CMPE-343:  SYSTEMS Programming

Experiments on Laboratory Works

 Advanced study of  processes and files in UNIX 

INTRODUCTION

Using the system call fork (), any process (a parent process) in UNIX can create one or more child processes. Each child process inherits from its parent process all the files which were opened by the parent before executing fork (). It means, that any child process can use the corresponding file  handles, the values of which were set by the parent process during operation of opening files. The values of these file handles (at the moment of executing fork () ) are copied into the data area of a child process, and after that a child process can use these handles to access the corresponding files concurrently with the parent process.   It  should be noted also that a child process inherits the current directory of the parent process, and also access rights to open files. If the parent process  and  its child processes have concurrent access to the  same files, then a race condition can take place.  

The purpose of this laboratory work is the advanced study of processes and files in UNIX. Using simple programs, the student will  get more broad understanding of processes and working with files in UNIX. The laboratory work consists of  three parts. 

In the first part of the work the student will investigate the possibility  of race condition using a simple program. According to this program, the parent and  child processes are concurrently copying the same file into another file (also the same one for both processes). 

In the second part of the work the student is required to create and debug a new program according to the given specification.

 In the third part,  the system calls fork, exec, sleep and wait are investigated using a program, with the initial version presented in the Appendix. 
To successfully perform the laboratory work and benefit from it, the student must understand at least the following system calls:  fork, exec, sleep, wait, open, read, write, and close. The short description of these system calls must be prepared by the student before starting the lab work and shown to the assistant.

Part1. Investigating race condition 

1. In your home directory, create a directory  LAB3  and input  into this directory the programs  given in APPENDIX. Source files may be copied from the course web page.   Compile and link the program sharfile.c 

2. Prepare an arbitrary text file to be copied by the two processes.  The size of this file should be  500 - 1000 bytes.  It is possible to use the source text of this program as a file to be copied.

3. Start  executable file of the created program, with two parameters in a command line: a name of the source file, and a name of its copy (the second name should not coincide with the first name).

4. Using your text editor or the shell command more, compare the contents of the resulting  file with the source file. Is it corrupted? 

5. Remove the resulting file (by the shell command  rm).

6. Repeat the experiments 3, 4 ,and 5  a few times. Is the resulting file always the same?

7. Trace the program carefully and try  to explain, what is the reason for the differences between the source file and its copy. Note that the parent process and the child process read from the source file and write into the copy file only one byte in each read or write operation.

8. Investigate the effect of  cycle "for" in both processes. For this purpose, check operation of the program in the following two cases: (a) the loop, in both processes, is executed 5000 times; and (b) the loop is executed 200000 times.  Watch operation of the program in these two cases and explain the results.

9. Include, into the program,   statements to analyze the command line parameters. In case when the number of the parameters is not equal to two or the two parameters are the same, the program must output the appropriate message and exit.

10. Make more modifications of the program from the previous experiment. The program must contain the standard function perror() for each  of the system calls open(), creat(), read() and write() (with the exception of  write()  to terminal ). 

Part2. Creating a new program 

In this part, the student must create and investigate the behavior of a completely new program according to the following specification.  There should be two processes: a parent and a child of this parent.  The parent process (that naturally starts first) opens some existing text file 1 for reading. Then the parent process creates a child process. After that, the parent process creates a new file 2 for writing and tries to copy into it the contents of file 1, by blocks of 10 bytes each.  

Concurrently, the child process creates a new file 3 for writing and copies into it the file 1, by blocks of 20  bytes each.  Thus, both processes copy concurrently the same file 1 and write the result of copying into files 2 and 3 respectively. 

After complete copying the file 1, both processes terminate. The flow chart of the required program is given in the figure below.  It is assumed that the program starts with three parameters in the following order:

% progname  file1   file2   file3

For this part of the laboratory work  the student must do the following actions:

1. Develop  a C program (see its flow chart below), create a separate directory, and input the program into this directory.

2. Compile and link the program for a given value N (see the flow chart).

3. Run the program a few times, with the same file names,  and compare the sizes and contents of files 2 and 3 with the size and contents of file 1. Explain the result.

4. Repeat the steps 2 and 3 for N = 10, 5000, 10000, and 100000.






















Flow  chart of the program

Note:  Remember that the last block read from the source file can  have smaller size than specified in the system call read(). Therefore, the number of bytes to be written into a destination file by the system call write() must be equal to the number of bytes which are actually read by system call read(). 

Part 3  Investigating  a program with the system calls fork, exec, wait, sleep, system

1. Input the text of the program provided in the Appendix.

2. Create an executable file of this program.

3. Start the program a few times. Is the order of printing the messages by two processes  (parent and child) always correct? 

4. To provide the correct order of printing messages (first by the child, second by the parent),    modify the

program accordingly.  It is possible to use the system call wait or sleep by one of the two processes. Try both possibilities. 

