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Learning Objectives

After completing this chapter, you should be able to:

B determine the pressure at various locations in a fluid at rest.
explain the concept of manometers and apply appropriate equations to determine pressures.
calculate the hydrostatic pressure force on a plane or curved submerged surface.

calculate the buoyant force and determine the stability of floating or submerged objects.




Pressure at a Point

As we briefly discussed in Chapter 1, the term pressure is used to indicate the normal force per unit
area at a given point acting on a given plane within the fluid mass of interest. A question that imme-
diately arises is how the pressure at a point varies with the orientation of the plane passing through
the point.

Although we are primarily interested in fluids at rest, to make the analysis as general as pos-
sible, we will allow the fluid element to have accelerated motion. The assumption of zero shearing
stresses will still be valid as long as the fluid mass moves as a rigid body; that is, there is no relative

motion between adjacent elements.,




P ¢

I Figure 2.1 Forces on an arbitrary wedge-shaped element of fluid.

The equations of motion (Newton's second law, F = ma) in the v and z directions are,
respectively,
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oy = ds cos @ 0z = Ossin @

so that the equations of motion can be rewritten as
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0z

P: — Ps = (/)U: + )’) 7

Since we are really interested in what is happening at a point, we take the limit as dx, dy, and dz
approach zero (while maintaining the angle #), and it follows that

Py = Ps Pz = Ps

or p. = p, = p.. The angle @ was arbitrarily chosen so we can conclude that the pressure at a point
in a fluid at rest, or in motion, is independent of direction as long as there are no shearing stresses
present. This important result is known as Pascal’s law, named in honor of Blaise Pascal (1623-
1662), a French mathematician who made important contributions in the field of hydrostatics.

v



Basic Equation for Pressure Field

Although we have answered the question of how the pressure at a point varies with direction, we
are now faced with an equally important question—how does the pressure in a fluid in which there
are no shearing stresses vary from point to point? To answer this question, consider a small rectangular

X

0 Figure 2.2 Surface and body forces acting on small fluid element.




element of fluid removed from some arbitrary position within the mass of fluid of interest as illus-
trated in Fig. 2.2. There are two types of forces acting on this element: surface forces due to the
pressure and a body force equal to the weight of the element. Other possible types of body forces,
such as those due to magnetic fields, will not be considered in this text.

If we let the pressure at the center of the element be designated as p, then the average pressure
on the various faces can be expressed in terms of p and its derivatives, as shown in Fig. 2.2. We are
actually using a Taylor series expansion of the pressure at the element center to approximate the
pressures a short distance away and neglecting higher order terms that will vanish as we let dx, dy.
and oz approach zero. This is illustrated by the figure in the margin. For simplicity the surface
forces in the x direction are not shown. The resultant surface force in the y direction is

i ap v\ . . opayN . . .
oF, = p_dv 5 Ox 0z — p+dv , |oxoz

: dp
oF, = ———dx dy oz
3 dv

Similarly, for the x and z directions the resultant surface forces are
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The resultant surface force acting on the element can be expressed in vector form as

OF, = 6Fi + 6F,j + oFk

op. Op., dp ..
5F, = —(—”-i By, 00 k) 5x By bz @2.1)
dx dy 0z
where i, j, and k are the unit vectors along the coordinate axes shown in Fig. 2.2, The group of terms

in parentheses in Eq. 2.1 represents in vector form the pressure gradient and can be written as

A d -~
Jisk )pk=Vp




a( ),  d( ), d( )~
= i + j + k
g dx ; dy ’ dz

and the symbol V is the gradient or “del” vector operator. Thus, the resultant surface force per unit
volume can be expressed as

oF, s “ya

ox Ay oz
Since the z axis is vertical, the weight of the element is
—6Wk = —ydx Sy bz k

where the negative sign indicates that the force due to the weight is downward (in the negative z
direction). Newton's second law, applied to the fluid element, can be expressed as

Z oF = ém a

where X F represents the resultant force acting on the element, a is the acceleration of the element,
and &m is the element mass, which can be written as p dx dy dz. It follows that

Z OF = 6F, — Wk = dma

-

—Vpoxdyodz —yoxdyvozk = poxdvdza

and. therefore.

—Vp—yﬁ=pa




2.3 Pressure Variation in a Fluid at Rest

For a fluid at rest a = 0 and Eq. 2.2 reduces to
Vp+vk=0
or in component form

ap

3 L (2.3)

These equations show that for the coordinates defined, pressure is not a function of x or y. Thus, as
we move from point to point in a horizontal plane (any plane parallel to the x—y plane), the pressure
does not change. Since p depends only on z, the last of Egs. 2.3 can be written as the ordinary dif-
ferential equation

dp
= —y (2.4)

dz

Equation 2.4 is the fundamental equation for fluids at rest and can be used to determine how
pressure changes with elevation. This equation and the figure in the margin indicate that the pres-
sure gradient in the vertical direction is negative; that is, the pressure decreases as we move upward
in a fluid at rest. There is no requirement that y be a constant. Thus, it is valid for fluids with con-
stant specific weight, such as liquids, as well as fluids whose specific weight may vary with elevation,




2.3.1 Incompressible Fluid

Since the specific weight is equal to the product of fluid density and acceleration due to gravity
(y = pg)., changes in y are caused by a change in either p or g. For most engineering applications
the variation in g is negligible, so our main concern is with the possible variation in the fluid den-
sity. In general, a fluid with constant density is called an incompressible fluid. For liquids the
variation in density is usually negligible, even for large changes in pressure, so that the assumption
of constant specific weight when dealing with liquids is usually a good one. For this instance,
Eq. 2.4 can be directly integrated
23 2
f dp = —y / dz
- 5

“1

to vield

Pa— o= =@ — &)

== e =) (2.5)

where p; and p, are pressures at the vertical elevations z, and z,, as is illustrated in Fig. 2.3.
Equation 2.5 can be writien in the compact form

Py — P2=th (2.6)

Py =rvh + p, (2.7)

where £ is the distance, z, — z;, which is the depth of fluid measured downward from the location
of p,. This type of pressure distribution is commonly called a hydrostatic distribution, and Eq. 2.7
shows that in an incompressible fluid at rest the pressure varies linearly with depth. The pressure
must increase with depth to “hold up™ the fluid above it.




LECUGINEPR] Pressure-depth Relationship

GIVEN Because of a leak in a buried gasoline storage tank
water has seeped in to the depth shown in Fig. E2.1. The specific
gravity of the gasoline is SG = 0.68.

FIND Determine the pressure at the gasoline—water interface
and at the bottom of the tank Express the pressure in units of
Ib/ft’, Ib/in?, and as a pressure head in feet of water.

