organic: 1.05

Semidetached: 1.12

Embedded: 1.20

Embedded: 1.04 -1.24
depending on degree of:

• early risk elimination

• solid architecture

• stable requirements

• Ada process maturity

1.0

1.01 - 1.26 depending on
the degree of:

• precedentedness

• conformity

• early architecture,

 risk resolution

• team cohesion

• process maturity (SEI)

1.01 -1.26 depending on the
degree of:

• precedentedness

• conformity

• early architecture, risk
resolution

• team cohesion

• process maturity (SEI)

Product Cost Drivers RELY, DATA, CPLX RELY * , DATA, CPLX *
, RUSE

None RCPX *† , RUSE *† RELY, DATA, DOCU *†
CPLX †, RUSE *†

Platform Cost Drivers TIME, STOR, VIRT,TURN TIME, STOR, VMVH,
VMVT, TURN

None Platform difficulty: PDIF
*†

TIME, STOR,
PVOL(=VIRT)

Personnel Cost Drivers ACAP, AEXP, PCAP, VEXP,
LEXP

ACAP * , AEXP, PCAP *,
VEXP, LEXP *

None Personnel capability and
experience: PERS *†,
PREX *†

ACAP * , AEXP † , PCAP *
, PEXP *†, LTEX *† ,
PCON *†

Project Cost Drivers MODP, TOOL, SCED MODP * , TOOL * ,
SCED, SECU

None SCED, FCIL *† TOOL *† , SCED, SITE *†

* Different multipliers.
† Different rating scale

4.1.1 COCOMO 2.0 Object Point Estimation Procedure

Figure 3 presents the baseline COCOMO 2.0 Object Point procedure for estimating
the effort involved in Applications Composition and prototyping projects. It is a synthesis
of the procedure in Appendix B.3 of [Kauffman and Kumar 1993] and the productivity
data from the 19 project data points in [Banker et al. 1994].

Definitions of terms in Figure 3 are as follows:

• NOP: New Object Points (Object Point count adjusted for reuse)

• srvr: number of server (mainframe or equivalent) data tables used in
conjunction with the SCREEN or REPORT.

• clnt: number of client (personal workstation) data tables used in conjunction
with the SCREEN or REPORT.

• %reuse: the percentage of screens, reports, and 3GL modules reused from
previous applications, pro-rated by degree of reuse.

The productivity rates in Figure 3 are based on an analysis of the year-1 and year-2
project data in [Banker et al. 1994]. In year-1, the CASE tool was itself under
construction and the developers were new to its use. The average productivity of 7
NOP/person-month in the twelve year-1 projects is associated with the Low levels of
developer and ICASE maturity and capability in Figure 3. In the seven year-2 projects,
both the CASE tool and the developers’ capabilities were considerably more mature. The
average productivity was 25 NOP/person-month, corresponding with the High levels of
developer and ICASE maturity in Figure 3.

As another definitional point, note that the use of the term “object” in “Object Points”
defines screens, reports, and 3GL modules as objects. This may or may not have any
relationship to other definitions of “objects”, such as those possessing features such as
class affiliation, inheritance, encapsulation, message passing, and so forth. Counting rules
for “objects” of that nature, when used in languages such as C++, will be discussed under
“source lines of code” in the next section.

4.2 Applications Development

As described in Section 3.2, the COCOMO 2.0 model uses function points and/or
source lines of code as the basis for measuring size for the Early Design and Post-
Architecture estimation models. For comparable size measurement across COCOMO 2.0
participants and users, standard counting rules are necessary. A consistent definition for
size within projects is a prerequisite for project planning and control, and a consistent
definition across projects is a prerequisite for process improvement [Park 1992].

The COCOMO 2.0 model has adopted counting rules that have been formulated by
wide community participation or standardization efforts. The source lines of code metrics
are based on the Software Engineering Institute source statement definition checklist
[Park 1992]. The function point metrics are based on the International Function Point
User Group (IFPUG) Guidelines and applications of function point calculation [IFPUG
1994] [Behrens 1983] [Kunkler 1985].

Step 1: Assess Object-Counts: estimate the number of screens, reports, and 3GL
components that will comprise this application. Assume the standard definitions
of these objects in your ICASE environment.

Step 2: Classify each object instance into simple, medium and difficult complexity levels
depending on values of characteristic dimensions. Use the following scheme:

For Screens For Reports

and source of data tables # and source of data tables Number of
Views

contained Total < 4
(< 2 srvr
< 3 clnt)

Total < 8
(2/3 srvr
3-5 clnt)

Total 8+
(> 3 srvr
> 5 clnt)

Number of
Sections
contained Total < 4

(< 2 srvr
< 3 clnt)

Total < 8
(2/3 srvr
3-5 clnt)

Total 8+
(> 3 srvr
> 5 clnt)

< 3 simple simple medium 0 or 1 simple simple medium

3 - 7 simple medium difficult 2 or 3 simple medium difficult

> 8 medium difficult difficult 4 + medium difficult difficult

Step 3: Weigh the number in each cell using the following scheme. The weights reflect
the relative effort required to implement an instance of that complexity level.:

Complexity-Weight Object Type
Simple Medium Difficult

Screen 1 2 3
Report 2 5 8
3GL Component 10

Step 4: Determine Object-Points: add all the weighted object instances to get one number,
the Object-Point count.

Step 5: Estimate percentage of reuse you expect to be achieved in this project. Compute
the New Object Points to be developed, NOP = (Object-Points) (100 - %reuse)/
100.

Step 6: Determine a productivity rate, PROD = NOP / person-month, from the following
scheme

Developers’ experience and capability Very Low Low Nominal High Very High

ICASE maturity and capability Very Low Low Nominal High Very High

PROD 4 7 13 25 50

Step 7: Compute the estimated person-months: PM = NOP / PROD.

Figure 3. Baseline Object Point Estimation Procedure

4.2.1 Lines of Code Counting Rules

In COCOMO 2.0, the logical source statement has been chosen as the standard line of
code. Defining a line of code is difficult due to conceptual differences involved in
accounting for executable statements and data declarations in different languages. The

goal is to measure the amount of intellectual work put into program development, but
difficulties arise when trying to define consistent measures across different languages. To
minimize these problems, the Software Engineering Institute (SEI) definition checklist
for a logical source statement is used in defining the line of code measure. The Software
Engineering Institute (SEI) has developed this checklist as part of a system of definition
checklists, report forms and supplemental forms to support measurement definitions
[Park 1992, Goethert et al. 1992].

Figure 4 shows a portion of the definition checklist as it is being applied to support
the development of the COCOMO 2.0 model. Each checkmark in the “Includes” column
identifies a particular statement type or attribute included in the definition, and vice-versa
for the excludes. Other sections in the definition clarify statement attributes for usage,
delivery, functionality, replications and development status. There are also clarifications
for language specific statements for ADA, C, C++, CMS-2, COBOL, FORTRAN,
JOVIAL and Pascal.

