
Eastern Mediterranean University

Computer Engineering Department

CMSE 222 Introduction to Computer Organization

Lab 4 & Lab 5

Clocked Sequential Circuits and Registers Using Verilog HDL

OBJECTIVES:

There are two objectives in this laboratory work, one aims to introduce a practical work on the

design of synchronous sequential circuits from architectural and behavioral descriptions and

one aims to introduce a practical work on the design of Registers from architectural and

behavioral descriptions.

• The architectural description covers both the schematic and the software

implementation of circuits designed through the conventional design procedure. The

behavioral descriptions cover the implementation using Mealy and Moore type state

transition diagrams.

• The architectural description covers both the schematic and the software

implementation of circuits designed through the conventional design procedure. The

behavioral descriptions cover the implementation using state transition diagrams.

Important Note: For each of the following experimental tasks (in each phase), open a new

project to avoid compilation errors due to multiple use of components within the same project’s

files.

1. Clocked Sequential Circuits

Phase 1: Question

Assume that the circuit to be designed has one input X and one output Y such that Y=1 iff there

are three or more consecutive ones over the input X; Y=0 otherwise.

Considering the Mealy type state transition diagram in class, design this clocked sequential

circuit using JK-FFs. Then, input the schematic diagram of your design into VeriLog HDL and

verify its correctness through waveform simulations (follow the steps explained in the first

experimental work).

Phase 2: Implementing the design in Verilog HDL

Enter the VeriLog code of your design using Quartus Lite development suite. Compile and

simulate your code to verify its correctness (follow the steps explained in the first experimental

work).

Phase 3: Implementing the design using Mealy-type State Transition Diagram

Consider the Mealy-type state transition diagram described in lecture, the corresponding

Verilog HDL code that implements the state-transition and output generation behavior of this

digital system is given below:

module Seq_3Ones_Detect_Mealy(X,Clk,Y);
input Clk,X;
output Y;
reg Y;

reg [1:0] pstate,nstate; // present and next state variables as

registers
parameter S0=2’b00, S0=2’b01, S0=2’b10, S0=2’b11; // state assignment

always @(posedge Clk)
 case(pstate)
 S0: if (x) begin nstate=S1; Y=0; end
 else begin nstate=S0; Y=0; end
 S1: if (x) begin nstate=S2; Y=0; end
 else begin nstate=S0; Y=0; end
 S2: if (x) begin nstate=S3; Y=1; end
 else begin nstate=S0; Y=0; end
 S3: if (x) begin nstate=S3; Y=1; end
 else begin nstate=S0; Y=0; end
 endcase
// sequential logic for state transitions
 Pstate <= nstate;

endmodule

Write the above given code in VeriLog HDL environment and simulate it to verify its correctness.

Phase 4: Implementing the design using Moore-type State Transition Diagram

Consider the Moore-type state transition diagram described in lecture, the corresponding

Verilog HDL code that implements the state-transition and output generation behavior of this

digital system is given below:

module Seq_3Ones_Detect_Moore(X,Clk,Y);
input Clk,X;
output Y;

reg [1:0] state; // state variables as register
parameter S0=2’b00, S0=2’b01, S0=2’b10, S0=2’b11; // state assignment

always @(posedge Clk)
 case(state)
 S0: if (x) state <= S1;
 else state <= S0;
 S1: if (x) state <= S2;
 else state <= S0;
 S2: if (x) state <= S3;
 else state <= S0;
 S3: if (x) state <= S3;
 else state <= S0;
 endcase

// define the output
 assign Y=(state == S3);

endmodule

Write the above given code in VeriLog HDL environment and simulate it to verify its correctness.

EXPERIMENT:

Design a clocked sequential circuit with one input X and one output Z for the detection of the

4-bit sequence 0110 on input line X. Output Z=1 when this sequence is detected, Z=0 otherwise.

Overlapping of 4-bit codes are allowed. Assume that MSB arrives first. You can use either

Mealy of Moore type for your solution.