SoLuTiON

Since we are dealing with liquids at rest, the pressure distribution
will be hydrostatic, and therefore the pressure variation can be
found from the equation:

p=vh+p

With p, corresponding to the pressure at the free surface of the
gasoline, then the pressure at the interface is

P1 = SGyueh + Py
= (0.68)(62.4 Ib/f*)(17 ft) + p,
= 721 + pq (Ib/ft%)

If we measure the pressure relative to atmosphernic pressure (gage
pressure), 1t follows that py = 0, and therefore

p; = 721 Ib/fi? (Ans)
721 b/ :
=———— =5011Ib/in? Ans
P = T Y fin (Ans)
721 1b/f2
—_— M _ e (Ans)
Yao 62.41b/ff
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It is noted that a rectangular column of water 11.6 ft tall and 1 ft’
in cross section weighs 721 Ib. A similar column with a 1-in*
cross section weighs 5.01 1b.

‘We can now apply the same relationship to determine the pres-
sure at the tank bottom; that 1s,

P2 = Yaohao T D1

= (62.4 Ib/f%)(3 ft) + 721 Ib/f° (Ans)
= 908 Ib/ft’
_ 9081b/f° . .
P2 = T U 6.31 Ib/in. (Ans)
P2 _ 508 DA = 1461t (Ans)

Yoo  62.4 Ib/f

COMMENT Observe that if we wish to express these pres-
sures in terms of absolute pressure, we would have to add the lo-
cal atmospheric pressure (in appropriate units) to the previous
results. A further discussion of gage and absolute pressure 1s given
in Section 2.5.

.




2.3.2 Compressible Fluid

We normally think of gases such as air, oxygen, and nitrogen as being compressible fluids because
the density of the gas can change significently with modest changes in pressure and temperature.
Thus, although Eq. 2.4 applies at a point in a gas, it is necessary (o consider the possible variation
in y before the equation can b2 integrated,

{a) (b)
| Figure 2.5 (a) Hydraulic jack, (b) Transmission of fluid pressure.




For those situations in which the variations in heights are largz, on the order of thousands of
feet, attention must be given to the variation in the specific weight. As is described in Chapter 1,
the equation of state for an ideal (or perfect) gas is

p = pRT

where p is the absolute pressure, R is the gas constant, and 7 is the absolute temperature. This rela-
tionship can be combined with Eq. 2.4 to give

b __w
Z RT

and by separating variables

" dp ) “dz
/ P oplis £ K (2.9)

P P R:IT

P\

where g and R are assumed to be constant over the elevation change from z, 10 z,. Although the
acceleration of gravity, g, does vary with elevation, the variation is very small (see Tables C.1 and
C.2 in Appendix C), and g is usually assumed constant at some average value for the range of eleva-
tion involved.

Before completing the integration, one must specify the nature of the variation of temperature
with elevation. For example, if we assume that the temperature has a constant value T, over the
range z, 10 2, (isothermal conditionsi, it then follows from Eq. 2.9 that

8z, — 2

P2 = P CXp [_ Rfo = (2.10)




24 Standard Atmosphere

An important application of Eq. 2.9 relates to the variation in pressure in the earth’s atmosphere.
Ideally. we would like to have measurements of pressure versus altitude over the specific range for
the specific conditions (temperature, reference pressure) for which the pressure is to be determined.
Since the temperature variation is represented by a series of linear segments. it is possible
to integrate Eq. 2.9 to obtain the corresponding pressure variation. For example, in the troposphere,
which extends to an altitude of about 11 km (~36.000 ft). the temperature variation is of the form

T=T,— Bz (2.11)

B TABLE 2.1
Properties of U.S. Standard Atmosphere at Sea Level”

Property SI Units BG Units

Temperature, T 288.15 K (15 °C) 518.67 °R (59.00 °F)

Pressure, p 101.33 kPa (abs) 2116.2 Ib/ft* (abs)
[14.696 Ib/in.? (abs)]

Density, p 1.225 kg/m’ 0.002377 slugs/ft’
Specific weight, y 12.014 N/m’ 0.07647 Ib/ft’
Viscosity, 1.789 x 10 ° N - s/m’ 3.737 % 107" Ib - s/ft

*Acceleration of gravity at sea level = 9.807 m/s” = 32.174 ft/s"




where T, is the temperature at sea level (z = 0) and B is the lapse rate (the rate of change of tem-
perature with elevation). For the standard atmosphere in the troposphere. g = 0.00650 K/m
or 0.00357 °R/1t.

Equation 2.11 used with Eq. 2.9 vyields

p :Pa(l -
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Measurement of Pressure

Gage pressure @ 1

Local atmospheric
pressure reference

Gage pressure @ 2
Absulu}:; TESSWE (suction or vacuum)
Absolute pressure
@2

Abszolute zero reference

B FIGURE 2.7 Graphical
representation of gage and absolute
pressure.




B FIGURE 2.8 Mercury barometer.

The measurement of atmospheric pressure is usually accomplished with a mercury barom-
efer, which in its simplest form consists of a glass tube closed at one end with the open end iun-
mersed in a container of mercury as shown in Fig. 2.8. The tube is initially filled with mercury
(inverted with its open end up) and then turned upside down (open end down). with the open end
in the container of mercury. The column of mercury will come to an equilibrium position where
its weight plus the force due to the vapor pressure (which develops in the space above the column)
balances the force due to the atmospheric pressure. Thus.

Pam = ?h + pvapnr {2'13)




[TV soromevic presswre

GIVEN A mountain lake has an average temperature of 10 °Cand  FIND  Determine the absolute pressure (in pascals) at the deepest
a maxumum depth of 40 m The barometric pressure 1s 598 mm Hg. part of the lake.

SoLuTION

The pressure m the lake at any depth, A, 1s given by the equation =~ From Table B.2, ¥z o = 9.804 kN/m’ at 10 °C and therefore
p=7vh+p P = (9.804 kN/m?)(40 m) + 79.5 kN/m’

— 2 2
where pj 1s the pressure at the surface. Since we want the absolute = 392kN/m" + 79.5 kN/m
pressure, p will be the local barometric pressure expressed in a = 472 kPa (abs) (Ans)
consistent system of umts; that 1s

COMMENT This simple example illustrates the need for

* — 598 mm = 0.598 m close attention to the units used m the calculation of pressure; that
VEe 1s, be sure to use a consistent unit system, and be careful not fo
and for yg, = 133 kN T’ add a pressure head (m) to a pressure (Pa).

Po = (0.598 m)(133 kN/m’) = 79.5 kN/m’




2.6.1 Piezometer Tube

Since manometers involve columns of fluids at rest, the fundamental equation describing
their use is Eq. 2.8

p=7h+p

Wl Figure 2.9 Piezometer tube.




2.6.2 U-Tube Manometer

M FIGURE 2.10 Simple U-tube manometer.