Some changes were made to the line-of-code definition that depart from the default
definition provided in [Park 1992]. These changes eliminate categories of software which
are generally small sources of project effort. Not included in the definition are
commercial-off-the-shelf software (COTS), government furnished software (GFS), other
products, language support libraries and operating systems, or other commercial libraries.
Code generated with source code generators is not included though measurements will be
taken with and without generated code to support analysis.

The “COCOMO 2.0 line-of-code definition” is calculated directly by the Amadeus
automated metrics collection tool [Amadeus 1994] [Selby et al. 1991], which is being
used to ensure uniformly collected data in the COCOMO 2.0 data collection and analysis
project. We have developed a set of Amadeus measurement templates that support the
COCOMO 2.0 data definitions for use by the organizations collecting data, in order to
facilitate standard definitions and consistent data across participating sites.

To support further data analysis, Amadeus will automatically collect additional
measures including total source lines, comments, executable statements, declarations,
structure, component interfaces, nesting, and others. The tool will provide various size
measures, including some of the object sizing metrics in [Chidamber and Kemerer 1994],
and the COCOMO sizing formulation will adapt as further data is collected and analyzed.

4.2.2 Function Point Counting Rules

The function point cost estimation approach is based on the amount of functionality
in a software project and a set of individual project factors [Behrens 1983] [Kunkler
1985] [IFPUG 1994]. Function points are useful estimators since they are based on
information that is available early in the project life cycle. A brief summary of function
points and their calculation in support of COCOMO 2.0 is as follows.

4.2.2.1 Function Point Introduction

Function points measure a software project by quantifying the information processing
functionality associated with major external data or control input, output, or file types.
Five user function types should be identified, as defined in Table 2.

Definition Checklist for Source Statements Counts

Definition name: __Logical Source Statements__ Date:________________

________________(basic definition)__________ Originator:_COCOMO 2.0____

Measurement unit: Physical source lines
 Logical source statements 4
Statement type Definition 4 Data Array Includes Excludes

When a line or statement contains more than one type,
classify it as the type with the highest precedence.

1 Executable Order of precedence → 1 4
2 Nonexecutable
3 Declarations 2 4
4 Compiler directives 3 4
5 Comments
6 On their own lines 4 4
7 On lines with source code 5 4
8 Banners and non-blank spacers 6 4
9 Blank (empty) comments 7 4
10 Blank lines 8 4
11
12
How produced Definition 4 Data array Includes Excludes
1 Programmed 4
2 Generated with source code generators 4
3 Converted with automated translators 4
4 Copied or reused without change 4
5 Modified 4
6 Removed 4
7
8
Origin Definition 4 Data array Includes Excludes
1 New work: no prior existence 4
2 Prior work: taken or adapted from
3 A previous version, build, or release 4
4 Commercial, off-the-shelf software (COTS), other than libraries 4
5 Government furnished software (GFS), other than reuse libraries 4
6 Another product 4
7 A vendor-supplied language support library (unmodified) 4
8 A vendor-supplied operating system or utility (unmodified) 4
9 A local or modified language support library or operating system 4
10 Other commercial library 4
11 A reuse library (software designed for reuse) 4
12 Other software component or library 4
13
14

Figure 4. Definition Checklist

Table 2: User Function Types

External Input (Inputs) Count each unique user data or user control input type that (i) enters
the external boundary of the software system being measured and (ii)
adds or changes data in a logical internal file.

External Output (Outputs) Count each unique user data or control output type that leaves the
external boundary of the software system being measured.

Internal Logical File (Files) Count each major logical group of user data or control information in
the software system as a logical internal file type. Include each
logical file (e.g., each logical group of data) that is generated, used,
or maintained by the software system.

External Interface Files (Interfaces) Files passed or shared between software systems should be counted
as external interface file types within each system.

External Inquiry (Queries) Count each unique input-output combination, where an input causes
and generates an immediate output, as an external inquiry type.

Each instance of these function types is then classified by complexity level. The
complexity levels determine a set of weights, which are applied to their corresponding
function counts to determine the Unadjusted Function Points quantity. This is the
Function Point sizing metric used by COCOMO 2.0. The usual Function Point procedure
involves assessing the degree of influence (DI) of fourteen application characteristics on
the software project determined according to a rating scale of 0.0 to 0.05 for each
characteristic. The 14 ratings are added together, and added to a base level of 0.65 to
produce a general characteristics adjustment factor that ranges from 0.65 to 1.35.

Each of these fourteen characteristics, such as distributed functions, performance, and
reusability, thus have a maximum of 5% contribution to estimated effort. This is
inconsistent with COCOMO experience; thus COCOMO 2.0 uses Unadjusted Function
Points for sizing, and applies its reuse factors, cost driver effort multipliers, and exponent
scale factors to this sizing quantity. The COCOMO 2.0 procedure for determining
Unadjusted Function Points is shown in Figure 5.

4.3 Reuse and Re-engineering

4.3.1 Nonlinear Reuse Effects

The COCOMO 2.0 treatment of software reuse and re-engineering differs
significantly from that of the original COCOMO in that it uses a nonlinear estimation
model. In the original COCOMO reuse model, the cost of reusing software is basically a
linear function of the extent that the reused software needs to be modified. This involves
estimating the amount of software to be adapted, ASLOC, and three degree-of-
modification parameters: DM, the percentage of design modification; CM, the percentage
of code modification, and IM, the percentage of the original integration effort required
for integrating the reused software.

These are used to determine an equivalent number of new instructions to be used as
the COCOMO size parameter:

100
)× 0.3+×0.3+×(0.4

× =
IMCMDM

ASLOCESLOC EQ 1.

Thus, if the software is used without modification, its additional size contribution will
be zero. Otherwise, its additional size contribution will be a linear function of DM, CM,
and IM.

However, the analysis in [Selby 1988] of reuse costs across nearly 3000 reused
modules in the NASA Software Engineering Laboratory indicates that the reuse cost
function is nonlinear in two significant ways (see Figure 6):

• It does not go through the origin. There is generally a cost of about 5% for
assessing, selecting, and assimilating the reusable component.

• Small modifications generate disproportionately large costs. This is primarily
due to two factors: the cost of understanding the software to be modified, and
the relative cost of interface checking.

A COCOMO 2.0 reuse model which accommodates these nonlinearities is presented
below.

Step 1: Determine function counts by type. The unadjusted function counts should be counted
by a lead technical person based on information in the software requirements and
design documents. The number of each of the five user function types should be
counted (Internal Logical File* (ILF), External Interface File (EIF), External Input
(EI), External Output (EO), and External Inquiry (EQ)).

Step 2: Determine complexity-level function counts. Classify each function count into Low,
Average and High complexity levels depending on the number of data element types
contained and the number of file types referenced. Use the following scheme:

For ILF and EIF For EO and EQ For EI

Record Data Elements File Data Elements File Data Elements

Elements 1 - 19 20 - 50 51+ Types 1 - 5 6 - 19 20+ Types 1 - 4 5 - 15 16+

1 Low Low Avg 0 or 1 Low Low Avg 0 or 1 Low Low Avg

2 - 5 Low Avg High 2 - 3 Low Avg High 2 - 3 Low Avg High

6+ Avg High High 4+ Avg High High 3+ Avg High High

Step 3: Apply complexity weights. Weight the number in each cell using the following
scheme. The weights reflect the relative value of the function to the user.