2. Registers

Phase 1: Schematic-Entry

Assume that we want to design the following multi-function register that is controlled by two

control inputs S1 and S0 as follows:

Mode Control Register

Operation S1 S0

0 0 No change

0 1 Shift left

1 0 Shift right

1 1 Parallel Load

The schematic circuit corresponding to this multi-function register is given below:

Phase 2: Implementing the Architectural Design of Multi-Function Register in Verilog

HDL

Enter the following architectural VeriLog code of multifunction register design into Quartus

Lite development suite. Compile and simulate your code to verify its correctness.

/* 4-bit Multifucntion Register controlled by two control inputs S1 and S0 as
follws:
s1 s0=00 No change --- 01 Shift left --- 10 Shift right --- Parallel load
*/
module MultiFuncRegister_Arch(Clear,CLK,S,PL,IL,IR,Q);
 input CLK;
 input Clear;
 input IL, IR; // Serial load from left and right
 input [1:0] S; // Vector of control inputs S1 and S0
 input [3:0] PL; // Parallel load
 output [3:0] Q; // Register ouputs Q3, Q2, Q1, Q0
 wire [3:0] W; // Internal signals among components

 MUX_4_1 m1(W[0],S[1],S[0],PL[0],IL,Q[1],Q[0]);
 MUX_4_1 m2(W[1],S[1],S[0],PL[1],Q[0],Q[2],Q[1]);
 MUX_4_1 m3(W[2],S[1],S[0],PL[2],Q[1],Q[3],Q[2]);
 MUX_4_1 m4(W[3],S[1],S[0],PL[3],Q[2],IR,Q[3]);

 D_FF d1(Q[0],W[0],CLK,Clear);
 D_FF d2(Q[1],W[1],CLK,Clear);
 D_FF d3(Q[2],W[2],CLK,Clear);
 D_FF d4(Q[3],W[3],CLK,Clear);
endmodule

module D_FF(Q,D,CLK,CLR);
 input D,CLK,CLR;
 output reg Q;

 always @(posedge CLK)
 if (CLR == 1'b1)
 Q<= 1'b0;
 else
 Q<= D;
endmodule

module MUX_4_1(Y,S1,S0,I3,I2,I1,I0);
 input S1,S0,I3,I2,I1,I0;
 output reg Y;

 always @(S1,S0,I3,I2,I1,I0)
 begin
 if (S1==0 & S0==0)
 Y=I0;
 else if (S1==0 & S0==1)
 Y=I1;
 else if (S1==1 & S0==0)
 Y=I2;
 else if (S1==1 & S0==1)
 Y=I3;
 end
endmodule

EXPERIMENT:

Behavioral VeriLog code of the above-described multifunction register is given below

/* Behavioral description of a multifunction register in veriLog HDL
s1 s0=00 No change --- 01 Shift left --- 10 Shift right --- Parallel load

*/
module MultiFunctRegister_Behav(Clear,CLK,S,PL,IL,IR,Q);
input Clear, CLK;
input [3:0] PL;
input [1:0] S;
input IL,IR;
output [3:0] Q;

reg [3:0] R;

always @(posedge CLK)
begin
 if (Clear == 1)
 R <= 4'b0000;
 else if (S[1]==0 & S[0]==0) // No change
 R <= R;
 else if (S[1]==0 & S[0]==1) // Shift left
 begin
 R[0] <= IR; R[1] <= R[0];
 R[2] <= R[1]; R[3] <= R[2];
 end
 else if (S[1]==1 & S[0]==0) // Shift right
 begin
 R[3] <= IL; R[2] <= R[3];
 R[1] <= R[2]; R[0] <= R[1];
 end
 else if (S[1]==1 & S[0]==1)
 begin
 R=PL;
 end
end

assign Q = R;

endmodule

Modify the above-given behavioral code to design a 4-bit multifunction register that operates

as follows:

Enable S1 S0 Operation Mode

0 x x No change

1 0 0 Rotate left

1 0 1 XOR contents with (0101)

1 1 0 Rotate right

1 1 1 Parallel load

Prepared by Assoc. Prof. Dr. Adnan ACAN