Forming the manometer tube in a U-shape as shown in Fig. 2.10 provides the option of introducing
a gauge fluid with a higher specific weight than the fluid in the container in which the pressure is
o be measuwed. The s, most obvious, capability added by the intoduction ol the U-shape with
a gauge fluid is the ability to measure the pressure ir a gas. Again, the pressure to be measured, p,,
is related to the column heights. A numerical value can be computed by repeated application of
Eq. 2.8. The following sequence of equations 1s generated by taking an imaginary “walk™ though
the mancmeter from p, to the open end, and repeatedly applying Eq. 2.8.

stepl:  p, = p. (same elevation)

step 2 2= py + vy = pa + nihy

step3: ps = pa

step i Pum = Pa T+ Y2(—h) = pa + nihy — 120

or
PA = Pam — ylhl =3 72’12

This process can be codified into a simple manometer rule by recalling the implicatians of Eq. 2.8:

I. Write the pressure at either end of the manometer;

2. Proceed through the manometer, adding yh if moving to a greater depth or subtracting yh if
moving to a lesser depth;
3. Step at the far end, or any point in between, and set the expression equal to the local pressure.

If you start to apply the manometer rule at the “far” end of the manometer, the equation you seek
is produced in a single line of work. For the manometer of Fig. 2.1(:

Patm " y‘ZhZ = Ylhl B T (2-14)




Thinking about this result quickly reveals two useful results. First, if the pressure to be measured is
In a gas, y» == y,, SO to a very good approximation: py = p... t y2h,, the same result as was
obtained for the piezometer. Second, we can adjust the sensitivity, and therefore the resolution and
range, of the pressure measurement device. Increasing the density of the gauge fluid allows practi-
cal measurement of much larger pressures but sacrifices resolution. Decreasing the density of the

gauge fluid limits the practical range of pressure measurement but increases the resolution. The
most common gauge fluids are water, mercury (SG = 13.6), and oil (SG = ().8).




The U-tube manometer is also widely used to measure the difference in pressure between two con-
tainers or two points in a given system. Consider a manometer connected between containers A and
B as is shown in Fig. 2.11. Application of the manometer rule produces an equation for the pressure
difference between the containers. Starting at py:

pe t vabhs + vl — yihy = pa
or
Pr — Pe = v3ls + vohs — iy

Carefully include units when replacing symbols with information provided in a problem statement
to help ensure a correct solution.

| Figure 2.11 Differential U-tube manometer.




EXAMPLE 2.4

GIVEN A closed tank contains compressed air and oil
(SG,; = 0.90) as is shown in Fig. E2.4. A U-tube manometer
using mercury (SGy, = 13.6) is connected to the tank as shown.
The column heights are h, = 36 in.. h; = 6in., and h; = 9 in.

FIND Determine the pressure reading (in psi) of the gage.

SOLUTION

Applying the manometer rule, starting at the open end of the
manometer:

Pam + 7th‘ = ?oﬂhl = ruilhl = PAhir

The hydrostatic variation of pressure within the air has been
neglected because its density is much smaller than that of either
liquid. Using our convention that, unless otherwise stated, pres-
sures will be gauge pressures:

Simple U-Tube Manometer

Pressure
gage

B Figure E2.4

Paic = 0 + (SGy) (ruo)hs + (SGu) (ruo)(—hy —hy)
b . 6 + 36
Piir = (62.4[(])1(13.6)( 12ll) = (0.9)( i “)vl
440 > 1 £t 3.06 psi (Ans)
Daic = 440~ — = 3.06 psi ns
Dax - 144 in” P i

COMMENTS Note that the air pressure is a function of the

height of the mercury in the manometer and the depth of the oil

(both in the tank and in the tube). It is not just the mercury in the
manometer that is important.

Assume that the gage pressure remains at 3.06 psi, but the
manometer is altered so that it contains only oil. That is. the
mercury is replaced by oil. A simple calculation shows that in this
case the vertical oil-filled tube would need to be Ji; = 11.3 ft tall,
rather than the original i; = 9 in. There is an obvious advantage
of using a heavy fluid such as mercury in manometers.




EXAMPLE 2.5

GIVEN As will be discussed in Chapter 3. the valume rate of
flow. O. through a pipe can be determined by means of a flow
nozzle located in the pipe as illustrated in Fig. E2.5a. The nozzle
creales a pressure drop. py — py, along the pipe thatis related to
the “low through the equation Q = K\/p_,\ — pp. where K is a
constant depending on the pipe and nozzle size. The pressure
drop is Irequently measured with a differential U-tube manom-
eter of the type illustrated.

SOLUTION

(a) Although the fluid in the pipe is moving, the [luids in the
columns of the manomeater are at rest so that the pressure varia-
tion in the manometer tubes is hydrostatic. Applying the manom-
eter rule, starting at A:

Pa — iy =y + p(hy 4 ) = py
or
A~ P = (1 (Ans)
COMMENT Itis to be noted that the only column height of
importance is the differential reading, h,. The differential
mazometer could be placed 0.5 or 5.0 m above the pipe (i, = 0.5m
or i, = 5.0 m). and the value of i, would remain the same.

(b) The specific value of the pressure drop for the data given is

Pa — P = (0.5m)(15.6 kN/m® — 9.80 kN/m?)
= 2.90 kPa (Ans)
COMMENT By repeating the calculations for manometer
fluids with differert specific weights. y,. the results shown in Fig.
E2.3b are obtained. Note that relatively small pressure differ-
ences can be measured if the manometer fluid has nearly the
same specific weight as the flowing fluid. It is the difference in
the specific weights. 7, — y,. that is important.
Hence, by rewriting the answeras it = (px — pu)/(r> — 11)
it is seen that even if the value of p, — py is small, the value of

U-Tube Manometer

FIND (a) Determine an equation for p, — py in terms of the
specific weight of the flowing fluid. 7,. the specific weight of the
gage fluid. 7. and the various heights indicated. (b) For
71 = 9.80kN/m?, y, = I56kN/m’, hy = 10m. and i, =

0.5 m. what is the value of the pressure drop, p, — pg?

d
_o_')—i_‘

A
Flow nozzie

M Figure E2.5a

fi; can be large enough to provide an accurate reading provided
the value of 7, — y, is also small.

(15.6 kN/m?, 2.90 kPa)

Nz2=M1

8 10 12 14 16
Yy, KN/m?

B Figure E2.5b




2.6.3 Inclined-Tube Manometer

To measure small pressure changes, a manometer of the type shown in Fig. 2.12 is frequently used.
One leg of the manometer is inclined at an angle @, and the differential reading €, is measured along
the inclired tube. The dirference in pressure p, — pg can be expressed as

Pa iy — ptasind — y3hy = py

Pa —Pp = rtasin@ + y3hy — phy




W Figure 2.12 Inclined-tube manometer.

where it is to be noted the pressure difference between points (1) and (2) is due to the vertical dis-
tance between the points, which can be expressed as €, sin €. Thus, for relatively small angles the

differential reading along the inclined tube can be made large even for small pressure differences.
The inclined-ttbe manometer is often used to measure small differences in gas pressures so that if
pipes A and B contain a gas, then

Ps — pg = 12f>sind

= "; " Sin’:; (2.16)
where the contributions of the gas columns /A, and ii; have been neglected. Equation 2.16 and the
figurc in the margin show that the differential reading €, (for a given pressure difference) of the
inclined-tube manometer can be increased over that obtained with a conventional U-tube manom-
eter by the factor 1/sin 6. Recall that sin @ — () as ¢ — 0.