Complexity-Weight
Function Type

Low Average High

Internal Logical Files 7 10 15

External Interfaces Files 5 7 10

External Inputs 3 4 6

External Outputs 4 5 7

External Inquiries 3 4 6

Step 4: Compute Unadjusted Function Points. Add all the weighted functions counts to get
one number, the Unadjusted Function Points.

*. Note: The word file refers to a logically related group of data and not the physical
implementation of those groups of data

Figure 5. Function Count Procedure

 0.25 0.5 0.75 1.0

 Amount Modified

Figure 6. Nonlinear Reuse Effects

Figure 7. Number of Module Interface Checks vs. Fraction Modified

4.3.2 COCOMO 2.0 Reuse Model

[Parikh and Zvegintzov 1983] contains data indicating that 47% of the effort in
software maintenance involves understanding the software to be modified. Thus, as soon
as one goes from unmodified (black-box) reuse to modified-software (white-box) reuse,
one encounters this software understanding penalty. Also, [Gerlich and Denskat 1994]
shows that, if one modifies k out of m software modules, the number N of module
interface checks required is N = k * (m-k) + k * (k-1)/2.

Figure 7 shows this relation between the number of modules modified k and the
resulting number of module interface checks required.

The shape of this curve is similar for other values of m. It indicates that there are
nonlinear effects involved in the module interface checking which occurs during the
design, code, integration, and test of modified software.

The size of both the software understanding penalty and the module interface
checking penalty can be reduced by good software stucturing. Modular, hierarchical
structuring can reduce the number of interfaces which need checking [Gerlich and
Denskat 1994], and software which is well structured, explained, and related to its

mission will be easier to understand. COCOMO 2.0 reflects this in its allocation of
estimated effort for modifying reusable software. The COCOMO 2.0 reuse equation for
equivalent new software to be developed is:

100
)×3.0+× 0.3+×0.4++(

× =
IMCMDMSUAA

ASLOCESLOC EQ 2.

The software understanding increment SU is obtained from Table 3. As indicated in
Table 3, if the software is rated very high on structure, applications clarity, and self-
descriptiveness, the software understanding and interface checking penalty is only 10%.
If the software is rated very low on these factors, the penalty is 50%.

Table 3: Rating Scale for Software Understanding Increment SU

 Very Low Low Nom High Very High

Structure
Very low
cohesion, high
coupling,
spaghetti code.

Moderately low
cohesion, high
coupling.

Reasonably
well-structured;
some weak
areas.

High cohesion,
low coupling.

Strong
modularity,
information
hiding in data /
control
structures.

Application
Clarity

No match
between program
and application
world views.

Some
correlation
between
program and
application.

Moderate
correlation
between
program and
application.

Good
correlation
between
program and
application.

Clear match
between
program and
application
world-views.

Self-
Descriptiveness

Obscure code;
documentation
missing, obscure
or obsolete

Some code
commentary
and headers;
some useful
documentation.

Moderate level
of code
commentary,
headers,
documentations.

Good code
commentary
and headers;
useful
documentation;
some weak
areas.

Self-descriptive
code;
documentation
up-to-date,
well-organized,
with design
rationale.

SU Increment to
AAF 50 40 30 20 10

The other nonlinear reuse increment deals with the degree of assessment and
assimilation needed to determine whether even a fully-reused software module is
appropriate to the application, and to integrate its description into the overall product
description. Table 4 provides the rating scale and values for the Assessment and
Assimilation increment AA. For software conversion, this factor extends the Conversion
Planning Increment in [Boehm 1981, p. 558].

Table 4: Rating Scale for Assessment and Assimilation Increment (AA)

AA Increment Level of AA Effort

0 None

2 Basic module search and documentation

4 Some module Test and Evaluation (T&E), documentation

6 Considerable module T&E, documentation

8 Extensive module T&E, documentation

4.3.3 Re-engineering and Conversion Cost Estimation

The COCOMO 2.0 reuse model needs additional refinement to estimate the costs of
software re-engineering and conversion. The major difference in re-engineering and
conversion is the efficiency of automated tools for software restructuring. These can lead
to very high values for the percentage of code modified (CM in the COCOMO 2.0 reuse
model), but with very little corresponding effort. For example, in the NIST re-
engineering case study [Ruhl and Gunn 1991], 80% of the code (13,131 COBOL source
statements) was re-engineered by automatic translation, and the actual re-engineering
effort, 35 person months, was a factor of over 4 lower than the COCOMO estimate of
152 person months.

The COCOMO 2.0 re-engineering and conversion estimation approach involves
estimation of an additional parameter, AT, the percentage of the code that is re-
engineered by automatic translation. Based on an analysis of the project data above, an
effort estimator for automated translation is 2400 source statements / person month; the
normal COCOMO 2.0 reuse model is used for the remainder of the re-engineered
software.

The NIST case study also provides useful guidance on estimating the AT factor,
which is a strong function of the difference between the boundary conditions (e.g., use of
COTS packages, change from batch to interactive operation) of the old code and the re-
engineered code. The NIST data on percentage of automated translation (from an original
batch processing application without COTS utilities) are given in Table 5.

.

Table 5: Variation in Percentage of Automated Re-engineering [Ruhl and Gunn 1991]

Re-engineering Target AT (% automated translation)

Batch processing 96%

Batch with SORT 90%

Batch with DBMS 88%

Batch, SORT, DBMS 82%

Interactive 50%

4.4 Breakage

COCOMO 2.0 replaces the COCOMO Requirements Volatility effort multiplier and
the Ada COCOMO Requirements Volatility exponent driver by a breakage percentage,
BRAK, used to adjust the effective size of the product. Consider a project which delivers
100,000 instructions but discards the equivalent of an additional 20,000 instructions. This
project would have a BRAK value of 20, which would be used to adjust its effective size
to 120,000 instructions for COCOMO 2.0 estimation. The BRAK factor is not used in the
Applications Composition model, where a certain degree of product iteration is expected,
and included in the data calibration.

4.5 Applications Maintenance

The original COCOMO used Annual Change Traffic (ACT), the percentage of code
modified and added to the software product per year, as the primary measure for sizing a
software maintenance activity. This has caused some difficulties, primarily the restriction
to annual increment and a set of inconsistencies with the reuse model. COCOMO 2.0
remedies these difficulties by applying the reuse model to maintenance as well.

5. COST FACTORS: SCALING
5.1 Modeling Software Economies and Diseconomies of Scale

Software cost estimation models often have an exponential factor to account for the
relative economies or diseconomies of scale encountered as a software project increases
its size. This factor is generally represented as the exponent B in the equation:

Effort = A X (Size)
B

EQ 3.

