CMSE 346 Computer Networks
Fall 2022

End-to-End Protocols

Reading: Peterson and Davie, §5.1, 5.2.1-5.2.3

07/11/2022

The transport layer

» Recall that IP provides host-to-host packet
delivery service

* In general, one requires process-to-process
communication channels

» Transport layer deals with process-to-process
communication channels through end-to-end
protocols (between “end” applications)

Transport protocols are expected to
provide...

« Guaranteed message delivery

 In-order message delivery

» Delivery of at most one copy of the message
« Support for arbitrarily large messages

» Support for synchronization between sender and
receiver

* Flow control

» Support for multiple application processes on
each host

Best-effort networks

* Note that network layer below the transport layer
may

— Drop messages

— Reorder messages

— Deliver duplicate copies of a given message
— Limit messages to some finite size

— Delay messages for a long time

» Such networks (e.g., IP) are said to provide a
best-effort service

UDP and TCP

« We will study the Internet's UDP and TCP
protocols:

— UDP: User Datagram Protocol
— TCP: Transmission Control Protocol

« UDP provides a simple asynchronous
demultiplexing service

« TCP provides a reliable byte-stream service

User Datagram Protocol

« UDP as a simple demultiplexer

— Extends the host-to-host delivery service of IP
into a process-to-process communication
service

» There are usually many processes running on a
host so the protocol needs to add a level of
demultiplexing to allow multiple application
processes on each host to share the network

Ports

» Processes running on a host are identified by
ports or mailboxes

« Source process sends a message to a port and
the destination process receives the message
from that port

» The header of a UDP packet contains port
numbers for both the sender (source) and the
receiver (destination) process

More on ports

» Ports are interpreted only on a single host

* That s, a process is identified by a port on a
particular host using
<port, host> pair

 This pair is the demultiplexing key for the UDP

Implementation by message
queues

Application Application Application
process process process

Ports ——»

Queves | ____ | L L_____

Packets \ T /
demultiplexed

Packets arrive

Note that UDP does not implement flow control to tell the sender to slow down.
If a queue becomes full because the messages are arriving too fast,

they will be discarded. o

UDP header format

SrcPort DstPort

Length Checksum

Data

W\/\/\/\I

SrcPort and DstPort: Source and destination port numbers
Length: Length of UDP packet in bytes
Checksum: See next slide

10

UDP error checking

» UDP is not reliable, no guarantee for in-order delivery

* However, it can ensure the correctness of the message
by the use of a checksum over the following:

— The UDP header +
— The message body +

— The pseudo header: 3 fields from IP header (protocol
no, src IP addr, dst IP addr) plus UDP length field

» Contrast UDP’s checksumming with IP checksumming
and ATM HEC!

UDP client and servers

* How does a client learn a server’s port number?

— Servers accept messages at well-known ports
(port numbers < 1024)

—e.g., Echo:Port7, Time: Port 37,
DNS: Port 53

» The server already knows the client’s port
number from client’s contact to the server

12

Transmission Control Protocol

» TCP provides a reliable, connection-oriented
byte-stream service

« TCP is a full-duplex protocol

— Each TCP connection supports a pair of byte
streams, one for each direction

» TCP provides flow control

— Receiver can limit how much data the sender
can transmit at a given time

— This mechanism prevents sender from
overruning receiver

13

More on TCP

+ Like UDP, TCP supports a demultiplexing mechanism
— Multiple application processes on a host
simultaneously communicate with their peers
+ TCP provides congestion control

— Throttle how fast TCP sends data to prevent sender
from overloading network elements (switches and
routers)

— Note that TCP flow control is an end-to-end issue
whereas congestion control is concerned with
interaction of hosts and network elements

14

Flow vs. congestion control

Small-capacity — Large-capacity |g——
rrrrrrrr e L—j‘ receiver

(a) (b)

(a) A fast network feeding a low capacity receiver

(b) A slow network feeding a high-capacity receiver 15

End-to-end sliding window

« TCP uses the sliding window algorithm to
provide reliable in-order delivery of messages

» However, in TCP, sliding window runs over
logical connection between processes as
opposed to sliding window running over a single
physical link between two nodes (at layer 2)

* Note thatin TCP, RTT will be variable!
— TCP has mechanisms to estimate RTT

16

TCP’s sliding window and flow
control

* Flow control: TCP has a mechanism to “learn”
how much resources (e.g., buffer space) the
other side can allocate to the connection

« TCP’s end-to-end approach can be contrasted
to the hop-by-hop approach taken by some
protocols such as ITU’s packet switching
protocol X.25

17

Byte streams and segments

Application process Application process

L] [
[write [] Read
. bytes . bytes
] 1
TCP TCP
Send buffer Receive buffer

‘ Segment | ‘ Segment | | Segment ‘

Transmit segments

TCP “packets” are called segments

18

TCP header format

0 4 10 16 31
SrcPort DstPort

SequenceNum

Acknowledgment

HdrLen 0 Flags AdvertisedWindow

Checksum UrgPtr

Options (variable)

Data

W

19

TCP header fields

SrcPort and DstPort: Source and destination port
numbers

SequenceNum: Position in sender’s byte stream of data
in segment

AcknowledgementNum: Number of next byte expected
HdrLen: Number of 32-bit words in TCP header
Flags: URG, ACK, PSH, RST, SYN, FIN

AdvertisedWindow: How much data TCP is willing to
accept

Checksum: Checksum over, header, data, and psueudo
header

UrgPtr: Pointer to urgent data in segment

20

10

TCP demultiplexing

» The 4-tuple
<src |IP addr, src port, dst IP addr, dst port>
uniquely identify each TCP connection

» This 4-tuple is used as the demultiplexing key

« Because TCP identifies a connection by a 4-
tuple, a given TCP port number can be shared
by multiple connections on the same host

— Multiple connections can exist simultaneously
on one local port

21

Passive and active open in TCP

 TCP is connection-oriented; both ends of the
connection must agree that a connection is
desired

 Application program on one end (server)
performs a passive open indicating to the OS
that it will accept an incoming connection

» Application program on the other end (client)
must then contact its OS with an active open
request to establish a connection

22

11

TCP three-way handshake for
connection establishment

Active participant
(client) (server)

Assume server executed a passive open.
SYN bit is used to establish a connection.

23

Some well-known TCP ports

Mail service: Port 25
FTP: Port 21

Telnet: Port 23

Web service: Port 80
etc.

For example,
<18.26.3.36, 1069, 128.10.2.3, 21>
might correspond to an FTP connection

24

12

Network traffic composition

« TCP dominates the current Internet traffic
> ~80% of total Mbytes
« TCP mediated Web applications make up

> ~50% of total Mbytes
(Based on measurements on Sprint IP backbone network)

25

13

