
Relative positioning
Relative positioning is one of the basic building block of creating layouts in ConstraintLayout.
Those constraints allow you to position a given widget relative to another one. You can constrain a
widget on the horizontal and vertical axis:

 Horizontal Axis: left, right, start and end sides

 Vertical Axis: top, bottom sides and text baseline

The general concept is to constrain a given side of a widget to another side of any other widget.

For example, in order to position button B to the right of button A (Fig. 1):

Fig. 1 - Relative Positioning Example

you would need to do:

<Button android:id="@+id/buttonA" ... />

 <Button android:id="@+id/buttonB" ...

 app:layout_constraintLeft_toRightOf="@+id/buttonA" />

This tells the system that we want the left side of button B to be constrained to the right side of
button A. Such a position constraint means that the system will try to have both sides share the
same location.

Fig. 2 - Relative Positioning Constraints

Here is the list of available constraints (Fig. 2):

 layout_constraintLeft_toLeftOf

 layout_constraintLeft_toRightOf

 layout_constraintRight_toLeftOf

 layout_constraintRight_toRightOf

 layout_constraintTop_toTopOf

 layout_constraintTop_toBottomOf

 layout_constraintBottom_toTopOf

 layout_constraintBottom_toBottomOf

 layout_constraintBaseline_toBaselineOf

 layout_constraintStart_toEndOf

 layout_constraintStart_toStartOf

 layout_constraintEnd_toStartOf

 layout_constraintEnd_toEndOf

They all take a reference id to another widget, or the parent (which will reference the parent

container, i.e. the ConstraintLayout):

<Button android:id="@+id/buttonB" ...

 app:layout_constraintLeft_toLeftOf="parent" />

Margins

Fig. 3 - Relative Positioning Margins

If side margins are set, they will be applied to the corresponding constraints (if they exist) (Fig. 3),
enforcing the margin as a space between the target and the source side. The usual layout margin
attributes can be used to this effect:

 android:layout_marginStart

 android:layout_marginEnd

 android:layout_marginLeft

 android:layout_marginTop

 android:layout_marginRight

 android:layout_marginBottom

Note that a margin can only be positive or equals to zero, and takes a Dimension.

Margins when connected to a GONE widget

When a position constraint target's visibility is View.GONE, you can also indicate a different margin

value to be used using the following attributes:

 layout_goneMarginStart

 layout_goneMarginEnd

 layout_goneMarginLeft

 layout_goneMarginTop

 layout_goneMarginRight

 layout_goneMarginBottom

Centering positioning and bias

A useful aspect of ConstraintLayout is in how it deals with "impossible" constrains. For example, if

we have something like:

<android.support.constraint.ConstraintLayout ...>

 <Button android:id="@+id/button" ...

 app:layout_constraintLeft_toLeftOf="parent"

 app:layout_constraintRight_toRightOf="parent/>

 </>

Unless the ConstraintLayout happens to have the exact same size as the Button, both

constraints cannot be satisfied at the same time (both sides cannot be where we want them to be).

Fig. 4 - Centering Positioning

What happens in this case is that the constraints act like opposite forces pulling the widget apart
equally (Fig. 4); such that the widget will end up being centered in the parent container. This will
apply similarly for vertical constraints.

Bias

The default when encountering such opposite constraints is to center the widget; but you can tweak
the positioning to favor one side over another using the bias attributes:

 layout_constraintHorizontal_bias

 layout_constraintVertical_bias

Fig. 5 - Centering Positioning with Bias

For example the following will make the left side with a 30% bias instead of the default 50%, such
that the left side will be shorter, with the widget leaning more toward the left side (Fig. 5):

<android.support.constraint.ConstraintLayout ...>

 <Button android:id="@+id/button" ...

 app:layout_constraintHorizontal_bias="0.3"

 app:layout_constraintLeft_toLeftOf="parent"

 app:layout_constraintRight_toRightOf="parent/>

 </>

Using bias, you can craft User Interfaces that will better adapt to screen sizes changes.

