Name	$:$ MIT-Exam
Surname	$:$ Sofution
ID	$:$ COMPE-224

COMPUTER ENGINEERING DEPARTMENT
 CMPE-224 DIGITAL LOGIC SYSTEMS

Friday 17/08/2001

Q.1) [24 pts]

A set-dominant flip-flop has set (S) and reset (R) inputs. It differs from a conventional SR flip-flop in that when both S and R are equal to 1 , the flip-flop is set.
a) Obtain the characteristic table of the set-dominant flip-flop.
b) Draw the state transition diagram of the set-dominant flip-flop.
c) Obtain the excitation table of the set-dominant flip-flop.
d) Implement the set-dominant flip-flop using a JK flip-flop and minimum number of gates.
a)

\mathbf{S}	\mathbf{R}	$\mathbf{Q (t + 1)}$	
0	0	$\mathrm{Q}(\mathrm{t})$	No change
0	1	0	Reset
1	0	1	Set
1	1	1	Set

b)

c)

$\mathbf{Q}(\mathbf{t})$	$\mathbf{Q}(\mathbf{t}+\mathbf{1})$	\mathbf{S}	\mathbf{R}
0	0	0	X
0	1	1	X
1	0	0	1
1	1	X	X

d)

\mathbf{S}	\mathbf{R}	$\mathbf{Q (t)}$	$\mathbf{Q (t + 1)}$	\mathbf{J}	\mathbf{K}
0	0	0	0	0	X
0	0	1	1	X	0
0	1	0	0	0	X
0	1	1	0	X	1
1	0	0	1	1	X
1	0	1	1	X	0
1	1	0	1	1	X
1	1	1	1	X	0

Using K-map (you have to show this): $\mathrm{J}=\mathrm{S}$, and $\mathrm{K}=\mathrm{S}^{\prime} \mathrm{R}$

Q.2) [24 pts]

A sequential circuit has one input \boldsymbol{X} and one output \boldsymbol{Y}. The output \boldsymbol{Y} is equal to 1 if and only if a 3-bit binary number formed by three consecutive bits on \boldsymbol{X} is divisible by 3 (LSB is applied first). Otherwise, the output \boldsymbol{Y} is equal to 0 . The circuit returns to its initial state after checking the 3-bit binary number.
a) Draw your preliminary state transition diagram.
b) Find the reduced state table by applying state reduction.
c) Make near-optimal state assignments.

b)

PS	NS		Output Y	
	$\mathrm{X}=0$	$\mathrm{X}=1$	$\mathrm{X}=0$	$\mathrm{X}=1$
a	b	c	0	0
b	d	e	0	0
c	f	g	0	0
d	a	a	1	0
e	a	a	0	1
f	a	a	0	0
g	a	a	1	0

$$
\begin{aligned}
& \mathrm{P} 1=(\mathrm{abcf})(\mathrm{dg})(\mathrm{e}) \\
& \mathrm{P} 2=(\mathrm{af})(\mathrm{b})(\mathrm{c})(\mathrm{dg})(\mathrm{e}) \\
& \mathrm{P} 3=(\mathrm{a})(\mathrm{f})(\mathrm{b})(\mathrm{c})(\mathrm{dg})(\mathrm{e})
\end{aligned}
$$

PS	NS		Output Y	
	$\mathrm{X}=0$	$\mathrm{X}=1$	$\mathrm{X}=0$	$\mathrm{X}=1$
a	b	c	0	0
b	d	e	0	0
c	f	d	0	0
d	a	a	1	0
e	a	a	0	1
f	a	a	0	0

Reduced State Table
c)
d,e are adjacent
d,f are adjacent
e,f are adjacent
b,c are adjacent

d:000	b:001	c:011	f:010
e:100	a:101	----	----

Q.3) [30 pts]

Consider the following 3-bit synchronous counter circuit.

a) Complete the following timing diagram. (Note that initially $\mathrm{Q}_{2} \mathrm{Q}_{1} \mathrm{Q}_{0}=001$)

b) Reimplement the above counter using JK flip-flops ONLY. Draw the circuit diagram.
b)

Present State				Next State											Flip-Flop inputs				
Q_{2}	Q_{1}	Q_{0}	Q_{2}	Q_{1}	Q_{0}	$\mathrm{~J}_{\mathrm{Q} 2}$	$\mathrm{~K}_{\mathrm{Q} 2}$	$\mathrm{~J}_{\mathrm{Q} 1}$	$\mathrm{~K}_{\mathrm{Q} 1}$	$\mathrm{~J}_{\mathrm{Q} 0}$	$\mathrm{~K}_{\mathrm{Q} 0}$								
0	0	1	0	1	1	0	X	1	X	X	0								
0	1	1	1	1	1	1	X	X	0	X	0								
1	1	1	1	1	0	X	0	X	0	X	1								
1	1	0	1	0	0	X	0	X	1	0	X								
1	0	0	0	0	1	X	1	0	X	1	X								

Using K-map (you have to show this):
$\mathrm{J}_{\mathrm{Q} 2}=\mathrm{Q}_{1} \quad \mathrm{~K}_{\mathrm{Q} 2}=\mathrm{Q}_{1}{ }^{\prime} \quad \mathrm{J}_{\mathrm{Q} 1}=\mathrm{Q}_{2}{ }^{\prime} \quad \mathrm{K}_{\mathrm{Q} 1}=\mathrm{Q}_{0}{ }^{\prime} \quad \mathrm{J}_{\mathrm{Q} 0}=\mathrm{Q}_{1}{ }^{\prime} \quad \mathrm{K}_{\mathrm{Q} 0}=\mathrm{Q}_{2}$

Q.4) [24 pts]

Consider the following synchronous sequential circuit that operates in different modes according to the inputs $\mathrm{S}_{1} \mathrm{~S}_{0}$ that are connected in parallel to all Multiplexers selections. Analyze the circuit and fill in the below table.
Note: For $\mathrm{S}_{1} \mathrm{~S}_{0}=10$ and 11 cases, assume that initially $\mathrm{Q}_{2} \mathrm{Q}_{1} \mathrm{Q}_{0}=000$

$\mathbf{S}_{\mathbf{1}}$	$\mathbf{S}_{\mathbf{0}}$	Circuit Operation
0	0	Complement the outputs
0	1	Shift right
1	0	Even up-counter $(0,2,4,6,0, \ldots)$
1	1	Johnson counter $(000,001,011,111,110,100,000, \ldots)$

