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Abstract: This study presents a retrofit strategy: integrating optimized photovoltaics (PV) in the form
of responsive shading devices using a dual-axis solar tracking system. A prototype-based model
was fabricated to compare the efficiency of PV in this implementation with the conventional fixed
installation. The office building, T1 Empire World in Erbil, was selected as a retrofit case study and for
the application of the proposed integration system. In order to assess the effectiveness of the proposed
retrofit method, the energy performance of the base case is simulated to be compared later with the
energy performance simulations after the integration technique. The amount of generated electricity
from the PV surfaces of the integrated shading elements is calculated. The energy simulations were
performed using OpenStudio® (NREL, Washington, DC, USA), EnergyPlusTM (NREL, Washington,
DC, USA), and Grasshopper/ Ladybug tools in which the essential results were recorded for the
baseline reference, as well as the energy performance of the retrofitted building. The results emphasize
that the PV-integrated responsive shading devices can maximize the efficiency of PV cells by 36.8% in
comparison to the fixed installation. The integrated system can provide approximately 15.39% of the
electricity demand for operating the building. This retrofit method has reduced the total site energy
consumption by 33.2% compared to the existing building performance. Total electricity end-use of
the various utilities was lowered by 33.5%, and the total natural gas end-use of heating demand was
reduced by 30.9%. Therefore, the percentage reduction in electricity cooling demand in July and
August is 42.7% due to minimizing the heat gain in summer through blocking the sun’s harsh rays
from penetrating into interior spaces of the building. In general, this system has multiple benefits,
starting with being extremely efficient and viable in generating sustainable alternative energy—which
is the global growing concern of today’s sustainable development—providing thermal comfort for
occupants, and granting a dynamic appearance to the building when the PV-integrated elements
rotate according to the sun’s position in the sky.

Keywords: building retrofit; photovoltaic optimization; responsive shading devices; energy efficiency;
office building

1. Introduction

Sustainability concerns and technological evolution are intent in creating energy-efficient
buildings and generating electricity from solar energy through emergent photovoltaic (PV)-integrated
techniques. Due to the large glazed façades and the nature of office activities [1], office buildings
consume a greater amount of energy than other types of commercial buildings [2]. The glazed envelopes
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of existing office buildings result in glare, heat gains in summer, heat losses in winter, and increasing
cooling and heating loads, specifically in hot and arid climates [3].

External shading devices are profitably used to overcome the shortfalls of glazed façades and
enhance building performance. As a retrofit strategy, multiple requirements of buildings and occupants
are achieved through the integration of shading devices with PV, such as promoting daylight, reducing
glare, minimizing heat gain and cooling loads in summer, and generating electricity from PV cells.
However, this implementation has not yet been fully optimized and the challenge to capture more
solar radiation remains. There is a need to assess this integration on a whole model office building to
examine the potential of this technique in reducing energy end-uses and producing electricity from
PV cells.

The main aim of this study is to propose an energy-efficient retrofit strategy that profitably suits
office buildings. This research attempts to maximize the efficiency of PV in a particular location (Erbil),
and then integrate optimized PV in the form of exterior responsive shading devices. The potential
benefits include maximizing the efficiency of PV cells, optimizing the effectiveness of shading devices,
promoting sustainability by reducing materials and, when producing electricity from the renewable
solar energy, decreasing cooling loads simultaneously by reducing heat gain via solar radiation in
summer. By lowering total energy consumption and carbon dioxide emissions, this may result in
a clean environment and less costly utility bills.

1.1. Retrofits for an Energy-Efficient Office Building

Retrofit involves modification to existing buildings, particularly commercial buildings,
which improves energy efficiency and decreases energy demand through the addition of new
technology. The application of retrofit is ultimately affected by consciousness and the behavior of
occupants concerning energy saving strategies. Mentioned by the Energy Efficiency and Conversation
Cleaning House (EECCHI) [4], various retrofit approaches have been implemented on different levels,
such as architecture, structure, electrical and mechanical, interior design, and so forth. When retrofitting
an office building, architectural aspects are substantially considered in modifications, predominantly
the façade [5], as it is used for diverse technical installations [6].

Retrofits through the implementation of photovoltaics have grown rapidly in the digital
innovation age due to the urgent demand of producing electricity from renewable energy sources [7].
However, utilizing the integration of PV solar-tracking technology in the form of responsive shading
devices is recent, and it is not observed widely through the experiments of retrofitting. In the past,
the majority of the photovoltaic implementations have generated low power due to using fixed
installations; thus, photovoltaic cells cannot achieve optimal efficiency.

According to the U.S. Energy Information Administration (EIA), office buildings consume more
energy than any other commercial building type, in which the energy use of offices is recorded
as 17% [2]. Therefore, the application of retrofits can be profitably integrated into office buildings.
The building façade is the main concern for architects to target in the retrofitting process due to the
feasibility and capability of the façade in enhancing both aesthetic aspects and energy performance of
buildings. Different forms of embedding façade-PV have been utilized, such as applying PV panels as
cladding, the integration of PV panels into façade windows, and using PV as shading devices [8].

