CIVL484 REPAIR AND MAINTENANCE OF CONCRETE				
Department: Civil Engi	Civil Engineering			
Program Name:		Program Code: 22		
Civil Engineering		110gram Code. 22		
Course Number: Credits:				
CIVL484	3 CR			
Required Course Elective Course				
Prerequisite(s): CIVL283 & CIVL284				

Catalog Description:

Concrete behaviour: embedded metal corrosion, disintegration mechanisms, moisture effects, thermal effects, load effects, faulty workmanship, concrete evaluation: test methods for concrete evaluation, surface repair: analysis strategy & design, material requirements, material selection, preparation, reinforcing steel cleaning repair & protection, bond repair materials to existing concrete, placement methods, strengthening & stabilization: techniques/design considerations, beam shear capacity strengthening, shear transfer strengthening between members, stress reduction techniques, column strengthening, flexural strengthening, connection stabilization and strengthening, crack stabilization, protection: strategies, methods.

Course instructor:

Prof. Dr. Khaled MARAR

Course Web Page:

https://staff.emu.edu.tr/khaledmarar/en/teaching/CIVL484

Textbook(s):

Concrete Repair and Maintenance Illustrated, Peter H. Emmons, Reed Construction Data, 1993.

References:

- 1. Corrosion of Steel in Concrete: Understanding, investigation and repair, John P. Broomfield, E. & FN Spon, 1997.
- 2. Durability of Concrete Structures: investigation, repair, protection, Edited by Geoffrey Mays, Chapman & Hall, 1991.
- 3. Properties of Concrete, AM Neville, Prentice Hall, Fourth Edition, 2002.

Course Outline:

Week 1 Introduction to course (3 Classes)

Course objectives, course description, introduction to repair and maintenance of concrete.

Week 2-3 Part one- Concrete Behavior (6 Classes)

Embedded metal corrosion, disintegration mechanisms, moisture effect. Thermal effects, load effects, faulty workmanship

Week 4-5 Part two- Concrete Evaluation (9 Classes)

Test methods.

Week 6-10 Part three- Surface Repair (6 Classes)

Analysis, strategy & design, material requirements, material selection. Surface preparation, reinforced steel cleaning, repair and protection, bonding repair materials to existing concrete, placement methods.

Week 11-12 Part four-Strengthening & Stabilization (6 Classes)

Techniques/design considerations, beam shear capacity strengthening, shear transfer strengthening between members. Stress reduction techniques, column strengthening, flexural strengthening, connection stabilization & strengthening, crack stabilization

Week 13-14 Part five-Protection (6 Classes)

Strategies and methods

Course Learning Outcomes:

At the end of the course the students will be able to develop:

- 1. Knowledge and understanding of behavior of concrete under different conditions and environments.
- 2. Knowledge and understanding of testing methods for concrete evaluation.
- 3. Knowledge and understanding of repair & strengthening of concrete.
- 4. Knowledge and understanding of protection of concrete.
- 5. Working in a team for a project related to repair & maintenance of concrete.

Class Schedule:			Laboratory Schedule:	
3 hrs of lectures per week			1 hr of tutorial/laboratory per week	
Assessment	Method	No	Percentage	
	Quiz(es)	3	9%	
	Midterm Exam(s)	1	24%	
	Term paper	1	20%	
	Lab Experiments	6	12%	
	Final Examination	1	35%	

NG Policy

Attendance is compulsory and absenteeism of more than 70% of classes will cause grade "F". <u>Students with poor interest, poor attendance, and lack of two examination are graded NG</u>. There will be only one make-up exam at the end of semester for students who missed midterm or final examination.

Contribution of Course to Criterion 5

Credit Hours for:

Mathematics & Basic Science : 0 Engineering Topic and Design : 4

General Education: 0

Relationship of Course to Student Outcomes

The course makes significant contributions to the following outcomes:

- 1) an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science and mathematics
- 2) an ability to apply engineering design to produce solutions that meet specific needs with consideration of public health, safety and welfare, as well as global, cultural, social, environmental, and economic factors
- 3) an ability to communicate effectively with a range of audiences
- 4) an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgements, which must consider the impact of engineering solutions in global, economic, environmental and societal contexts
- 5) an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives
- 6) an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgement to draw conclusions.
- 7) an ability to acquire and apply new knowledge as needed, using appropriate learning strategies.