eastern mediterranean Surname : MT-Exam Surname : Solution ID : CMPE-224
--

COMPUTER ENGINEERING DEPARTMENT CMPE-224 DIGITAL LOGIC SYSTEMS

Friday 17/08/2001

11 X0

Q.1) [24 pts]

A set-dominant flip-flop has set (S) and reset (R) inputs. It differs from a conventional SR flip-flop in that when both S and R are equal to 1, the flip-flop is set.

- a) Obtain the characteristic table of the set-dominant flip-flop.
- **b)** Draw the state transition diagram of the set-dominant flip-flop.
- c) Obtain the excitation table of the set-dominant flip-flop.
- d) Implement the set-dominant flip-flop using a JK flip-flop and minimum number of gates.

b)

a)	S	R	Q(t+1)	
-	0	0	Q(t)	No change
-	0	1	0	Reset
-	1	0	1	Set Set
_	1	1	1	Set
c)		04.1	G	

U)	0X		
	\bigcap	1X	\bigcap
		1	\rightarrow 1
		01	

d)

S

0

0

0

0

1

1

1

1

R

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

Q(t)	Q(t+1)	S	R
0	0	0	Х
0	1	1	Х
1	0	0	1
1	1	Х	Х

Q(t) = Q(t+1)

0

1

0

0

1

1

1

1

J

0

Х

0

Х

1 Х

1

Х

Κ

0

Х

1

Х

0

Х

0

Х

Using K-map (you have to show this): J = S, and K = S' R

M. Salamah, Digital Logic Systems I, CMPE-224, Summer 00/01, Midterm Solution 2

Q.2) [24 pts]

A sequential circuit has one input X and one output Y. The output Y is equal to 1 if and only if a 3-bit binary number formed by three consecutive bits on X is divisible by 3 (LSB is applied first). Otherwise, the output Y is equal to 0. The circuit returns to its initial state after checking the 3-bit binary number.

- a) Draw your preliminary state transition diagram.
- **b**) Find the reduced state table by applying state reduction.
- c) Make near-optimal state assignments.

d:000	b:001	c:011	f:010
e:100	a:101		

Q.3) [30 pts]

Consider the following 3-bit synchronous counter circuit.

a) Complete the following timing diagram. (Note that initially $Q_2Q_1Q_0 = 001$)

b) Reimplement the above counter using JK flip-flops **ONLY**. Draw the circuit diagram.

•	`
h	
υ	

Pre	Present State Next State		Flip-Flop inputs								
Q2	Q1	Q_0	Q2	Q1	Q_0	J _{Q2}	K _{Q2}	J _{Q1}	K _{Q1}	J _{Q0}	K _{Q0}
0	0	1	0	1	1	0	Х	1	Х	Х	0
0	1	1	1	1	1	1	Х	Х	0	Х	0
1	1	1	1	1	0	Х	0	Х	0	Х	1
1	1	0	1	0	0	Х	0	Х	1	0	Х
1	0	0	0	0	1	Х	1	0	Х	1	Х

Using K-map (you have to show this): $J_{Q2} = Q_1$ $K_{Q2} = Q_1^{/}$ $J_{Q1} = Q_2^{/}$

$$K_{Q1} = Q_0^{\prime}$$
 $J_{Q0} = Q_1^{\prime}$ $K_{Q0} = Q_2$

Q.4) [24 pts]

Consider the following synchronous sequential circuit that operates in different modes according to the inputs S_1S_0 that are connected in parallel to all Multiplexers selections. Analyze the circuit and fill in the below table.

Note: For $S_1S_0 = 10$ and 11 cases, assume that initially $Q_2Q_1Q_0 = 000$

S_1	S ₀	Circuit Operation
0	0	Complement the outputs
0	1	Shift right
1	0	Even up-counter $(0,2,4,6,0,)$
1	1	Johnson counter (000, 001, 011, 111, 110, 100, 000,)