1.2. Integration of Photovoltaics as Responsive Shading Devices

Solar shading devices play a vital role in boosting the interior environment, providing better
comfort for occupants and lowering heat gain in summer, which results in a decreasing cooling load
and minimizing energy consumption [8]. According to previous research [9], the significant advantages
of shading devices are:

• Thermal comfort (cooling loads and artificial light demand reduction);
• Visual comfort (reducing glare and productivity improvement);
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• Daylight controlling (maintain adequate daylight level);
• Users’ interaction and more space use (improving the environment); and
• Environmental privacy (protecting internal spaces from the external environment).

The application of exterior shading devices integrated with PV has rapidly emerged in the past
decade. This technique performs multiple tasks simultaneously, from controlling daylight to providing
thermal and visual comfort and generating solar electricity. Studies encourage electricity production
through shading devices integrated with PV [8,10–17]. In previous experiments, fixed shading devices
integrated with PV were assessed [10,11], and the operation of controlling the tilt rotation by a computer
based on measured environmental conditions was evaluated and optimized [12,13]. These studies
report that PV-integrated shading devices generate a considerable amount of electricity and reduce
cooling load through novel control of daylight, thereby lowering energy consumption.

Based on the above assumptions, PV-integrated shading devices can be further optimized when
using a dual-axis tracking system to maximize the efficiency of PV in producing electricity and
optimizing shading effects on thermal comfort.

1.3. Photovoltaic and Efficiency Optimization

In order to maximize the use of renewable energy through retrofitting façades, utilizing
photovoltaic panels is an efficient method to produce electricity from solar energy [14]. A semi-
transparent photovoltaic panel has been widely used in re-skinning façades of various types of
buildings, for instance, the Mataro Public Library in Spain and the De Kleine Aarde Boxtel in the
Netherlands. This kind of photovoltaic panel is used as a re-skinning solution for an office building in
Shanghai. The problem was that the building had a glazed façade and the climate of Shanghai city
is hot in summer and cold in winter; therefore, the facade was re-skinned utilizing semi-transparent
photovoltaic panels to reduce the heat gain and produce electricity. Thus, they found that this system
can produce 7% of the building’s energy consumption per year [15]. The same solution used on the
campus of the Norwegian University of Science and Technology (NTNU) in Trondheim to cover glazed
façades and maximize the use of renewable energy [16]. However, in both above cases, they failed to
raise the energy efficiency of photovoltaic panels because fixed system installations were used. Simply
placing a large number of PV panels on a building may only keep the PV cells perpendicular to the
sun’s rays for 10–15% of the day’s sunlight hours. Figure 1 shows how the efficiency decreases when
the angle of sun’s rays hitting the PV cell falls away from 90◦.
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Figure 1. The relation between photovoltaic (PV) cell efficiency and angle of the sun’s rays [2].

Considering that sufficient amounts of the solar radiation reach our planet, Taylor [17] states that
“It has been calculated that the solar radiation falling on the earth’s atmosphere every hour could,
if fully exploited, meet the annual energy needs of the world”. To achieve this goal an intelligent solar
tracking system is needed so that photovoltaic cells can convert the maximum amount of solar energy
to electricity. An intelligent solar tracker has been invented and proposed; however, it has not been
implemented as a retrofit strategy of re-skinning façades yet, and all previous experiments of solar
tracking systems were installed for testing purpose or individual use. For instance, a single prototype
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dual-axis solar tracker was used in a pilot project that is located in Sarawak, Malaysia, to produce
more electricity from photovoltaic cells [7].

From the above literature review, it can be merely observed that there is an obvious gap in the
system of photovoltaic implementation: that is, using a fixed method. This system requires less cost
and low energy production compared to a dual-axis solar tracker. As the demand for maximizing
the use of renewable energy, more specifically solar energy, increases, the need to utilize dual-axis
tracking systems for photovoltaic panels will increase. Hence, answers for serious questions will be
needed, such as how much extra energy can be produced via using such tracking technology instead
of a fixed implementation. How much extra efficiency can the photovoltaic panels acquire by using
this technology?

2. Materials and Methods

To address the research objectives, this study employs an empirical methodology through different
approaches. Firstly, to maximize the efficiency of photovoltaics, a prototype-based experiment was
implemented aiming at collecting real-time data. Then, an office building in Erbil was selected as a case
study to apply the proposed integration system and evaluate the energy performance of the building
before and after the system integration. Finally, computer modelling and simulations were performed
to investigate the energy performance of the base case building and the situation after the integration
of photovoltaic integrated responsive shading devices. Therefore, the amount of generated electricity
through this application, as well as the reduction amount in the energy demand, were calculated
and recorded.

