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Learning Objectives

Learning Objectives

After completing this chapter, you should be able 1o

discuss the application of Newton's second law to fluid flows.
explain the development, uses, and limitations of the Bernoulli equation.

use the Bernoulli equation (siand-alone or in combination with the simple continaity
cquation) to solve flow problems.

apply the concepts o7 static, stagnation, dynamic, and total pressures.
caleulate various flow properties using the energy and hydraulic grade lines.




3.1 Newton's Second Law

Consider a really tiny volume of fluid, which is st 1l laree enough th contair a significant number
of molecules. This volume is called a fluic particle (with further description ‘n Section 4.1). As the
fluid perticle moves from one location to another, it usually experiences an acceleraion or dzcel-
eration, According to Newton’s second law of mation, the net force acting on the fluid particle
under consideration mus: equal 18 mass times 1ts acceleration,

F = ma

With the assumption of inviscid (or frictionless) flow. the fluid molion is gcverned by pres-
sure and gravity forces only, and Newton's second law as it applies to a flaid partiele 18

(Net pressure force on particle) — (net gravity force on particle) =
(particle mass) X (particle acceleration)

The results of the interaction between the pressure, gravity. and acceleration provide numercus use-
ful applicatioas in fluid mechanics.




In this chapter we will be concemed with two-dimensional motion like that confined to the
x-z planc as is shown in Fig. 3.la. Clearly we could choosc to describe the flow in terms of the
components of acceleration and forces in the x and z coodinate directions. The resulting equations
are frequently referred to as a iwo-dimensional form ol te Euxler equations of motion in reztangu-
lar Cartesian coordinates. This approach will be discussed in Chapter 6.

For steady flows each particle slides aloag its path, and ‘s velocity vector is everywhere
tangent to the path. The lines that are tangent te the velecity vectors throughout the flow feld are
called stream!ines. For many situations it is easiest to describe the flow in terms of “he “streamline”
coordinates based on the streamlings as are illustrated in Fig. 3. 15, The particle motion is described
in terms of its distance, 5 = s(¢), along the streamline ffom sonx converient origin and the local
radius of curvature of the streamline, & = (s). ' '

Streamlines

i)

I Figure 3.1 (a) Flow [n the x-z plane. () Flow in terms of straamiline and normal coordinates.




Sircamwise acceleration results from two facts. First the speed of the particle may change
with time at a point, V(0. Since we are limiting oarselves to sieady flow, we will ignore velocity
changes with time. (More information is in Sectior 3.8.2.) Second, the speec of the particle gener-
ally varies along the streamline, V(s). For example, in Fig. 3.1a the speed may be 5C f1/s at point
(1)and 100 f1/s at point (2). Thus, by use of the c¢hain rule of differentiation, the s component of
the acceleration is given by a, = dV/dr = (dV/ods)(ds/dt) = (dV/ds)V. We rave useld the fact thal
speed is the time rate of change o distance, V = ds/dr. Note that the streamwise acce eration is the
product of the rate of change of speed with distance along the streamline, dV/ds, and the speed, V.
Since dV/as can be positive, negative, or zero, the soreamwise acceleration can, therefore, be posi-
tive (acceleration), negative (deccleration), or zero (constant speed).

The normal compenent of acceleraton, the centrifugal acceleration, is given ir terms of the
particle speed and the radius of carvature of its path. Thus, ¢, = V*/9. where both v and 72 may
vary along the sireamline. These equations for the ecceleration should be familiar from the study of
particle motion in physics (Ref’. 2] or dynamics (Re™. 1). A more complete derivation and discussion
of these topics can be found in Chapter 4.

Thus, the (steady flow) components of acceeration in the s and n directions, ¢, and «,. are
given by

(3.1)






F = ma along a Streamline

Consider the small Tuid particle of size 8y by 6n in the plane 07 the figure and ¢y norma (o the
figure as shown in the free-body diagram of Fig. 3.3. Unit vectors along and normal to the stream-
line are denoted by § and n, respectively. For steady flow, the component of Newmn’s second law
along the streamline direction, s, can be written as

V aVv
2 oF, = oma, =SmV %: =pdVV—— (3.2)

ds

The gravity force (weight) on the particle can be written as oW = y oV, where y = pe is the
specific weight of the fluid (Ib/f orN/m?). Hence, the component of the weiht force in the
direction of the streamline 1s

OW,.=—0Wsinf = —yoVsind#
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Along streamline




Thus, if 6F), 1s the net pressure force on the particle in the streamline direction, it follows that

8F,, = (p — op;)6n 6y — (p + 8p;) 6n 8y = —2 dp, &n oy

= —a—pﬁs on oy = —?—pSV
ds ' s
Note that the actual level of the pressure. p. 1s not important. What produces a net pressure
force 1s the fact that the pressure is not constant throughout the fluid. The nonzero pressure gradi-
ent, Vp = dp/ds § + dp/om n. is what provides a net pressure force on the particle. Viscous forces,
represented by 7 ds dv. are zero. since the flud 1s mnviscid.
Thus. the net force acting in the streamline direction on the particle shown in Fig. 3.3 is given by

)
> 8F, = &W, + 8F,, = (—-y sin @ — ,—p)w (3.3)

(iAY

By combining Eqs. 3.2 and 3.3. we obtain the following equation of motion along the streamline
direction:

il 4
—’ysinﬁ——prT/'r—Z

¢t 3.4
i as Pas 3-4)




_EXAMPLE 3.1

as shown i Fig. E3.1b.

0.610p¥la

GIVEN Consider the inviscid. incompressible. steady flow
along the horizontal streamline 4—B in front of the sphere of ra-
dius a, as shown m Fig. E3.1a. From a more advanced theory of
flow past a sphere, the fluid velocity along this streamline is

ﬂ'3
V= Vg(] + —3)
X

Pressure Variation along a Streamline

FIND Determine the pressure variation along the streamline
from point A far in front of the sphere (xy; = —o and V; = V) to
point B on the sphere (xz = —a and Fz = 0).

M FIGURE E31




SOLUTION

Since the flow 1s steady and mviscid. Eq. 3.4 is valid. In addition.
since the streamline is horizontal. sin = sin 0° = 0 and the
equation of motion along the streamline reduces to

ap oV
— = V— 1
ds - s M
With the given welocity variation along the streamline, the
acceleration term 1s

OV _ L _ (1 N a3)( 3V0a3)
s dx 0 X x*

= 317} (1 .- ag) «

0 X ) x*
where we have replaced s by x since the two coordinates are iden-
tical (within an additive constant) along streamline 4-B. It follows
that ¥V oFjos << 0 along the streamline. The fluid slows down
from Vj far ahead of the sphere to zero velocity on the “nose™ of

the sphere (x = —a).

Thus, according to Eq. 1. to produce the given motion the

pressure gradient along the streamline 1s

- ip2 3. 3
op  3pa’vi(1 + a’xd)
= 1 (2)

dx x

This variation is indicated in Fig. E3.1¢. It 1s seen that the pres-
sure increases in the direction of flow (dp/ix > 0) from point 4
to point B. The maximum pressure gradient (0.610 p¥3 /a) occurs
just slightly ahead of the sphere (x = —1.205a). It 1s the pressure
gradient that slows the fluid down from V= F, to ¥z = 0 as
shown in Fig. E3.1b.

