
1

C H A P T E R 4 –A N D R O I D P L A T F O R M

ITEC 399
MOBILE APPLICATION

DEVELOPMENT

Subject Teacher: Mobina Beheshti

OBJECTIVES

• Description of Android OP

• Android studio software application

• Android application marketplace

• Android studio installation process

• Android studio default files

• How to run app in android studio

2

WHAT IS ANDROID?

• Android is an operating system based on Linux and is an
application platform for mobile devices using Java.

• Android was initially developed by Google and is now
run by the Open Handset Alliance (OHA), which is a
consortium of around 50 hardware, software and
telecom companies led by Google.

• Android is the largest installed base of any mobile
platform and is growing fast (Figure 1).

• The Android operating system currently powers more
than one billion smartphones and tablets.

• Each Android version is named after a dessert and the
current version is 6.0 Marshmallow.

3

4

Figure 1: Android growth in device activations

ANDROID STUDIO

• Android provides developers with everything they need
to build very advanced app experiences.

• It facilitates a single application model that lets
developers deploy their apps broadly for a wide range
of devices, from phones to tablets and beyond, whilst
simultaneously considering the hardware capabilities
available on each device.

• Also, the Android Studio offers a comprehensive
development tool with advanced features for
developing, debugging and packaging Android apps.

• Using Android Studio IDE, they can develop for any
available Android device or create virtual devices that
emulate any hardware configuration.

5

ANDROID APP MARKETPLACE

• Google Play (Figure 2) is the premier marketplace

for selling and distributing Android apps.

• When developers publish an app on Google Play,

they reach the huge installed base of Android. As

an open marketplace, Google Play puts them in

control of how they sell their products.

• They can publish whenever they want, as often as

they want, and to the customers they want. They

can distribute broadly to all markets and devices or

focus on specific segments, devices, or ranges of

hardware capabilities.

6

7

Figure 2: Google Play

ANDROID APP DEVELOPMENT
SOFTWARE

In order to develop apps for the Android platform, you
need:

• The Android System Development Kit (SDK), which
provides you with the Application Programming
Interface (API) libraries and developer tools necessary to
build, test and debug apps for Android.

Before you start the development of your first Android
app:

• Make sure that you have Java Platform (JDK) installed
on your computer. It can be downloaded from:

www.oracle.com

• Always select the latest edition.

8

ANDROID APP DEVELOPMENT
SOFTWARE

Installation Process

• You need to download the Android Studio, which
includes the essential Android SDK components and
intelligent code editor that contains advanced
code completion, refactoring and code analysis.
The powerful code editor helps you to be a more
productive Android app developer.

• After you download Android Studio, unpack the ZIP
file, click the Installation icon, keep all the default
settings and click Next until installation is completed
on your computer. Then click Finish (see images
below).

 9

10

1

2

11

12

5

6

HOW TO INSTALL AND RUN YOUR APP
ON A REAL DEVICE

• If you have a device running Android, here's how to
install and run your app.

• Set Up Your Device

• Plug in your device to your development machine with a
USB cable. If you're developing on Windows, you might
need to install the appropriate USB driver for your
device. For help installing drivers, see the OEM USB
Drivers document.

• Enable USB debugging on your device.

• On most devices running Android 3.2 or older, you can
find the option under Settings > Applications >
Development.

• On Android 4.0 and newer, it's in Settings > Developer
options.

13

HOW TO INSTALL AND RUN YOUR APP
ON A REAL DEVICE

• On Android 4.2 and newer, Developer options is
hidden by default. To make it available, go to
Settings > About phone and tap Build number seven
times. Return to the previous screen to find
Developer options.

• Select one of your project's files and click Run from
the toolbar.

• In the Choose Device window that appears, select
the Choose a running device radio button, select
your device, and click OK.

• Android Studio installs the app on your connected
device and starts it.

14

HOW TO INSTALL AND RUN YOUR APP
ON THE ANDROID EMULATOR

To run your app on the emulator, you need to first create

an Android Virtual Device (AVD).

• An AVD is a device configuration for the Android

emulator that allows you to model a specific device.

Create an AVD

• 1. Launch the Android Virtual Device Manager:

• In Android Studio, select Tools > Android > AVD

Manager, or click the AVD Manager icon in the

toolbar. The AVD Manager screen appears.

• 2. On the AVD Manager main screen, click Create

Virtual Device.

15

HOW TO INSTALL AND RUN YOUR APP
ON THE ANDROID EMULATOR

• In the Select Hardware window, select a device

configuration, such as Nexus 6, then click Next.

• Select the desired system version for the AVD and

click Next.