2.1. A Prototype-Based Experiment

A physical prototype of the PV-integrated responsive shading device was made to test the amount
of efficiency optimization compared to the conventional (fixed) installation system. This automated
system is characterized by a dual-axis solar tracking ability, by moving the two rotating axes
simultaneously, which leads the PV panel to track the sun. Hence, the shading element automatically
rotates to stay at 90◦ to the sun’s rays for maintaining maximum efficiency of the PV in Figure 2.
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The research experiment needed a digital model to validate the physical model that was designed
in Grasshopper 3D (Robert McNeel & Associates, Washington, DC, USA) [18] (an algorithmic and
generative modelling plugin for Rhino 3D [19] application software), which allows the digital
model to be connected to the physical prototype through a special scripting Grasshopper 3D
plug-in and an open-source electronics platform. The prototype consists of a 125 mm × 125 mm
monocrystalline silicon (also called single-crystalline silicon) PV cell, two micro servos 9 g each,
4 × 10,000 LDR (light-dependent resistor) sensors, 4 × 10,000 Ω resistors, jumper wires, breadboard,
DC voltmeter/ammeter, and utility parts. A laser cutter was used to digitally fabricate the utility
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parts and some soldering was applied to attach LDR sensors with the jumper wires. Two LDR sensors
were positioned on the top and bottom of the shading element controlling tilt rotations, while the
other two LDR sensors were placed on the right and left to control azimuth rotations. This prototype
is powered by a laptop via USB and an Arduino Uno [20] (an open-source electronics prototyping
platform). In order to test the viability of the prototype, the Arduino microcontroller allows real-time
data flow between the digital and physical models through Firefly [21] (a set of comprehensive
software tools dedicated to bridging the gap between Grasshopper 3D, the Arduino microcontroller,
and input/output devices) scripts and, thus, real-time data can be read from the LDR sensors in Firefly.

The prototype was fabricated to collect real-time data and compare the efficiency of both the
automated (responsive) and fixed systems. Both physical and digital models have been calibrated
using the real-time data that comes from the LDR sensors. These values coming from the light sensors
were read through the UNO Read component in Firefly. After the processes of constraining, remapping,
and smoothing, the same data can be used to feed the UNO Write component to control the rotations of
the servos in the physical model and to feed the digital model simultaneously. Therefore, both models
are interacting together while responding to the real-time data values coming from the four light
sensors, as shown in Figure 3. In order to determine the produced power (P) of both the responsive
and fixed systems, and to calculate any efficiency optimization (%) through the automated method,
the same PV type and size was installed in a fixed manner. Next, the generated power from both
photovoltaic installation methods (i.e., responsive and fixed) was recorded through reading the voltage
(V) and current (I). Then, the PV cell efficiency optimization of the responsive installation system
was calculated.
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2.2. Case Study

The case study (Empire World T1) is an office building located in Erbil, Northern Iraq, between
latitudes 35◦30′ and 37◦15′ N and longitudes 43◦22′ and 45◦05′ E. The climate of Erbil is characterized
as semi-arid with long, hot, dry summers and short, cool winters [9]. The temperature exceeds 43 ◦C in
the hottest months in summer, while it drops to 2 ◦C during the coldest months in winter. The average
hours of the sunshine per day are about nine hours, as shown in Table 1.

Table 1. Average annual temperatures and sunshine hours in Erbil [9].

MONTH Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

AVG MAX TEMP 12 15 19 25 32 39 43 42 38 29 21 14
AVG MIN TEMP 2 3 7 11 16 21 25 24 19 14 8 4

Cold period Moderate Hot period Moderate Cold
AVG HRS

SUNSHINE/DAY 5 6 7 8 10 14 14 13 11 8 6 5

The Empire World T1 office building [22] (latitude 36◦19′ N, longitude 43◦97′ E) is a concrete
structure with glass (outer to inner: 8 mm thick blue-green tempered and heat-soaked, 12 mm airspace,
and 6 mm thick clear tempered low-E) and composite aluminum (4 mm thickness) cladding for external
finishing materials. The building has 27 floors in which the first four floors serve as information,
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office services, a business center, a conference hall, meeting rooms, and a café, while the upper floors
constitute offices. The height of each floor is 4 m with a total construction area of 24,000 m2. The total
gross area of each office floors varies between 750 m2 and 1035 m2, as shown in Figure 4.Sustainability 2017, 9, 2096  6 of 21 
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Erbil’s extreme conditions in summer and winter require careful considerations when designing
this type of building; however, this tower has a large glazed facade in all orientations without having
any external shading systems. Due to the excessive solar gain in summer and heat loss in winter,
this office building consumes a very large amount of electricity for indoor air conditioning, which is
the main energy source of the project. Consequently, carbon dioxide emissions dramatically increase,
which severely affects the city’s environment, and makes the building inefficient in terms of energy
performance, thermal comfort, and sustainability standards.

2.3. Computer Modelling and Simulations of Energy Performance and Electricity Generation

Studies on computer modelling and simulations declare that computer simulations play vital
roles in building design of resident comfort and energy performance through contributing to solving
building performance issues [23,24]. Hence, the present study uses OpenStudio® software (NREL,
Washington, DC, USA) [25], which supports complete building energy modelling using EnergyPlus™
(NREL, Washington, DC, USA) [26]. Developed by National Renewable Energy Laboratory (NREL) of
the U.S. Department of Energy (DoE), OpenStudio®, along with EnergyPlus™, is a vigorous energy
simulation tool that enables energy performance analysis of low-energy technologies in residential
and commercial buildings [27,28].

