5/2/2019

A single-cycle MIPS processor Single-cycle implementation
0O Aninstruction set architecture is an interface that defines the hardware 0 We will describe the implementation a simple MIPS-based instruction set
operations which are available to software. supporting just the following operations.
O Any instruction set can be implemented in many different ways. Over the
next few weeks we’ll see several possibilities. Arithmetic: add sub and or slt
— In a basic single-cycle implementation all operations take the same Data Transfer: w W

amount of time—a single cycle.
— A multicycle implementation allows faster operations to take less
time than slower ones, so overall performance can be increased.

— Finally, pipelining lets a processor overlap the execution of several
instructions, potentially leading to big performance gains.

Control: beq

[0 Today we’ll build a single-cycle implementation of this instruction set.

— All instructions will execute in the same amount of time; this will
determine the clock cycle time for our performance equations.

— We’ll explain the datapath first, and then make the control unit.

5/2/2019

Memories Instruction fetching
It’s easier to use a Harvard architecture at first, with O The CPU is always in an infinite loop, fetching
programs and data stored in separate memories. Tre e, instructions from memory and executing them.
To fetch instructions and read & write words, we address [31-0) O The program counter or PC register holds the
need these memories to be 32-bits wide (buses are Instrustion address of the current instruction. 4
represented by dark lines here). We still want byte memory O MIPS instructions are each four bytes long, so [E]
addressability, so these are 239 x 32 memories. the PC should be incremented by four to read
the next instruction in sequence.

Blue lines represent control signals. MemRead and Read_nsircion |—»
MemWrite should be set to 1 if the data memory is to MemWwrite
be read or written respectively, and 0 otherwise. | Instruction

Read Read [__ memory

— When a control signal does something when itis ~ address data
set to 1, we call it active high (vs. active low)
because 1 is usually a higher voltage than 0.

Write
address

|

Data

. al
Write memory

data

For now, we will assume you cannot write to the
instruction memory.
— Pretend it’s already loaded with a program,
which doesn’t change while it’s running.

MemRead

Encoding R-type instructions

0O Last lecture, we saw encodings of MIPS instructions as 32-bit values.
0 Register-to-register arithmetic instructions use the R-type format.

— op is the instruction opcode, and func specifies a particular arithmetic

operation (see textbook).
—rs, rt and rd are source and destination registers.

| op | rs | rt | rd | shamt | func
6 bits 5bits 5 bits 5 bits 5 bits 6 bits
0 An example instruction and its encoding:
add $s4, St1, $t2 [000000 | 01001 | 01010 | 10100 | [1000000 |

Registers and ALUs

O R-type instructions must access registers and an ALU.

00 Our register file stores thirty-two 32-bit values.
— Each register specifier is 5 bits long.
— You can read from two registers at a time.
— RegWrite is 1 if a register should be written.

[0 Here’s a simple ALU with five operations, selected by

a 3-bit control signal ALUOp.

RegWrite

Read Read
register 1 data 1

Read
register 2 Read

. data2
Write
register

Registers
Write

data

ALUOp Function
000 and
001 or
010 add
110 subtract
111 slt

ALUOp

5/2/2019

5/2/2019

Executing an R-type instruction Encoding I-type instructions
. Read an instruction from the instruction memory. 0O The lw, sw and beq instructions all use the I-type encoding.
. The source registers, specified by instruction fields rs and rt, should be — rt is the destination for lw, but a source for beq and sw.

read from the register file.
. The ALU performs the desired operation.
Its result is stored in the destination register, which is specified by field |

— address is a 16-bit signed constant.

rd of the instruction word. op | rs | rt | address
) 6bits 5bits 5 bits 16 bits
l egWrite
Read Instruction 1[25-21] | Read Read
address [31-0] [% register 1 data 1 0 Two example instructions:
1[20-16] | Read
Instruction r—— register 2 Read
memen | sy fwe 2 w $t0, 4(ssp) [100011] 11101 | 01000 | 1111 1111 1111 1100 |
‘;?me Registers
F = sw $a0, 16(5sp) | 101011] 11101 [00100 | 0000 0000 0001 0000 |
op rs | rt | rd shamt func
312 25 21 20 16 15 11 10 6 5 0