• Verify the configuration settings, then click Finish.

16

17

18

19

List of images to create virtual emulator and running the app

CREATE NEW PROJECT

Create your first app:

1. In Android Studio, create a new project:

• If you don't have a project opened, in the Welcome

screen, click New Project.

• If you have a project opened, from the File menu,

select New Project. The Create New Project screen

appears.

20

21

CREATE NEW PROJECT

2. Fill out the fields on the screen, and click Next.
• Application Name: is the app name that appears to users. For

this project, use ‘My First App.’

• Company domain: provides a qualifier that will be appended
to the package name: Android Studio will remember this
qualifier for each new project you create (leave default
values for now).

• Package name: is the fully qualified name for the project
(following the same rules as those for naming packages in the
Java programming language). Your package name must be
unique across all packages installed on the Android system.
• You can Edit this value independently from the application name or

the company domain (leave default values for now).

• Project location: is the directory on your system that holds the
project files.

22

CREATE NEW PROJECT

3. Under Select the form factors your app will run on,
check the box for Phone and Tablet.

For Minimum SDK, select API 8: Android 2.2 (Froyo).

• The Minimum Required SDK is the earliest version of
Android that your app supports, indicated using the API
level.

• To support as many devices as possible, you should set
this to the lowest version available that allows your app
to provide its core feature set.

• If any feature of your app is possible only on newer
versions of Android, and it's not critical to the app's core
feature set, you can enable the feature only when
running on the versions that support it.

23

24

5. Leave all of the other options (TV, Wear and Glass) unchecked and click

Next.

Configuring Your App

CREATE NEW PROJECT

6. Under Add an activity to <template>, select Blank

Activity and click Next.

25

CREATE NEW PROJECT

• Under Customize the Activity, change the Activity

Name to MyActivity.

• The Layout Name changes to activity_my, and the

Title to MyActivity.

• The Menu Resource Name is menu_my.

• Then click the Finish button to create the project as

shown in figures 8 and 9.

26

27

ANDROID STUDIO DEFAULT FILES

Your Android project is now a basic ‘Hello World’ app that
contains some default files. Take a moment to review the
most important of these:

1. app/src/main/res/layout/activity_my.xml

• This XML layout file is for the activity you added when
you created the project with Android Studio.

• Following the New Project workflow, Android Studio
presents this file with both a text view and a preview of
the screen UI.

• The file contains some default interface elements from
the material design library, including the app bar and a
floating action button.

• It also includes a separate layout file with the main
content.

 28

ANDROID STUDIO DEFAULT FILES

The app bar, also known as the action bar, is one of the most
important design elements in your app's activities, because it
provides a visual structure and interactive elements that are
familiar to users. Using the app bar makes your app consistent
with other Android apps, allowing users to quickly understand
how to operate your app and have a great experience. The key
functions of the app bar are as follows:

• A dedicated space for giving your app an identity and
indicating the user's location in the app.

• Access to important actions in a predictable way, such as
search.

• Support for navigation and view switching (with tabs or drop-
down lists).

29

ANDROID STUDIO DEFAULT FILES

2. app/src/main/res/layout/content_my.xml

• This XML layout file resides in activity_my.xml, and
contains some settings and a TextView element that
displays the message, "Hello world!".

3.app/src/main/java/com.mycompany.myfirstapp/MyAct
ivity.java

• A tab for this file appears in Android Studio when the
New Project workflow finishes. When you select the file,
you see the class definition for the activity you created.
When you build and run the app, the Activity class starts
the activity and loads the layout file that says "Hello
World!"

30

ANDROID STUDIO DEFAULT FILES

4.app/src/main/AndroidManifest.xml

• The manifest file describes the fundamental

characteristics of the app and defines each of its

components. You'll revisit this file as you follow these

lessons and add more components to your app.

31

APP MANIFEST OVERVIEW

• Every app project must have an AndroidManifest.xml file

at the root of the project source set.

• The manifest file describes essential information about:

The app's package name, which usually matches your

code's namespace.

The components of the app, which include all activities,

services, broadcast receivers, and content providers.

The permissions that the app needs in order to access

protected parts of the system or other apps.

The hardware and software features the app requires,

which affects which devices can install the app from

Google Play.

32

ANDROID STUDIO DEFAULT FILES

5. app/build.gradle
• Android Studio uses Gradle to compile and build your app.