The pressure distribution along the streamline can be obtained
by integrating Eq. 2 from p = 0(gage) at x = —o to pressure p at
location x. The result. plotted in Fig. E3.1d. 15

=t (2) + 2]

COMMENT The pressure at B. a stagnation point since
Vg = 0, is the highest pressure along the streamline (pg = p¥3/2).
As shown i Chapter 9. this excess pressure on the front of the
sphere (1.e., pg = 0) contributes to the net drag force on the
sphere. Note that the pressure gradient and pressure are directly
proportional to the density of the fluid. a representation of the fact
that the fluid inertia i1s proportional to its mass.

(Ans)

NN .




Equation 3.4 can be rearranged and integrated as follows. First. we note from Fig. 3.3 that along
the streamline sin 8 = d=/ds. Also, we can write ¥ dWids = 3d(V?)/ds. Finally. along the streamline the
value of » 1s constant (dn = 0) so that dp = (dp/ds) ds + (dp/don) dn = (dp/ds) ds. Hence, as mdi-
cated by the figure in the margin. along a given streamline p(s. n) = p(s) and dp/ds = dp/ds. These
ideas combined with Eq. 3.4 give the following result valid along a streamline

This simplifies to

1
dp + > pd(V?) + ydz = (along a streamline)

which. for constant acceleration of gravity. can be integrated to give

d 1
[ Fp + 5 VP+gz=C (along a streamline) (3.6)
where C 1s a constant of integration to be determuned by the conditions at some point on the

streamline.




With the additional assumption that the density remains constant (a very good assumption
for liquids and also for gases if the speed is “not too high™). Eq. 3.6 assumes the following sim-
ple representation for steady. inviscid. incompressible flow.

1 172 _ -
p + 35pV° + yz = constant along streamline

This is the celebrated Bernoulli equation—a very powerful tool in fluid mechanics. In 1738 Daniel
Bernoulli (1700—1782) published his Hvdrodvnamics in which an equivalent of this famous equa-
tion first appeared. To use it correctly we must constantly remember the basic assumptions used
in its derivation: (1) viscous effects are assumed negligible, (2) the flow is assumed to be steady.
(3) the flow is assumed to be incompressible. (4) the equation is applicable along a streamline. In
the derivation of Eq. 3.7, we assume that the flow takes place m a plane (the x— plane). In gen-
eral, this equation is valid for both planar and nonplanar (three-dimensional) flows, provided it is
applied along the streamline.




GIVEN Consider the flow of air around a bicyelist moving
through still air with velocity ¥, as 1s shown in Fig. E3.2.

FIND Determine the difference in the pressure between points
(1) and (2).

SoLuTION

In a coordinate fixed to the ground. the flow is unsteady as the bi-
cyclist rides by. However. in a coordinate system fixed to the bike,
it appears as though the air 1s flowing steadily toward the bicyclist
with speed V. Since use of the Bernoulli equation is restricted to
steady flows, we select the coordinate system fixed to the bike. If
the assumptions of Bernoulli’s equation are valid (steady. incom-
pressible, inviscid flow), Eq. 3.7 can be applied as follows along
the streamline that passes through (1) and (2)

1 1
p1+3pVi + ¥z = py + 3pV3 + 5

We consider (1) to be in the free stream so that F; = ¥Fjand (2) to
be at the tip of the bicyelist’s nose and assume that z; = z; and
¥, = 0 (both of which. as is discussed in Section 3.4, are reason-
able assumptions). It follows that the pressure at (2) 1s greater than
that at (1) by an amount

(Ans)

P —p1 = 1PVi = 3075

COMMENTS A similar result was obtained in Example 3.1
by integrating the pressure gradient, which was known because

EXAWPLE 3.2

BFIGURE E3.2

the velocity distribution along the streamline. F{s). was known.
The Bernoulli equation 1s a general integration of F = ma. To
determine p, — pp, knowledge of the detailed velocity distri-
bution is not needed—only the “boundary conditions™ at (1) and
(2) are required. Of course, knowledge of the value of V along
the streamline is needed to determine the pressure at points
between (1) and (2). Note that if we measure py — p; we can de-
termine the speed, Vy. As discussed in Section 3.5, this is the
principle upon which many velocity measuring devices are
based.

If the bicyclist were accelerating or decelerating, the flow
would be unsteady (1.e.. V) # constant) and the above analysis
would be incorrect since Eq. 3.7 is restricted to steady flow.




3.3 F = ma Normal to a Streamline

We again consider the force balance on the fluid particle shown in Fig. 3.3 and the figure in
the margin. This time, however. we consider components in the normal direction. fi, and write New-
ton’s second law in this direction as

Sm V2 _P S¥ 1?
2 5F, 7 (3:8)

where 2 8F, represents the sum of » components of all the forces acting on the particle and &m
is particle mass. We assume the flow is steady with a normal acceleration a, = V2>/JR. where R is
the local radius of curvature of the streamlines. This acceleration 1s produced by the change in di-
rection of the particle’s velocity as it moves along a curved path.

We again assume that the only forces of importance are pressure and gravity. The compo-
nent of the weight (gravity force) in the normal direction is

W, = —8W cos@ = —y &+ cos #

If the streamline 1s vertical at the point of inferest. 8 = 90°, and there is no component of the par-
ticle weight normal to the direction of flow to contribute to its acceleration i that direction.

If the pressure at the center of the particle is p. then its values on the top and bottom of the
particle are p + 8p, and p — 8p,. where &p, = (dp/in)(6n/2). Thus, if 6F,, is the net pressure
force on the particle in the normal direction. it follows that

8F,, = (p — 8p,)8s 6v — (p + p,)8s v = —2 &p, 8s &y

i
= P sonsy = —Lsp

dn on




Hence. the net force acting in the normal direction on the particle shown in Fig 3.3 1s given by

l
> 8F, = 8W, + 8F,, = (—'y cos f — Tp) ¥ (3.9
dn
By combining Eqs. 3.8 and 3.9 and using the fact that along a line normal to the streamline
cos 8 = dz/dn (see Fig. 3.3). we obtain the following equation of motion along the normal direction
d dp  pV?

—y— — — = 3.10a
Y dn  an o ( )

The physical interpretation of Eq. 3.10 is that a change in the direction of flow of a flhud
particle (i.e.. a curved path, & << =) is accomplished by the appropriate combination of pressure
gradient and particle weight normal to the streamline. A larger speed or density or a smaller radius
of curvature of the motion requures a larger force unbalance to produce the motion. For example.
if gravity is neglected (as is commonly done for gas flows) or if the flow is in a horizontal (dz/dn = 0)
plane. Eq. 3.10 becomes

ap pV?
an g

(3.10b)




_EXAM MRS Pressure Variation Normal to a Streamline

GIVEN Shown in Figs. E3.3a,b are two flow fields with circu-
lar streamlines. The velocity distributions are

Vi(r) = (Vy/rg)r for case (a)

V=(Fyrir

and

For
H(r) =( 7o) for case (b)

¥

where ¥} is the velocity at r = rp.

FIND Determine the pressure distributions. p = p(r). for each.
given that p = pyatr = r,.

SoLuTiON

We assume the flows are steady. inviscid. and incompressible
with streamlines in the horizontal plane (dz/dn = 0). Because the
streamlines are circles, the coordinate » points in a direction op-
posite that of the radial coordinate. d/dn = —d/dr, and the radius
of curvature is given by 9t = r. Hence, Eq. 3.9 becomes

fip . sz

orF s

For case (a) this gives
. BFIGURE E3.3
ap
ar

= p(Vo/ro)’r




whereas for case (b) it gives

w2

dp p{ Vore)

dr 1'3

For either case the pressure increases as r increases since dp/dr = 0.