Computer simulation of energy modelling needs substantial knowledge associated with the
physical and operational characteristics of the building, as well as precise input data of the building
and climate [24,29]. In order to investigate the impact of the proposed integration system, the base-case
energy simulations were accomplished to serve as a baseline reference for comparative energy
performance. Based on the above assumptions, the general features of the computerized model
of the T1 building were established for energy performance simulations, as shown in Tables 2 and 3.
The computer modelling was performed only for the floors that are dedicated to serving as offices.
Each floor is divided into two different thermal zones: one for the office areas and the other for central
service and the circulation core. The office floors are assigned heating, ventilation, and air conditioning
(HVAC)-packaged rooftop of a direct expansion (DX) variable air volume (VAV) units with reheats,
office equipment loads, and interior lighting loads. Figure 5 illustrates the modelling and simulation
stages with the details and attributes of each stage.
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Table 2. ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers)-based
assigned features to the model.

Building Type Space Type Construction Set Schedule Set

Office Bldg 189.1-2009-Office-OpenOffice-CZ1-3 189.1-2009-CZ2-Office 189.1-2009-Office-WholeBuilding-Lg
Office-CZ1-3 Schedule set

Table 3. ASHRAE-based building component features of the model and actual features.

Component Name Construction Name Actual Features

Fixed and operable windows ASHRAE 189.1-2009 Ext. Window
Climate Zone 2

Glass with aluminum frame (8 mm thick
blue-green tempered + 12 mm air vacuum
+ 6 mm low-E tempered clear)

Walls ASHRAE 189.1-2009 Ext. Wall
Mass Climate Zone 2 Composite aluminum cladding (4 mm thick)

Roof ceiling ASHRAE 189.1-2009 Ext. Roof
IEAD Climate Zone 2

Reinforced concrete without insulation
(200 mm thick)

Floor ExtSlabCarpet 101.6 mm
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The integrated responsive shading device is a photovoltaic tracking system that responds to the
sun’s movement to maximize the PV efficiency. The side length of the glass envelope on each floor
is 22.0 m. The study examines the south, east, and west orientations and excludes the north facade,
due to its minimum solar radiation in the study location. The two-axis tracking shading devices
are integrated with PV cells of monocrystalline silicon type that is characterized by 15% module
efficiency and a −0.47%/◦C temperature coefficient of power, as presented in Table 4. The dimensions
of one module are set to be a standard 1.64 m (l) × 0.99 m (w) and, for the purposes of minimizing
mechanical and technical requirements, two PV modules are merged to construct one automated
shading element. A gap of 1.08 m is left between two responsive shading devices, thereby minimizing
the risk of self-shadings between elements. Figure 6 manifests the PV opaque area and glass area of
each floor on the studied orientations. Therefore, the total PV area for all 23 office floors is calculated
as 1568.4 m2, as shown in Figure 7.
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Figure 7. Schematic view of the case-study building with PV-integrated responsive shading devices.

Utilizing the EnergyPlus™ energy management system (EMS), multiple overlapping surfaces
are defined (Shading: Building: Detailed) in the same location, but with different tilt and azimuth
angles (Figures 8 and 9). EMS (Surface Ext Solar Beam Cosine of Incidence Angle) indicates the
most perpendicular surface to the sun and through overriding their transparency schedule, the most
perpendicular surface can be set as fully opaque and the rest as fully transparent at the moment.
This simulates the influence of the automated shading devices on lowering the cooling loads of the
building in the summer season.
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To avoid complicated EMS scripting for calculating the generated electricity from the
PV-integrated two-axis tracking elements, Ladybug [31] (open-source environmental plugins for
Grasshopper 3D) is used. The modelling of automated panels was conducted using Grasshopper
3D and, through employing Ladybug Renewables, the amount of generated electricity from each
orientation can be perceived. In each orientation, 10 different optimal angles were realized for both tilt
(between 0◦ and 90◦) and azimuth (east: between 0◦ and 180◦; south: between 90◦ and 270◦; and west:
between 180◦ and 360◦) angles using Ladybug_Tilt and Orientation Factor (TOF), as demonstrated in
Figures 8 and 9. Figure 10 manifests the process of defining the optimal angles and the simulated angles
for each orientation. Using the Laybug_Photovoltaics Module (PhotovoltaicsModule), the module
settings were decided to be a normal crystalline silicon with 15% module efficiency and −0.47%/◦C
temperature coefficient (Table 4). Then, the system size was defined through feeding EnergyPlus
Weather Files data (Tabriz.epw is utilized as the closest available weather station to Erbil), the intended
orientation, the PV surface, the available optimal tilt and azimuth angles, and the PV module
to the Ladybug_PV SWH System Size (PV_SWH_SystemSize). The Ladybug_Sunpath Shading
(SunpathShading) component calculates the annual shading of PV modules due to the building and
shading devices. This component takes .epwFile, analysisGeometry, context, and ACenergyPerHour as
inputs and offers several critical outputs such as ShadedSolarRadiationPerHour, Sep21toMar21Shading,
Mar21toSep21Shading, annualShading, hours, and so on. Therefore, the building geometry and
all shading elements were fed to the Context input to define any obstacles that may cause
shadings. To calculate total losses of the system and DC to AC derate factor, the annualShading
output of the Sunpath Shading (SunpathShading) component was fed to the annualShading_ input
of Ladybug_DCtoACderateFactor (Figure 10). Then the DCtoACderateFactor output was fed to
Photovoltaics Surface (Photovoltaics Surface) component to calculate amount of electrical energy
(kWh/year) that can be produced by the PV surfaces of each façade. Figure 11 manifests the Sunpath
Shading diagram of, respectively, south, east, and west orientations and their annual shading status.
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3. Results and Discussions

The findings of this research were obtained from four sequencing study phases. Accordingly,
the results are presented and discussed. The first stage involved maximizing the efficiency of PV
through the integration method. In the second stage, the base case building was modelled and
simulated to be used as reference data. Then, the building performance simulation was repeated
after the system integration of PV-integrated responsive shading devices to explore the impact of
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this integration system on energy consumption. Finally, the amount of produced electricity from the
application of the PV-integrated system on the case study building was calculated.

