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Learning Objectives

After completing this chapter, you should be able to:

m apply the Buckingham pi theorem.

m develop a set of dimensionless variables for a given flow situation.

m discuss the use of dimensionless variables in data analysis.

m apply the concepts of modeling and similitude to develop prediction equations.




Although many practical engineering problems involving fluid mechanics can be solved by us-
ing the equations and analytical procedures described in the preceding chapters. there remain a
large number of problems that rely on experimentally obtained data for their solution. In fact. it
is probably fair to say that very few problems involving real fluids can be solved by analysis
alone. The solution to many problems 1s achieved through the use of a combination of theoret-
ical and numerical analysis and experimental data.

An obvious goal of any experiment 1s to make the results as widely applicable as possible.
To achieve this end. the concept of similitude 1s often used so that measurements made on one
system (for example, in the laboratory) can be used to describe the behavior of other similar sys-
tems (outside the laboratory).




Dimensional Analysis

It is impovtant to
develop a meaning-
ful and systematic
way to perform an
experiment.

The basis for this simplification lies in a consideration of the dimensions of the variables
mvolved. As was discussed in Chapter 1. a qualitative description of physical quantities can be given
in terms of basic dimensions such as mass, M. length. L. and time. T.

This type of analysis 1s called dimensional analysis. and the basis for its application to a
wide variety of problems is found in the Buckingham pi theorem described in the following section.




7.2 Buckingham Pi Theorem

If an equation involving A variables is dimensionally homogeneous, it can be reduced
to a relationship among & — r independent dimensionless products, where r is the
minimum number of reference dimensions required to describe the variables.

The dimensionless products are frequently referred to as “pi ferms.” and the theorem is called the
Buckingham pi theorem.* Edgar Buckingham used the symbol IT to represent a dimensionless
product. and this notation is commonly used. Although the pi theorem is a simple one. its pmuf 1s
not so simple and we will not include it here.

The p1 theorem 1s based on the idea of dimensional homogeneity which was introduced in

Chapter 1. Essentially we assume that for any physically meaningful equation involving & vari-
ables. such as

uy = flug. vy, . ... )

the dimensions of the variable on the left side of the equal sign must be equal to the dimensions
of any term that stands by itself on the right side of the equal sign. It then follows that we can
rearrange the equation into a set of dimensionless products (pi terms) so that

Hl - ¢(H2= n35 *ema Hk—r}
where ¢(I1,. [15. ..., I1;_,) is a function of I1, through IT,_,.




The required number of pi terms is fewer than the number of original variables by r. where
7 1s determined by the minimum number of reference dimensions required to describe the origi-
nal list of variables. Usually the reference dimensions required to describe the variables will be
the basic dimensions M. L. and T or F. L. and 7. However, in some instances perhaps only two
dimensions. such as L and 7. are required. or maybe just one. such as L.

7.3 Determination of Pi Terms

The method we will describe in detail in this section is called the method of repeating variables

Step 1 List all the variables that are involved in the problem.
Step 2 Express each of the variables in terms of basic dimensions.
Step 3 Determine the required number of pi terms.

Step 4 Select a number of repeating variables, where the number required 1s equal to the num-
ber of reference dimensions (usually the same as the number of basic dimensions).

Step 5 Form a pi term by multiplying one of the nonrepeating variables by the product of
repeating variables each raised to an exponent that will make the combination
dimensionless.

Step 6 Repeat Step 5 for each of the remaining nonrepeating variables.
Step 7 Check all the resulting p1 terms to make sure they are dimensionless and independent.

Step 8 Express the final form as a relationship among the pi terms and think about what it
mearns.




By using dimen- Special attention
sional analysis, the should be given to

original problem is the selection of re-

simplified and de- peating variables as
fined with pi terms.

detailed in Step 4.




—EXAMPLE 7.1

GIVEN A thin rectangular plate having a width w and a height
h 1s located so that it is normal to a moving stream of fluid as
shown in Fig. E7.1. Assume the drag, “/, that the fluid exerts on
the plate is a function of w and h, the fluid viscosity and density.
p and p, respectively. and the velocity V of the fluid approaching
the plate.