Integration of these equations with respect to # starting with a
known pressure p = p, at ¥ = 1y, gives

P — po = (p¥3/2)[(r/ro)

pressure increases without bound as » — oo, whereas for case (b)
the pressure approaches a finite value as r — co. The streamline
patterns are the same for each case. however.

Physically. case (a) represents rigid body rotation (as obtained
in a can of water on a turntable after it has been “spun up™) and

for case (a) and
p = po = (pV5/2)[1 — (ro/r)’]

for case (b). These pressure distributions are shown i Fig. E3.3¢.

COMMENT The pressure distributions needed to balance the
centrifugal accelerations in cases (a) and (b) are not the same be-
cause the veloeity distributions are different. In fact, for case (a) the

case (b) represents a free vortex (an approximation to a tornado, a
hurricane. or the swirl of water in a dramn. the “bathtub vortex™).
See Fig. E6.6 for an approximation of this type of flow.



If we multiply Eq. 3.10 by dn. use the fact that dp/on = dp/dn if 5 is constant. and integrate
across the streamline (in the » direction) we obtain

- tf}} - Vl - .
— + | —dn + gz = constant across the streamline (3.11)
P J
Thus. the final form of Newton’s second law applied across the streamlines for steady. in-
viscid. incompressible flow 1s

15;2

p+p ‘ 7 dn + yz = constant across the streamline

As with the Bernoulli equation. we must be careful that the assumptions involved in the derivation
of this equation are not violated when it 1s used.




3.4 Physical Interpretation

In the previous two sections. we developed the basic equations governing fluid motion under a
fairly stringent set of restrictions. In spite of the numerous assumptions imposed on these flows.
a variety of flows can be readily analyzed with them. A physical interpretation of the equations
will be of help in understanding the processes involved. To this end, we rewrite Eqs. 3.7 and 3.12
here and interpret them physically. Application of F = ma along and normal to the streamline re-
sults in

p + 3pV* + yz = constant along the streamline (3.13)

- 3
I""I‘_ I
ptp 7 dn + yz = constant across the streamline (3.14)
as mndicated by the figure in the margin.
The following basic assumptions were made to obtain these equations: The flow 1s steady
and the fluid 1s inviscid and incompressible. In practice none of these assumptions 1s exactly
true.

P+ épi"‘? +7z
= constant “h_

= constant




An alternate but equivalent form of the Bernoulli equation is obtained by dividing each term
of Eq. 3.7 by the specific weight. y. to obtain

+ z = constant on a streamline

The elevation term. . 1s related to the potential energy of the particle and is called the eleva-
tion head. The pressure term. p/7. is called the pressure head and represents the height of a column
of the fluid that is needed to produce the pressure p. The velocity term. V%2g. is the velocity head
and represents the vertical distance needed for the fluid to fall freely (neglecting friction) if it is to
reach velocity V" from rest. The Bernoulli equation states that the sum of the pressure head. the ve-

locity head. and the elevation head 1s constant along a streamline.




35 Static, Stagnation, Dynamic, and Total Pressure

A useful concept associated with the Bernoulli equation deals with the stagnation and dynamic pres-
sures. These pressures arise from the conversion of kinetic energy in a flowing fluid into a “pres-
sure rise” as the fluid is brought to rest (as in Example 3.2). In this section we explore various results

of this process. Each term of the Bernoulli equation. Eq. 3.13. has the dimensions of force per unit
area—psi. 1b/ft>. N/m’.

p + 3pV? + yz = p; = constant along a streamline (3.15)

Again. we must be careful that the assumptions used in the derivation of this equation are appro-
priate for the flow being considered.

The Bernoulli equation is a statement that the total pressure remains constant along a streamline.



Knowledge of the values of the static and stagnation pressures in a fluid implies that the flud
speed can be calculated. This is the principle on which the Pifor-static tube is based [H. de Pitot
(1695-1771)]. As shown in Fig. 3.6. two concentric tubes are attached to two pressure gages (or a
differential gage) so that the values of p; and p, (or the difference p; — p,) can be determined. The
center tube measures the stagnation pressure at its open tip. If elevation changes are negligible.

ps=p +3pV?

B FIGURE 3.6 The Pitot-static tube.




where p and ¥V are the pressure and velocity of the fluid upstream of point (2). The outer tube is
made with several small holes at an appropriate distance from the tip so that they measure the sta-
tic pressure. If the effect of the elevation difference between (1) and (4) is negligible, then

Pa=Pr— P

By combining these two equations we see that

which can be rearranged to give




_EXAMPLE MY Pitot-Static Tube

GIVEN An airplane flies 200 mi/hr at an elevation of 10,000 ft
in a standard atmosphere as shown in Fig. E3.6a.

FIND Determine the pressure at point (1) far ahead of the air-
plane. the pressure at the stagnation point on the nose of the
airplane. point (2), and the pressure difference indicated by a Pitot-
static probe attached to the fuselage.

SoLuTION

From Table C.1 we find that the static pressure at the altitude
given is

py = 1456 Ib/ft? (abs) = 10.11 psia (Ans)

Also. the density is p = 0.001756 slug/fi’.
If the flow is steady. inviscid, and incompressible and eleva-
tion changes are neglected. Eq. 3.13 becomes

pVi
n=pt+

With 7, = 200 mi/hr = 293 ft/s and V; = 0 (since the co-
ordinate system 1s fixed to the airplane) we obtain

py = 1456 Ib/f° + (0.001756 slugs/ft°)(2937 ft%/s)/2

(1)
V, = 200 mph

W
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B FIGURE E3.6b

B FIGURE E3.6a (Phote
courtesy of Hawker Beechcraft.)
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= (1456 + 75.4) Ib/ft* (abs)
Hence. i terms of gage pressure
py = 75.4 Ib/ft> = 0.524 psi (Ans)

Thus, the pressure difference indicated by the Pitot-static tube is

I_’r..-
Pnh—nh=,

-

(Ans)

= 0.524 pst

COMMENTS Note that it is very easy to obtain incorrect re-
sults by using improper units. Do not add Ib/in.? and Ib/ft>. Recall
that (slug/ft*)(ft*/s?) = (slug - fi/s”)/(ft") = Ib/f.

It was assumed that the flow is incompressible—the density re-
mains constant from (1) to (2). However. since p = p/RT. a change in
pressure (or temperature) will cause a change m density. For this rel-
atively low speed. the ratio of the absolute pressures is nearly unity
[ie..py/p> = (10.11 psia)/(10.11 + 0.524 psia) = 0.951]. so that
the density change 1s negligible. However. by repeating the calcula-
tions for various values of the speed. ¥, the results shown in Fig.
E3.6b are obtained. Clearly at the 500 to 600 mph speeds nor-
mally flown by commerecial airliners, the pressure ratio i1s such
that density changes are important. In such situations it 1s neces-
sary to use compressible flow concepts to obtain accurate results.

(See Section 3.8.1 and Chapter 11.)




B FIGURE 3.8 Incor-
rect and correct design of static
pressure taps.
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B FIGURE 3.9 Typical pressure distribution along
a Pitot-static tube.




3.6 Examples of Use of the Bernoulli Equation

In this section we illustrate various additional applications of the Bernoulli equation. Between any

two points, (1) and (2). on a streamline in steady. inviscid. incompressible flow the Bernoulli equa-
tion can be applied in the form

1 _rr2 - =
prtapVit ¥ =p+

Obviously if five of the six variables are known. the remaining one can be determined. In many in-

stances it 1s necessary to introduce other equations. such as the conservation of mass. Such consid-
erations will be discussed briefly in this section and in more detail in Chapter 5.