Mechanical and Electronic Pressure-Measuring Devices

Manometers are widely used because they are simple, inexpensive, and reliable. However, they are
limited in range, respond relatively slowly, are unsuitable for environments that might result in loss
of gauge fluid, and are not easily interfaced with automated data acquisition systems. To overcome
some of these problems numerous other types of pressure-measuring instruments have been devel-
oped. Most of these make use of the idea that when a pressure acts on an elastic structure the struc-
ture will deform, and this deformation can be related to the magnitude of the pressure. Probably the
most familiar device of this kind is the Bourdon pressure gage.




2.7

Mechanical and Electronic Pressure-Measuring Devices

(0}
Photographs courtesy of Weiss Instruments, Inc.

™~Bourdon C-tubs

Core

Mounting







Hydrostatic Force on a Plane Surface

When a surface 1s submerged in a fluid, forces develop on the surface due to the fluid. The deter-
mination of these forces is important in the design of storage tanks, ships, dams, and other hydrau-
lic structures. For fluids at rest we know that the force must be perpendicular to the surface since
there are no shearing stresses present. We also know that the pressure will vary linearly with depth
as shown in Fig. 2.16 if the fluid is incompressible. For a horizontal surface, such as the bottom of
a liquid-filled tank (Fig. 2.16a), the magnitude of the resultant force is simply F = pA, where p is
the uniform pressure on the bottom and A is the area of the bottom. For the open tank shown,
p = yh. Note that if atmospheric pressure acts on both sides of the bottom, as is illustrated, the
resultant force on the bottom is simply due to the liquid in the tank. Since the pressure is constant
and uniformly distributed over the bottom, the resultant force acts through the centroid of the area
as shown in Fig. 2.16a. As shown in Fig. 2,.16b, the pressure on the ends of the tank is not uni-
formly distributed. Determination of the force due to hydrostatic pressure on the tank ends is more
challenging because the pressure is not constant, the ends may not be rectangular plates, and in
gencral they may not be vertical.




Free surface Free surface
] {) = 0 \ s il ] /l = 0 \
, Ny

Specific weight =y Specific weight = ¢

R /[’= vh

AT ,,

-
SN e Z\ gt
() Pressure on tank bottom

W Figure 2.16 (a) Pressure distribution and resultant hydrostatic force on the bottom of an open
tank. () Pressure distribution on the ends of an open tank.

Fp= fyhr_m = [;{v sin @ dA
A A

h

il
3

(b) Pressure on tank ends




Free surface

=5 e

(TR e e e
) = - ——

Location of
resultant force
(center of pressure, CP)

B Figure 2.17 Notation for hydrostatic force on an inclined plane surface of
arbitrary shape.




where h = y sin 0. For constant y and ¢

Fp=y7sin 0/ v dA (2.17)

A

The integral appearing in Eq. 2.17 1s the first moment of the area with respect to the x axis, so we

can write
/ vdA =y A
A

where y, is the y coordinate of the centroid of area A measured from the x axis, which passes
through (. Equation 2.17 can thus be written as

Fp = yAy, sin @

or more simply as

Fp=17rh A (2.18)

where, as shown by the figure in the margin, A, is the vertical distance from the fluid surface to
the centroid of the area. As indicated by the figure in the margin, it depends only on the spe-
cific weight of the fluid, the total area, and the depth of the centroid of the area below the sur-
face. In effect, Eq. 2.18 indicates that the magnitude of the resultant force is equal to the pres-
sure at the centroid of the area multiplied by the total area. Since all the differential forces that
were summed to obtain Fj are perpendicular 1o the surface, the resultant F must also be per-
pendicular to the surface.




Fove = fde= fysino_v?dA

A A

/ yEdA
b,

and, noting that F = yAy, sin 0,

Vg
YA

The integral in the numerator is the second moment of the area (moment of inertia), I, with respect
to an axis formed by the intersection of the plane containing the surface and the free surface (x axis).
Thus, we can write

[

v =

Yr y A

Use can now be made of the parallel axis theorem to express /, as
L= L+ Ay

where /. is the second moment of the area with respect to an axis passing through its centroid and
parallel to the x axis. Thus,

(2.19)




The x coordinate, xg, for the resultant force can be determined in a similar manner by sum-

ming moments about the y axis. Thus,

Fpxp = / y sin @ xy dA

A

/‘ xy dA I,

— , pE——
Xp — =

YA yA

and, therefore,

where 1, is the product of inertia with respect to the x and y axes. Again, using the parallel axis
theorem,' we can write

(2.20)



(a) Rectangle () Circle

TR®

A= —/—

2

1, =0.10e8R" AR 3 L. = %‘-‘23(/» - 2d)

T ! = 0.3927R"
‘E-—-& 1, =0.3927

bl
R =~ R

(¢) Semicircle

I, =1, =0.05488R"

I, =-0.01647R*

(¢) Quarter circle

I Figure 2,18 Geometric properties of some common shapes.




EXAMPLE 2.6 Hydrostatic Force on a Plane Circular Surface

GIVEN The 4-m-diameter circular gate of Fig. E2.6a is
located in the inclined wall of a large reservoir containing water
(y = 9.80 kN/m?). The gate is mounted on a shaft along its
horizontal diameter, and the water depth is 10 m at the shaft.

FIND Determine
(a) the magnitude and location of the resultant force exerted on
the gate by the water and

(b) the moment that would have to be applied to the shaft to
open the gate.

SOLUTION /7 :
(a) To find the magnitude of the force of the water we can apply ‘A Center of
Eq. 2.18, pressure
(@)
Fg=vh.A i

and since the vertical distance from the {luid surface to the cen-
troid of the area is 10 m. it follows that

Il

(9.80 X 10° N/m")(10 m) (47 m?)
1230 X 10° N = 1.23 MN (Ans)

F
i B Figure E2.6a-¢

To locate the point (center of pressure) through which F acts,
we use Egs. 2,19 and 2.20,




I-".‘"’ ,A't
X = T X, IR= + ¥,
/ YA
For the coordinate system shown, x, = 0 since the area is sym-
metric about the y-axis, and the center of pressure must lie along
the diameter A-A. To obtain yg. we have from Fig. 2.18
R’

I.l( == 4-

and y, is shown in Fig. E2.6b. Thus,

(7/4)(2 m)* 10 m
Vo = - - -
5 8 m/sin 60°)(4xr m*)  sin 60°
=0.0866m + 11.55m = 11.6 m

and the distance (along the gate) below the shaft to the center of
pressure is

yr — ¥, = 0.0866 m (Ans)

We can conclude from this analysis that the force on the gate due
to the water has a magnitude of 1.23 MN and acts through a point
along its diameter A-A at a distance of 0.0866 m (along the gate)
below the shaft. The force is perpendicular to the gate surface as
shown in Fig. E2.6b.