There is a build.gradle file for each module of your project, as
well as a build.gradle file for the entire project. Usually, you're
only interested in the build.gradle file for the module, in this
case the app or application module. This is where your app's
build dependencies are set, including the default Config
settings:

compiledSdkVersion: is the platform version against which you
will compile your app. By default, this is set to the latest version
of Android available in your SDK (it should be Android 4.1 or
greater; if you don't have such a version available, you must
install one using the SDK Manager.). You can still build your
app to support older versions, but setting this to the latest
version allows you to enable new features and optimize your
app for a great user experience on the latest devices.

applicationId: is the fully qualified package name for your
application that you specified during the New Project
workflow.

33

ANDROID STUDIO DEFAULT FILES

minSdkVersion: is the Minimum SDK version you
specified during the New Project workflow. This
is the earliest version of the Android SDK that
your app supports.

targetSdkVersion: indicates the highest version
of Android with which you have tested your
application. As new versions of Android
become available, you should test your app on
the new version and update this value to
match the latest API level, and thereby take
advantage of new platform features. For more
information,

read Supporting Different Platform Versions. See
Building Your Project with Gradle for more
information about Gradle.

34

ANDROID STUDIO DEFAULT FILES

6.drawable-<density>/
• Directories for drawable resources, other

than launcher icons, designed for various
densities.

7.layout/
• Directory for files that define your app's

user interface, like activity_my.xml,
discussed above, which describes a
basic layout for the MyActivity class.

8.menu/
• Directory for files that define your app's

menu items.

35

ANDROID STUDIO DEFAULT FILES

8. mipmap/

• Launcher icons reside in the mipmap/
folder rather than the drawable/
folders. This folder contains the
ic_launcher.png image that appears
when you run the default app.

9.values/

• Directory for other XML files that
contain a collection of resources, such
as string and color definitions.

36

ANDROID APP

• The graphical user interface for an Android app is
built using a hierarchy of View and ViewGroup
objects.

• View objects are usually UI widgets such as buttons
or text fields.

• ViewGroup objects are invisible view containers
that define how the child views are laid out, such as
in a grid or a vertical list.

• Android provides an XML vocabulary that
corresponds to the subclasses of View and
ViewGroup, so you can define your UI in XML using
a hierarchy of UI elements, as illustrated in Figure 11.

37

38

Illustration of ViewGroup objects form branches in the layout that

contain other View objects

ANATOMY OF ANDROID APPLICATION

Before you run your app,

you should be aware of a

few directories and files in

the Android project.

39

ANATOMY OF ANDROID APPLICATION

1

Java
This contains the .java source files for your
project. By default, it includes
an MainActivity.java source file having an activity
class that runs when your app is launched using
the app icon.

2

res/drawable-hdpi
This is a directory for drawable objects that are
designed for high-density screens.

3

res/layout
This is a directory for files that define your app's
user interface.

40

ANATOMY OF ANDROID APPLICATION

41

4

res/values
This is a directory for other various XML files that
contain a collection of resources, such as strings
and colors definitions.

5

AndroidManifest.xml
This is the manifest file which describes the
fundamental characteristics of the app and
defines each of its components.

6

Build.gradle
This is an auto generated file which contains
compileSdkVersion, buildToolsVersion,
applicationId, minSdkVersion, targetSdkVersion,
versionCode and versionName

THE MAIN ACTIVITY FILE

The main activity code is a Java

file MainActivity.java. This is the actual application file

which ultimately gets converted to a Dalvik

executable and runs your application. Following is

the default code generated by the application

wizard for Hello World! application

42

43

package com.example.helloworld;

import android.support.v7.app.AppCompatActivity;

import android.os.Bundle;

public class MainActivity extends AppCompatActivity {

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 }

}

• Here, R.layout.activity_main refers to the activity_main.xml file

located in the res/layout folder.

• The onCreate() method is one of many methods that are figured

when an activity is loaded.

THE MANIFEST FILE

Whatever component you develop as a part of your

application, you must declare all its components in

a manifest.xml which resides at the root of the

application project directory.

This file works as an interface between Android OS

and your application, so if you do not declare your

component in this file, then it will not be considered

by the OS.

For example, a default manifest file will look like as

following file :

44

45

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.example.tutorialspoint7.myapplication">

 <application

 android:allowBackup="true"

 android:icon="@mipmap/ic_launcher"

 android:label="@string/app_name"

 android:supportsRtl="true"

 android:theme="@style/AppTheme">

 <activity android:name=".MainActivity">

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 </application>

</manifest>

THE MANIFEST FILE

• Here <application>...</application> tags enclosed
the components related to the application.

• Attribute android:icon will point to the application
icon available under res/drawable-hdpi.

