
1

LAB 3:

1. Objective:

Introduction to the usage of the Data Segment, and Arrays in functional single-

module assembler programs. Development of understandable assembly programs

using variable symbols.

2. Introduction:

Unlike programs in high-level languages, the operands of arithmetic instructions in

the MIPS assembly cannot be variables. They must be from a limited number of

general purpose registers. There are 32 g.p. registers ($0,$1,$2,….,$31) available in

the MIPS architecture.

One of the main differences of the registers from the variables of a programming

language is their limited number. The restricted number of registers provide higher

speed in reading and writing their contents.

Higher the number of the registers, more gates are necessary in address decoding,

resulting in higher delays, and therefore raises the clock cycle time because of delays

in address decoding gates.

2

In most programming languages there are simple data types that contain single data

elements, and also more complex data structures such as arrays. These complex data

structures can contain many more data elements than available registers of the

processor. A processor has only a restricted number of registers to store data. Then,

how can a processor access and process such large structures?

The answer is, a processor can also access to a memory system, which contains

millions of data elements. Hence large data structures, like arrays, are kept in

memory. Only a part of data that has to be processed is loaded to the registers.

MIPS architecture provides a set of memory-transfer instructions. A data transfer

from memory to a register is possible using the memory reference instruction load

word (lw), lw $destination, offset ($base) Which loads $destination with the data

word starting from memory address offset+$base.

For example, lw $20, 10000 ($0) means that the constant (or data) in the memory

location at address 10000+$0 is stored into register $20. A data transfer from a

register into a memory is obtained using a store word (sw) instruction,

 sw $source, offset ($base) which stores the $source register into the memory to the

address starting from offset+$base. For example, sw $10, 20000($2) stores the

contents of register $10 into the memory location at address 20000+$2.

Both in lw and sw instructions, offset is a 16-bit signed integer. However, if the

pseudo-instructions are allowed, they accept 32-bit addresses, and implement the

pseudo-instruction using lui, add, and sw or lw with a 16-bit-offset.

Note: Now let’s begin our first program for LAB3

3

3. Experimental Work

Part 1: Tracing Exercise

In order to understand the operation of memory reference instructions (lw and sw),

type and execute the following MIPS assembly program giving it filename

"exp3.1.s". The program contains pseudo-instruction such as la $dest, <label> and

the lw and sw instructions have 32-bit offsets.

Thus you have to turn on the pseudo-instruction option of SPIM in settings dialog-

box (keysequence alt-s,s). Ask your particular data-set from your assistant, and fill

in the related part of the report after tracing your program with that data-set. Don't

forget to set the value in PC to 0x00400000 to start the execution from this address.

4

 .data 0x10000000

A[] is array with a trailing zero.

A:

 .word 128 100 42 16 5 2 0 0

Count:

.word 0

Sum:

.word 0

Result:

.word 0

Remainder:

.word 0

EndofData:

.word -1

End of data segment, code starts here from address 0x00400000

Turn-off bare-machine, and turn-on pseudo-instruction options.

.text

.globl main

main:

finding average of A[]

la $2,A # pseudo-instruction load-address A[.]

or $8,$0,$0 # 0 -> $8 , count

or $10,$0,0 # 0 -> $10, sum

slp:

lw $11,0($2) # A[i] -> $11

beq $11,$0,slx

add $10,$10,$11 # A[0]+...+A[i] -> $2

addi $8,$8,1 # ++count

addi $2,$2,4 # address of(A[i+1]) -> $2

5

j slp # loop until getting the zero

slx:

save the count

sw $8,Count($0)

sw $10,Sum($0)

divide $10 by $8, use count of repeating subtractions.

div $10,$8 # quotient is in LO, reminder is in HI

mflo $11 # move from LO to $destination

mfhi $10 # move from HI to $destination

sw $11,Result($0) # mean

sw $10,Remainder($0) # and this is the reminder of

division

syscall # for the sake of SPIM add below one empty line

6

Part1: Your data segment lines must have

A: .word ____, ____, ____, ____, ____, ____, ____, ____

________:

.word 0

________:

.word 0

________:

.word 0

________:

.word 0

EndofData:

.word -1

The data segment readings in Hexadecimal after the execution