If B < 1.0, the project exhibits economies of scale. If the product's size is doubled, the
project effort is less than doubled. The project's productivity increases as the product size
is increased. Some project economies of scale can be achieved via project-specific tools
(e.g., simulations, test-beds), but in general these are difficult to achieve. For small
projects, fixed startup costs such as tool tailoring and setup of standards and

administrative reports are often a source of economies of scale.

If B = 1.0, the economies and diseconomies of scale are in balance. This linear model
is often used for cost estimation of small projects. It is used for the COCOMO 2.0
Applications Composition model.

If B > 1.0, the project exhibits diseconomies of scale. This is generally due to two
main factors: growth of interpersonal communications overhead and growth of large-
system integration overhead. Larger projects will have more personnel, and thus more
interpersonal communications paths consuming overhead. Integrating a small product as
part of a larger product requires not only the effort to develop the small product, but also
the additional overhead effort to design, maintain, integrate, and test its interfaces with
the remainder of the product.

See [Banker et al 1994a] for a further discussion of software economies and
diseconomies of scale.

The COCOMO 2.0 value for the coefficient A in EQ 3 is provisionally set at 3.0
Initial calibration of COCOMO 2.0 to the original COCOMO project database [Boehm
1981, pp. 496-97] indicates that this is a reasonable starting point.

5.2 COCOMO and Ada COCOMO Scaling Approaches

The data analysis on the original COCOMO indicated that its projects exhibited net
diseconomies of scale. The projects factored into three classes or modes of software
development (Organic, Semidetached, and Embedded), whose exponents B were 1.05,
1.12, and 1.20, respectively. The distinguishing factors of these modes were basically
environmental: Embedded-mode projects were more unprecedented, requiring more
communication overhead and complex integration; and less flexible, requiring more
communications overhead and extra effort to resolve issues within tight schedule, budget,
interface, and performance constraints.

The scaling model in Ada COCOMO continued to exhibit diseconomies of scale, but
recognized that a good deal of the diseconomy could be reduced via management
controllables. Communications overhead and integration overhead could be reduced
significantly by early risk and error elimination; by using thorough, validated
architectural specifications; and by stabilizing requirements. These practices were
combined into an Ada process model [Boehm and Royce 1989, Royce 1990]. The
project's use of these practices, and an Ada process model experience or maturity factor,
were used in Ada COCOMO to determine the scale factor B.

Ada COCOMO applied this approach to only one of the COCOMO development
modes, the Embedded mode. Rather than a single exponent B = 1.20 for this mode, Ada
COCOMO enabled B to vary from 1.04 to 1.24, depending on the project's progress in
reducing diseconomies of scale via early risk elimination, solid architecture, stable
requirements, and Ada process maturity.

5.3 COCOMO 2.0 Scaling Approach

COCOMO 2.0 combines the COCOMO and Ada COCOMO scaling approaches into
a single rating-driven model. It is similar to that of Ada COCOMO in having additive

factors applied to a base exponent B. It includes the Ada COCOMO factors, but combines
the architecture and risk factors into a single factor, and replaces the Ada process
maturity factor with a Software Engineering Institute (SEI) process maturity factor (The
exact form of this factor is still being worked out with the SEI). The scaling model also
adds two factors, precedentedness and flexibility, to account for the mode effects in
original COCOMO, and adds a Team Cohesiveness factor to account for the diseconomy-
of-scale effects on software projects whose developers, customers, and users have
difficulty in synchronizing their efforts. It does not include the Ada COCOMO
Requirements Volatility factor, which is now covered by increasing the effective product
size via the Breakage factor.

Table 7 provides the rating levels for the COCOMO 2.0 scale factors. A project's
numerical ratings W are summed across all of the factors, and used to determine a scale
exponent B via the followingi formula:

B = 1.01 + 0.01Σ W
i

EQ 4.

Thus, a 100 KSLOC project with Extra High (0) ratings for all factors will have ²W
i
=

0, B = 1.01, and a relative effort E = 100
1.01

= 105 PM. A project with Very Low (5)
ratings for all factors will have ²W

i
= 25, B = 1.26, and a relative effort E = 331 PM. This

represents a large variation, but the increase involved in a one-unit change in one of the
factors is only about 4.7%. Thus, this approach avoids the 40% swings involved in
choosing a development mode for a 100 KSLOC product in the original COCOMO.

Table 6: Rating Scheme for the COCOMO 2.0 Scale Factors

Scale Factors

(Wi)

Very Low

(5)

Low

(4)

Nominal

(3)

High

(2)

Very High

(1)

Extra High

(0)

Precedentedness thoroughly
unprecedented

Largely
unprecedented

somewhat
unprecedented

generally
familiar

largely
familiar

throughly
familiar

Development
Flexibility rigorous occasional

relaxation
some
relaxation

general
conformity

some
conformity general goals

Architecture /
risk resolution*

little (20%) some (40%) often (60%) generally
(75%)

mostly (90%) full (100%)

Team cohesion very difficult
interactions

some difficult
interactions

basically
cooperative
interactions

largely
cooperative

highly
cooperative

seamless
interactions

Process maturity† Weighted average of “Yes” answers to CMM Maturity Questionnaire

* % significant module interfaces specified,% significant risks eliminated.
†

The form of the Process Maturity scale is being resolved in coordination with the
SEI. The intent is to produce a process maturity rating as a weighted average of
the project's percentage compliance levels to the 18 Key Process Areas in Version
1.1 of the Capability Maturity Model-based [Paulk et al. 1993] rather than to use
the previous 1-to-5 maturity levels. The weights to be applied to the Key Process
Areas are still being determined.

6. Cost Factors: Effort-Multiplier Cost Drivers
COCOMO 2.0 continues the COCOMO and Ada COCOMO practice of using a set of

effort multipliers to adjust the nominal person-month estimate obtained from the project’s
size and exponent drivers:

(∏×=
i

inominaladjusted EMPMPM) EQ 5.

The primary selection and definition criteria for COCOMO 2.0 effort-multiplier cost
drivers were:

• Continuity. Unless there has been a strong rationale otherwise, the COCOMO
2.0 baseline rating scales and effort multipliers are consistent with those in
COCOMO and Ada COCOMO.

• Parsimony. Effort-multiplier cost drivers are included in the COCOMO 2.0
baseline model only if there has been a strong rationale that they would
independently explain a significant source of project effort or productivity
variation.

Table 7 summarizes the COCOMO 2.0 effort-multiplier cost drivers by the four
categories of Product, Platform, Personnel, and Project Factors. The superscripts
following the cost driver names indicated the differences between the COCOMO 2.0 cost
drivers and their counterparts in COCOMO and Ada COCOMO:

blank - No difference in rating scales or effort multipliers

* - Same rating scales, different effort multipliers

† - Different rating scales, different effort multipliers

Table 7 provides the COCOMO 2.0 effort multiplier rating scales. The following
subsections elaborate on the treatment of these effort-multiplier cost drivers, and discuss
those which have been dropped in COCOMO 2.0.