SoLuTIiON

From the statement of the problem we can write

1= flwh ppV)

where this equation expresses the general functional relationship
between the drag and the several vanables that will affect it. The
dimensions of the vanables (using the MLT system) are

Method of Repeating Variables

FIND Determine a suitable set of pi terms to study this prob-

lem expenmentally.
e

V7.2 Flow past a
flat plate

BFIGURE E71




[T, = 9w* pr':
and 1n terms of dimensions

(MLT 2)(LY(LT Yo (ML) = M°LOT?

Thus. for I1; to be dimensionless it follows that
l1+e=0 (for M)

l+a+b—3¢=0 (for L)

—2—-b=0 (for T)

and. therefore.a = —2.b = —2. and ¢ = —1. The p1 term then
becomes

i
wFp

Next the procedure 1s repeated with the second nonrepeating
variable, h. so that

H1=

1, = V"

Finally. we can express the results of the dimensional analysis
in the form

(Ans)



It follows that

(L)L)LT (ML) = M°LT°

c=10 (for M)
l+a+b—3¢=0 (for L)
b=10 (for T)

sothata = —1.b = 0, ¢ = 0, and therefore

The remaining nonrepeating variable 1s u so that
Il; = puw” pr":

with

{M—l T -1 )[L]H[LT— 1 )b{ML—?r}c = M UL'[ITG

and. therefore.



l1+ec=20 (for M)
—1+a+b—-3¢=0 (for L)
—-1-b=0 (for T)

Solving for the exponents, we obtamma = —1.b = —1l.¢ = —1s0
that

I

l_[3 =
wlp

Now that we have the three required p1 terms we should check
to make sure they are dimensionless. To make this check we use
F. L. and T, which will also verify the correctness of the origina
dimensions used for the variables. Thus,

@D (F)

I, = = = FL°T°
YW (DMLTYAEL T
L

I, = b8 poporo

w (L)

FL™°T

My = —— = (1 }42iF“L“T“

wVp  (L)(LT )FL™*T?)

) w pFw

== tf)(z p ) (Ans)




7.4.1 Selection of Variables

Geomeltry. The geometric characteristics can usually be described by a series of lengths
and angles. In most problems the geometry of the system plays an important role.

Material Properties. Since the response of a system to applied external effects such as

torces. pressures. and changes in temperature is dependent on the nature of the materials mvolved
in the system. the material properties that relate the external effects and the responses must be in-

cluded as variables. For example.

External Effects. This terminology is used to denote any variable that produces. or tends

to produce. a change in the system.




In summary. the following points should be considered in the selection of variables:

. Clearly define the problem. What is the main variable of interest (the dependent variable)?

. Consider the basic laws that govern the phenomenon. Even a crude theory that describes the
essential aspects of the system may be helpful.

. Start the variable selection process by grouping the variables into three broad classes: geom-
etry. material properties. and external effects.

4. Consider other variables that may not fall into one of the above categories. For example. time

will be an important variable if any of the variables are time dependent.

. Be sure to include all quantities that enter the problem even though some of them may be
held constant (e.g.. the acceleration of gravity. g). For a dimensional analysis it is the dimen-
sions of the quantities that are important—not specific values!

. Make sure that all variables are independent. Look for relationships among subsets of the
variables.




B TABLE 7.1

Some Common Variables and Dimensionless Groups in Fluid Mechanics

Variables: Acceleration of gravity, g: Bulk modulus, E,: Characteristic length, €: Density, p: Frequency of
oscillating flow. @: Pressure, p (or Ap): Speed of sound, ¢: Surface tension. o Velocity, V: Viscosity, p

Dimensionless
Groups

Name

Interpretation (Index of
Force Ratio Indicated)

