3 w;" COMPUTER ENGINEERING DEPARTMENT
——

CMPE 324 - Computer Architecture and
Organization

LAB 1:

1.Introduction

QtSpim is software that will help you to simulate the execution of MIPS assembly
programs. It does a context and syntax check while loading an assembly program.
In addition, it adds in necessary overhead instructions as needed, and updates register
and memory content as each instruction is executed

In the experiments, we will use a simulator instead of a workstation with a MIPS
processor, because a simulator provides us miscellaneous features in understanding
the instruction set as well as in debugging. Moreover, a MIPS simulator is available
for almost any computer- and operating-system. Furthermore, the simulator can be
updated to include the new features, instructions or pseudo-instructions developed
in later versions of the processor for almost without any additional cost.

Note: you can find this IDE in https://sourceforge.net/projects/spimsimulator/files/
or on google as well.

2. MIPS ASSEMBLER SYNTAX

Comments in assembler files begin with a sharp sign " # ". Everything from the
sharp sign to the end of the line is ignored.

Identifiers are a sequence of alphanumeric characters, underbars " ", and dots " . "
that do not begin with a numbet Instruction opcodes are reserved words that cannot
be used as identifiers. Labels are declared by putting them at the beginning of a line

followed by a colon, for example:



https://sourceforge.net/projects/spimsimulator/files/

.data
item: .word 1
.text
.globl main # Must be global
main: lw $t0l1l,item # loads temp.reg. $t01 with item

Numbers are base 10 by default. If they are preceded by 0x, they are interpreted as
hexadecimal. Hence, 256 and 0x100 denote the same value. Strings are enclosed in
doublequote "...". Special characters in strings follow the C convention: i.e.,
newline is \n; tab \t, and quote \" Some important SPIM (and also MIPS) assembler
directives:

.byte bi1,..., bn #store n specified values to the memory
.data <address>  #sefdata segment address.
SPIM uses 0x10000000 as the beginning of the data segment. Set it to
0x 10000000 to have correctly matching data labels to their addresses.
.globl sym # makes label globally accessable.
.space n # allocate n bytes of space in the current segment.
.text <address>  # subsequent items are put in the user text segments,
The items in text segment may be only words, or instructions.
.word n # store the listed values of words into the memory.




3. QtSpim workspace:

The QtSpim simulator program has a pull-down menu appearance as shown below
and also you can see different area in QtSPIM as follow:

& QtSpim

e Simulstor Registers Text Segment  Data Segment  Window  Help

N ERE RN N

e}

FP Regs o X Text

R = 900 AllS User Text Segment [00400000]..[00440000] 3
PR = [00400000] 8£240000 1w §4, 0($29) ;183 1v 820 0(Ssp) # arge

FCCR = [00400004] 27250004 addiu §5, §29, 4 ; 184: addiv $al Ssp 4 # argy

FER = [00400008] 2460004 addiu §6, §5, 4 ; 185: addiv a2 fal 4 § envp

[0040000c) 00041080 sll §2, §4, 2 2 186+ 511 8v0 $a0 2

Sinrls Precisiol [00400010] 00223021 addu §6, §6, §2 ; 187: addu $al a2 §v0

mg - [00400014] 0c000000 jal 0x0D00000D [main]  ; 188: jal main

Rl =0 [00400018] 00000000 nop » 1898: nop

RO < [0040001c] 34020002 ori $2, $0, 10 ; 181: 11 $v0 10

FG3 =0 [00400020] 0000000c syscall s 102: sysecall # syscall 10 (sxit)

FG4 =10

FOF =10 Kernel Text Segment [80000000]..[80010000]

FG6 =0 [80000180] 0001d821 addu $27, §0, §1 + 90: move Skl fat # Save Sat

F&7 =10 [80000184) 3c019000 1Imi $1, -28a72 s 82 sv Sv0 sl ¢ Not re-entrant and we cdn't
FGg8 =10 trust Ssp

FG9 =0 [80000188] 2220200 sw §2, 512($1)

FGI0 =0 [8000018¢c] 3c019000 1Imi $1, -28672 + 93: gv 530 32 # But we nesd to use thesd
FGll =10 reglsters

FG12 = 0 [80000150] ac240204 sw §4, 516(51)