3.1. Calculation of the PV Efficiency

The initial objective of this study was to maximize the output efficiency of photovoltaic cells.
A prototype-based model was developed to address this intention. In order to compare the
output power (P) produced from both the dual-axis tracking (responsive) technique and the fixed
system (non-adjustable), both methods were tested with real-time data. Using the same PV type
(monocrystalline silicon) and size (125 mm× 125 mm) as the automated method, the south-facing fixed
installation was tilted at 54◦ as an optimum annual average tilt angle for the experiment location [32].
This experiment was conducted in the specific climatic conditions of Erbil from the time period between
07:00 and 18:00 on 16 July 2016. The current (I) and voltage (V) produced by both methods were
measured through the DC ammeter/voltmeter. Then the power (P) is calculated and recorded for both
installation systems in Table 5.

P(w) = I(a)×V(v) (1)

A comparative graph was designed to show the difference in efficiency between the responsive
and fixed systems, as shown in Figure 12. Using the relative difference equation (Equation (2)),
the calculation results of the total produced power (P) from both installation methods indicate that
the responsive tracking system is more efficient by approximately 36.8% in comparison to the fixed
installation, considering the location of the experiment (Erbil). The graph manifests that the fixed
installation is only efficient at noontime when the sun is perpendicular to the panel. Conversely,
the tracking system is efficient during nearly the whole day as it keeps the panel perpendicular to the
sun at all times.

E =
|∆P|
∑ P

2

× 100(%) (2)

where E is the PV efficiency and P is the different amount of power generated from both fixed and
responsive installation systems.

Table 5. Power (W) produced from both PV installation methods.

Time (h) Power (W) (Fixed) Power (W) (Responsive)

07:00 0.01 0.96
08:00 0.37 1.63
09:00 1.02 1.89
10:00 1.87 2.01
11:00 2.15 2.19
12:00 2.24 2.27
13:00 2.27 2.29
14:00 2.18 2.19
15:00 1.76 1.98
16:00 0.85 1.81
17:00 0.23 1.57
18:00 0.02 0.94
∑ (W) 14.97 21.73
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3.2. Energy Performance Simulations of the Base Case

In order to compare the effectiveness of the proposed integration system, the energy performance
of the base case is simulated to compare later with the energy performance simulations after the
integration technique. The energy simulations were performed using OpenStudio® [25] in which the
essential results were recorded for the baseline reference. Results demonstrate that the total site energy
consumption of the existing office building is approximately 11,910.18 GJ and energy per total building
area is 661.10 MJ/m2, as shown in Table 6.

Table 6. Annual total site and source energy summary.

Total Energy (GJ) Energy Per Total Building Area (MJ/m2)

Site Energy 11,910.18 661.10
Source Energy 35,436.81 1967.00

The building uses electricity and natural gas as main energy sources for operating different
utilities. Considering the annual overview as in Figure 13, the electrical energy use is 91%, which
is used for cooling, interior lighting, interior equipment, fans, and pumps, while the natural gas
energy use is 9%, which is only used for heating. In general, cooling consumes far more energy than
other utilities, comprising 57.04%, followed by interior lighting at 18.32%, and then comes interior
equipment, comprising 11.81% of the energy consumption. Total electricity end-use of the various
utilities is 10,814.29 GJ and natural gas end-use of heating is 1095.89 GJ. The end-use amount of
subcategories for both electricity and natural gas is stated in Table 7.

Sustainability 2017, 9, 2096  12 of 21 

 

 
Figure 13. (A–D) An overview of annual energy use and end-use per category. 

Table 7. Annual building end-uses. 

 Electricity (GJ) Natural Gas (GJ) 
Heating 58.37 1095.89 
Cooling 6793.30 0.00 

Interior Lighting 2182.53 0.00 
Interior Equipment 1406.15 0.00 

Fans 336.76 0.00 
Pumps 37.19 0.00 

Total End-Uses 10,814.29 1095.89 

Figure 14, shows the electricity consumption per month for each particular utility. Cooling 
loads reach to the highest amount of consumption during the summer season, especially in July and 
August, which exceeds 250,000.0 kWh. In the winter season, the amount decreases to 80,000.0 kWh 
and below, particularly in January, February, and December. However, the amount of electricity 
consumption of other utilities stays nearly constant throughout the whole year. Natural gas 
consumption used for heating spaces exceeds 220.0 MBtu in December and 180.0 MBtu in January 
and February. The average natural gas consumption in March, April, October, and November is 
about 85.0 MBtu, as shown in Figure 15. 