Accessing data memory

0 For an instruction like lw $t0, 4(Ssp), the base register Ssp is added to

the sign-extended constant to get a data memory address.
0 This means the ALU must accept either a register operand for arithmetic
instructions, or a sign-extended immediate operand for lw and sw.
O we’ll add a multiplexer, controlled by ALUSrc, to select either a register
operand (0) or a constant operand (1).

|

Read Instruction
address [31-0]

Instruction
memory

RegWrite
| MemWrite MemToReg
1[25-21] Read Read
register 1 data 1 ALU Read Read f——p(1
1[20 - 16]
Read Zero address data M
register 2 Read Result Write u
data2 0
Write address
register Write Data
Write Registers data Memory
data I
regDst ALUSTC MemRead
1[15-0] sign
\extend)
11

MemToReg

0 The register file’s —Write datal| input has a similar problem. It must be
able to store either the ALU output of R-type instructions, or the data
memory output for lw.

0O We add a mux, controlled by MemToReg, to select between saving the
ALU result (0) or the data memory output (1) to the registers.

}

Read
address

Instruction
[31-0]

Instruction
memory

RegWrite
l MemWrite MemToReg
1[25-21] Read Read
12016 register 1 data 1 ALU ead — .
Read Zero address data
register 2 Read Result Write u
data 2 0
Write address
register Write Data
Write Registers data memory
data -1
MemRead
RegDst ALUSIC
1[15-0] sign
\extend)
12

5/2/2019

5/2/2019

RegDst Branches

O Afinal annoyance is the destination register of lw is in rt instead of rd. O For branch instructions, the constant is not an address but an instruction
offset from the current program counter to the desired address.

| op | rs | rt | address |

beq $at, $0, L

lw Srt, address(5rs) add $vi, $vO, $0

0 We’ll add one more mux, controlled by RegDst, to select the destination add $v1, $vi, $vi
g .
register from either instruction field rt (0) or field rd (1).] Somewhere
L: add $vi, $vO0, $vO
l RegWrite
Read Insiructon | 1(25 -21] v l P MemWwrite MemToReg))))
address - [31-0] register 1 datal AL et e (1 O The target address L is three instructions past the beq, so the encoding of
struction | $9 Read zero address data| | the branch instruction has 0000 0000 0000 0011 for the address field.
memory 0 register 2 dR[eag Result Write g
M Write ata address
u " register rite Data
Jisasl | ol e e daa_memory [000100 | 00001 | 00000 | 0000 0000 0000 0011
1 data |
o] rs rt address
RegDst I_;LUSrc | MemRead P
150 @—‘ 0 Instructions are four bytes long, so the actual memory offset is 12 bytes.
13 14

The steps in executing a beq

A w N =

Fetch the instruction, like beq Sat, $0, offset, from memory.
Read the source registers, Sat and $0, from the register file.
Compare the values by subtracting them in the ALU.

If the subtraction result is 0, the source operands were equal and the PC

should be loaded with the target address, PC + 4 + (offset x 4).

Otherwise the branch should not be taken, and the PC should just be
incremented to PC + 4 to fetch the next instruction sequentially.

Branching hardware

We need a second adder, since the ALU
is already doing subtraction for the beq.

Read Instruction
address [31-0]

Instruction
memory

[+

LI PCSrc=1 branches
to PC+4+(offset4).

—

Multiply constant

LI PCSrc=0 continues
to PC+4.

kxS Z o

Add

PCSrc +—————

MemWrite MemToReg

Read
address

Read
data

by 4 to get offset.
RegWrite
|
1[25-21] Read Read
register 1 data 1
1[20-16]
Read
0 register 2 Read
data 2
M Write
u register
) 1[15- 11] X | Write Registers
L data
RegDst
1[15-0] sign
xtend)

Write
address

Write Data
data Memory

MemR
ALUSrc emRead

5/2/2019

5/2/2019

The final datapath Control

0 The control unit is responsible for setting all the control signals so that
each instruction is executed properly.

Add
PC 4

— The control unit’s input is the 32-bit instruction word.
RegWrite . .
o] 2s-2m | MemWiite MemToReg — The outputs are values for the blue control signals in the datapath.
address [31-0] 23?56,1 e O Most of the signals can be generated from the instruction opcode alone,
1120 16] Read Read 1 d h . 32 b d
Instruction Read address data M and not the entire -bit word.
memory ° \r;i':e'z s wrte o O To illustrate the relevant control signals, we will show the route that is
u register wie Data taken through the datapath by R-type, lw, sw and beq instructions.
1[15- 11 Xl write Registers data memory
e 1
data |
RegDst ALUSrc MemRead
1[15-0] Sign
xtend
17 18

R-type instruction path

0 The R-type instructions include add, sub, and, or, and slt.
0 The ALUOp is determined by the instruction’s —func|| field.