FG13 =0 [80000194) 40126800 mfed §26, $13 ; 95: mfch $k0 $13 # Cause register

FG14 = 0 [80000198) 00122082 srl §4, $26, 2 2 962 3rl $a0 5k0 2 # Extract ExcCode Field
F615 = 0 [8000019¢] 3084001f andi §4, §4, 31 ; 97: andi $a0 $a0 Oxif

FG16 = 0 [300001a0] 34020004 ori §2, $0, 4 £ 1012 11 8v0 4 # syscall 4 (print str)
% : ~




4. Main menu (green one):

1

. File:

L QtSpim
File  Simulator Registers Text Segment  Data Segment  Window  Help
A LlzTiofls PN @ = @
Fecent Files L
Data Text
(= Reinitialize and Load File
Text
=l SavelLogFile User Text Segment [004000007 .. [C
) [00400000] Sfa40000 1w $4, 0($29) s 183: 1w S5=0
= Print [00400004]1 27a50004 addin §5, $29, 4 ;s 184: addiu £
- [00400008] 24a60004 addin $6, §5, 4 s 185: addiu £
[0040000c] 00041080 =11 $2, $4, 2 s 186&: s11 5vC
Single Precision [00400010] 00c23021  adda 56, 56, 52 ) 7 187: addu g3
FCO B [DO0400014] OQcOOOO00 Jal O=00000000 [main] s 188: Jal mai
FG1 = o [00400018] 00000000 mnop s 189: nop
FGz = o [0040001c] 3402000a ori $2, S0, 10 s 191: 1i 5vo
FCG3 = 0 [DO0400020] OQOOOO000c syscall ;5 192: syscall
FG4 = 0
FCS =0 Fernel Text Segment [E0000000] ..
Fos = O [80000180] 0001dE821 adda $27, $0, 51 s B0: move S5k1
FOT = O [80000184] 3c0Ol%000 1umi $1, —28672 s 0Z: 5w SveO =
FGE = 0 trust Ssp
FG9 = O [80000188] ac220200 sw $2, 512 (51)
FG10 = © [8000018c] 3cOl9000 1lui $1, —28672 s 593: sw Sa0 =
FG1ll = O registers
FG12 = O [80000190] ac240204 sw $4, 516(51)
FG13 = 0O [800001%4] 401a6800 mfol 526, $13 s 05: mfco SkC
FGi4a = O [80000198] 00laZosS2 srl S§S4, 526, 2 s 9&: srl Sa0
2. Simulation: These items will be used more frequently
L OtSpim
File = Simulator | Registers Text Segment  Data Segment  Window  Help
= Clear Registers <:j.1 @ = @
ﬁ Reinitialize Simulator
F Data Text
FFP Re Run Parameters _—4""1
FIR P Run/Continue F5 | User Text Segment [0040000C
FCSE | Pause FOTMO00] E£a<40000 1w 5S4, 0($529) ;s 183: 1w
Etxﬁlj e 500004)] 27a50004 addin §5, 529, 4 s 184: ad
FEXE _ = 0] Z4a€0004 addin 56, 55, 4 s 185: ad
=: Single Step F10 o 0041080 sl11 $2, S4, 2 s 1885: s1
Sinc Diisplay Symbols O0cZ3021 E-I.ddu 56, 56, 52 ) r 87: a:d
FGO 200014] OcOQOO0000 Fjal O0x00000000 [main] s 188: Jja
ol | |2 Settings 300018] QO0OQ0OQO0O0 nop s 189: no
Fo2 —u — 000lc] 3402000a ori $2, $0, 10 s 191: 131
FG3 = qQ [0040Q020] Q0000000 c syscall ;s 192 : s5YW%
FG4a = 0
FCoS = g Fernel Text Segment [S8000000
Fos = 0O [E0000180] 000Llds2l adda $27, 50, $1 s 50: mow
FGT = 0 [80000184] 3cOlS000 1mi $1, —-28672 s BZ: sw
FGE = 0 trust Ssp
FG9 = 0O [E0000188] ac220200 sw 52, 512(51)
FG10 = 0O [2000018c] 3cOlS000 1mi $1, —-28672 s B83: sW
FGii1i = O registers
FGl12 = O [E00001%0] ac240204 sw 54, 516(51)
FG13 = O [E0000194] 401a26200 mfed $26, S$13 7 95: mfc
FG14 = O [g0000158] 00laz2082 srl $4, 526, 2 s 9&: srl
FG15 = O [8000019c] 3084001Ff andi $4, $4, 31 s 97: and
M16 = CI redoaaT =m FAOTFOCGA e oy e A - TMAT - T