 

Figure 14. An overview of monthly electricity consumption. 

56%
19%

12%

10%
3% 0%

A. End Use

Cooling

Interior Lighting

Interior Equipment

Heating

Fans

Pumps 91%

9%

B. Energy Use

Electricity

Natural Gas

63%
21%

13%
0%

3%
0%

C. EUI_Electricity
Cooling

Interior Lighting

Interior Equipment

Heating

Fans

Pumps

100%

D. EUI_Gas

Heating

0k

50k

100k

150k

200k

250k

300k

350k

400k

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

El
ec

tr
ic

ity
 C

on
su

m
pt

io
n 

(k
W

h)

Month

Pumps

Fans

Interior Equipment

Interior Lighting

Cooling

Heating

Figure 13. (A–D) An overview of annual energy use and end-use per category.



Sustainability 2017, 9, 2096 13 of 22

Table 7. Annual building end-uses.

Electricity (GJ) Natural Gas (GJ)

Heating 58.37 1095.89
Cooling 6793.30 0.00

Interior Lighting 2182.53 0.00
Interior Equipment 1406.15 0.00

Fans 336.76 0.00
Pumps 37.19 0.00

Total End-Uses 10,814.29 1095.89

Figure 14, shows the electricity consumption per month for each particular utility. Cooling loads
reach to the highest amount of consumption during the summer season, especially in July and August,
which exceeds 250,000.0 kWh. In the winter season, the amount decreases to 80,000.0 kWh and below,
particularly in January, February, and December. However, the amount of electricity consumption of
other utilities stays nearly constant throughout the whole year. Natural gas consumption used for
heating spaces exceeds 220.0 MBtu in December and 180.0 MBtu in January and February. The average
natural gas consumption in March, April, October, and November is about 85.0 MBtu, as shown in
Figure 15.
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Figure 16 demonstrates monthly electricity peak demand of different energy consumption sources.
The maximum cooling peak demand can be seen in September at 1150.0 kW. On the other hand, natural
gas peak demands are comparable in January, February, March, November, and December, around
1700.0 kBtu/h, as presented in Figure 17.
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Figure 17. An overview of monthly natural gas peak demand.

In the summer season, cooling loads dramatically increase (800.0–900.0 MBtu) due to the very
large amount of heat gain caused by the large glass envelope of the case study office building,
as shown in Figure 18. Likewise, a high amount of heat losses through the glazed façade in the winter
season demands a considerable amount of energy consumption (190.0–240.0 MBtu) for heating spaces.
The electricity intensity of lighting is 121.15 MJ/m2, HVAC is 401.07 MJ/m2, and the natural gas HVAC
intensity is 60.83 MJ/m2. The total intensity of electricity and natural gas intensities of different utilities
are also presented in Table 8. The base-case energy simulation statistics emphasize the inefficiency of
the design in terms of sustainability and energy-efficient criteria.
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Table 8. The utility uses per total floor area.

Electricity Intensity (MJ/m2) Natural Gas Intensity (MJ/m2)

Lighting 121.15 0.00
HVAC 401.07 60.83
Other 78.05 0.00
Total 600.27 60.83

3.3. Integration of Optimized Photovoltaics in the Form of Responsive Shading Devices

The energy simulations are performed once again after the integration of the proposed technique
into the case study building model using OpenStudio®. On one hand, the implementation of utilizing
photovoltaics as responsive exterior shading devices can enhance the efficiency of photovoltaic
cells through the intelligent system when tracking the sun’s rays. On the other hand, boosting
the building’s energy efficiency and thermal comfort when shading devices profitably work as
preferable solutions (i.e., they change from horizontal to vertical according to the sun’s position)
for each specified orientation.

Results show that total site energy consumption after the integration method onto the office
building reaches 8512.17 GJ and the energy per total building area is 493.70 MJ/m2, as shown in
Table 9. Therefore, integration of the responsive shading devices saves 3398.01 MJ/m2 in total site
energy consumption and 10,149.57 site energy in total source energy. This retrofit technique can turn
the case study office building into an energy efficient building and reinforce the visual and thermal
comfort for occupants.

Table 9. Annual total site and source energy summary.

Total Energy (GJ) Energy Per Total Building Area (MJ/m)

Site Energy 8512.17 493.70
Source Energy 25,287.24 1466.63

The annual overview a shown in Figure 19 shows that cooling consumption shifted to 48%,
interior lighting, to 25%, and interior equipment, to 15%. Thus, cooling demand decreased by 9%
due to preventing sun’s harsh rays from penetrating into the building, resulting in a reduction of
heat gain in summer. Total electricity end-use of the various utilities is reduced to 7710.06 GJ and
natural gas end-use for heating is 802.11 GJ. The reduction in electricity end-use is 3104.23 GJ and in
natural gas end-use is 293.78 GJ. The amount of total and subcategory end-uses for both electricity
and natural gas is presented in Table 10, in which the major electricity amount is consumed by cooling
loads (4076.73 GJ), followed by interior lighting (2102.39 GJ).
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Table 10. Annual building end-uses.