6.1 Product Factors

6.1.1 RELY- Required Software Reliability

COCOMO 2.0 retains the original COCOMO RELY rating scales and effort
multipliers. Ada COCOMO contained a lower set of effort multiplier values for the
higher RELY levels, based on a rationale that Ada’s strong typing, tasking, exceptions,
and other features eliminated significant classes of potential defects. Given the absence of
strong evidence of a general effort-multiplier trend in this direction, the COCOMO 2.0
baseline RELY multipliers have not been changed from the original COCOMO, in
consonance with the continuity criterion above.

Table 7: Effort Multipliers Cost Driver Ratings for the Post-Architecture model
 Very Low Low Nominal High Very High Extra High

RELY slight
inconvenie
nce

low, easily
recoverable
losses

moderate,
easily
recoverable
losses

high
financial
loss

risk to human
life

DATA DB
bytes/Pgm
SLOC < 10

10 ≤ D/P <
100

100 ≤ D/P <
1000

D/P ≥ 1000

CPLX see Table 8
RUSE none across project across

program
across product
line

across
multiple
product lines

DOCU Many life-
cycle needs
uncovered

Some life-
cycle needs
uncovered.

Right-sized to
life-cycle
needs

Excessive
for
life-cycle
needs

Very excessive
for life-cycle
needs

TIME ≤ 50% use of
available
execution
time

70% 85% 95%

STOR ≤ 50% use of
available
storage

70% 85% 95%

PVOL major change
every 12 mo.;
minor change
every 1 mo.

major: 6 mo.;
minor: 2 wk.

major: 2
mo.; minor:
1 wk.

major: 2 wk.;
minor: 2 days

ACAP 15th
percentile

35th
percentile

55th
percentile

75th
percentile

90th percentile

PCAP 15th
percentile

35th
percentile

55th
percentile

75th
percentile

90th percentile

PCON 48% / year 24% / year 12% / year 6% / year 3% / year

AEXP ≤ 2 months 6 months 1 year 3 years 6 years

PEXP ≤ 2 months 6 months 1 year 3 years 6 year

LTEX ≤ 2 months 6 months 1 year 3 years 6 year

TOOL edit, code,
debug

simple,
frontend,
backend
CASE, little
integration

basic lifecycle
tools,
moderately
integrated

strong,
mature
lifecycle
tools,
moderately
integrated

strong, mature,
proactive life-
cycle tools, well
integrated with
processes,
methods, reuse

SITE:
Collocation

Internation
al

Multi-city and
Multi-
company

Multi-city or
Multi-
company

Same city or
metro. area

Same building
or complex

Fully
collocated

SITE:
Communications

Some
phone,
mail

Individual
phone, FAX

Narrowband
email

Wideband
electronic
communicati
on.

Wideband
elect. comm,
occasional
video conf.

Interactive
multimedia

SCED 75% of
nominal

85% 100% 130% 160%

6.1.2 DATA - Data Base Size

As with RELY, there has been no strong evidence of a need for change of the DATA
ratings and effort multipliers. They remain the same in COCOMO 2.0 under the
continuity criterion.

6.1.3 CPLX - Product Complexity

Table 8 provides the new COCOMO 2.0 CPLX rating scale. It has been updated to
reflect several changes in computer and software technology and applications. These
include an additional rating scale for User Interface Management Operations, effects of
distributed and parallel processing, and advances in data/object base technology and
middleware technology.

Ada COCOMO contained a lower set of effort multiplier values for the higher CPLX
levels, based on a rationale that its models for tasking, exceptions, encapsulation, etc.,
made many previously complex issues easier to deal with. However, the rating-scale
revisions in Table 8 introduce additional high-complexity areas such as parallelization,
distributed hard real-time control, and virtual reality, which are not particularly simplified
by Ada or other programming language constructs. Overall, it appears that the growth in
desired product complexity keeps pace with the growth in technology. Thus, the
COCOMO 2.0 baseline CPLX multipliers have not been changed from the original
COCOMO, in consonance with the continuity criterion.

6.1.4 RUSE - Required Reusability

Ada COCOMO added this cost driver to account for the additional effort needed to
construct components intended for reuse on the current or future projects. It had four
rating levels and multipliers ranging from 1.0 to 1.5. Subsequent experience indicated
that both the rating levels and range of effort multipliers needed to be expanded. For
example, AT&T has experienced a cost escalation factor of 2.25 in developing software
for broad-based reuse. In reconciling recent experience with the previous Ada COCOMO
data, it appeared that broad-based reuse required a High or Very High level of Required
Reliability, which brought the effective Ada COCOMO reuse-multiplier range up to
(1.5)(1.4) = 2.10. The baseline RUSE COCOMO 2.0 effort multipliers have a
productivity range of 1.75, yielding a combined RUSE-RELY productivity range of
(1.75)(1.4) =

2.45.

6.1.5 DOCU - Documentation match to life-cycle needs

Several software cost models have a cost driver for the level of required
documentation. In COCOMO 2.0, the rating scale for the DOCU cost driver is evaluated
in terms of the suitability of the project’s documentation to its life-cycle needs. The rating
scale goes from Very Low (many life-cycle needs uncovered) to Very High (very
excessive for life-cycle needs). The baseline productivity range for DOCU is 1.38.

Table 8: Module Complexity Ratings versus Type of Module
 Very Low Low Nominal High Very High Extra High
Control
Operations

Straight-line code with
a few non-nested
structured
programming
operators: DOs,
CASEs,
IFTHENELSEs.
Simple module
composition via
procedure calls or
simple scripts.

Straightforward
nesting of structured
programming
operators. Mostly
simple predicates

Mostly simple nesting.
Some intermodule
control. Decision
tables. Simple
callbacks or message
passing, including
middlewaresupported
distributed processing

Highly nested
structured
programming operators
with many compound
predicates. Queue and
stack control.
Homogeneous,
distributed processing.
Single processor soft
real-time control.

Reentrant and
recursive coding.
Fixed-priority interrupt
handling. Task
synchronization,
complex callbacks,
heterogeneous
distributed processing.
Single-pro-cessor hard
real-time control.

Multiple resource
scheduling with
dynamically changing
priorities. Microcode-
level control.
Distributed hard real-
time control.

Computational
Operations

Evaluation of simple
expressions: e.g.,
A=B+C*(D-E)

Evaluation of moder-
ate-level expressions:
e.g., D=SQRT(B**2-
4.*A*C)

Use of standard math
and statistical routines.
Basic matrix/vector
operations.

Basic numerical
analysis: multivariate
interpolation, ordinary
differential equations.
Basic truncation,
roundoff concerns.

Difficult but structured
numerical analysis:
near-singular matrix
equations, partial
differential equations.
Simple parallelization.

Difficult and
unstructured numerical
analysis: highly
accurate analysis of
noisy, stochastic data.
Complex
parallelization.

Device-depen-
dent Operations

Simple read, write
statements with simple
formats.

No cognizance needed
of particular processor
or I/O device
characteristics. I/O
done at GET/ PUT
level.

I/O processing includes
device selection, status
checking and error
processing.

Operations at physical
I/O level (physical
storage address
translations; seeks,
reads, etc.). Optimized
I/O overlap.