And also, we can change some setting from “Setting” item:

L OtSpim

File Simulator

Registers Text Segment Data Segment

Window Help

£ Clear Registers m =i
ﬁ Reinitialize Sirmulator
F Data
FP Res FRun Parameters
FIR P Run/Centinue F3 User Text Segment [00400000°
FCSE ] Pause 8000001 S£fa<40000 1w $4, 0($29) s 183: 1w
FCCE Stop 800004] 2TaS50004 addiun §5, $29, 4 s 184: adc
FEXE _ ) BO00008] 24a60004 addin $§6, 55, 4 s 185: adc
=i Single Step F10 B0000c] Q0041080 =11 $2, 5S4, =2 s g&6: 511
Sing Display Symbols 8000101 00c23021 E_.ddu 56, $6, §2 ) s 187: a:d.f
FGOD 300014] OcOOOOO0 Jal OxO00000000 [main] s o 188: Ja=1
Foa [ = Settings j [sTsTsTaTalols]s] nop s 189: nog
FGD m— = 3402000a ori $2, $0, 10 s 191: 1i
FOGS = O [OD0400020] OO0OO00000Dc syscall ;5 192: =53:=
FGa = O
FCS = 0 Fernel Text Segment [E0000001
FGE = O [80000180] 00014821 adda $27, $0, $1 s 90: mowve
FG7T = O [80000184] 3cOl9000 1mi $1, —-28672 s 92: sw i
FGE = 0 trust Ssp
FG9 = O [E0000188] ac220200 sw $2, 512(§$1)
FG10 = O [8000018c] 3cOl9000 1mi §1, -28672 s 93: sw i
FG11 = 0O registers
FGi1iz = O [S0000190] acZ40204 sw S$S4, 516(S1)
FG13 = O [80000194] 40la6800 mfcO $26, S$13 ;7 95: mfocd
FG14 = O [8B0000198] O0laz2082 srl $4, S$26, 2 5 96: sril
FG15 = © [800001l9c] 3084001f andi 54, S$4, 31 ; 97: andai
FGis = O r200001a01 34020004 ori S2. S0. 4 s 101: 13
The Setting window is divided into two section as follow:
[ 1 m = 71
Data | Text
Data L OtSpim Settings ? |
User data [ MIPS ] [QtSpim :I
[10000000a]
Simulator
User Stack —
[TEEELSEC] Length of Recent File list |4
[TEEEES7TO]
[TEEEE9E80] [ Quiet
[TEEEESS0]
[TEEE££f9a0]
[FTEEEE£SLO] Register Windows
[TE£EE£f9cO]
[TLLLLado] Font |Courier | Color |#aa55ff
[TEEEES=0]
[TEEEEfSfO]
[FTEEEfa00] Background Color |¢‘FFFFFF | |
[TE£E££fal0] I
[TEEL£faz2d] H
[TEEEfa30] Text and Data Windows T
[TEE£fa40] E
[FLE£fas0] Font | courier | Color | 000000 «
[TE£E£Efac0] —
[TEEEfa70] z
[TEEEEa80] Background Color |#‘FFFFFF | €
[TE£E£E£fa9O] o
ITEEEfaanl c




3. Resister menu: in this sub menu we can determine the type of register
contain such as binary, hex, decimal as follow:

L OtSpim
File  Simulator  Registers Text Segment  Data Segment  Window  Help
= A Binary 3 m = =k (7]
~" Hex
FP Regs Data Text
Decimal

FP Regs Data
FIR = SE80C " || User data segment [100000007..[1
FCSR = [lLO0O00000] .. [LOO3EEEE] 0©OO0O0OOC
FCCR =
FEXR =

User Stack [TE£E£££f96c] .. [B000000C

[TEEEESEC] 00000000
Single FPrecision [TEEEESTO] QoOo0000 TEEEEfel]
FGO = C [TEEEFS20] TEEEfff6c TEEEEf4ar
FG1 = C [FEEEE990] TEfffebkd TEEffekC
FG2 = C [TEEEESa0] TEEffesz TEEffe3k
FG3 = C [TEEEESkLO] TEEEFfcf0 TEEffch:
FG4 = C [TEEEEScO] TEEFfFfcd40 TEEEFc2E
FG5 = [TEEEESAO] TEEEffb84 TEELffbéec
FGGE = C [TEEEES=0] TEEEFFfBOS TEEffafé