Electricity (GJ) Natural Gas (GJ)

Heating 0.00 802.11
Cooling 4076.73 0.00

Interior Lighting 2102.39 0.00
Interior Equipment 1310.97 0.00

Fans 198.08 0.00
Pumps 21.88 0.00

Total End-Uses 7710.06 802.11

Figure 20 shows the electricity consumption per month for each particular utility. Cooling
loads during July and August lowered to 162,000.0 kWh. Thence, the integration technique reduced
cooling load demand by 88,000.0 kWh. In the winter season, the amount decreases to 37,000.0 kWh as
an average of January, February, and December. Therefore, the reduction amount of cooling loads in
winter months is 43,000.0 kWh compared to the base case results. While the amounts of the electricity
demand of other utilities almost remain constant throughout the whole year. Heating loads through
natural gas demand an average of 161,000.0 MBtu in January, February, and December, which means
that the responsive shading devices save up to 39,000.0 MBtu in comparison with the existing building
energy performances, as shown in Figure 21. Using this integration strategy, heat gain in the summer
period and heat loss in the winter period are minimized, which results in very large amounts of energy
saving in the base case building operations.
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Figure 22 demonstrates that the maximum cooling peak demand in September decreased
dramatically from 1150.0 kW in the base case simulation to 513.0 kW after the integration method,
which is more than a 50% reduction in the demand. In contrast, natural gas peak demands increased
from 1700.0 kBtu/h to 2600.0 kBtu/h as an average of the winter season. Additionally, it decreased from
an average of 600.0 kBtu/h in the summer season of the base case to 133.3 kBtu/h in the simulation
of the building after the implementation of integration, as shown in Figure 23. The statistics indicate
that, due to minimizing the glazed façade exposed to the direct sunlight, which reduces the heating of
interior spaces through sunlight penetration, the peak demand of the heating load increased. Moreover,
profitably controlling the sunshine via the responsive shading devices reduces the peak demand in the
summer period.
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Figure 22. An overview of monthly electricity peak demand.
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Figure 23. An overview of monthly natural gas peak demand.

Integrated responsive shading devices can control solar radiation, thereby lowering the massive
heat gain in summer. Looking at Figure 24, which shows the HVAC performance after the office
building retrofitting, the cooling demands in summer months dramatically decreased to an average
of 538.3 MBtu. Therefore, the reduction amount in cooling demand is 311.7 MBtu compared to
the base case cooling demands. Additionally, these shading devices have a significant impact in
reducing heat loss in the wintertime. In winter, heating demands lowered to an average of 161.0 MBtu,
while an average of 215.0 MBtu in the base case HVAC performance was recorded.
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Figure 24. Monthly HVAC load profiles.

Electricity intensity of lighting approximately stayed at the same amount of 121.94 MJ/m2,
whereas, HVAC electricity intensity reduced to 249.20 MJ/m2 and natural gas intensity to 46.52 MJ/m2.
The reduction of the HVAC electricity intensity is 151.87 MJ/m2 and that of natural gas is 14.31 MJ/m2.
Total intensity of electricity and natural gas intensities of different utilities are also stated in Table 11.
The simulation statistics of the retrofitted office building emphasize that there is a considerable amount
of energy savings and endeavours toward energy efficiency. In the long term, this retrofit strategy can
be extremely beneficial in reducing utility bills and GHG (greenhouse gas) emissions.

Table 11. The utility uses per total floor area.

Electricity Intensity (MJ/m2) Natural Gas Intensity (MJ/m2)

Lighting 121.94 0.00
HVAC 249.20 46.52
Other 76.03 0.00
Total 447.17 46.52

3.4. The Amount of Generated Electricity from PV Surfaces

The percentages of photovoltaic annual shadings and total system losses were calculated
using Ladybug_Sunpath Shading (SunpathShading) and Ladybug_DC to AC derate factor
(DCtoACderateFactor). Table 12 statistics articulate that more annual shadings (approximately 37%)
occur at the east and west façades as a reason for the huge shading amount of the building, as well as
self-shadings among shading elements. Conversely, less annual shading (approximately 11%) appear
at the south façade due to less context shading. The amount of generated electricity (kWh/year)
was recorded for each orientation (east, south, and west) through employing Ladybug renewables.
Table 13 interprets that the south façade produces more electricity (160,304.2698 kWh/year) compared
to east (101,483.6381 kWh/year) and west (102,065.8843 kWh/year) orientations due to the intensity
of solar radiation during noontime, and less annual shadings caused by the context; thus, there are
fewer photovoltaic system losses. The whole PV system integration, with a total PV surface area of
1568.4 m2, produces 363,853.7922 (kWh/year) equal to 1309.8736 GJ. The annual site energy use of
the office building after the integration of responsive shading devices was lowered to 8512.17 GJ;
this means that this system can provide around 15.39% of the electricity demand for operating the
building. Fully producing electricity demand from solar renewable energy can be achieved through
installing more arrays on the roof or site, or through implementing other renewable energy sources.
Moreover, this integration system saves up to $43,662.4550 (US Dollar) annually through generating
electricity from free solar energy considering that the cost of electricity ($/kWh) is $0.12.
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Table 12. Photovoltaic annual shadings and total system losses.

Orientation Average Annual Shading (%) Total System Losses (%)

East 37.43 44.57
South 11.22 21.35
West 37.57 44.69

Total Average 28.74 36.87

Table 13. The amount of photovoltaic electricity produced from each orientation.

