
5/9/2019 Elliptic Curve Digital Signature Algorithm - Wikipedia

https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm 1/6

Elliptic Curve Digital Signature Algorithm
In cryptography, the Elliptic Curve Digital Signature Algorithm (ECDSA) offers a variant of the Digital Signature Algorithm (DSA) which uses elliptic curve

cryptography.

Key and signature-size comparison to DSA
Signature generation algorithm
Signature verification algorithm
Correctness of the algorithm
Security

Concerns

Implementations
See also
References
Further reading
External links

As with elliptic-curve cryptography in general, the bit size of the public key believed to be needed for ECDSA is about twice the size of the security level, in bits. For example, at

a security level of 80 bits (meaning an attacker requires a maximum of about operations to find the private key) the size of an ECDSA public key would be 160 bits,

whereas the size of a DSA public key is at least 1024 bits. On the other hand, the signature size is the same for both DSA and ECDSA: approximately bits, where is the

security level measured in bits, that is, about 320 bits for a security level of 80 bits.

Contents

Key and signature-size comparison to DSA

Signature generation algorithm

https://en.wikipedia.org/wiki/Cryptography
https://en.wikipedia.org/wiki/Digital_Signature_Algorithm
https://en.wikipedia.org/wiki/Elliptic_curve_cryptography
https://en.wikipedia.org/wiki/Key_size
https://en.wikipedia.org/wiki/Public_key
https://en.wikipedia.org/wiki/Security_level

5/9/2019 Elliptic Curve Digital Signature Algorithm - Wikipedia

https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm 2/6

Suppose Alice wants to send a signed message to Bob. Initially, they must agree on the curve parameters . In addition to the field and equation of the curve,

we need , a base point of prime order on the curve; is the multiplicative order of the point .

Parameter

CURVE the elliptic curve field and equation used

G elliptic curve base point, such as a pt on , a generator of the elliptic curve with large prime order n

n integer order of G, means that , where is the identity element.

The order of the base point must be prime. Indeed, we assume that every nonzero element of the ring are invertible, so that must be a field. It implies that

 must be prime (cf. Bézout's identity).

Alice creates a key pair, consisting of a private key integer , randomly selected in the interval ; and a public key curve point . We use to denote

elliptic curve point multiplication by a scalar.

For Alice to sign a message , she follows these steps:

1. Calculate . (Here HASH is a cryptographic hash function, such as SHA-2, with the output converted to an integer.)

2. Let be the leftmost bits of , where is the bit length of the group order . (Note that can be greater than but not longer.[1])
3. Select a cryptographically secure random integer from .
4. Calculate the curve point .
5. Calculate . If , go back to step 3.

6. Calculate . If , go back to step 3.
7. The signature is the pair . (And is also a valid signature.)

As the standard notes, it is not only required for to be secret, but it is also crucial to select different for different signatures, otherwise the equation in step 6 can be solved

for , the private key: Given two signatures and , employing the same unknown for different known messages and , an attacker can calculate and , and

since (all operations in this paragraph are done modulo) the attacker can find . Since , the attacker can now calculate

the private key . This implementation failure was used, for example, to extract the signing key used for the PlayStation 3 gaming-console.[2] Another way ECDSA

signature may leak private keys is when is generated by a faulty random number generator. Such a failure in random number generation caused users of Android Bitcoin

Wallet to lose their funds in August 2013.[3] To ensure that is unique for each message one may bypass random number generation completely and generate deterministic

signatures by deriving from both the message and the private key.[4]

Signature verification algorithm

https://en.wikipedia.org/wiki/Alice_and_Bob
https://en.wikipedia.org/wiki/Alice_and_Bob
https://en.wikipedia.org/wiki/B%C3%A9zout%27s_identity
https://en.wikipedia.org/wiki/Elliptic_curve_point_multiplication
https://en.wikipedia.org/wiki/Cryptographic_hash_function
https://en.wikipedia.org/wiki/SHA-2
https://en.wikipedia.org/wiki/PlayStation_3
https://en.wikipedia.org/wiki/Random_number_generator