5. Replace the system call execl in the child process by the system call system and make the appropriate modification of that part of the program which is executed by the child. What will be the difference in the behavior of the program?

The sources of  information:

1. Curry, D., UNIX Systems Programming for SVR4, O’Reilly & Assoc., 1995, pp.295 -305.

---------------------------------------------------------------------------------------------------

QUESTIONS

For Part 1
1. What is the purpose of this laboratory work?

2.  What is the purpose of system calls open() and creat() ? What is the meaning of the parameters O_RDONLY and 0666  in these system calls?

3. What is the purpose of statement break in two cycles in the program?

4. What is the role of the cycle "for" between read and write operations in both processes? What result  can be without this cycle (in both processes) when the copied file is small (50 - 100 bytes)?

5. Do both processes execute the same statements? If not, show which statements are executed by the parent and child processes. 

6. In two cycles "for" the same index variable  i  is used. Since the parent and child processes run concurrently, is it possible  that any of these two processes will use the value of i modified by  the other process? Explain why  yes/no.

For Part 2
1. Why has the child process the ability to copy file 1 that is opened by the parent process?

2. Explain why files 2 and 3 can have different size and contents (after copying)?

3. Which of the two processes will terminate first? Why?

4.  Assume that the block “Waiting for the child” in the parent part of the program is put immediately after the block “Create a new file 2”. What will the result be?

5. What is the effect of a large value of N?

6. What is the effect of small value of N?

For Part 3
1. What is the purpose of this laboratory work?

2. What is the purpose of the system calls of exec family ?

3. What is the purpose of the system calls wait and sleep? Is there any difference between them?

4. What is the difference between the functions printf and perror? 

5. What is the difference between the system calls exec and system?

6. Suppose that the child process in the program at the step  3 terminated before the parent. What will be the state of the child and how long this state will exist?

7. Is it possible for the parent process in the program at step 3 to terminate before the child process? What will be a new parent for the child process?

8. Why the order of printing messages by the processes in step 3 is not always correct?

APPENDIX  
sharfile.c

The initial version of a program for the Part 1.

/* Program to investigate the race condition 
 * Usage: progname source_file destination_file

 * for example: sharfile sharfile.c shar.bak

 * Nov 2, 2013
 */

#include <stdio.h>

#include <stdlib.h>

#include <fcntl.h>

int main (int argc, char *argv[])

{

int fdrd,fdwt;

char c;

char parent = 'P';

char child ='C'; 

int pid;

unsigned long i;

if (argc != 3) exit (1);

if ((fdrd = open(argv[1], O_RDONLY)) == -1) exit (1);

if ((fdwt = creat(argv[2], 0666)) == -1) exit (1);

printf("Parent: creating a child process\n");

pid = fork ();

if (pid == 0)

   {

   printf("Child process starts, id = %d\n",getpid());

   for (;;)

          {

          if (read (fdrd, &c, 1) != 1) break;

          for (i=0; i<50000;i++);   /* Long cycle */

          write(1,&child,1);

          write (fdwt, &c, 1);

          } 

   exit (0);

   }

else 

   {

   printf("Parent starts, id= %d\n", getpid());

   for (;;)

          {

          if (read (fdrd, &c, 1) != 1) break;

          for (i=0;i<50000;i++);  /* Long cycle */

          write(1,&parent,1);

          write (fdwt, &c, 1);

          }

   wait (0);

   }

}

The initial version of a program for the Part 3.

/* Program to investigate the system calls fork, exec, sleep, wait  */

/* See Curry, D, Example 11-3 (modified) */

#include <sys/types.h>

#include <unistd.h>

int main(void)

{

    pid_t pid;

    char *args[4];

    /* Create a child process. */

    if ((pid = fork()) < 0) {

        perror("fork failed");

        exit(1);

    }

    if (pid == 0) {

        /* This code executes in the child process (fork returned zero). */

        execl("/bin/echo", "echo", "Today's", "date", "is:", 0);

        /* If the exec succeeds, we'll never get here. */

        perror("exec failed in child");

        exit(1);

    }

 /* This code executes in the parent process. */

/*  Preparing the vector of arguments for the system call execv */

    args[0] = "date";

    args[1] = "+Date = %D  Time = %H:%M";

    args[2] = NULL;

    execv("/bin/date", args);

    /* If the exec succeeds, we'll never get here. */

    perror("exec failed in parent");

    exit(1);

}

---------------------------------------------------------

Parent starts: Checking command line params





Child starts here





Parent continues 


here





Open a text file 1 for reading








Create a new file 3





Create a new file 2





Create a child process





Read a block of 20 bytes  from file 1





Read a block of 10 bytes from  file 1





Yes





End of file?





End of file (see Lab. #1)?





Cycle  N  times (small delay)





Cycle  N  times (small delay)





Write the block  into file 3





Write the block  into file 2





Close  file 3





Close file 2





Wait for the child





Terminate





Close file 1 and terminate