Types of
Applications

pVt

Reynolds number, Re

inertia force

viscous force

Generally of importance in
all types of fluid dynamies

problems

Froude number, Fr

mnertia force

gravitational force

Flow with a free surface

Euler number, Eu

pressure force

inertia force

Problems in which pressure,
or pressure differences. are
of interest

Cauchy number.* Ca

mnertia force

compressibility force

Flows in which the
compressibility of the flud
1s umportant

Mach number.® Ma

mnertia force

compressibility force

Flows in which the
compressibility of the flud
is important

Strouhal number, St

mertia (local) force

mertia (convective) force

Unsteady flow with a
characteristic frequency of
oscillation

Weber number, We

inertia force

surface tension force

Problems in which surface
tension is important




7.8 Modeling and Similitude

Models are widely used in fluid mechanics. Major engineering projects mvolving structures. air-
craft. ships. rivers. harbors. dams. air and water pollution. and so on. frequently involve the use of
models. Although the term “model” is used i many different contexts. the “engineering model”
generally conforms to the following definition. 4 medel is a representation of a phvsical svstem
that mav be used to predict the behavior of the svstem in some desired respect. The physical sys-
tem for which the predictions are to be made is called the profofype. Although mathematical or
computer models may also conform to this definition. our interest will be in physical models. that
is. models that resemble the prototype but are generally of a different size. may involve different
fluids, and often operate under different conditions (pressures. velocities, etc.).

The similarity re- Similarity between
quirements for a a model and a pro-
model can be read- totype is achieved

ily abtm:r.'nf:d _14*irh by equating pi
the aid of dimen- y
) ferms.

sional analysis.

Prototype




_EXAMPLE 4.3 Prediction of Prototype Performance from Model Data

GIVEN A long structural component of a bridge has an elliptical
cross section shown mn Fig. E7.5. It 1s known that when a steady wind
blows past this type of bluff body. vortices may develop on the down-
wind side that are shed in a regular fashion at some definite fre-
quency. Since these vortices can create harmful periodic forces acting
on the structure, it is important to determine the shedding frequency.
For the specific structure of mterest, D = 0.1m. H = 0.3 m, and a
representative wind velocity is 50 km/hr. Standard air can be as-
sumed. The shedding frequency is to be determined through the use
of a small-scale model that 1s to be tested in a water tunnel. For the
model D, = 20 mm and the water temperature 1s 20 °C.

BFIGURE E7.5

FIND Determine the model dimension. H,,. and the velocity at
which the test should be performed. If the shedding frequency for
the model 1s found to be 49.9 Hz. what 1s the corresponding fre-
quency for the prototype?

& 00 N NN N




SoLuTION

We expect the shedding frequency. w. to depend on the lengths D
and H. the approach velocity. V. and the fluid density, p. and vis-
cosity, p. Thus,

w =fD.H.V.p, p)

where
(r.}

D
H=L
V=LT"!
p =ML
w=MLIT!

T_l
L

Since there are six variables and three reference dimensions (MLT),
three p1 terms are required. Application of the p1 theorem yields

'

wD tﬁ(g pVD)
v "\

We recognize the pi term on the left as the Strouhal number, and
the dimensional analysis indicates that the Strouhal number 1s a
function of the geometric parameter, D/H. and the Reynolds num-
ber. Thus. to maintain similarity between model and prototype




PuVuDm _ PVD

Fom e

From the first similarity requirement

D,
H,=—H
" D
(20X 107 m)
~ (0.1m)

H, =60 X 10 " m = 60 mm

(0.3 m)

(Ans)

The second similarity requirement indicates that the Reynolds
number must be the same for model and prototype so that the
model velocity must satisfy the condition

(1)

For air at standard conditions. g = 1.79 X 107° kg/m - s,
p=123kg/m’. and for water at 20°C. p = 1.00 X
10 3 kg/m - s. p = 998 kg/m’. The fluid velocity for the proto-
type 1s

(50 X 10° m/hr)

V= 3600 /o) = 13.9m/s

The required velocity can now be calculated from Eq. 1 as




_ [1.00 X 107 kg/(m-s)] (1.23 kg/m’)
" [1.79 X 10 kg/(m-s)] (998 kg/m’)
(0.1 m)
(20 X 107° m)
V, = 479 m/s (Ans)