Routines for interrupt
diagnosis, servicing,
masking.
Communication line
handling. Per-
formance-intensive
embedded systems.

Device timing-depen-
dent coding, micro-
pro-grammed
operations.
Performance-critical
embedded systems.

Data
Management
Operations

Simple arrays in main
memory. Simple
COTS-DB queries,
updates.

Single file subsisting
with no data structure
changes, no edits, no
intermediate files.
Moderately complex
COTS-DB queries,
updates.

Multi-file input and
single file output.
Simple structural
changes, simple edits.
Complex COTS-DB
queries, updates.

Simple triggers
activated by data
stream contents.
Complex data
restructuring.

Distributed database
coordination. Complex
triggers. Search
optimization.

Highly coupled,
dynamic relational and
object structures.
Natural language data
management.

User Interface
Management
Operations

Simple input forms,
report generators.

Use of simple graphic
user interface (GUI)
builders.

Simple use of widget
set.

Widget set
development and
extension. Simple
voice I/O, multimedia.

Moderately complex
2D/3D, dynamic
graphics, multimedia.

Complex multimedia,
virtual reality.

6.2 Platform Factors

The platform refers to the target-machine complex of hardware and infrastructure
software (previously called the virtual machine). The factors have been revised to reflect
this as described in this section. Some additional platform factors were considered, such
as distribution, parallelism, embeddedness, and real-time operation, but these
considerations have been accommodated by the expansion of the Product Complexity
rating scales in Table 8.

6.2.1 TIME - Execution Time Constraint
STOR - Main Storage Constraint

Given the remarkable increase in available processor execution time and main
storage, one can question whether these constraint variables are still relevant. However,
many applications continue to expand to consume whatever resources are available,
making these cost drivers still relevant. Following the continuity criterion, the rating
scales and multipliers are not changed in COCOMO 2.0, since there has been no strong
evidence of need for changing them.

6.2.2 PVOL - Platform Volatility

This variable was called Virtual Machine Volatility (VIRT) in COCOMO. In Ada
COCOMO, it was split into Host Volatility and Target Volatility drivers to reflect the
Ada host-target software development approach prevalent at the time. The current trend
appears to be toward distributed software development, with less well-defined boundaries
between hosts and targets. Thus, following the Parsimony criterion, COCOMO 2.0 is
returning to a single Platform Volatility driver. Following the continuity guideline, its
rating scale and effort multipliers are not changed from the original COCOMO VIRT
counterpart. “Platform” has the same definition as did “Virtual Machine:” the complex of
hardware and software (OS, DBMS, etc.) the software product calls on to perform its
tasks.

6.2.3 TURN - Computer Turnaround Time

Computer turnaround time was a significant cost driver during the initial COCOMO
calibration period in the 1970’s, as many software developers were still primarily
supported by batch-processing computers. Currently, most software developers are
supported by interactive workstations, and the trend is toward interactive support for all
software developers. As a result, the TURN cost driver has lost most of its significance,
and is dropped in COCOMO 2.0.

6.3 Personnel Factors

6.3.1 ACAP - Analyst Capability
PCAP - Programmer Capability

Both COCOMO and Ada COCOMO had combined productivity ranges (the ratios of
highest to lowest effort multipliers) of somewhat over a factor of 4, reflecting the strong
influence of personnel capability on software productivity. In the original COCOMO, the
individual productivity ranges were roughly equal, 2.06 for ACAP and 2.03 for PCAP. In

Ada COCOMO, the Ada Process Model was organized around a small number of good
analysts producing a definitive specification to be implemented by generally less-capable
programmers. This led to a higher productivity range, 2.57, for ACAP, as compared to
1.62 for PCAP.

Current trends continue to emphasize the importance of highly capable analysts.
However the increasing role of complex COTS packages, and the significant productivity
leverage associated with programmers’ ability to deal with these COTS packages,
indicates a trend toward higher importance of programmer capability as well.

For these reasons the COCOMO 2.0 baseline effort multipliers for ACAP and PCAP
maintain the same composite productivity range, but provide an intermediate position
with respect to the relative productivity ranges of ACAP and PCAP. The resulting
baseline COCOMO 2.0 effort multipliers have productivity ranges of 2.24 for ACAP and
1.85 for PCAP.

6.3.2 AEXP - Applications Experience
PEXP - Platform Experience
LTEX - Language and Tool Experience

COCOMO 2.0 makes three primary changes in these three personnel experience cost
drivers:

• Transforming them to a common rating scale, to avoid some previous
confusion;

• Broadening the productivity influence of PEXP, recognizing the importance
of understanding the use of more powerful platforms, including more graphic
user interface, database, networking, and distributed middleware capabilities;

• Extending the previous Language Experience cost driver to include
experience with software tools and methods.

The resulting baseline COCOMO 2.0 effort multipliers for these cost drivers have the
following comparative effect on previous COCOMO productivity ranges:

• AEXP: 1.54 in COCOMO 2.0 versus 1.57 in COCOMO and Ada COCOMO

• PEXP: 1.58 in COCOMO 2.0 versus 1.34 in COCOMO and Ada COCOMO
(VEXP)

• LTEX: 1.51 in COCOMO 2.0 versus 1.20 in COCOMO and Ada COCOMO
(LEXP)

6.3.3 PCON - Personnel Continuity

The original COCOMO data collection and analysis included a potential PCON cost
driver, but the analysis results were inconclusive and the cost driver was not included
[Boehm 1981, p.486-487]. The COCOMO 2.0 rating scale for PCON is in terms of the
project’s annual personnel turnover: from 3% to 48%. The corresponding baseline
productivity range is 1.52.

6.4 Project Factors

6.4.1 MODP - Use of Modern Programming Practices

The definition of “modern programming practices” has evolved into a broader
“mature software engineering practices” term exemplified by the Software Engineering
Institute Capability maturity Model [Paulk et al 1993] and comparable models such as
ISO 9000-3 and SPICE. The cost estimation effects of this broader set of practices are
addressed in COCOMO 2.0 via the Process Maturity exponent driver. As a result, the
MODP effort-multiplier cost driver has been dropped.

6.4.2 TOOL - Use of Software Tools

Software tools have improved significantly since the 1970’s projects used to calibrate
COCOMO. Ada COCOMO added two rating levels to address late-1980’s and expected
1990’s tool capabilities. Since then, the number of projects with COCOMO TOOL
ratings of Very Low and Low have become scarce. Therefore, COCOMO 2.0 has shifted
the TOOL scale to eliminate the original Very Low and Low levels and to use an updated
interpretation of the upper five Ada COCOMO rating levels as the TOOL scale. The
elimination of two rating levels between Ada COCOMO and COCOMO 2.0 reduced the
productivity range from 2.00 to 1.61.

6.4.3 SITE - Multisite Development

Given the increasing frequency of multisite developments, and indications from
COCOMO users and from other cost models that multisite development effects are
significant, the SITE cost driver has been added in COCOMO 2.0. Determining its cost
driver rating involves the assessment and averaging of two factors: site collocation (from
fully collocated to international distribution) and communication support (from surface
mail and some phone access to full interactive multimedia). The corresponding baseline
productivity range is 1.57.