3.6.1 Free Jets

One of the oldest equations in fluid mechanics deals with the flow of a liquud from a large reservorr.
A modermn version of this type of flow mnvolves the flow of coffee from a coffee wrn as indicated by
the figure in the margin. The basic principles of this type of flow are shown in Fig. 3.11 where a jet
of liquid of diameter d flows from the nozzle with velocity 7. (A nozzle is a device shaped to ac-
celerate a fluid.) Application of Eq. 3.17 between points (1) and (2) on the streamline shown gives

yh = 3pV*

We have used the facts that z; = /. z, = 0. the reservoir is large (¥; = 0) and open to the atmos-
phere (p; = 0 gage). and the fluid leaves as a “free jer” (p, = 0). Thus. we obtain

/ vh
V=./2"—
N p

which is the modern version of a result obtained in 1643 by Torricelli (1608—1647). an Italian
physicist.

The fact that the exit pressure equals the surrounding pressure (p, = 0) can be seen by ap-
plying F = ma, as given by Eq. 3.14, across the streamlines between (2) and (4). If the streamlines
at the tip of the nozzle are straight (Jt = =), it follows that p, = p,. Since (4) is on the surface of
the jet, in contact with the atmosphere, we have p, = 0. Thus. p, = 0 also. Since (2) is an arbi-
trary point in the exit plane of the nozzle. it follows that the pressure is atmospheric across this
plane. Physically. since there is no component of the weight force or acceleration in the normal
(horizontal) direction, the pressure is constant in that direction.

= \/2gh (3.18)



Once outside the nozzle. the stream continues to fall as a free jet with zero pressure throughout
(ps = 0) and as seen by applying Eq. 3.17 between points (1) and (5). the speed increases according to

V=1\2(h+ H

where H is the distance the fluid has fallen outside the nozzle.

Equation 3.18 could also be obtained by writing the Bernoulli equation between points (3)
and (4) using the fact that =, = 0.z; = (. Also, ¥; = 0 since it is far from the nozzle. and from
hydrostatics. p; = y(h — ().

v SV

BFIGURE 3.11

Vertical flow from a tank.
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B FIGURE 3.12 Horizontal flow from a tank. B FIGURE 3.13 Vena

contracta effect for a sharp-edged orifice.

For the horizontal nozzle of Fig. 3.12a. the velocity of the fluid at the centerline. 75.will be

slightly greater than that at the top. V;. and slightly less than that at the bottom. V5. due to the dif- /I

ferences in elevation. In general. d < /i as shown in Fig. 3.125 and we can safely use the center-

line velocity as a reasonable “average velocity.”

If the exit is not a smooth. well-contoured nozzle. but rather a flat plate as shown in Fig. 3.13,
the diameter of the jet. &.. will be less than the diameter of the hole. d;. This phenomenon. called
a vena contracta effect. 1s a result of the mability of the flud to turn the sharp 90° comer indi-
cated by the dotted lines in the figure.
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3.6.2 Confined Flows

In many cases the fluid is physically constrained within a device so that its pressure cannot be pre-
scribed a priori as was done for the free jet examples above. Such cases include nozzles and pipes
of variable diameter for which the fluid velocity changes because the flow area is different from
one section to another. For these sifuations it 1s necessary to use the concept of conservation of
mass (the continuity equation) along with the Bernoulli equation. The derivation and use of this
equation are discussed in detail in Chapters 4 and 5.

The mass flowrate from an outlet. 1 (slugs/s or kg /s). is given by m = pQ. where Q (ft)s or mjs)
is the volume flowrate. If the outlet area is 4 and the fluid flows across this area (normal to the area)
with an average velocity V. then the volume of the fluid crossing this area in a time mterval 67 is VA4 67.
equal to that in a volume of length 7 87 and cross-sectional area A (see Fig. 3.15b). Hence, the vol-

ume flowrate (volume per unit time) is Q = V4. Thus, m = pVA. To conserve mass, the inflow rate
must equal the outflow rate. If the inlet is designated as (1) and the outlet as (2). it follows that 1, = m,.
Thus. conservation of mass requires

p1A VY = prdsV;

If the density remains constant. then p; = p,. and the above becomes the continuity equation for
incompressible flow

AV = A5 00 O = O, (3.19)
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BFIGURE 3.15

and out of a volume.

(a) Flow through a syringe. (b) Steady flow into



[ BTUTINEEWA Flow from a Tank—Gravity

GIVEN A stream of refreshing beverage of diameterd = 0.01 m
tlows steadily from the cooler of diameter D = .20 m as shown
in Figs. E3.7g and b.

FIND Determine the flowrate, O, from the bottle into the
cooler if the depth of beverage in the cooler 1s to remain constant
ath=0.20m

(a) ()
BFIGURE E3.7

1.10

0/, 1.05

h=020m
(0.05, 1.000003)
L2

1.00

¥y 0 0.2 0.4 0.6 0.8
d=0.01m dip

(c)

N\




SoLuTION

For steady. inviscid, incompressible flow, the Bernoulli equation
applied between points (1) and (2) is
p1+3pVi + 21 = py + 373 + ¥z (1)

With the assumptions that p; = p; = 0.z; = h.andz; = 0,Eq. 1
becomes

371+ gh =373 @)
Although the liquid level remains constant (h = constant), there is an
average velocity, Fy. across section (1) because of the flow from the

tank. From Eq. 3.19 for steady incompressible flow. conservation of
mass requires (1 = Oy, where Q = AV. Thus, 41V; = 4215, or

2y, = Za,
4 4

Hence.

d 2
V= (B) ) (3)

Equations 1 and 3 can be combined to give

| 2gh

[ 2(9.81 m/s?)(0.20 m)
V2 — { i

_ & — 1.98
N1—=(@pF V1-(0.01m/020m) /s

Thus,

O = AV, = AV, = %{0.01 m)X(1.98 m/s)

=156 X 10 m’/s

COMMENTS Note that this problem was solved using
points (1) and (2) located at the free surface and the exit of the
pipe, respectively. Although this was convenient (because most
of the variables are known at those points), other points could be
selected and the same result would be obtained. For example,
consider points (1) and (3) as indicated in Fig. E3.7b. At (3), lo-
cated sufficiently far from the tank exit. 3 = 0 and z; = z, = 0.
Also, p; = yh since the pressure is hydrostatic sufficiently far
from the exit. Use of this information in the Bernoulli equation
applied between (1) and (3) gives the exact same result as ob-
tained using it between (1) and (2). The only difference is that
the elevation head, z; = h, has been interchanged with the pres-
sure head at (3), p3/v = h.

In this example we have not neglected the kinetic energy of
the water in the tank (77 # 0). If the tank diameter is large com-
pared to the jet diameter (D > d). Eq. 3 indicates that V; < I,
and the assumption that ¥} = 0 would be reasonable. The error
associated with this assumption can be seen by calculating the
ratio of the flowrate assuming ¥} # 0. denoted Q. to that as-
suming F; = 0, denoted 0. This ratio. written as

Q0 _ " Vgh[1-(d/D)] _ 1
Qo Valp-= \V2gh

V1 — (d/D)*

is plotted in Fig. E3.7¢. With 0 << d/D < 0.4 it follows that
1 < @/Qp = 1.01, and the error in assuming V7 = 0 is less than
1%. For this example with /D = 0.01 m/0.20 m = 0.05, it follows
that Q/Qp = 1.000003. Thus, it is often reasonable to assume
.V] = 0.




