CMPE-343: SYSTEMS PROGRAMMING

Experiments on Laboratory Works

Using STREAM sockets for interprocess communication in UNIX

INTRODUCTION

The purpose of this laboratory work is to investigate the stream sockets (TCP sockets) of IPC in UNIX. A student is asked to create a simple socket-based client/server system and then extend it. For this system, Internet family of connection-oriented sockets is used. For simplicity, both the server and the client run on the same UNIX host. However, each student will prepare its own client/server system. The difference is only in the identifier (number) of the port for the server. It is recommended to use the student ID as a port number for the server.

Each student is given an initial version of the client/server system. After compiling the server and the client and checking the system the student will extend the initial version of the system to make it more realistic.

The general architecture of the system is shown in the picture below. When the client and the server are on the same host, the network is not used. However the socket mechanism works here as if the client and the server are on separate hosts.

EXPERIMENTS

1. Create, in your home directory, a subdirectory STREAM_SOCKETS and input from the Appendix or copy two source programs - one for the server and another for the client. Let the names of these two files be server.c and client.c respectively. In the server program, define a unique positive integer value for PORT. This value should be in the range 1025 - 32767. You may use the last four digits of your identifier, prefixed by a digit 1, 2, or 3.

2. Compile the source files to create the executable files server and client.

3. Login the second time to Linux and start the server from the second logical screen.

4. Start the client from the first screen and fix, in your notebook, all the messages which are output by the server and the client.

5. Using the shell command ps, learn the process identifier of the server and, by the shell command kill, terminate the server.

6. Now try to modify server and the client in the following way. The server, after receiving a request message from the client, transforms all low-case letters of the request into upper-case letters, prints the transformed message and then sends the transformed message as a reply to the client and continues running. The client, after sending its request to the server, tries to receive a reply from the server and print it. Use function islower(c) to determine that the character c is a low case letter and function toupper(c) to change the letter c to the correcponding upper-case letter. Do not forget to add #include ctype.h.
7. Compile the changed server and client and check their work, starting the server from one logical screen (once) and the client from another screen (a few times).

8. At the end, do not forget to terminate the server (it is still running !) by the command kill.

9. Optional experiment. Modify the server program in such a way that it will process a few client requests in parallel (you can use more than one processes or threads).

10. Optional experiment. Modify the both programs in such a way that the client will ask content of a file, where file name is going to be sent as a request message. The server should send the file to the client as a reply.

The sources of information:

1. Curry, D., UNIX Systems Programming for SVR4, O’Reilly & Assoc., 1996.

QUESTIONS

1. What is the purpose of this lab work?

2. What is the purpose of sockets?

3. What types of sockets are used in UNIX?

4. What are the purpose and parameters of system call socket()?

5. What other system calls for socket IPC?

6. What is the purpose of the system call bind()? Is it obligatory to use this system call in a server? In a client? Explain your answer.

7. What system calls must be used by a server and a client during the connection establishment?

8. How can you make the server to continue running after processing a client request?

9. What is the meaning of a parameter in the system call listen()?

10. What is the result returned by the system call accept()?

11. How can you make your server processes a few client requests in parallel?

APPENDIX

The source texts of the client and the server
/* CLIENT program for Internet TCP sockets */

/* Client assumes that the server has */

/* IP addr = 194.27.78.02 and port = 7000 */

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <string.h>

#include <stdlib.h>

#include <stdio.h>

#include <unistd.h>

#include <netdb.h>

#include <arpa/inet.h>

#include <ctype.h>

#define PORT 7000 /* Port of the server */

#define SIZE sizeof(struct sockaddr_in)

int

main(void)

{

 char buf[1024];

 int n, s, ns, len;

 /* For client's address, OS will assign IP of this host */

 /* and arbitrary port number: */

 struct sockaddr_in cli = {AF_INET, INADDR_ANY, INADDR_ANY};

 /* For server's address */

 struct sockaddr_in srv = {AF_INET, PORT, inet_addr("194.27.78.02")};

 /* Or in the following way (IP addr could be assigned later): */

 /* struct sockaddr_in srv = {AF_INET, PORT}; */

 printf("TCP CLIENT: starting ...\n");

 /* Convert and store IP address of the server: 194.27.78.02 (helium) */

 /* if this is not done in initialisation of srv structure above */

 /* srv.sin_addr.s_addr = inet_addr("194.27.78.02"); */

 /*

 * Create the Internet socket, of SOCK_STREAM type.

 */

 if ((s = socket(AF_INET, SOCK_STREAM, 0)) < 0)

 {

 perror("socket problem");

 exit(1);

 }

 /*

 * Bind the socket to the IP address of this host.

 */

 if (bind(s, (struct sockaddr *) &cli, SIZE) < 0)

 {

 perror("bind problem");

 exit(1);

 }

 /* Try to establish a connection with the server */

 len = SIZE;

 if (connect(s, (struct sockaddr *)&srv, len) < 0)

 {perror("connect problem"); exit(1);}

 /*

 * Send a message to the server via socket s

 */

 n = send(s, "This is a request from client\n", 30, 0);

 if (n < 0) {perror("send problem"); exit(1);}

 printf ("TCP CLIENT: a request is sent ...\n");

 /* Receiving and printing a reply from server */

 n = recv(s, buf, sizeof(buf), 0);

 write (1, buf, n);

 /*

 * Close the socket and terminate.

 */

 close(s);

 printf ("TCP CLIENT terminated...\n");

 exit(0);

}
/* SERVER program for Internet TCP sockets */

/* Server starts, creates and binds a socket */

/* and then handles clients’ requests in the loop, without termination */

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <string.h>

#include <stdlib.h>

#include <stdio.h>

#include <unistd.h>

#include <netdb.h>

#include <arpa/inet.h>

#include <ctype.h>

#define PORT 7000 /* Port of this server */

#define SIZE sizeof(struct sockaddr_in)

int

main(void)

{

 char buf[1024];

 int n, s, ns, len;

 struct sockaddr_in srv = {AF_INET, PORT, INADDR_ANY};

 struct sockaddr_in cli; /* For client's address */

 int cli_len = SIZE;

 printf("TCP SERVER: starting ...\n");

 /*

 * Create the Internet socket, of SOCK_STREAM type.

 */

 if ((s = socket(AF_INET, SOCK_STREAM, 0)) < 0)

 {

 perror("socket problem");

 exit(1);

 }

 /*

 * For simplicity, use the IP address as the OS selects.

 * It is more preferable to set a specific IP address

 * which must be known to all clients...

 */

 /*

 * Bind the socket to the IP address of this host.

 */

 if (bind(s, (struct sockaddr *) &srv, SIZE) < 0)

 {

 perror("bind problem");

 exit(1);

 }

 /* Set the size of requests queue */

 if (listen(s, 5) < 0)

 {perror("listen problem"); exit(1);}

 /* Now establish a connection if there is a request */

 /* for a connection from a client */

 /* A new socket descriptor will be created for this connection */

 /* The server may continue listening on the old socket descriptor */

 /* for new request for a connection */

 while (1)

{

 ns = accept(s, (struct sockaddr *) &cli, &len);

 if (ns < 0) {perror ("accept problem"); exit(1);}

 /*

 * Now read from the new socket ns

 */

 n = recv(ns, buf, sizeof(buf), 0);

 if (n < 0) {perror("recv problem"); exit(1);}

 write(1, buf, n);

 /* Sending a reply to client */

 send (ns, "This is a reply from server\n",28,0);

 printf ("TCP SERVER: a reply is sent...\n");

 close (ns);

 }

 }
--

Network

TCP Server

TCP Client