5/9/2019 Elliptic Curve Digital Signature Algorithm - Wikipedia

https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm 3/6

For Bob to authenticate Alice's signature, he must have a copy of her public-key curve point . Bob can verify is a valid curve point as follows:

1. Check that is not equal to the identity element , and its coordinates are otherwise valid
2. Check that lies on the curve
3. Check that

After that, Bob follows these steps:

1. Verify that and are integers in . If not, the signature is invalid.

2. Calculate , where HASH is the same function used in the signature generation.
3. Let be the leftmost bits of .

4. Calculate and .
5. Calculate the curve point . If then the signature is invalid.

6. The signature is valid if , invalid otherwise.

Note that an efficient implementation would compute inverse only once. Also, using Shamir's trick, a sum of two scalar multiplications can

be calculated faster than two scalar multiplications done independently.[5]

It is not immediately obvious why verification even functions correctly. To see why, denote as the curve point computed in step 6 of verification,

From the definition of the public key as ,

Because elliptic curve scalar multiplication distributes over addition,

Expanding the definition of and from verification step 5,

Collecting the common term ,

Correctness of the algorithm

5/9/2019 Elliptic Curve Digital Signature Algorithm - Wikipedia

https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm 4/6

Expanding the definition of from signature step 6,

Since the inverse of an inverse is the original element, and the product of an element's inverse and the element is the identity, we are left with

From the definition of , this is verification step 7.

This shows only that a correctly signed message will verify correctly; many other properties are required for a secure signature algorithm.

In December 2010, a group calling itself fail0verflow announced recovery of the ECDSA private key used by Sony to sign software for the PlayStation 3 game console.

However, this attack only worked because Sony did not properly implement the algorithm, because was static instead of random. As pointed out in the Signature generation

algorithm section above, this makes solvable and the entire algorithm useless.[6]

On March 29, 2011, two researchers published an IACR paper[7] demonstrating that it is possible to retrieve a TLS private key of a server using OpenSSL that authenticates

with Elliptic Curves DSA over a binary field via a timing attack.[8] The vulnerability was fixed in OpenSSL 1.0.0e.[9]

In August 2013, it was revealed that bugs in some implementations of the Java class SecureRandom (https://docs.oracle.com/javase/10/docs/api/java/security/SecureRando

m.html) sometimes generated collisions in the value. This allowed hackers to recover private keys giving them the same control over bitcoin transactions as legitimate keys'

owners had, using the same exploit that was used to reveal the PS3 signing key on some Android app implementations, which use Java and rely on ECDSA to authenticate

transactions.[10]

This issue can be prevented by deterministic generation of , as described by RFC 6979.

There exist two sorts of concerns with ECDSA:

1. Political concerns: the trustworthiness of NIST-produced curves being questioned after revelations that the NSA willingly inserts backdoors into software, hardware
components and published standards were made; well-known cryptographers[11] have expressed[12][13] doubts about how the NIST curves were designed, and voluntary
tainting has already been proved in the past.[14][15]

2. Technical concerns: the difficulty of properly implementing the standard,[16] its slowness, and design flaws which reduce security in insufficiently defensive
implementations of the Dual EC DRBG random number generator.[17]

Both of those concerns are summarized in libssh curve25519 introduction.[18]

Security

Concerns

https://en.wikipedia.org/wiki/Sony
https://en.wikipedia.org/wiki/PlayStation_3
https://en.wikipedia.org/wiki/International_Association_for_Cryptologic_Research
https://en.wikipedia.org/wiki/OpenSSL
https://en.wikipedia.org/wiki/Field_(mathematics)
https://en.wikipedia.org/wiki/Timing_attack
https://en.wikipedia.org/wiki/Java_(programming_language)
https://docs.oracle.com/javase/10/docs/api/java/security/SecureRandom.html
https://en.wikipedia.org/wiki/Android_(operating_system)
https://tools.ietf.org/html/rfc6979
https://en.wikipedia.org/wiki/National_Institute_of_Standards_and_Technology
https://en.wikipedia.org/wiki/National_Security_Agency
https://en.wikipedia.org/wiki/Backdoor_(computing)
https://en.wikipedia.org/wiki/Dual_EC_DRBG
https://en.wikipedia.org/wiki/Curve25519