COMMENT By repeating the calculations for various values
of the depth to the centroid, h,. the results shown in Fig. E2 6d
are obtained. Note that as the depth increases, the distance
between the center of pressure and the centroid decreases.

(b) The moment required to open the gate can be obtained with
the aid of the free-body diagram of Fig. E2.6¢. In this diagram
W is the weight of the gate and O, and O, are the horizontal
and vertical reactions of the shaft on the gate. We can now sum
moments about the shaft

M =0

and, therefore,
M= Fe(yz — ¥.)
= (1230 X 10" N)(0.0866 m)
= 1.07 X 10°N - m (Ans)

0.5

S
w

Ye— Y M

o
[N

(10m, 0.0886 m)

0 5 10 15 20 25 30
h,m

B Figure E2.6d
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Pressure Prism

An informative and useful graphical interpretation can be made for the force developed by a fluid
acting on a plane rectangular area. Consider the pressure distribution along a vertical wall of a tank
of constant width b, which contains a liquid having a specific weight y. Since the pressure must vary
linearly with depth, we can represent the variation as is shown in Fig. 2.19a, where the pressure is
equal to zero at the upper surface and equal to yh at the bottom. It is apparent from this diagram
that the average pressure occurs at the depth //2 and, therefore, the resultant force acting on the
rectangular area A = bh is

| h
Fr = volume = 5 (7h)(bh) = y(_))A

where bh is the arca of the rectangular surface, A.




Fp=F + F,

where the components can readily be determined by inspection for rectangular surfaces. The loca-
tion of F can be determined by summing moments about some convenient axis, such as one pass-
ing through A. In this instance

Feya = Fiyy + Fyy;

and y; and y, can be determined by inspection.

B Figure 2.12 Pressure
prism for vertical rectangular
area.




B Figure 2.20 Graphical
representation of hydrostatic

forces on a vertical rectangular
surface.




I Figure 2.22 Effect of atmospheric pressure on the resultant force acting
on a plane vertical wall.

I Figure 2.21 Pressure variation along an
inclined plane area.




EXAMPLE 2.8 Use of the Pressure Prism Concept

GIVEN A pressurized tank contains oil (SG = 0.90) and has
a square, 0.6-m by 0.6-m plate bolted to its side, as is illustrated
in Fig. E2.8a. The pressure gage on the top of the tank reads
50 kPa, and the outside of the tank is at atmospheric pressure.

p = 50 kPa

Qil 2m
| —
o_6 oSy Y
W oo
Jo o of e = |
e =y

\—// vihy - hy)

(a)

B Figure E2.8

FIND What is the magnitude and location of the resultant force
on the attached plate?

/Onl surface

N\




SOLUTION

The pressure distribution acting on the inside surface of the
plate is shown in Fig. E2.8h. The pressure at a given point on
the plate is due to the air pressure, p,, at the oil surface and the
pressure due to the oil, which varies linearly with depth as is
shown in the figure. The resultant force on the plate (having an
area A) is due to the components, F, and F,, where £, and F, are
due to the rectangular and triangular portions of the pressure
distribution. respectively. Thus,

F,= (p, +yh) A
= [50 X 10°N/m’
+ (0.90)(9.81 X 10° N/m") (2 m)](0.36 m*)
= 244 X 10°N

or

(244 X 10°N)(0.3 m) + (0.954 X 10°N)(0.2 m)
254 X 10°N

Yo

= (.296 m (Ans)

Thus. the force acts at a distance of 0.296 m above the bottom of
the plate along the vertical axis of symmeltry.

and

~
7
Il

_ h, — h,
- o)

0.6
(0.90)(9.81 x 10‘N/m‘)( =

e

|

m) (0.36 m*)

If

0.954 X 10'N
The magnitude of the resultant force, Fyg, is therefore
Fg=F, +F, =254 X 10N =254kN  (Ans)

The vertical location of Fy can be obtained by summing
moments around an axis through point O so that

Feyo = Fi(0.3m) + F5(0.2 m)

COMMENT Note that the air pressure used in the calculation
of the force was gage pressure. Atmospheric pressure does not
affect the resultant force (magnitude or location), since it acts on
both sides of the plate, thereby canceling its effect.

AN



Hydrostatic Force on a Curved Surface

The equations developed in Section 2.8 for the magnitude and location of the resultant force acting
on a submerged surface only apply to plane surfaces. However, many surfaces of interest (such as
those associated with dams, pipes, and tanks) are nonplanar. The domed bottom of the beverage
bottle shown in the figure in the margin shows a typical curved surface example. Although the
resultant fluid force can be determined by integration, as was done for the plane surfaces, this is
generally a rather tedious process and no simple, general formulas can be developed. As an alterna-
tive approach, we will consider the equilibrium of the fluid volume enclosed by the curved surface
of interest and the horizontal and vertical projections of this surface.

Fo=NFP+FY &

()

()
Bl Figure 2.23 Hydrostatic force on a curved surface. (Photograph courtesy of Intex Marketing, L.td.)




In order for this force sysiem to be in equilibrium, the horizontal component Fy must be equal
in magnitude and collinear with F>, and the vertical component Fy equal in magnitude and collinear
with the resultant of the vertical forces F, and W, This follows since the three forces acting on the
fluid mass (F,, the resultant of F, and W', and the resultant force that the tank exerts on the mass)
must form a concurrent force system. That is, from the principles of statics, it is known that when
a body is held in equilibrium by three nonparallel forces. they must be concurrent (their lines of
action intersect at a common point) and coplanar. Thus,

By=r
Fv=F, +W

and the magnitude of the resultant is obtained from the equation

Fe= V(F)? + (Fy)?
The resultant F, passes through the point O, which can be located by summing moments about an
appropriate axis. The resultant force of the fluid acting on the curved surface BC is equal and oppo-

site in direction to that obtained from the free-body diagram of Fig. 2.23¢. The desired fluid force
is shown in Fig. 2.23d.

/



GIVEN A 6-ft-diameter drainage conduit of the type shown in
Fig. E2.9a 1s half full of water at rest, as shown in Fig. E2.95.

_EXAMPLE pA'E Hydrostatic Pressure Force on a Curved Surface

FIND Determine the magnitude and line of action of the resul-
tant force that the water exerts on a 1-ft length of the curved sec-
tion BC of the conduit wall.

(a) (B)

(d)

M FIGURE E2.292 (Photograph courtesy of CONTECH Construction Products, Inc.)