6.4.4 SCED - Required Development Schedule

Given that there has been no strong evidence of a need to change the SCED ratings
and effort multipliers, they remain the same in the baseline COCOMO 2.0 under the
continuity criterion.

6.4.5 SECU - Classified Security Application

Ada COCOMO included a SECU cost driver, which applied an effort multiplier of
1.10 of a project required classified security procedures. Using the parsimony criterion,
since most projects do not need to deal with this, we have dropped it from COCOMO 2.0

7. Additional COCOMO 2.0 Capabilities
This section covers the remainder of the initial COCOMO 2.0 capabilities: Early

Design and Post-Architecture estimation models using Function Points; schedule
estimation, and output estimate ranges. Further COCOMO 2.0 capabilities, such as the
effects of reuse and applications composition on phase and activity distribution of effort
and schedule, will be covered in future papers.

Table 9: Early Design and Post-Architecture Cost Drivers

Early Design Cost Driver Counterpart Combined Post-
Arch. Cost Driver

RCPX RELY, DATA, CPLX, DOCU

RUSE RUSE

PDIF TIME, STOR, PVOL

PERS ACAP, PCAP, PCON

PREX AEXP, PEXP, LTEX

FCIL TOOL, SITE

SCED SCED

7.1 Early Design and Post-Architecture Function Point Estimation

Once one has estimated a product’s Unadjusted Function Points, using the procedure
in Section

4.2.2 and Figure 5, one needs to account for the product’s level of implementation
language (assembly, higher order language, fourth-generation language, etc.) in order to
assess the relative conciseness of implementation per function point. COCOMO 2.0 does
this for both Early Design and Post-Architecture models by using tables such as those
generated by Software Productivity Research [SPR 1993] to translate Unadjusted
Function Points into equivalent SLOC.

For Post-Architecture, the calculations then proceed in the same way as with SLOC.
In fact, one can implement COCOMO 2.0 to enable some components to be sized using
function points, and others (which function points may not describe well, such as real-
time or scientific computations) in SLOC.

For Early Design function point estimation, conversion to equivalent SLOC and
application of the scaling factors in Section 5 are handled in the same way as for Post-
Architecture. In Early Design, however, a reduced set of effort multiplier cost drivers is
used. These are obtained by combining the Post-Architecture cost drivers as shown in
Table 9.

The resulting seven cost drivers are easier to estimate in early stages of software
development than the 17 Post-Architecture cost drivers. However, their larger
productivity ranges (up to 5.45 for PERS and 5.21 for RCPX) stimulate more variability
in their resulting estimates. This situation is addressed by assigning a higher standard
deviation to Early Design (versus Post-Architecture) estimates; see Section 7.3.

7.2 Development Schedule Estimates

The initial version of COCOMO 2.0 provides a simple schedule estimation capability
similar to those in COCOMO and Ada COCOMO. The initial baseline schedule equation
for all three COCOMO 2.0 models is:

[]
100

×)(×0.3=))01.1-(×2.0+33.0(tageSCEDPercen
PMTDEV B EQ 6.

where TDEV is the calendar time in months from the determination of its requirements
baseline to the completion of an acceptance activity certifying that the product satisfies
its requirements. PM is the estimated person-months excluding the SCED effort
multiplier, and SCEDPercentage is the schedule compression / expansion percentage in
the SCED cost driver rating table, Table 7.

Future versions of COCOMO 2.0 will have a more extensive schedule estimation
model, reflecting the different classes of process model a project can use; the effects of
reusable and COTS software; and the effects of applications composition capabilities.

7.3 Output Ranges

A number of COCOMO users have expressed a preference for estimate ranges rather
than point estimates as COCOMO outputs. The three-models of COCOMO 2.0 enable the
estimation of likely ranges of output estimates, using the costing and sizing accuracy
relationships in Section 3.2, Figure 2. Once the most likely effort estimate E is calculated
from the chosen model (Application Composition, Early Design, or Post-Architecture), a
set of optimistic and pessimistic estimates, representing roughly one standard deviation
around the most likely estimate, are calculated as follows:

Model Optimistic Estimate Pessimistic Estimate
Application Composition 0.50 E 2.0 E

Early Design 0.67 E 1.5 E
Post-Architecture 0.80 E 1.25 E

The effort range values can be used in the schedule equation, EQ 6., to determine
schedule range values.

8. Conclusions
Software development trends towards reuse, reengineering, commercial off-the shelf

(COTS) packages, object orientation, applications composition capabilities, non-
sequential process models, rapid development approaches, and distributed middleware
capabilities require new approaches to software cost estimation.

The wide variety of current and future software processes, and the variability of
information available to support software cost estimation, require a family of models to
achieve effective cost estimates.

The baseline COCOMO 2.0 family of software cost estimation models presented here
provides a tailorable cost estimation capability well matched to the major current and
likely future software process trends.

The baseline COCOMO 2.0 model effectively addresses its objectives of openness,
parsimony, and continuity from previous COCOMO models. It is currently serving as the
framework for an extensive data collection and analysis effort to further refine and
calibrate its estimation capabilities. Initial calibration of COCOMO 2.0 to the previous
COCOMO database indicates that its estimation accuracy is comparable to that of
original COCOMO’s for this sample.

9. Acronyms and Abbreviations

3GL Third Generation Language
AA Percentage of reuse effort due to assessment and assimilation
ACAP Analyst Capability
ACT Annual Change Traffic
ASLOC Adapted Source Lines of Code
AEXP Applications Experience
AT Automated Translation
BRAK Breakage
CASE Computer Aided Software Engineering
CM Percentage of code modified during reuse
CMM Capability Maturity Model
COCOMO Constructive Cost Model
COTS Commercial Off The Shelf
CPLX Product Complexity
CSTB Computer Science and Telecommunications Board
DATA Database Size
DBMS Database Management System
DI Degree of Influence
DM Percentage of design modified during reuse
DOCU Documentation to match lifecycle needs
EDS Electronic Data Systems
ESLOC Equivalent Source Lines of Code
FCIL Facilities
FP Function Points
GFS Government Furnished Software
GUI Graphical User Interface
ICASE Integrated Computer Aided Software Environment
IM Percentage of integration redone during reuse
KSLOC Thousands of Source Lines of Code
LEXP Programming Language Experience
LTEX Language and Tool Experience
MODP Modern Programming Practices

NIST National Institute of Standards and Technology
NOP New Object Points
OS Operating Systems
PCAP Programmer Capability
PCON Personnel Continuity
PDIF Platform Difficulty
PERS Personnel Capability
PEXP Platform Experience
PL Product Line
PM Person Month

PREX Personnel Experience

PROD Productivity rate
PVOL Platform Volatility
RCPX Product Reliability and Complexity
RELY Required Software Reliability
RUSE Required Reusability
RVOL Requirements Volatility
SCED Required Development Schedule
SECU Classified Security Application
SEI Software Engineering Institute
SITE Multi-site operation
SLOC Source Lines of Code
STOR Main Storage Constraint
T&E Test and Evaluation
SU Percentage of reuse effort due to software understanding
TIME Execution Time Constraint
TOOL Use of Software Tools
TURN Computer Turnaround Time

USAF/ESD U.S. Air Force Electronic Systems Division
VEXP Virtual Machine Experience
VIRT Virtual Machine Volatility
VMVH Virtual Machine Volatility: Host
VMVT Virtual Machine Volatility: Target

10. Acknowledgments
This work has been supported both financially and technically by the COCOMO 2.0

Program Affiliates: Aerospace, AT&T Bell Labs, Bellcore, DISA, EDS, E-Systems,
Hewlett-Packard, Hughes, IDA, IDE, JPL, Litton Data Systems, Lockheed, Loral,
MDAC, Motorola, Northrop, Rational, Rockwell, SAIC, SEI, SPC, TASC, Teledyne, TI,
TRW, USAF Rome Lab, US Army Research Lab, Xerox.