Read Instruction
address [31-0]

Instruction
memory

RegWrite
| MemWrite MemToReg
#l 125-21] Read Read
P~ register 1 data 1 Read Read 1
Read address data M
register 2 Read Write u
Wite data 2 address 0
register Write Data
Write Registers data Memory
data T
RegDst ALUSTE MemRead
1[15-0] sign
xtend|
19

lw instruction path

0 An example load instruction is lw $t0, —4(Ssp).

0 The ALUOp must be 010 (add), to compute the effective address.

Read Instruction
address [31-0]

Instruction
memory

MemWrite MemToReg

Add
4
RegWrite
|
1125-21] Read Read
register 1 data 1
1[20 - 16
L] Read
0 register 2 Read
data 2
M Write
u register
1[15-11] X —! Write Registers
— 1
data
RegDst
1[15-0] sign
xtend|

ALUSrc

Read Read
address data
Write

address

Write
data

oc Z k-

Data
memory

T

MemRead

20

5/2/2019

sw instruction path

O An example store instruction is sw $a0, 16(Ssp).

0 The ALUOp must be 010 (add), again to compute the effective address.

Read Instruction
address [31-0]

Instruction
memory

MemWrite MemToReg

Add
4
RegWrite
|
#l 125-21] Read Read
register 1 data 1
120 - 16]
L L] Read
register 2 Read
data2
Write
register
Write Registers
data
RegDst
1[15-0] Sign
xtend|

ALUSIC

Read Read
address data

ccz k-

Write
address
Write
data

Data
memory

T

MemRead

21

beq instruction path

0 One sample branch instruction is beq Sat, $0, offset.
0 The ALUOp is 110 (subtract), to test for equality. The branch may

or may not be

taken, depending
on the ALU’s Zero
output
Add P!
PC 4
RegWrite
| MemToRet
Read Instruction 1[25-21] Read Read MemWrite)
address [31-0] register 1 data 1
1[20 - 16] Read Read 1
Instruction Read‘) read address data M
register ea u
memory 0 data2 Write u
M Write address
u register Write Data
Q1514 |l write Registers data Memory
L data T
RegDst ALUSrc MemRead
1[15-0] Sign
xtend)
22

5/2/2019

10

Control signal table

Generating control signals

depend on the ALU to compute the effective memory address.

ALUOp for R-type instructions depends on the instructions’ func field.
The PCSrc control signal (not listed) should be set if the instruction is beq
and the ALU’s Zero output is true.

Operation | RegDst | RegWrite | ALUSrc | ALUOp | MemWrite | MemRead | MemToReg
add 1 1 0 010 0 0 0
sub 1 1 0 110 0 0 0
and 1 1 0 000 0 0 0
or 1 1 0 001 0 0 0
slt 1 1 0 111 0 0 0
lw 0 1 1 010 0 1 1
SW X 0 1 010 1 0 X
beq X 0 0 110 0 0 X

0O sw and beq are the only instructions that do not write any registers.

lw and sw are the only instructions that use the constant field. They also

23

The control unit needs 13 bits of inputs.
— Six bits make up the instruction’s opcode.

— Six bits come from the instruction’s func field.

— It also needs the Zero output of the ALU.

The control unit generates 10 bits of output, corresponding to the signals

mentioned on the previous page.

You can build the actual circuit by using big K-maps, big Boolean algebra,

or big circuit design programs.

The textbook presents a slightly different control unit.

Read Instruction —@-

1[31- 26]

RegDst
RegWrite
ALUSrc

address [31-0]

Instruction
memory

Zero

ALUOp
MemWrite
MemRead

MemToReg

24

5/2/2019

11

Summary

0 Adatapath contains all the functional units and connections necessary to
implement an instruction set architecture.
— For our single-cycle implementation, we use two separate memories,
an ALU, some extra adders, and lots of multiplexers.
— MIPS is a 32-bit machine, so most of the buses are 32-bits wide.
0O The control unit tells the datapath what to do, based on the instruction
that’s currently being executed.
— Our processor has ten control signals that regulate the datapath.
— The control signals can be generated by a combinational circuit with
the instruction’s 32-bit binary encoding as input.
O Next, we'll see the performance limitations of this single-cycle machine
and try to improve upon it.