NN e




SoLuTION

We first isolate a volume of fluid bounded by the curved section
BC. the horizontal surface AB. and the vertical surface AC. as
shown in Fig. E2.9¢. The volume has a length of 1 fi. The forces
acting on the volume are the horizontal force. F;. which acts on
the vertical surface AC, the weight, W, of the fluid contamned
within the volume, and the horizontal and vertical components of
the force of the conduit wall on the fluid, Fyand Fp. respectively.
The magnitude of F; 1s found from the equation

Fy = yhA = (6241b/fF)3 f)(3 ft%) = 281 Ib

and this force acts 1 ft above C as shown. The weight W = y¥,
where ¥ is the fluid volume, 1s

W = y¥ = (62.41b/f) (9m/4 fi%) (1 ft) = 441 Ib

and acts through the center of gravity of the mass of fluid. which
according to Fig. 2.18 is located 1.27 ft to the right of AC as
shown. Therefore, to satisfy equilibrium

Fy=F,=2811Ib Fpr="W =4411b
and the magnitude of the resultant force is
Fr= V(Fg)’ + (Fy)
= V(281 1b)2 + (441 Ib)2 = 523 Ib

(Ans)

The force the water exerts on the conduit wall is equal. but oppe-
site in direction, to the forces Fyand Fy shown i Fig. E2.9¢.
Thus, the resultant force on rhe conduit wall is shown in
Fig. E2.9d. This force acts through the point O at the angle shown.




235 The rigid gate, OAB, of Fig. P2.35 is hinged at O and rests
against a rigid support at B. What minimum horizontal force, P,
1s required to hold the gate closed if its width 1s 3 m? Neglect the
weight of the gate and friction in the hinge. The back of the gate is
exposed to the atmosphere.

Open to atmosphere

B Figure P2.35




F; = ‘Y/’c,A/ Where h‘l * Som
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h = [qi,’oo‘%, )[5"“)(‘:‘0" X3m)
= 588 x10°%N
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245 A tank wall has the shape shown in Fig. P2.45. Determine the
horizontal and vertical components of the force of the water on a
4-ft length of the curved section AB.

6ft

B -

B Figure P2.45




f= ch, A
:(‘z‘yﬁ: )(’5;£)("Ct"q‘;t) volume = ¥
= 2‘2)5‘00 b

F= Y4, A

= (e2u 2, V(e 4e)(etent £2)
= 27,000 [,

W= ¥V = (‘1"_;!':; )(-%)(F)@Ft}l@'ﬁt)
= 7060 |b

For ezd:/:'br/’um,
ZF =0
So 77147"

F,=F = 2250 [b <— on tank

and

FT/:- 6-%’:’27,'000 b= Tosoly = /9900, 'To.. fank




2.11 Buoyancy, Flotation, and Stability

2.11.1 Archimedes’ Principle

When a stationary body is completely submerged in a fluid (such as the hot air balloon shown in
the figure in the margin), or floating so that it is only partially submerged. the resultant fluid force
acting on the body is called the buoyant force. A net upward vertical force results because pres-
sure increases with depth and the pressure forces acting from below are larger than the pressure
forces acting from above. This force can be determined through an approach similar to that used
in the previous section for forces on curved surfaces. Consider a body of arbitrary shape. having
a volume #. that is immersed in a fluid as illustrated in Fig. 2.24a. We enclose the body in a par-
allelepiped and draw a free-body diagram of the parallelepiped with the body removed as shown
in Fig. 2.24b. Note that the forces F,. F,. F;. and F, are simply the forces exerted on the plane
surfaces of the parallelepiped (for simplicity the forces in the x direction are not shown), " is the
weight of the shaded fluid volume (parallelepiped minus body), and Fj is the force the body is
exerting on the fluid. The forces on the vertical surfaces, such as F; and F,. are all equal and can-
cel. so the equilibrium equation of interest is in the z direction and can be expressed as

Fa=F,—F —W (2.21)
If the specific weight of the fluid is constant. then
Fy = Fy = y(hy — )4

where A is the horizontal area of the upper (or lower) surface of the parallelepiped. and Eq. 2.21
can be written as

Fg = y(hy — h)d — y[(hy — h)d — #]

Simplifying. we arrive at the desired expression for the buoyant force

FE:T'V'




Centroid
of displaced
volume

B FIGURE 2.24 Buoyant force on submerged and floating hodies.




The location of the line of action of the buoyant force can be determined by summing moments
of the forces shown on the free-body diagram in Fig. 2.24) with respect to some convenient axis. For
example. summing moments about an axis perpendicular to the paper through pomt D we have

F gV, = FE vy — FL‘-I'"‘I o H“ll

and on substitution for the various forces

Fv. = Fpy, — (Fr— F)n, (2.23)

where #; is the total volume (h, — /1)4. The right-hand side of Eq. 2.23 is the first
moment of the displaced volume # with respect to the x— plane so that v, 1s equal to the v co-
ordinate of the centroid of the volume #. In a similar fashion it can be shown that the x coordi-
nate of the buoyant force coincides with the x coordinate of the centroid. Thus. we conclude that
the buwovant force passes through the centroid of the displaced volume as shown in Fig. 2.24¢.
The point through which the buoyant force acts is called the center of buoyancy.




EXAMPLE 2.10

GIVEN A Type [ offshare Tife jacket (personal flotation device)
of the type worn by cemmercial fishermen is shown in Fig. E2.10a.
Itis designed for extended survival in rough, open water. According
tc U.S, Coast Guard regulations, the life jacket must provide a

FIND Determine tie minimum volume of foam needed for this
life jacket.

SOLUTION

A free-bady diagran of the life jacket s shown in Fig. E2.106,
where [z 1 the buovant force acting on the Life jackel, "Wy 1s the
weight of tie foam, W = 1.2 b is the weight of the remaining
material, and Fp, = 22 Ib 18 the required force on the user. For
equilibrivun it follows thar

Fy= Wyt Wit Fy (1)

where from Eq. 2.22

l"}l = Ywater ¥

Here 7.0 = 640 11 is the specific weight of seawater and

¥V is the volume of the foam. Also Wi = Ve V. where
Youm = 2006/t is the specifc weight of the foam. Thus, from
Eq. |

Buoyant Force on a Submerged Object

rinimum 22-1b net spward force on the user. Consider such a life
jacker that uses a foam materizl with a specific weight of 2.0 Th/ft?
for the main fotati>a material. The remoining matertal (cloth,
sraps, fasteners, ete, weighs 1.3 b and ‘s of neglizible volume.

@ Figure E2.10a




Fy

Vr{‘,
B Figure =2.10b

r‘h_ﬂ‘l “' T 7-\!1" p’

Ws + Fy

"’ - (u"\' t Fl"’".v‘-nlw— r yf-_.-;j
= (1.301F + 221h,/(64.0 IE/fE — 2.0 IWftY
= 0376 1 {Ans)

COMMENTS [ this example, rather than using diffaicult-to-
calculate hydrostatic pressure force on e wregulardy shaped life
jacket, we have used the buovant force. The net effect of the pres-
ane forces on the sudace of tae life jacket 1s equal to the vpward
tuovant force. Do not mclude both the buoyant force and the hydro-
datic pressure effects in yoar caleulations—use one or the other.