(13.9 m/s)

This 1s a reasonable velocity that could be readily achieved in a
water tunnel.
With the two similarity requirements satisfied, it follows that

the Strouhal numbers for prototype and model will be the same so
that

wD B WDy
V V,

M

and the predicted prototype vortex shedding frequency is

V D,
W= """,

V,, D
(13.9 m/s) (20 X 10> m)

~@nomis)  (01m) (POHI)

w = 29.0 Hz




7.8.2 Model Scales

It is clear from the preceding section that the ratio of like quantities for the model and prototype
naturally arises from the similarity requirements. For example. if in a given problem there are two
length variables {; and {,. the resulting similarity requirement based on a pi term obtained from

these two variables 1s

{

{5




_E)(AMPLE rad:3 Reynolds Number Similarity

GIVEN Model tests are to be performed to study the flow
through a large check valve having a 2-ft-diameter inlet and
carrying water at a flowrate of 30 cfs as shown in Fig. E7.6a.
The working fluid i the model 1s water at the same tempera-
ture as that in the prototype. Complete geometric similarity ex- i

ists between model and prototype, and the model inlet diameter
_ =30 cfs
-\/ -

1s 3 in.

FIND Determine the required flowrate in the model. (Q,=7)
T |
D=2ft
SoLuTION e

To ensure dynamic similarity, the model tests shouldbennso |m F1 G URE E7.62a
that

Re, = Re

AN




where ¥ and D correspond to the mlet velocity and diameter, re-
spectively. Since the same fluid is to be used in model and proto-
type. ¥ = v, and therefore

25

Vo D

VD, 20

The discharge. Q. 1s equal to FA. where A 1s the inlet area. so

Qm VindAm ( )[ W/4}D ] 10
0 - ( ﬂ'f‘iUDz] (0.125, 8)
D,

-3 0 %
0 0.2 0.4 0.6 0.8 1

IV

[~
m

J

D, /D

and for the data given
= BFIGURE E7.6b

(3/12 fi)
Qm _ (j ft) [30 ﬂjf?‘]

O = 3.75 cfs




GIVEN The drag on the airplane shown in Fig. E7.7 cruising
at 240 mph n standard air 1s to be determined from tests ona 1:10
scale model placed in a pressurized wind tunnel. To minimize

compressibility effects. the air speed in the wind tunnel 1s also to
be 240 mph.

FIND Determine

(a) the required air pressure in the tunnel (assuming the same
air temperature for model and prototype) and

SoLuTION

_E)(AM N 3rard Model Design Conditions and Predicted Prototype Performance

(b) the drag on the prototype corresponding to a measured force
of 1 1b on the model.

BFIGURE E7.7

(a) From Eq. 7.19 it follows that drag can be predicted from a
geometrically similar model if the Reynolds numbers in model
and prototype are the same. Thus,

P Vil _ pVE
Hom p

For this example, ¥, = V and {,,/{ = Tlg so that

p_m:pmlf’f

P BVt

— Em
= (1)(10)

and therefore

This result shows that the same fluid with p,, = p and u,, = p
cannot be used if Reynolds number similarity is to be maintained.
One possibility 1s to pressurize the wind tunnel to increase the
density of the air. We assume that an increase in pressure does not
significantly change the viscosity so that the required inerease in
density 1s given by the relationship

Pm
P

=10

For an ideal gas, p = pRT so that

Pm _ Pm
p p




for constant temperature (I’ = T,). Therefore, the wind tunnel
would need to be pressurized so that

- = 10

P

Since the prototype operates at standard atmospheric pressure,
the required pressure in the wind tunnel 1s 10 atmospheres or

Pm = 10(14.7 psia)
= 147 psia (Ans)

(b) The drag could be obtained from Eq. 7.19 so that

9 Uy
%pprl{"? lp I,r: {"1

THm* mlm

'

= = O ..Vm‘ {1“! L
- ][]‘ [ )( ) “Lm

= 10%,

Thus. for a drag of 1 Ib on the model the corresponding drag on
the prototype 1s

9 =101b (Ans)