4. Text Segment menu: this section is about Text part of workstation where
you can find your instructions as follow:

L OtSpim
File Simulator Registers  Text Segment | Data Segment  Window  Help
L L_; H & » User Text ! @
~  Kernel Text
FPRegs | IntReg Text <:::::I
FP Regs ~  Comments
FIR - 9800 k:' Instruction Value S0ScEeEf 6EE8T479 2d37336e  433b3233 on\PBPytho
FCSE = L T T T A ] T3555c3a ScT37265 Tee9g3873 TO0415cel r N T aer s
FOOR = [TEEE££dcO] 74614470 e©f4c5cel ScEéceled TZe3e94d pData’lLlLo
FEXR = G [TELE££ddO] ceef73ef ©9575cT74 TTefcdese TOTO41T3 osofth\WI1
[TELEffde0] 3a433b73 T46celSc 5celTZes  302e3331 s :C:Nalt
[TEEE£AED] 5c317073 eS5e4efed edeST3ec €5T73el5L splimode
Single Precision [TELE£fe00] 62697 75c 6c6l3233 00edesef 573d534f “"win32al
FGOD = O [TELffel0] efedeeed 4e5L737T e©e4f0054 ©5T724465 indows _HN
FG1 = 0O [TELffez20] 433de576 T73555c3a  5cT737265  TeEe9e6873 ve=0C:\NTUs
FG2 = 0O [TEEffe30] ge4fScel 6€5724465 4e006576 45424d5S a\V0neDri-
FG3 = 0O [TEEffe40] 464f5f52 4f52505f 53534543 3d453524f E_OF_PFRZD
FG4 = 0O [TEEffeSO] 4f4c0032 534e24f47 45565245 S5cSco3ds2 2 .LOGONS
FGS = 0O [TEEffec] 4534544 2d504f54 4adb4250 00424135 DESETOCP -

5. Data Segment menu: This section is about Data part of workstation where you
can find your Data, for example you can change the type of data (binary,
decimal, hex) as follow:




L (OtSpim
File  Sirnulator Registers  Text Segment = Data Segrment . Window  Help
H d a8 ¢ # »

FP Regs Int Reas [L6%

" User Data N
" Lser Stack

~  Kernel Data

FP Regs & X Data
FIR ~ o: Al 17EEE Binary Ef 6£687479 2d37336e
FOSR _ [TEEE . — 5a 5cT737265 TE696873
FOCR _ [TEEE JO 6f4cScél 5ScEcElE3
FEXR _ [TEEE! Decimal S Ef €9575c74 776f646e
[TEEE£de0] 32433b73 T46célSc ScElT26S
[TEEEEAEO] 5c317073 65646f6d  6dE9T36c
Single Precision [FEEE££=00] 62697750 60613233 O0edeSef
FGO = 0 [TEEEEe10] 6f646269 4e5f7377 6e4£f0054
FG1 = 0 [TEEEE=20] 433d6576 T3555c3a  S5cT737265

Note: And also, we have a useful tools menu which has some most frequently tools
such as Run, Open, Save, and etc.

L OtSpim

File  Simulator  Registers  Text Segrment  Data Segrment Window  Help

[ & B & 2 # » v a = @ ::I-q::: ]
Text

FP Regs Int Regs [L6oh Data

FP Regs & X [ata

FIR — G800 w || [TEEEEda0] EQSces6f 6F£687479 2d37336s 433L3233

FCSR _— [TEEEEdRO] 73555c3a  S5cT37265  TEEDE8T3I T0415cEl

FCCR - [TEEE£dc0] 74614470 Ef4cScEl  ScEcEle3 72636944

FEXER =0 [TEEEEdAO] EEEfT36f £9575cT4  TTEfE46e  TOTO4173
[TEEEEden] 32433073 T46cElSc S5celTIES  302e3331
[TEEEFAEO] 5c317073 65646F6d  6dE9T36c  EST3IELSE

Single Precision [TEEEfe00] E=69775c 6c6l3233  006d656f S573d534f

5. First project (simulation):
Now, lets begin with first simulation, follow the steps one by one:

First of all, we should Set the Simulator:

In the first part of this experiment you will use SPIM to simulate
_a bare MIPS machine,




_ without allowing pseudo-codes, and
__no mapped 1/O option.
_ without loading any trap-features.