Circular positioning (Added in 1.1)

You can constrain a widget center relative to another widget center, at an angle and a distance. This
allows you to position a widget on a circle (see Fig. 6). The following attributes can be used:

 layout_constraintCircle : references another widget id

 layout_constraintCircleRadius : the distance to the other widget center

 layout_constraintCircleAngle : which angle the widget should be at (in degrees, from 0 to 360)

Fig. 6 - Circular Positioning

<Button android:id="@+id/buttonA" ... />

 <Button android:id="@+id/buttonB" ...

 app:layout_constraintCircle="@+id/buttonA"

 app:layout_constraintCircleRadius="100dp"

 app:layout_constraintCircleAngle="45" />

Visibility behavior

ConstraintLayout has a specific handling of widgets being marked as View.GONE.

GONE widgets, as usual, are not going to be displayed and are not part of the layout itself (i.e. their

actual dimensions will not be changed if marked as GONE).

But in terms of the layout computations, GONE widgets are still part of it, with an important distinction:

 For the layout pass, their dimension will be considered as zero (basically, they will be resolved to a
point)

 If they have constraints to other widgets they will still be respected, but any margins will be as if
equals to zero

Fig. 7 - Visibility Behavior

This specific behavior allows to build layouts where you can temporarily mark widgets as
being GONE, without breaking the layout (Fig. 7), which can be particularly useful when doing simple

layout animations.

Note: The margin used will be the margin that B had defined when connecting to A (see Fig. 7 for an
example). In some cases, this might not be the margin you want (e.g. A had a 100dp margin to the
side of its container, B only a 16dp to A, marking A as gone, B will have a margin of 16dp to the
container). For this reason, you can specify an alternate margin value to be used when the
connection is to a widget being marked as gone (see the section above about the gone margin
attributes).

Dimensions constraints

Minimum dimensions on ConstraintLayout

You can define minimum and maximum sizes for the ConstraintLayout itself:

 android:minWidth set the minimum width for the layout

 android:minHeight set the minimum height for the layout

 android:maxWidth set the maximum width for the layout

 android:maxHeight set the maximum height for the layout

https://developer.android.com/reference/android/support/constraint/ConstraintLayout#GoneMargin
https://developer.android.com/reference/android/support/constraint/ConstraintLayout#GoneMargin

Those minimum and maximum dimensions will be used by ConstraintLayout when its dimensions

are set to WRAP_CONTENT.

Widgets dimension constraints

The dimension of the widgets can be specified by setting
the android:layout_width andandroid:layout_height attributes in 3 different ways:

 Using a specific dimension (either a literal value such as 123dp or a Dimension reference)

 Using WRAP_CONTENT, which will ask the widget to compute its own size

 Using 0dp, which is the equivalent of "MATCH_CONSTRAINT"

Fig. 8 - Dimension Constraints

The first two works in a similar fashion as other layouts. The last one will resize the widget in such a
way as matching the constraints that are set (see Fig. 8, (a) is wrap_content, (b) is 0dp). If margins
are set, they will be taken in account in the computation (Fig. 8, (c) with 0dp).

Important: MATCH_PARENT is not recommended for widgets contained in a ConstraintLayout.

Similar behavior can be defined by using MATCH_CONSTRAINT with the corresponding left/right or

top/bottom constraints being set to "parent".

WRAP_CONTENT : enforcing constraints (Added in 1.1)

If a dimension is set to WRAP_CONTENT, in versions before 1.1 they will be treated as a literal

dimension -- meaning, constraints will not limit the resulting dimension. While in general this is
enough (and faster), in some situations, you might want to use WRAP_CONTENT, yet keep enforcing

constraints to limit the resulting dimension. In that case, you can add one of the corresponding
attribute:

 app:layout_constrainedWidth=”true|false”

 app:layout_constrainedHeight=”true|false”

MATCH_CONSTRAINT dimensions (Added in 1.1)

When a dimension is set to MATCH_CONSTRAINT, the default behavior is to have the resulting size

take all the available space. Several additional modifiers are available:

 layout_constraintWidth_min and layout_constraintHeight_min : will set the minimum size for

this dimension

 layout_constraintWidth_max and layout_constraintHeight_max : will set the maximum size

for this dimension

 layout_constraintWidth_percent and layout_constraintHeight_percent : will set the size of

this dimension as a percentage of the parent

Min and Max

The value indicated for min and max can be either a dimension in Dp, or "wrap", which will use the
same value as what WRAP_CONTENT would do.