25

A Closer Look At the Operation

Consider the instruction add $t1, $t1, $t2
[000000][01001 | 01010 [01001 {00000 |1000000|

opcode rs rt rd shamt func

*Assume $t1 and $t2 initially contain 1 and 2 respectively.
*Executing this instruction involves,several steps.

1. The instruction word is read from the instruction memory,
and the program counter is incremented by 4

2. The sources $t1 and $t2 are read from the registerfile

3. The values 1 and 2 are added by the ALU

4. The result (3) is stored back into $t1 in the register file
11

25

5/2/2019

12

The add moving

through the datapath

Post

Read Instruction
address [3140]

Instruction
memory

Th

Consider lw
[100011]11101]

lw_mov
, —4($sp) execution

hr

[1111 1111 1111 1100]

Add
RegWrite
MemToRe
1[25 - 21] 01001 !
Read
register 1 data
1120 - 18] 01010 ::d !
= M
Read
g2 PR Write address .
Data 0
N Wirit
23S pegisters d,;: memary
I
ALUSTe MemRead
RegDst |
1501 sign 00.11
xtend
25

h

PC+4
E =
RegWrite
MemWrit A
Read Instructior) _ 1[25-21] Read Read lemWrite MemToReg
address [31-0} > register 1 i - ‘
120 -16] Read
Wnetiction " | register 2 Read M
memory data 2 u
Write x
register Data 0
write Registers memory
data
MemRead
RegDst
1115-0] [sign
Hlextend
Yt 5
25

5/2/2019

13

5/2/2019

The slowest instruction...
Recall beq $at, 50, offset compute branch addr: PC + 4 + (offset x 4) *If all instrL_.lctionS mustcom plete Within 1 clock cycle, then
>=
[000100] 00007 | [0000 0000 0000 0011 | the cycle time >= slowestinstruction .
*For example, Iw $t0, —4($sp) needs 8ns, assuming the
delays shown here reading the instruction memory 2ns
Al J > reading the base register Ssp ns 8ns
Add computing memory address Ssp-4 2ns
L reading the data memory 2ns
RegWitte : _ stor'ing data back to 5t0 1ns
MemWrite MemToReg . e
::ﬂa:m '"s"‘[‘;'g;',’,‘,r"fii?‘] ¥ o ;:t:‘: il | el ::j.iss |n5wu:;|cr 1[25- 21] :‘?dtn)
ALU —p| Read Reaf [20 121 =gistar F=ad Res
Instruction vRa?:'er) Reed e Zero Sddiess Lo Instruction : Read kddress da
fmemory ;: ‘; data 2 o N Resul :gg?ess memory :915“3'2 'tg:gn
register u rite Data e”izer B :-ss .
wie "o | | L] Ko [P e _memer 7 e ey | [
ALLS'C P.‘ur'!‘ivau Ee 2ns
1[15-0] ,w‘gign\\l
—4".‘0)&“@_
\.\7/ 6 0ns
25 25

14

5/2/2019

...determines the clock cycle time

«If we make the cycle time 8ns every instruction will take
8ns, even ifthey don’t need that muchtime

*For example, the instruction add $s4, $t1, $t2 really
needs just 6ns

reading the instruction memory 2ns
reading registers S5t1 and 5t2 1ns

6ns
computing St1 + 5t2 2ns
storing the result into $50 1ns
Fead Tnstruct 1[25- 21]
egister 1 dats 1
20 - 16]
Instruction sfiead fead
memory Dl‘E e
L
2 ns [15- 1] _brite Registers ons
b Hata
0ns T ns
ne-0] Sign

xtend
0ns

25

Summary

A datapath contains all the functional units and connections
necessary to implementan instruction set architecture

“+Forour single-cycle implementation, we use two separate memories,
an ALU, some exira adders, and lots of multiplexers

++MIPS is a 32-bit machine, so most of the buses are 32-bits wide
The control unit tells the datapath what to do, based on the
instruction that’s currently being executed

“Our processorhas ten control signals that regulate the datapath

+The control signals can be generated by a combinational circuit with
the instruction’s 32-bit binary encoding as input

Next, we’'ll see the performance limitations of this single-
cycle machine and try to improve upon it

25

15