Orientation Generated Electricity (kWh/Year)

East 101,483.6381
South 160,304.2698
West 102,065.8843

Total Amount 363,853.7922

Validation of Photovoltaic-Generated Electricity

In order to examine the accuracy of the amount of PV generated electricity through the Ladybug
simulation and based on the PV total area (1568.4 m2), the output calculations are executed using
NREL’s PVWatts® Calculator [30]. Offered by the National Renewable Energy Laboratory, the PV
Watts® Calculator estimates the energy production of photovoltaic energy systems around the globe.
Firstly, the system needs the location of the installation to find a suitable weather file data; next,
the system size (kW) is required, which can be calculated through the equation below according to
NREL. The module type indicates the approximate module efficiency to be used in the equation of the
system size and standard crystalline silicon with 15% efficiency chosen for estimations, as it is cheaper
than the premium one, as shown in Table 4. Therefore, utilizing Equation (3), the photovoltaic system
size is calculated as 235.26 kW.

S = A× 1 kW/m2 × E (3)

where S is the PV system size in (kW), A is the array area (m2), and E is the module efficiency (%).
Having all the parameters required by the system, the inputs were added into the calculator

to discover the annual electricity produced by the PV integration system through the responsive
shading devices (Table 14). Table 15 shows the monthly solar radiation per day and monthly AC
energy produced. The total annual AC energy generated through the system is approximately
529,896.0 (kWh/year), while the amount was recorded as 363,853.7922 (kWh/year) in the simulation
of the Ladybug model. The difference refers to the fact that the PV Watts® Calculator calculates
the generated amount of all three orientations simultaneously, whereas only two orientations of the
case study building receive direct solar radiation at one time. Therefore, the simulation results of
Ladybug renewables are more accurate than the PV Watts® Calculator in which the building’s shading,
self-shading among the components and other context obstacles that prevent direct solar radiation
onto the panels are considered.

Table 14. PV Watts® Calculator (NREL, Washington, DC, USA) system information.

Parameters Inputs

DC System Size (kW) 235.26
Module Type Standard (crystalline silicon)
Array Type Two-Axis Tracking

System Losses (%) 14
Tilt (deg) 0

Azimuth (deg) 180
Dc to Ac Size Ratio 1.1

Inverter Efficiency (%) 96
Ground Coverage Ratio 0.4

System Type Commercial
Cost of Electricity ($/kWh) 0.12
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Table 15. PV Watts® Calculator results.

Solar Radiation (kWh/m2/Day) AC Energy (kWh) Energy Value ($)

Annual 8.50 529,896 $63,588

4. Conclusions

This study presented an integration of photovoltaics as responsive shading devices as a retrofit
strategy for an energy efficient office building. The intended objectives were progressed through
four phases of empirical studies. Firstly, a prototype-based experiment was conducted to explore the
percentages increase of efficiency due to using two-axis tracking PV system compared to the fixed
installation. Next, a computer simulation was performed to measure the energy performance of the
base case of a selected case study, the T1 Empire World office building in Erbil. Then the same method
was used to observe the demand reduction after the integration of this technique onto the base case.
Finally, Ladybug simulation was performed to expose the amount of electricity production through
the PV-integrated system.

The statistics proved that this retrofit method has reduced total site energy consumption by
33.2% compared to the existing building performance. Total electricity end-use of the various utilities
was lowered by 33.5%, and the total natural gas end-use of heating demand was reduced by 30.9%.
Therefore, the percentage reduction in electricity cooling demand in July and August was 42.7% due
to minimizing heat gain in summer through blocking the sun’s harsh rays from penetrating into the
interior spaces of the building. Due to minimizing the heating loss in winter, natural gas demand
consumed for heating spaces decreased by 21.6%. In the summer season, HVAC electricity cooling
load demand was lowered by 44.9%, and in the winter season HVAC natural gas heating load was
reduced by 28.7%.

The responsive shading device technique can maximize the efficiency of PV cells by 36.8%
compared to the fixed installation. Thus, the proposed number and area of the integrated PV for
responsive shading devices in this retrofit experiment can provide up to 15.39% of the electricity
demand for the building operation. By increasing the PV area on the building’s façade, roof, or site,
the full electricity demand can be generated. Alternatively, other retrofit strategies can be applied to
the building to transform it into an energy-efficient office building.

In general, integrating PV in the form of responsive shading devices has multiple benefits. Starting
from being extremely efficient and viable in generating sustainable alternative energy, which is the
global growing concern of today’s sustainable development, it makes office buildings energy-efficient
via minimizing operational demand and, through decreasing total energy consumption, a significant
amount of the carbon footprint can be reduced. Moreover, architects and designers can deal with these
integrated responsive PV shading devices as building elements to enhance the aesthetic of buildings
within the responsive façade design and dynamic architecture framework.

Further research is needed to investigate the impact of this retrofit technique on the building’s
daylight performance and calculate the reduction of greenhouse gas (GHG) emissions through
producing electricity from solar power as a green and renewable energy source. Authors suggest
an economic feasibility study to explore the validation of this proposed system compared to the fixed
installation system or one-axis (tilt or azimuth) tracking system.
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