L ZLXTIRERR riow from « Tamk—pressure

GIVEN Air flows steadily from a tank. through a hose of di- e D=0.03m d=0.01m
ameter D = 0.03 m. and exits to the atmosphere from a nozzle of s ¢ 0
diameter d = 0.01 m as shown in Fig. E3.8. The pressure in the (‘” - . . \+ g
tank remains constant at 3.0 kPa (gage) and the atmospheric con- Air e (3)

ditions are standard temperature and pressure.
BFIGURE E3s8

FIND Determine the flowrate and the pressure in the hose.

SoLuTION

If the flow 1s assumed steady. inviscid. and incompressible, we  With the assumption that z; = z, = z; (horizontal hose). ¥; = 0
can apply the Bernoulli equation along the streamline from (1) to  (large tank). and p; = 0 (free jet). this becomes
(2)to (3) as —
L 1 7 V3 = |21
3PVl + v = py +3pVh + ¥o N p
= p3 +2pV3 + ¥z




1
Py =py — 3pV3 (1)

The density of the air in the tank 1s obtained from the perfect gas
law, using standard absolute pressure and temperature, as

_ P
R,
= [(3.0 + 101) kN/m’]
" 10° N/kN
(286.9 N - m/kg - K)(15 + 273)K
= 1.26 kg/m’

p

Thus. we find that

. [2(3.0 X 10° N/m”)
3TN 126 kg/m?

= 69.0 m/s

O = AV, = %dﬂrfg = %([}.m m)?(69.0 m/s)

= 0.00542 m’/s




The pressure within the hose can be obtained from Eq. 1 and
the continuity equation (Eq. 3.19)

AV, = A3V,

Hence.

d 2
Vy = A3V /45 = (E) Vs

0.01 m :
= | ———](69.0 = 7.67
({].I’JE 111) ( m'fg} s
and from Eq. 1
py = 3.0 X 10 N/m? — 1 (1.26 kg/m*)(7.67 m/s)?
— — . m — 4 11 A IS
3000 — 37.1)N/m’ = 2963 N/m’ (Ans)

COMMENTS Note that the value of ¥; is determined strictly by
the value of p; (and the assumptions involved in the Bernoulli equa-
tion), independent of the “shape™ of the nozzle. The pressure head
within the tank. p,/y = (3.0 kPa)/(9.81 m/s?)(1.26 kg/m’) =
243 m. is converted to the velocity head at the exit, V3/2g =
(69.0 m/s)*/(2 X 9.81 m/s?) = 243 m. Although we used gage
pressure in the Bernoulli equation (p; = 0). we had to use
absolute pressure in the perfect gas law when calculating the

density.




XAMPLE 3.9 BillVBRLERCHUEL W VR AT 1

GIVEN Water flows through a pipe reducer as is shown in Fig. FIND Determine the manometer reading. h.

E3.9. The static pressures at (1) and (2) are measured by the in-
verted U-tube manometer containing o1l of specific gravity. SG.
less than one.

BFIGURE E3.9




SoLuTION

With the assumptions of steady. inviscid. incompressible flow. the
Bernoulli equation can be written as

p1+3pVi+ vz = pa + 5PV + vn

The continuity equation (Eq. 3.19) provides a second relationship
between V7 and V5 if we assume the velocity profiles are uniform
at those two locations and the fluid incompressible:

Q = Al Vl = J‘.{EI’E}
By combining these two equations we obtain
pr— P2 =Yz — 21) +3pVi[1 — (do/4y)] (1)

This pressure difference 1s measured by the manometer and can
be determined by using the pressure—depth ideas developed in
Chapter 2. Thus.

pr—%Y@z—z1) =yl —yh + SGyh + v{ = p

pr—p2 =Yz —z1) + (1 — SG)vh (2)

As discussed in Chapter 2. this pressure difference is neither
merely vh nor y(h + z; — z3).

Equations 1 and 2 can be combined to give the desired result

as follows:
(1 — SG)yh = 3 1*1[1 (dﬂ
2T )yn 2 P¥a Ay

or since V3 = @/4>

1 — (Ay/4;)

h = (Q/4,) 2(1 — 5G)



If the differences in velocity are considerable. the differences in pressure can also be con-
siderable. For flows of gases. this may mtroduce compressibility effects as discussed in Section
3.8 and Chapter 11. For flows of liquids. this may result in cavitation, a potentially dangerous sit-
uation that results when the liquid pressure 1s reduced to the vapor pressure and the liquid “boils.”

b

|
I
(Absolute |
pressure) I

B FIGURE 3.16 Pressure
variation and cavitation in a variable
area pipe.

Incipient cavitation




GIVEN A liquid can be siphoned from a container as shown in
Fig. E3.10a provided the end of the tube. pomt (3). is below the
free surface in the container. point (1), and the maximum elevation
of the tube, pomt (2). 1s “not too great.” Consider water at 60° F
being siphoned from a large tank through a constant diameter hose

FIGURE E3.10a

ExAvPLE 3.10 o e

as shown 1n Fig. E3.10b. The end of the siphon is 5 fi below the
bottom of the tank. and the atmospheric pressure 1s 14.7 psia.

FIND Determine the maximum height of the hill. H. over which
the water can be siphoned without cavitation occurring.

(2)

FIGURE E3.10b



SoLuTION

If the flow 1is steady. inviscid, and incompressible we can apply
the Bernoulli equation along the streamline from (1) to (2) to (3) as
follows:

1 1
p1+3pVi+ ¥z = py + 2pV3 + 2

1
=ps + 3V + 723 (1)
With the tank bottom as the datum, we have z; = 15 ft. z;, = H,
and z; = —5 ft. Also, V; = 0 (large tank), p; = 0 (open tank).
p3; = 0(free jet), and from the continuity equation 4,V; = 4;V;. or
because the hose 1s constant diameter, ¥, = V. Thus, the speed of

the fluid in the hose 1s determined from Eq. 1 to be

Vs = V2g(z; — z3) = V2322 fi/sH[15 — (—5)] f
= 35.9 fi/s = V5

Use of Eq. 1 between points (1) and (2) then gives the pressure p,
at the top of the hill as

1 1
P =py + 3pV7 + ¥z, — 3pV3 — vz
1
= Y(z; — 23) — 3pV3




From Table B.l. the vapor pressure of water at 60 °F 1s
0.256 psia. Hence, for incipient cavitation the lowest pressure in
the system will be p = 0.256 psia. Careful consideration of Eq. 2
and Fig. E3.10b will show that this lowest pressure will occur at
the top of the hill. Since we have used gage pressure at pont (1)
(py = 0)., we must use gage pressure at point (2) also. Thus,

py = 0256 — 14.7 = —14.4 psi and Eq. 2 gives

(—14.4 Ib/in.*)(144 in.*/f%)
= (62.4 Ib/f)(15 — H)ft — 1(1.94 slugs/f)(35.9 ft/s)?

or
H=1282f (Ans)

For larger values of H. vapor bubbles will form at point (2) and the
siphon action may stop.



3.6.3 Flowrate Measurement

Many types of devices using principles involved in the Bernoulli equation have been developed
to measure fluid velocities and flowrates.

Mozzle

FIGURE 3.18 Typical devices

for measuring flowrate in pipes.



An effective way to measure the flowrate through a pipe is to place some type of restric-
tion within the pipe as shown in Fig. 3.18 and to measure the pressure difference between the
low-velocity. high-pressure upstream section (1), and the high-velocity, low-pressure downstream
section (2). Three commonly used types of flow meters are illustrated: the orifice meter, the noz-
zle meter. and the Venturi meter. The operation of each is based on the same physical principles—
an increase in velocity causes a decrease in pressure. The difference between them is a matter of
cost. accuracy. and how closely their actual operation obeys the idealized flow assumptions.