• The application uses the image named
ic_launcher.png located in the drawable folders

• The <activity> tag is used to specify an activity
and android:name attribute specifies the fully
qualified class name of the Activity subclass and
the android:label attributes specifies a string to use as
the label for the activity.

• You can specify multiple activities using <activity>
tags.

 46

THE MANIFEST FILE

• The action for the intent filter is

named android.intent.action.MAIN to indicate that this

activity serves as the entry point for the application.

• The category for the intent-filter is

named android.intent.category.LAUNCHER to indicate

that the application can be launched from the

device's launcher icon.

• The @string refers to the strings.xml file explained

below. Hence, @string/app_name refers to

the app_name string defined in the strings.xml file,

which is "HelloWorld". Similar way, other strings get

populated in the application.

 47

THE MANIFEST FILE

Following is the list of tags which you will use in your

manifest file to specify different Android application

components :

• <activity>elements for activities

• <service> elements for services

• <receiver> elements for broadcast receivers

• <provider> elements for content providers

48

THE STRINGS FILE

The strings.xml file is located in the res/values folder

and it contains all the text that your application uses.

For example, the names of buttons, labels, default

text, and similar types of strings go into this file. This file

is responsible for their textual content. For example, a

default strings file will look like as following file

49

50

<resources>

 <string name="app_name">HelloWorld</string>

 <string name="hello_world">Hello world!</string>

 <string name="menu_settings">Settings</string>

 <string name="title_activity_main">MainActivity</string>

</resources>

THE LAYOUT FILE

The activity_main.xml is a layout file available

in res/layout directory, that is referenced by your

application when building its interface. You will

modify this file very frequently to change the layout

of your application. For your "Hello World!"

application, this file will have following content

related to default layout

51

52

<RelativeLayout

xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent" >

 <TextView

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_centerHorizontal="true"

 android:layout_centerVertical="true"

 android:padding="@dimen/padding_medium"

 android:text="@string/hello_world"

 tools:context=".MainActivity" />

</RelativeLayout>

• This is an example of simple RelativeLayout .

• The TextView is an Android control used to build the GUI and it have

various attributes like android:layout_width, android:layout_height etc

which are being used to set its width and height etc…

• The @string refers to the strings.xml file located in the res/values folder.

Hence, @string/hello_world refers to the hello string defined in the

strings.xml file, which is "Hello World!".

EXAMPLE OF LAYOUT FILE

• In Android Studio, from the res/layout directory, edit

the content_my.xml file.

• Within the <LinearLayout> element, define a

<Button> element immediately following the

<EditText> element.

• Set the button's width and height attributes to

"wrap_content", so the button is only as big as

necessary to fit the button's text label.

• Define the button's text label with the android:text

attribute; set its value to the button_send string

resource you defined in the previous section.

53

YOUR <LINEARLAYOUT> SHOULD
LOOK LIKE THIS:

54

<LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools"
android:orientation="horizontal"

android:layout_width="match_parent"
android:layout_height="match_parent"
app:layout_behavior="@string/appbar_scrolling_view_behavior"
tools:showIn="@layout/activity_my">
<EditText

android:id="@+id/edit_message"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:hint="@string/edit_message" />
<Button

android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/button_send" />
</LinearLayout>

ATTRIBUTES OF OBJECTS

• This button doesn't need the android:id attribute

because it won't be referenced from the activity

code.

• The layout is currently designed so that both the

EditText and Button widgets are only as big as

necessary to fit their content, as Figure 12 shows.

55

ATTRIBUTES OF OBJECTS

• It would be nice to fill the unused screen width with the text field.
You can do this inside a LinearLayout with the weight property,
which you can specify using the android:layout_weight attribute.

• The weight value is a number that specifies the amount of
remaining space each view should consume, relative to the
amount consumed by sibling views. The way this works is similar to
the amount of ingredients in a drink recipe: "2 parts soda, 1 part
syrup" means two-thirds of the drink is soda. For example, if you
give one view a weight of 2 and another one a weight of 1, the
sum is 3, so the first view fills 2/3 of the remaining space and the
second view fills the rest. If you add a third view and give it a
weight of 1, then the first view (with a weight of 2) now gets 1/2
the remaining space, while the remaining two each get 1/4.

• The default weight for all views is 0, so if you specify any weight
value greater than 0 to only one view, then that view fills
whatever space remains after all views are given the space they
require.

 56

ANDROID APP

• This layout is applied by

the default Activity

class that the SDK tools

generated when you

created the project.

Run the app to see the

results:

• In Android Studio, from

the toolbar, click Run

57 Copy protected with Online-PDF-No-Copy.com

https://online-pdf-no-copy.com/