In this mode, the assembler will not allow any pseudo-codes (i.e., li, mul, blt, ... etc.
and also any long offset fields in the Iw and sw instructions) to be used in your
program. For the convenience in reading the register contents you may prefer to have
hexadecimal readings in the display windows. In the second part, you will use SPIM
in the more elaborated mode with the pseudo-code and trap-features loaded All of
these settings can be set on the settings form that is accessed starting from the drop-
down menu by simulator>settings.

Organization of a MIPS assembly program: The MIPS assembly programs are
text files with the extension "-.s" or "- .asm" . SPIM has no built-in editor-program
for writing the assembly source. You have to use your favorite, or any available text
editor such as NOTEPAD.EXE. The Notepad program of Windows 95/98 or NT is
located in:

Start > Programs > Accessories > Notepad

Type your MIPS assembly program (you have to leave an empty line at the end of
the program) and save it by specifying a filename for your program. Note that the
extension of the filename must be “.s” or ".asm". You should first click on the
PCSpim for Windows icon to start the PCSpim main window. Then load your
program by using the PCSpim’s menu File > Open. Use the opened browser to
choose the path and the assembly source file that you want to open. If there is any
syntax or structure error in your file, SPIM will give you a message indicating the
line number and the reason of the rejected line. You have to clean your program
from the syntax bugs and load it to SPIM.

After loading your assembly source, you are ready to run or trace it. Use Simulator
> Go (F5-key) or Simulator > single step (F10-key) of the main menu. The starting

8




address is automatically defined by the compiler according to the options your set-
up on the settings window. You can watch the contents of the registers using window
> Registers of the main menu. For an easy to observe page organization try the
window > tile option.
Experimental Work

A. Part-1
Following program multiplies two unsigned integers in the registers R8 by R9 and
writes the 32-bit product to register R10. In order to understand the operation of
your simulator program, type and execute the following MIPS assembly program
In non-pseudo-instruction mode.

You can put comments to the end of a line after a sharp sign (#).

.data 0x10000000

.text 0x00400000

main:

addi $8,%0,6

addi $9,$0,12

# multiplication of $8 * $9 -> $10
add $2,$0,%8

add $10,%0,5%0

mulloop:

beqg $2,%0,mulexit # if zero exit
addi $2,$2,-1

add $10,$10,59

j mulloop

mulexit:

# multiplication loop is over,

# is the result in $10 correct?
sll $0,%0,0

syscall

1. You can start the single step execution applying the following items.
A. First set the PC (prog.counter) to the starting address of the program if SPIM
is set correctly the starting address is 0x00400000. To set the value use the

key-sequence alt-s,v (or menu simulator>set value) to open the register-value




assignment dialog box. Enter PC and the starting address in hexadecimal
format.

B. Next, use the fn10 key to execute one instruction at each key-press. You can
also use the fn5 key to execute the complete progam at once. Correct the
starting address to 0x00400000 before clicking the OK button.

2. After syscal stops the execution save the log file with the filename
"expla.log"”. Open the log file by dragging it into the textpad and inspect the
text segment. Fill in the following machine code table according to

hexadecimal machine codes assigned by SPIM.

Reporting

Before the Lab-time is over, fill in the following report page as soon as you complete
the laboratory work, and submit it to your assistant. Your report is important for your
grading.

= Register-to-register arithmetic instructions use the R-type format.

— op is the instruction opcode, and func specifies a particular arithmetic
operation (see textbook).

— rs, rt and rd are source and destination registers.

op rs rt rd shamt func
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

= An example instruction and its encoding:

o o3y rs \'A + VA ﬁu,c
add $s4, $t1, $t2  [000000 {01001 [(01010Y)(70100) 1000000
—~ —

10




Name: Student Number:
Submitted to (Asst.): Date:sammyy |

EASTERN MEDITERRANEAN UNIVERSITY
COMPUTER ENGINEERING DEPARTMENT

2019 Fall

CMPE 324 -Computer Architecture and Organization
EXPERIMENT 1 - Reporting Sheet

The observed binary machine codes of the instructions are:

Instruction opc s rt rd sa fn

addi $8,50,6

addi $9,60,12
add $2,80,58
add $10,50,$0

beq $2, $0, mulexit

addi $2,62,-1

add $10,410,5%9

j  mulloop

sll §0,50,50

Grading:
Lab Performance:

Asst. Observations:

11