We assume the flow is horizontal (z; = z,). steady, nviscid, and incompressible between
points (1) and (2). The Bernoulli equation becomes

py + 3pVi = py + 3pV3

(The effect of nonhorizontal flow can be incorporated easily by including the change in elevation,
7y — Z3. in the Bernoulli equation.)

If we assume the velocity profiles are uniform at sections (1) and (2). the continuity equation
(Eq. 3.19) can be written as




O =4,V =4,

where 4, is the small (4, << 4,) flow area at section (2). Combination of these two equations re-
sults in the following theoretical flowrate

(3.20)

Thus. as shown by the figure in the margin. for a given flow geometry (4; and 4,) the flowrate
can be determined if the pressure difference. p; — p,. is measured. The actual measured flowrate.
O,cmar- Will be smaller than this theoretical result because of various differences between the “real

world” and the assumptions used in the derivation of Eq. 3.20. These differences (which are quite
consistent and may be as small as 1 to 2% or as large as 40%, depending on the geometry used) can
be accounted for by using an empirically obtained discharge coefficient as discussed in Section 8.6.1.




_EXAMFLE 3.1 1 AU

GIVEN EKerosene (5G = 0.83) flows through the Venturn
meter shown i Fig. E3.11a with flowrates between 0.0035 and
0.050 m?/s.

FIND Determine the range in pressure difference, p; — p:.
needed to measure these flowrates.

0.005 ms = @ =0.050 m¥s
BFIGURE E3.lla

SoLuTiON

If the flow is assumed to be steady, inviscid, and incompressible, results presented here are independent of the particular flow
the relationship between flowrate and pressure is given by Eq.  meter geometry—an crifice, nozzle, or Venturi meter (see

3.20. This can be rearranged to give Fig. 3.18).
Gl — (g, It 13 seen from Eq. 3.20 that the flowrate varies as the
PL—pr= Pl {2?*"’ W] square root of the pressure difference. Hence, as indicated by
24; the numerical results and shown in Fig. E3.115, a 10-fold in-

: : . crease in flowrate requires a 100-fold increase in pressure dif-
With the density of the flowing fiud ference. This nonlinear relationship can cause difficulties when

p = 5G pgo = 0.85(1000 kg/m’) = 850 kg/m’ measuring flowrates over a wide range of values. Such mea-
surements would require pressure fransducers with a wide

and the area ratio range of operation. An alternative is to use two flow meters in
Azfd; = (Do/Dn P = (0.06 m/0.10 m)* = 0.36 parallel—one for the larger and one for the smaller flowrate

ranges.

the pressure difference for the smallest flowrate is &
(1 —036%)
p1— p2 = (0.005 sy (850 kg/m’) ——————————
2 [(w/4)(0.06 m)* | 150
_ 1160 N/m? — 1.16 kPa 10,05 mfs, 116 kPal

Likewise, the pressure difference for the largest flowrate is
20

(0.05)%(850) QR E
poRm 2 (/4006 £
= 1.16 ¥ 10° N/m? = 116kPa = a0

[0.005 mrfs, 1.16 KPa)

1.16kPa = p, — p, = 116 kPa

(Ans) o 00l 002z 003 004 005

g, mifs
COMMENTS These values represent the pressure differr W FI1G U R E E3.11b
ences for inviscid, steady. incompressible conditions. The ideal




IEEREREEERENRE

1 1 1
py+3pP + ¥z = py + 3p73 + ¥z

Also, if the gate 15 the same width as the channel so that 4y = bz; and 4y = bz, the continuity
equation gives

il | =g I_ £ | Sluice gate
- width = &
BFIGURE 3219 Suice gate geometry. (Photograph courtesy of PlaztG-Fab, Inc.)
Thus, we apply the Bemoulli equation between points on the free surfaces at (1) /
give




Q = 411 = bl 51 = 43 = by,

With the fact that p; = py = 0. these equations can be combined and rearranged to give the flowrate
as

0= b w,-' 2g(z1 — 1)

3.21
1 — () 3=

In the limit of z; ¥ z, this result simply becomes

Q= zbVigy

This limiting result represents the fact that if the depth ratio, z)/z,. 15 large_ the kinetic energy of
the floid upstream of the gate 15 negligible and the flmd welocity after 1t has fallen a distance
(z) — z9) = z; is approximately I, = V2gz,.

The results of Eq. 3.21 could also be obtained by nsing the Bernoull equation between points
(3)and (4) and the fact that p; = yz; and py = vz, since the streamlines at these sections are straight.
In this formulation, rather than the potential emergies at (1) and (2), we have the pressure contri-
butions at (3) and (4).

The downstream depth, z,. not the gate opening, a, was used to obtain the result of Eq. 3.21.
As was discussed relative to flow from an orifice (Fig. 3.14), the fluid cannot turn a sharp 90° cor-
ner. A vena contracta results with a contraction coefficient, C, = zy/a, less than 1. Typically C. is
approximately 0.61 over the depth ratio range of 0 <I a/z; < 0.2. For larger values of a/z; the
valoe of C, increases rapidly.




Exavrie 3.0

GIVEN Water flows under the shuce gate shown in Fig. E3.124.

SoLuTION

Under the assumptions of steady, mmiscid, mcompressible flow,
we can apply Eq. 3.21 to obtamn O/b, the flowrate per umt width,
as

g  [gla — =)
b TN - (zfn)
In this mstance z; = 50 m and a = 080 m so0 the rato
afz; = 0.16 << 0.20, and we can assume that the confrachon co-
efficient 15 approximately C, = 0.61. Thus, z; = C.a = 0.61
(080 m) = 0.488 m and we obtain the flowrate

FIND Determine the approximate flowrate per unit width of
the chanmel.

BFIGURE E3.123




298]l m/=)(5.0m — 0488 m)
1 — (0.488 m/5.0 m)?

g_
b
= 461 mY/s

(0488 m) \
{Ans)

COMMENT If we consider z; # z, and neglect the kinetic
energy of the upstream flmd, we would have
¢

F =2 Vg = 0488 m V2981 m/s’)5.0m)

= 483 m¥/s

In this case the difference in { with or without meluding F; 15 not
too sigmficant because the depth ratio 13 farly large
(22 = 5.0/0488 = 10.2). Thms, 1t 15 often reasomable to
neglect the kinetic energy upstream from the gate compared to
that downstream of 1t.

By repeating the calculations for vanous flow depths, z;, the
results shown i Fig. E3.12b are obtamned Note that the

i5m, 4.561 m7s)

ik, mis

L= I L T FE - I = I I =

=]

] 10 15
I, m

BFIGURE E3.12b

flowrate 15 not directly proportional to the flow depth. Thus,
for example. 1f during flood conditions the upstream depth dou-
bled from z; = 5mtoz; = 10 m, the flowrate per umt width of
the channel would not double, but would increase only from
461 m?/s to 5.67 m?/s.




3.7 The Energy Line and the Hydraulic Grade Line

As was discussed o Section 3.4, the Bernoulli equation 13 actually an energy equation repre-
senting the parfitioning of energy for an inviscid, incompressible, steady flow. The sum of the
varnous energies of the flmd remains constant as the flmd flows from one section to another. A
nseful interpretation of the Bernoulli equation can be obtained through the use of the concepts
of the hydranlic grade line (HGL) and the energy line (EL). These ideas represent a geometri-
cal interpretation of a flow and can often be effectively used to better grasp the fundamental
processes involved.