There 15 more 10 the prope: design of a life jacket than just the
valume nezded for the reguirsd buoyancy. According to regula-
tons. a Tyoe [ life jacket must also be designed so that it provides
proper praection to the user By turning an unconscions pesson in
the water lo a face-up position as shown in Fig. E2.1Da. This
ivolves the concept of the stability of a floating object (see
Section 2.11.2) The life jacket should also provide minimum
niterference under crdinary working conditions so0 as to encour-
age its use by commrercial fishermen.




250 A I-m-diameter cylindrical mass, M, is connected to a
2-m-wide rectangular gate as shown in Fig.2.50. The gate is to
open when the water level, A, drops below 2.5 m. Determine the
required value for M. Neglect friction at the gate hinge and the

pulley.

B Figure P2.50

F=¥4 A

- ¥R R 0)

= ¥4
Where all lenaths are 1w m .
For egu?l;'bm’um)

Z M, =0
so Thet




3

<(3)R - ¥ 2
ane . o
TTf‘

—_

=0

Ry The tylindrical mass ZF

vevhedd
T:Ms—FrMa chn

Th ¥
Ty T ¥%w ¥y (m))(44)

3
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2.11.2 Stability

Another interesting and important problem associated with submerged or floating bodies 1s con-
cerned with the stability of the bodies. As illustrated by the figure in the margin. a body is said to
be in a stable equilibrium position if, when displaced. it returns to its equilibrium position. Con-
versely, it is in an wnstable equilibrium position if. when displaced (even slightly). it moves to a
new equilibrium position. Stability considerations are particularly important for submerged or float-
ing bodies since the centers of buoyancy and gravity do not necessarily coincide. A small rotation
can result in either a restoring or overturning couple. For example. for the completely submerged
body shown n Fig. 2.25. which has a center of gravity below the center of buoyancy. a rotation
from its equilibrium position will create a restoring couple formed by the weight, . and the buoy-
ant force. Fz. which causes the body to rotate back to its original position. Thus. for this configu-
ration the body 1s stable. It is to be noted that as long as the center of gravity falls below the cen-
ter of buoyancy. this will always be true: that is. the body 1s 1n a stable equilibrium position with
respect to small rotations. However. as is illustrated in Fig. 2.26. if the center of gravity of the
completely submerged body 1s above the center of buoyancy. the resulting couple formed by the
weight and the buoyant force will cause the body to overturn and move to a new equilibrium po-
sition. Thus. a completely submerged body with its center of gravity above its center of buoyancy
is in an unstable equilibrium position.




Unstable

The stability of a
body can be deter-
mined by consider-
ing what happens
when it is displaced
[from its equilibrium
position.

Restoring
couple
Stable
BFIGURE 2.25
Stability of a completely immersed
bodv—-center of gravity below
centroid.

!
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Owverturning

couple
Unstable

BFIGURE 2.26
Stability of a completely immersed
hodv—center of gravity above
centroid.




¢ = centroid of original ¢"= centroid of new Restoring
displaced volume displaced volume couple

Stable
B FIGURE 2.27 Stability of a floating body—stahle configuration.

c
¢ = centroid of original ¢'= centroid of new Owerturning

displaced volume displaced volume couple B FIGURE 2.28 Stahility of a
Unstable floating bodv—unstable configuration.




2.12 Pressure Variation in a Fluid with Rigid-Body Motion

Although 1n this chapter we have been primarily concemed with fluids at rest. the general equa-
E' - B [ =
tion of motion (Eq. 2.2)

—Vp — '}-'f:= pa

was developed for both fluids at rest and fluids in motion, with the only stipulation being that there
were no shearing stresses present. Equation 2.2 in component form. based on rectangular coordi-
nates with the positive = axis being vertically upward. can be expressed as
op dp _
—— = pa, —— =¥ + pa. (2.24)
v : 0z
A general class of problems mmwvolving fluid motion in which there are no shearing stresses
occurs when a mass of fluid undergoes rigid-body motion. For example. if a container of fhud ac-
celerates along a straight path. the fluid will move as a rigid mass (after the initial sloshing mo-
tion has died out) with each particle having the same acceleration. Since there is no deformation,




2.12.1 Linear Motion

We first consider an open container of a liquud that 1s translating along a straight path with a constant
acceleration a as illustrated in Fig. 2.29. Since a, = 0. it follows from the first of Eqs. 2.24 that the
pressure gradient in the x direction is zero (dp/dx = 0). In the » and = directions

)
'_p = —pay, (2.25)

dp
o= Plgta) (2.26)
The change in pressure between two closely spaced points located at v. z. and v + dv. - + dz can

be expressed as

d 3y
dp = ,ﬁafv+£dz

v dz
or in terms of the results from Eqs. 2.25 and 2.26
dp = —pa,dv — p(g + a.)dz (2.27)
Along a line of constant pressure. dp = 0. and therefore from Eq. 2.27 it follows that the slope of
this line 1s given by the relationship
e 5 (2.28)
dv g+ a. )

This relationship 1s illustrated by the figure in the margin. Along a free surface the pressure is con-
stant, so that for the accelerating mass shown in Fig. 2.29 the free surface will be inclined if @, # 0.
In addition. all lines of constant pressure will be parallel to the free surface as illustrated.




Free surface
slope = dz/dy

—— P1 Constant
| P2 pressure
P3  lines

B FIGURE 2.29 Linear acceleration of a liquid with a free surface.

For the special circumstance in which a, = 0. a. # 0. which corresponds to the mass of
fluid accelerating in the vertical direction. Eq. 2.28 indicates that the fluid surface will be hor-
izontal. However. from Eq. 2.26 we see that the pressure distribution is not hydrostatic. but is
given by the equation

d,

= —plg +a)

For fluids of constant density this equation shows that the pressure will vary linearly with depth.
but the variation 1s due to the combined effects of gravity and the externally induced acceleration.
plg + a.). rather than simply the specific weight pg. Thus, for example. the pressure along the bot-
tom of a liquid-filled tank which is resting on the floor of an elevator that is accelerating upward
will be increased over that which exists when the tank is at rest (or moving with a constant veloc-
ity). It is to be noted that for a freelv falling fluid mass (a. = —g). the pressure gradients in all
three coordinate directions are zero. which means that if the pressure surrounding the mass 1s zero.




