
1

07/11/2022 1

CMSE 346 Computer Networks
Fall 2022

End-to-End Protocols

Reading: Peterson and Davie, §5.1, 5.2.1-5.2.3

2

The transport layer

• Recall that IP provides host-to-host packet 
delivery service

• In general, one requires process-to-process
communication channels

• Transport layer deals with process-to-process 
communication channels through end-to-end 
protocols (between “end” applications)



2

3

Transport protocols are expected to 
provide…

• Guaranteed message delivery

• In-order message delivery

• Delivery of at most one copy of the message

• Support for arbitrarily large messages

• Support for synchronization between sender and 
receiver

• Flow control

• Support for multiple application processes on 
each host

4

Best-effort networks

• Note that network layer below the transport layer 
may

– Drop messages

– Reorder messages

– Deliver duplicate copies of a given message

– Limit messages to some finite size

– Delay messages for a long time

• Such networks (e.g., IP) are said to provide a 
best-effort service



3

5

UDP and TCP

• We will study the Internet’s UDP and TCP 
protocols:

– UDP: User Datagram Protocol

– TCP: Transmission Control Protocol

• UDP provides a simple asynchronous 
demultiplexing service

• TCP provides a reliable byte-stream service

6

User Datagram Protocol

• UDP as a simple demultiplexer

– Extends the host-to-host delivery service of IP 
into a process-to-process communication 
service

• There are usually many processes running on a 
host so the protocol needs to add a level of 
demultiplexing to allow multiple application 
processes on each host to share the network



4

7

Ports

• Processes running on a host are identified by 
ports or mailboxes

• Source process sends a message to a port and 
the destination process receives the message 
from that port

• The header of a UDP packet contains port 
numbers for both the sender (source) and the 
receiver (destination) process

8

More on ports

• Ports are interpreted only on a single host

• That is, a process is identified by a port on a 
particular host using 

<port, host> pair

• This pair is the demultiplexing key for the UDP



5

9

Implementation by message 
queues

Application
process

Application
process

Application
process

UDP

Packets arrive

Ports

Queues

Packets
demultiplexed

Note that UDP does not implement flow control to tell the sender to slow down.
If a queue becomes full because the messages are arriving too fast, 
they will be discarded.

10

UDP header format

SrcPort DstPort

ChecksumLength

Data

0 16 31

SrcPort and DstPort: Source and destination port numbers
Length: Length of UDP packet in bytes
Checksum: See next slide



6

11

UDP error checking

• UDP is not reliable, no guarantee for in-order delivery

• However, it can ensure the correctness of the message 
by the use of a checksum over the following:

– The UDP header +

– The message body +

– The pseudo header: 3 fields from IP header (protocol 
no, src IP addr, dst IP addr) plus UDP length field

• Contrast UDP’s checksumming with IP checksumming 
and ATM HEC!

12

UDP client and servers

• How does a client learn a server’s port number?

– Servers accept messages at well-known ports
(port numbers < 1024)

– e.g., Echo: Port 7, Time: Port 37, 
DNS: Port 53

• The server already knows the client’s port 
number from client’s contact to the server



7

13

Transmission Control Protocol

• TCP provides a reliable, connection-oriented 
byte-stream service

• TCP is a full-duplex protocol
– Each TCP connection supports a pair of byte 

streams, one for each direction
• TCP provides flow control

– Receiver can limit how much data the sender 
can transmit at a given time

– This mechanism prevents sender from 
overruning receiver

14

More on TCP

• Like UDP, TCP supports a demultiplexing mechanism

– Multiple application processes on a host 
simultaneously communicate with their peers

• TCP provides congestion control

– Throttle how fast TCP sends data to prevent sender 
from overloading network elements (switches and 
routers)

– Note that TCP flow control is an end-to-end issue 
whereas congestion control is concerned with 
interaction of hosts and network elements



8

15

Flow vs. congestion control

(a) A fast network feeding a low capacity receiver
(b) A slow network feeding a high-capacity receiver

16

End-to-end sliding window

• TCP uses the sliding window algorithm to 
provide reliable in-order delivery of messages

• However, in TCP, sliding window runs over 
logical connection between processes as 
opposed to sliding window running over a single 
physical link between two nodes (at layer 2)

• Note that in TCP, RTT will be variable!

– TCP has mechanisms to estimate RTT



9

17

TCP’s sliding window and flow 
control

• Flow control: TCP has a mechanism to “learn” 
how much resources (e.g., buffer space) the 
other side can allocate to the connection

• TCP’s end-to-end approach can be contrasted 
to the hop-by-hop approach taken by some 
protocols such as ITU’s packet switching 
protocol X.25

18

Byte streams and segments

Application process

Write

bytes

TCP

Send buffer

Segment Segment Segment

Transmit segments

Application process

Read

bytes

TCP

Receive buffer

■ ■ ■

TCP “packets” are called segments



10

19

TCP header format

Options (variable)

Data

Checksum

SrcPort DstPort

HdrLen 0 Flags

UrgPtr

AdvertisedWindow

SequenceNum

Acknowledgment

0 4 10 16 31

20

TCP header fields

• SrcPort and DstPort: Source and destination port 
numbers

• SequenceNum: Position in sender’s byte stream of data 
in segment

• AcknowledgementNum: Number of next byte expected
• HdrLen: Number of 32-bit words in TCP header
• Flags: URG, ACK, PSH, RST, SYN, FIN
• AdvertisedWindow: How much data TCP is willing to 

accept
• Checksum: Checksum over, header, data, and psueudo 

header
• UrgPtr: Pointer to urgent data in segment



11

21

TCP demultiplexing

• The 4-tuple
<src IP addr, src port, dst IP addr, dst port>
uniquely identify each TCP connection

• This 4-tuple is used as the demultiplexing key

• Because TCP identifies a connection by a 4-
tuple, a given TCP port number can be shared 
by multiple connections on the same host

– Multiple connections can exist simultaneously 
on one local port

22

Passive and active open in TCP

• TCP is connection-oriented; both ends of the 
connection must agree that a connection is 
desired

• Application program on one end (server) 
performs a passive open indicating to the OS 
that it will accept an incoming connection

• Application program on the other end (client) 
must then contact its OS with an active open
request to establish a connection



12

23

TCP three-way handshake for 
connection establishment
Active participant

(client) (server)

Assume server executed a passive open. 
SYN bit is used to establish a connection.

24

Some well-known TCP ports

• Mail service: Port 25

• FTP: Port 21

• Telnet: Port 23

• Web service: Port 80

• etc.

• For example, 
<18.26.3.36, 1069, 128.10.2.3, 21> 
might correspond to an FTP connection



13

25

Network traffic composition

• TCP dominates the current Internet traffic

> ~80% of total Mbytes

• TCP mediated Web applications make up

> ~50% of total Mbytes 
(Based on measurements on Sprint IP backbone network)