For steady, inviscid, incompressible flow the total energy remains constant along a stream-
line. The concept of “head” was introduced by dividing each term 1 Eq. 3.7 by the specific weight,
¥ = pg. to give the Bernoulli equation 1n the following form

p_ 7
— + — + =z = constant on a streamline = H (3.21)

2g

Enengy line (EL)
7.2

i

= = = Hydraulic
grade lina (HGL)

2

T Datum
Stagnation
B FIGURE 3.21 FRepresentation of the energy line and the
hydraunlic grade line.




Each of the terms in this equation has the units of length (feet or meters) and represents a certain
type of head. The Bemoulli equation states that the sum of the pressure head, the velocity head,
and the elevation head i1s constant along a streamline. This constant is called the fofal head, H.

The energy line is a line that represents the total head available to the fluid As shown n
Fig. 3.21, the elevation of the energy line can be obtained by measuring the stagnation pressure
with a Pitot tube. (A Pitot tube is the portion of a Pitot-static tube that measures the stagnation
pressure. See Section 3.5.) The stagnation point at the end of the Pitot tube provides a measure-
ment of the total head (or energy) of the flow. The static pressure tap connected to the piezometer
tube shown, on the other hand measures the sum of the pressure head and the elevation head,
p/y + z. This sum 15 often called the piezometfric head. The static pressure tap does not measure
the velocity head.

According to Eq. 3.22, the total head remains constant along the streamline (provided the as-
sumptions of the Bernoulli equation are valid). Thus, a Pitot tube at anv other location in the flow
will measure the same total head, as 15 shown in the figure. The elevation head, velocity head, and
pressure head may vary along the streambine however.




The energy line and hydraunlic grade line for flow from a large tank are shown in Fig. 322
If the flow 15 steady, mcompressible, and mviscid, the energy line 15 honzontal and at the eleva-
tion of the liquid in the tank (since the fluid velocity in the tank and the pressure on the surface

F|_=j|"|=|:|

B FIGURE 322 The energy hne
and hyvdranhc grade hne for flow from a tank.

BFIGURE 3.23
Use of the energy line and the
by-draulic grade line,

are zero). The hydraulic grade line lies a distance of one velocity head. I'*/2g. below the energy
line. Thus, a change in flmd velocity due to a change i the pipe diameter resulis 1n a change in
the elevation of the hydraunlic grade line. At the pipe outlet the pressure head is zero (gage) so the
pipe elevation and the hydraunlic grade line coincide.




38 Restrictions on Use of the Bernoulli Equation

Proper use of the Bernoulli equation requires close attention to the assumptions nsed in its de-
rivation. In this section we review some of these assumptions and consider the consequences of
imncorrect use of the equation.

3.8.1 Compressibility Effects

One of the main assumptions is that the fluid is incompressible. Although this is reasonable for
most liquid flows, it can, in certain mstances, mtroduce considerable errors for gases.

In the previous section, we saw that the stagnation pressure, p.,.. is greater than the static
Pressute, Popye. by an amount Ap = Poe — Popric = pT%2, provided that the density remains con-
stant. If this dynamic pressure is not too large compared with the static pressure, the density change
between two points is not very large and the flow can be considered incompressible. However, since
the dynamic pressure varies as I, the error associated with the assumption that a fluid is incom-

pressible increases with the square of the velocity of the fluid, as indicated by the figure in the mar-
gin. To account for compressibility effects we must return to Eq. 3.6 and properly integrate the term
[ dp/p when p is not constant.

A simple, although specialized, case of compressible flow occurs when the temperature of a
perfect gas remains constant along the streamline—isothermal flow. Thus, we consider p = pRT,
where T is constant. (In general, p, p, and T will vary.) For steady, inviscid, isothermal flow, Eq.
3.6 becomes

1
RT]§+EIfI+g:=mnstant

where we have used p = p/RT. The pressure term is easily integrated and the constant of integration
evalnated if z;, p;, and I are knmown at some location on the streamline. The result 13

(3.23)




Thus, the final form of Eq. 3.6 for compressible, 1sentropic, steady flow of a perfect gas 1s
I 2 2
(—)P— + ) + (3.24)
k—1/m - i)

We consider the stagnation point flow of Section 3.5 to illustrate the difference between the
mcompressible and compressible results. As 15 shown in Chapter 11, Eq. 3.24 can be written in
dimensionless form as

- k—1 rallh
mp L. Kl = Mﬁ) - 1} (compessilie) (3.25)
1

A comparison between this compressible result and the incompressible result 15 perhaps most
easily seen if we write the incompressible flow result in terms of the pressure ratio and the Mach

number. Thus, we divide each term in the Bernoulh equation, pr'.-"'I + p1 = p2. by p) and vse the
perfect gas law, p; = pRT), to obtamn

n—mn i

r 2RT
Since Ma; = I/ kRT; this can be written as

— MI
F:P A _ 5 I (incompressible)
1




Exavpie 3. 15 R

GIVEN The jet shown in Fig. E3.15 flies at Mach 0.82 at an
altitnde of 10 km in a standard atmosphere.

FIND Determine the stagnation pressure on the leading edge
of its wing if the flow 15 Imcompressible; and if the flow 15 com-
pressible 1sentropic.

SoLuTION

From Tables 1.8 and C2 we find that p; = 26.3kPa (abs),
T, = —499°C, p = 0414kg/m’, and k = 1.4. Thus, if we as-
sume ncompressible flow, Eq. 3.26 gives

y — z 0829
et L S
2 2 2 B FIGURE E3.15 (Photograph courtesy of

Pure stock'superstock)

P —p1 = 0471(26.5kPa) = 12.5kPa (Ans)
) . , ) lift and drag on the airplane; see Chapter 9) is approximately
On the other hand, 1f we assume isentropic flow, Eq. 3.25 gives 147,125 = 1.18 times greater according to the compressible

flow calculafions. This may be very significant As discussed in

2 — 14 -1 i1 _
e Y = {[1 4 u[n_ng = 1} Chapter 11, for Mach numbers greater than 1 (supersomic flow)
P 2 4 the differences between incompressible and compressible results
= 0.553 are often not only gquantitative but also qualitative.
or Note that if the airplane were flying at Mach 0.30 (rather than
0.82) the comesponding values would be p, — p; = 1.670 kPa for
p:— = 0555(265kPa) = 14.7kPa (Ans)  incompressible flow and p; — p; = 1.707 kPa for compressible

flow. The difference between these two results 15 about 2%,

COMMENT We see that at Mach 0.82 compressibility effects
are of importance. The pressure (and. to a first approximation, the




3.3.2 Unsteady Effects

Another restriction of the Bernoulli equation (Eq. 3.7) is the assumption that the flow is steady. For
such flows, on a given streamline the velocity 1s a function of only 5, the location along the stream-
line. That is, along a streamline "= [s). For unsteady flows the velocity is also a function of
time, so that along a streamline I = s, f). Thus when taking the time derivative of the velocity
to obtain the streamwise acceleration, we obtain a, = dIfdt + I dl7ds rather than just a, = 7 dlads
as 15 true for steady flow. For steady flows the acceleration is due to the change in velocity re-
sulting from a change in position of the particle (the I al70s term), whereas for unsteady flow
there 15 an additional contribution to the acceleration resulting from a change i velocity with
time at a fixed location (the oFjof term). These effects are discussed in detail in Chapter 4. The
net effect is that the inclusion of the vnsteady term, 41743t does not allow the equation of motion
to be easily integrated (as was done to obtain the Bernoulli equation) unless additional assump-
tions are made.