_EXAM R AR RN Pressure Variation in an Accelerating Tank

GIVEN The cross section for the fuel tank of an experimental a, Vent
vehicle 1s shown in Fig. E2.11. The rectangular tank is vented to | ,{ _
the atmosphere and the specific gravity of the fuel is SG = 0.65. -
A pressure transducer 1s located in its side as illustrated. During —_— 7
testing of the vehicle, the tank is subjected to a constant linearac- | | e v A
celeration, a,. D D I =51 0 ; "
w F I T "

. . -————— u_e ——————— - ::I N
FIND (a) Determine an expression that relates a, and the pres- (2) W] P
sure (in Ib/ft?) at the transducer. (b) What is the maximum acceler- Csiles
;tlon r:11_at can occur before the fuel level drops below the trans- 0.75 # 0.75 #

ucer?
BFIGURE Ez21




SoLuUTION

(a) For a constant horizontal acceleration the fuel will move as
a rigid body. and from Eq. 2.28 the slope of the fuel surface can
be expressed as

since @, = 0. Thus, for some arbitrary a,. the change in depth. z;. of
liquid on the right side of the tank can be found from the equation

or

21 = (0.75 ﬂ)(%)

Since there 1s no acceleration in the vertical, z, direction, the
pressure along the wall varies hydrostatically as shown by Eq.
2.26. Thus, the pressure at the transducer 1s given by the rela-
tionship

p="Yh

where h is the depth of fuel above the transducer. and therefore

p = (0.65)(62.4 Ib/)[0.5 ft — (0.75 f)(a,/g)]

G"‘;
=203 — 304— (Amns)
g

for z; = 0.5 ft. As written. p would be given in Ib/ft>.

(b) The limiting value for () (When the fuel level reaches
the transducer) can be found from the equation

=

0.5 ft = (0.75 ft) [

or
2
~£

(ﬂ y)max =

and for standard acceleration of gravity

(@)max = 5(32.2 ft/5%) = 21.5 fi/s? (Ans)

COMMENT Note that the pressure in horizontal layers is not
constant in this example since dp/dy = —pa, # 0. Thus. for exam-

ple. p1 # po.

N\




2.12.2 Rigid-Body Rotation

After an initial “start-up” transient, a fluid contained in a tank that rotates with a constant angular
velocity @ about an axis as 1s shown in Fig. 2.30 will rotate with the tank as a rigid body. It is
known from elementary particle dynamics that the acceleration of a fluid particle located at a dis-
tance 7 from the axis of rotation is equal in magnitude to 7w’, and the direction of the acceleration
1s toward the axis of rotation. as is illustrated in the figure. Since the paths of the fluid particles
are circular. 1t 1s convenient to use cylindrical polar coordinates 7. 8. and -. defined in the insert in
Fig. 2.30. It will be shown in Chapter 6 that in terms of cylindrical coordinates the pressure gra-
dient Vp can be expressed as

_dp 1dp ap

Vp=—e¢ +——¢, + —¢
R TR AT

(2.29)
Thus, in terms of this coordinate system
a, = —1w” e, a, = 0

and from Eq. 2.2

dp 0 dp
i) 0z

—y (2.30)

These results show that for this type of rigid-body rotation. the pressure is a function of two vari-
ables 7 and z. and therefore the differential pressure is

dp = pre* dr — y d-




On a horizontal plane (dz = 0). it follows from Eq. 2.31 that dp/drr = pwr. which is greater than
zero. Hence. as illustrated in the figure in the margin. because of centrifugal acceleration. the pres-
sure increases in the radial direction.

Along a surface of constant pressure. such as the free surface. dp = 0. so that from Eq. 2.31

(using y = pg)

dz  re?

ar g
Integration of this result gives the equation for surfaces of constant pressure as

mEF,Z

7= + constant
2g

Axis of
rotation

\Vﬁ/

(&)
B FIGURE 2.20 Rigid-body rotation of a liguid in a tank. (Photograph courtesv of Geno Pawlak.)




R a
Constant #2 X
pressure
lines 3
N

/ BFIGURE 2.31 Pressure
T distribution in a rotating liquid.

This equation reveals that these surfaces of constant pressure are parabolic. as illustrated in Fig. 2.31.
Integration of Eq. 2.31 yields

[d;?:pmz[rdr—y[df

2

pmzr
— ¥Z + constant

P:2




_E)(AM A3 PR Free Surface Shape of Liquid in a Rotating Tank

GIVEN It has been suggested that the angular velocity. w. of a
rotating body or shaft can be measured by attaching an open
cylinder of liquid. as shown in Fig. E2.12a. and measuring with
some fype of depth gage the change in the flmd level. H — hy,
caused by the rotation of the flnd.

FIND Determine the relationship between this change in fluid
level and the angular velocity.

SoLuUTION

The height. h. of the free surface above the tank bottom can be de-
termined from Eq. 2.32, and it follows that

o
w2?.‘

b=

+ hy

The mitial volume of fluid in the tank, ¥ is equal to

¥, = wR'H

The volume of the fluid with the rotating tank can be found with
the aid of the differential element shown m Fig. E2.12b. This
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(a)

BFIGURE E2.12

N

cylindrical shell is taken at some arbitrary radius. r, and its vol-
ume 1s

d¥ = 2mrh dr




The total volume is. therefore,

R

‘wh? " 7w R* \
r + hy | dr = + wRhy
b ,

2g 4g

Since the volume of the fluid in the tank must remain constant (as-
suming that none spills over the top). it follows that

- ww'R*
mR°H =
4g

(Ans)

COMMENT This is the relationship we were looking for. Tt
shows that the change in depth could indeed be used to determine
the rotational speed., although the relationship between the
change in depth and speed is not a linear one.




2.24%  An open rectangular tank 1 m wide and
2 m long contains gasoline to a depth of 1 m. If
the height of the tank sides is 1.5 m, what is the
maximum horizontal acceleration (along the long
axis of the tank) that can develop before the gas-
oline would begin to spili?

(see figure).

Since,

dz

e S



So 77f¢i |
(Gy)

&L

= - (~os0)(7512 ) = 49

(A/m‘c.‘ Aeceleration could be either +o the right or the left, )




Table .1 Centre of Gravity and Moment of Inertia for some typical shapes

Shape CG I. Lnse
Triangle, side b height h and base hi3 bh2/36 bh312
zero of x axis
Triangle, side b height & and 2h/a bh3/36 bh312
vertex zero of x axs
Rectangle of width & and depth D D2 bD%12 bD3/3
Circle D2 n D464 -
cemicirele with diameter horizontal 2003 n - n D128
and zero of x axis
Quadrant of a circle, one radius 4 REB n - n R416
horizontal
Ellipse : area mbh/4 Major axis 15 hi2 n bh3/64 -

b, horizontal and minor axis i1s A

oenm ellipse with major axis 2hi3 w - n bh3/128
as horizontal and x =0

Parabola (half) area 2bh/3 Ne= 3h/5 - 2bheIT

(from vertex as zero)

x = 3b/8

N\




SUMMARY OF CHAPTER 2

Pressure gradient in a stationary fluid

Pressure variation in a stationary incompressible fluid

Hydrostatic force on a plane surface

Location of hydrostatic force on a plane surface

Buoyant force

ap dp dp

(2.4)

2.7
(2.18)

(2.19)

(2.20)

(2.22)

Pressure gradient in rigid-body motion ——— = pa,. T PY. =Y + pa. (2.24)

ax v il

Pressure gradient in rigid-body rotation — = prw., - =

dp
dr li) iz

0. —y

(2.30)