Percent dimension

To use percent, you need to set the following:

 The dimension should be set to MATCH_CONSTRAINT (0dp)

 The default should be set to
percent app:layout_constraintWidth_default="percent" or app:layout_constraintHeight_
default="percent"

 Then set
the layout_constraintWidth_percent or layout_constraintHeight_percent attributes to a

value between 0 and 1

Ratio

You can also define one dimension of a widget as a ratio of the other one. In order to do that, you
need to have at least one constrained dimension be set to 0dp (i.e., MATCH_CONSTRAINT), and set the

attribute layout_constraintDimensionRatio to a given ratio. For example:

 <Button android:layout_width="wrap_content"

 android:layout_height="0dp"

 app:layout_constraintDimensionRatio="1:1" />

will set the height of the button to be the same as its width.

The ratio can be expressed either as:

 a float value, representing a ratio between width and height

 a ratio in the form "width:height"

You can also use ratio if both dimensions are set to MATCH_CONSTRAINT (0dp). In this case the

system sets the largest dimensions that satisfies all constraints and maintains the aspect ratio
specified. To constrain one specific side based on the dimensions of another, you can pre
append W," or H, to constrain the width or height respectively. For example, If one dimension is

constrained by two targets (e.g. width is 0dp and centered on parent) you can indicate which side
should be constrained, by adding the letter W (for constraining the width) or H(for constraining the

height) in front of the ratio, separated by a comma:

 <Button android:layout_width="0dp"

 android:layout_height="0dp"

 app:layout_constraintDimensionRatio="H,16:9"

 app:layout_constraintBottom_toBottomOf="parent"

 app:layout_constraintTop_toTopOf="parent"/>

will set the height of the button following a 16:9 ratio, while the width of the button will match the
constraints to parent.

Chains

Chains provide group-like behavior in a single axis (horizontally or vertically). The other axis can be
constrained independently.

Creating a chain

A set of widgets are considered a chain if they are linked together via a bi-directional connection
(see Fig. 9, showing a minimal chain, with two widgets).

Fig. 9 - Chain

Chain heads

Chains are controlled by attributes set on the first element of the chain (the "head" of the chain):

Fig. 10 - Chain Head

The head is the left-most widget for horizontal chains, and the top-most widget for vertical chains.

Margins in chains

If margins are specified on connections, they will be taken in account. In the case of spread chains,
margins will be deducted from the allocated space.

Chain Style

When setting the
attribute layout_constraintHorizontal_chainStyle or layout_constraintVertical_chainSty

le on the first element of a chain, the behavior of the chain will change according to the specified

style (default is CHAIN_SPREAD).

 CHAIN_SPREAD -- the elements will be spread out (default style)

 Weighted chain -- in CHAIN_SPREAD mode, if some widgets are set to MATCH_CONSTRAINT, they will

split the available space

 CHAIN_SPREAD_INSIDE -- similar, but the endpoints of the chain will not be spread out

 CHAIN_PACKED -- the elements of the chain will be packed together. The horizontal or vertical bias

attribute of the child will then affect the positioning of the packed elements

Fig. 11 - Chains Styles

Weighted chains

The default behavior of a chain is to spread the elements equally in the available space. If one or
more elements are using MATCH_CONSTRAINT, they will use the available empty space (equally

divided among themselves). The
attribute layout_constraintHorizontal_weight and layout_constraintVertical_weight will

control how the space will be distributed among the elements using MATCH_CONSTRAINT. For

exemple, on a chain containing two elements using MATCH_CONSTRAINT, with the first element using

a weight of 2 and the second a weight of 1, the space occupied by the first element will be twice that
of the second element.

Margins and chains (in 1.1)

When using margins on elements in a chain, the margins are additive.

For example, on a horizontal chain, if one element defines a right margin of 10dp and the next
element defines a left margin of 5dp, the resulting margin between those two elements is 15dp.

An item plus its margins are considered together when calculating leftover space used by chains to
position items. The leftover space does not contain the margins.