11. References
Amadeus (1994), Amadeus Measurement System User’s Guide, Version 2.3a, Amadeus

Software Research, Inc., Irvine, California, July 1994.

Banker, R., R. Kauffman and R. Kumar (1994), “An Empirical Test of Object-Based
Output Measurement Metrics in a Computer Aided Software Engineering (CASE)
Environment,” Journal of Management Information Systems (to appear, 1994).

Banker, R., H. Chang and C. Kemerer (1994a), “Evidence on Economies of Scale in
Software Development,” Information and Software Technology (to appear, 1994).

Behrens, C. (1983), “Measuring the Productivity of Computer Systems Development
Activities with Function Points,” IEEE Transactions on Software Engineering,
November 1983.

Boehm, B. (1981), Software Engineering Economics, Prentice Hall.

Boehm, B. (1983), “The Hardware/Software Cost Ratio: Is It a Myth?” Computer 16(3),
March 1983, pp. 78-80.

Boehm, B. (1985), “COCOMO: Answering the Most Frequent Questions,” In
Proceedings, First COCOMO Users’ Group Meeting, Wang Institute, Tyngsboro,
MA, May 1985.

Boehm, B. (1989), Software Risk Management, IEEE Computer Society Press, Los
Alamitos, CA.

Boehm, B., T. Gray, and T. Seewaldt (1984), “Prototyping vs. Specifying: A Multi-
Project Experiment,” IEEE Transactions on Software Engineering, May 1984, pp.
133-145.

Boehm, B., and W. Royce (1989), “Ada COCOMO and the Ada Process Model,”
Proceedings, Fifth COCOMO Users’ Group Meeting, Software Engineering
Institute, Pittsburgh, PA, November 1989.

Chidamber, S. and C. Kemerer (1994), “A Metrics Suite for Object Oriented Design,”
IEEE Transactions on Software Engineering, (to appear 1994).

Computer Science and Telecommunications Board (CSTB) National Research Council
(1993), Computing Professionals: Changing Needs for the 1990’s, National
Academy Press, Washington DC, 1993.

Devenny, T. (1976). “An Exploratory Study of Software Cost Estimating at the
Electronic Systems Division,” Thesis No. GSM/SM/765-4, Air Force Institute of
Technology, Dayton, OH.

Gerlich, R., and U. Denskat (1994), “A Cost Estimation Model for Maintenance and High
Reuse,” Proceedings, ESCOM 1994, Ivrea, Italy.

Goethert, W., E. Bailey, M. Busby (1992), “Software Effort and Schedule Measurement:
A Framework for Counting Staff Hours and Reporting Schedule Information.”
CMU/SEI-92-TR-21, Software Engineering Institute, Pittsburgh, PA.

Goudy, R. (1987), “COCOMO-Based Personnel Requirements Model,” Proceedings,
Third COCOMO Users’ Group Meeting, Software Engineering Institute,
Pittsburgh, PA, November 1987.

IFPUG (1994), IFPUG Function Point Counting Practices: Manual Release 4.0,
International Function Point Users’ Group, Westerville, OH.

Kauffman, R., and R. Kumar (1993), “Modeling Estimation Expertise in Object Based
ICASE Environments,” Stern School of Business Report, New York University,
January 1993.

Kemerer, C. (1987), “An Empirical Validation of Software Cost Estimation Models,”
Communications of the ACM, May 1987, pp. 416-429.

Kominski, R. (1991), Computer Use in the United States: 1989, Current Population
Reports, Series

P-23, No. 171, U.S. Bureau of the Census, Washington, D.C., February 1991.

Kunkler, J. (1983), “A Cooperative Industry Study on Software
Development/Maintenance Productivity,” Xerox Corporation, Xerox Square ---
XRX2 52A, Rochester, NY 14644, Third Report, March 1985.

Miyazaki, Y., and K. Mori (1985), “COCOMO Evaluation and Tailoring,” Proceedings,
ICSE 8, IEEE-ACM-BCS, London, August 1985, pp. 292-299.

Parikh, G., and N. Zvegintzov (1983). “The World of Software Maintenance,” Tutorial
on Software Maintenance, IEEE Computer Society Press, pp. 1-3.

Park R. (1992), “Software Size Measurement: A Framework for Counting Source
Statements.” CMU/SEI-92-TR-20, Software Engineering Institute, Pittsburgh,
PA.

Park R, W. Goethert, J. Webb (1994), “Software Cost and Schedule Estimating: A
Process Improvement Initiative”, CMU/SEI-94-SR-03, Software Engineering
Institute, Pittsburgh, PA.

Paulk, M., B. Curtis, M. Chrissis, and C. Weber (1993), “Capability Maturity Model for
Software, Version 1.1”, CMU-SEI-93-TR-24, Software Engineering Institute,
Pittsburgh PA 15213.

Pfleeger, S. (1991), “Model of Software Effort and Productivity,” Information and
Software Technology 33 (3), April 1991, pp. 224-231.

Royce, W. (1990), “TRW’s Ada Process Model for Incremental Development of Large
Software Systems,” Proceedings, ICSE 12, Nice, France, March 1990.

Ruhl, M., and M. Gunn (1991), “Software Reengineering: A Case Study and Lessons
Learned,” NIST Special Publication 500-193, Washington, DC, September 1991.

Selby, R. (1988), “Empirically Analyzing Software Reuse in a Production Environment,”
In Software Reuse: Emerging Technology, W. Tracz (Ed.), IEEE Computer
Society Press, 1988., pp. 176-189.

Selby, R., A. Porter, D. Schmidt and J. Berney (1991), “Metric-Driven Analysis and
Feedback Systems for Enabling Empirically Guided Software Development,”
Proceedings of the Thirteenth International Conference on Software Engineering
(ICSE 13), Austin, TX, May 1316, 1991, pp. 288-298.

Silvestri, G. and J. Lukaseiwicz (1991), “Occupational Employment Projections,”
Monthly Labor Review 114(11), November 1991, pp. 64-94.

SPR (1993), “Checkpoint User’s Guide for the Evaluator”, Software Productivity
Research, Inc., Burlington, MA., 1993.