For incompressible flow this can be easily integrated between points (1) and (2) to give

1 (= av 1, _
mt ;pi-’% +yn1=p Edj tptopFi+ yn (along a streamline) (3.27)

=1




EXAwPLE 3.16

GIVEN Anmcompressible, imiscid hiquid 1s placed in a verti-
cal, constant diameter U-fube as indicated in Fig. E3.16. When
released from the nonequilibrium peosition shown, the liguid
column will oscillate at a specific frequency.

FIND Determine this frequency.

SoLuTION

The frequency of oscillation can be calculated by use of Eq. 327
as follows. Let points (1) and (2) be at the air—water interfaces of
the two columns of the tube and z = 0 comespond to the equilib-
rnium position of these interfaces. Hence, p; = p» = 0 and if
Zy = Z, then z; = —z. In general, = 1s a function of time, z = =(#).
For a constant diameter tube, at any instant in time the flund speed
15 constant throughout the tabe, ¥y = I; = V. and the integral
representing the unsteady effect in Eg. 3.27 can be written as

naV ., dV([* dv
| oGl e

where { 15 the total length of the liquud column as shown in the
figure. Thus, Eq. 3.27 can be written as

L

¥
H-z) = plt—r+

Since ¥ = dz/dt and ¥ = pg, this can be written as the second-
order differential equation desenbing simple harmonic motion

¥z

S I A [ 1 ) I

(1 \ I
}

Equilibsium
position

B FIGURE E3.8

which has the solution =z{f) = C)simn{vZg/l1) + C,cos
(Tg/T 1). The values of the constants C; and ', depend on the
mutial state (velocity and position) of the liquid at ¢ = 0. Thus, the
liquid oscillates in the tube with a frequency

o= l"g’?
COMMENT  This frequency depends on the length of the col-
umn and the acceleration of gravity (in a manner very similar to

the oscillation of a pendulum) The peniod of this oscillafion (the
time required to complete an oscillation) 1s &, = 27 £/ 2g.

(Ans)

y.



Exawrie 3.17 e

GIVEN A submarine moves through seawater (5G = 1.03)ata
depth of 50 m with velocity Fy = 5.0 m/s as shown m Fig. E3.17.

FIND Determine the pressure at the stagnation point (2).

SoLuTiON

In a coordinate system fixed to the ground, the flow 15 unsteady.
For example, the water velocity at (1) is zero with the submanne
mn 1ts mitial position, but at the mstant when the nose, (2), reaches
point (1) the velocity there becomes YV, = -1} i Thus,
aV fat # 0 and the flow 1s unsteady. Application of the steady
Bemoulli equation between (1) and (2) would give the incormrect
result that “p; = py + pF§/2.7 According to this result the static
pressure 15 greater than the stagnation pressure—an incormect use
of the Bemoulli equation.

We can erther use an unsteady analysis for the flow (which 1s
outside the scope of this text) or redefine the coordinate system so
that 1t 15 fixed on the submanne, grving steady flow with respect
to this system. The comect method would be

71
py = "'i‘ + vh = [(1.03)(1000) kg/m’] (5.0 m/s)?/2
- + (9.80 x 10° N/m*)(1.03)(50 m)

y Flow
—— S

BFIGURE E3A7

= (12,900 + 505,000) N/m®

= 518 kPa (Ans)

simular to that discussed in Example 3.2.

COMMENT  If the submarine were accelerating, aF, jar + 0,
the flow would be unsteady m erther of the above coordinate sys-
tems and we would be forced fo use an unsteady form of the
Bemoulh equahion.




3.5.3 Rotatwonal Effects

Another of the restrictions of the Bernoulli equation 1s that it 1s applicable along the streamline Ap-
plication of the Bernoulli equation across streamlines (1.e., from a point on one streamline to a point
on another streamline) can lead to considerable errors, depending on the particular flow conditions in-
volved. In general the Bemoulli constant vanes from streamline to streamline. However, under certain
restrictions this constant 1s the same throughout the entire flow field.

Exavrie 3.1s K

GIVEN Consider the uniform flow in the channel shown in Fluid Eﬂ'l'ﬁl_:l'ﬁspiﬂ
Fig. E3.18a. The liqud in the vertical piezometer tube 15 sta-
tionary.

FIND Discuss the use of the Bemoulli equation between
points (1) and (2), points (3) and (4), and pomnts (4) and (3).

(31 ;E
SoLuTiON =
If the flow is steady, iwiscid, and incompressible, Eq. 3.7 wnitten | p,=p, -E
P+l 4y =gy + 3005 4 (@
R EFIGURE E3.18




Since F; = ¥, = Fyandz, = z, = O .t follows that p, = p, =
and the Bemoulli constant for this streamline, C,, is given by

Cp=3Vs+py

Along the streamline from (3)to (4)wenote that I5 = I = 1}
and z3 = z; = h. As was shown in Example 3.5, application of
F = ma across the streamhne (Eq. 3.12) gmives p; = p; — vh be-
cause the streamlines are straight and honzontal The above facts
combined with the Bemoulli equation applied between (3) and (4)
show that p; = p, and that the Bemoulli constant along this
streamline is the same as that along the streamline between
(1) and (2). That i3, C34 = Cpp, o

1 _ 1 773 - _
PitapVi+ v =py+3pVi + vz, = Gy = Oy

Simular reasoning shows that the Bemoull constant 1s the same
for any streamline in Fig. E3.18. Hence,

p + 1pV* + ¥z = constant throughout the flow

Again from Example 3.5 we recall that
ps=ps+YH=7vH

If we apply the Bemoull equation across streamlines from (4) to
(5), we obtain the incorrect result “H = py/y + '3/2g.” The cor-
rect result is H = pfy.

From the above we see that we can apply the Bernoulh equation
across streamlines (1)+2) and (3}{4) (Le., C1; = C34) but not across
streamlmes from (4) o (3). The reason for this 15 that whale the flow
m the channe] 15 “irrotational " it 1s “rotational” between the flowng
fluid n the channel and the stationary fluid in the prezometer tube.
Because of the vmform velocity profile across the channel it 1s seen
that the fhnd particles do not rotate or “spm™ as they move. The flow
15 “imotational ” However, as seeninFig. E3 185, there 1s a very thin
shear layer between (4) and (5) in which adjacent fhud particles m-
teract and rotate or “spm.” Thus produces a “rotational” flow. A more
complete analysis would show that the Bemoull equation cannot be
apphed across streamlmes if the flow 1s “rotational” (see Chapter 6).




Some of the important equations i this chapter are:

Streamwise and normal
acceleration a, . (3.1)
Force balance along a streamline dp 1 -
for steady inviscid flow [ p 2 P +g=C (alongastreamline) (3.6)
The Bernoulli equation p+ %pFQ + vz = constant along streamline (3.7)
Pressure gradient normal to

streamline for inviscid flow in aﬁ (3.10h)
absence of gravity dn

Force balance normal to a 2

streamline for steady. inviscid, pt p[— dn + yz = constant across the streamline (3.12)
mcompressible flow R

Velocity measurement for a
Pitot-static tube

V= \2(p; — py)lp (3.16)

T yh
Free jet V= H.'ET— = VIgh (3.18)
P

Cﬂﬂﬁ.ﬂllit‘_‘" &Illﬂﬁﬂﬂ ..&]_F' = ..-‘111:'?], oT Ql = Q: {3.19}
— 45 I|II 1[F| _Fﬂ
V1 — (dy4))’]
| 2g(z) — =)

Sluice gate qul-ﬂ.tiﬂ'ﬂ = Elb ."l.l.' m {3.11]

Flow meter equation o (3.20)

Total head = constant on a streamline = H  (3.12




