DEPARTMENT OF COMPUTER ENGINEERING CMPE110: Fundamentals of Computing and Programming EXPERIMENT 6

Introduction to $C++$ Programming: One and two dimensional array Objectives:

1) Understand how to edit, compile and execute C++ computer codes.
2) Understand C++ programming: One and two - dimensional array.

Task I:

A/Show the contents of the following array declarations.
a) int N1[5], N2[5];

$\mathrm{N} 1[2]=4$;

N1[0] = N1[2];
N2[4] = N1[0];
b) float prices [5] $=\{1.25,3.50,1.20,2.99,0.75\}$;
c) float prices[5]=\{1.25, 3.50\};
d) int months [] $=\{1,2,3,4,5,6,7,8,9,10,11,12\}$;
e) int $x[2][3]=\{1,2,3,3,2,1\}$;
f) int $y[2][3]=\{\{1,2,3\},\{3,2,1\}\}$;
B) what is the output of
\#include<iostream>
using namespace std;
int main() \{
int $\mathrm{M} 1[2][3]=\{1,5,3,2,1,3\}$;
int i, j,s;
for (i=0; i<2; i++)
\{s=0;
for (j=0; j<3; j++)
\{s+=M1[i][j];\}
cout \ll " $A=[" \ll i<"]=" \ll(s / 3) \ll e n d l ;$
\}
return 0; \}
Task II: Programming tasks

1) Consider the following code that finds the sum of elements of the integer array A :
\#include<iostream>
\#include<cmath>
using namespace std;
int main() \{
\#define MAX 5
int A[MAX],i,Sum=0;
cout << "Enter the element of the array A (5 elements): ";
for (i $=0$; $i<M A X ; ~ i++)$
cin >> A[i];
Sum = 0;
for (i $=0$; $i<M A X ; i++$)

$$
\text { Sum }+=\mathrm{A}[i] ;
$$

cout << "The sum is " << Sum<< endl;
return 0; \}
a) Edit, compile and execute this code. Use the following input values for array A elements: 32415.
b) Modify the given code to find the average of the array A. Note: The average is computed by as sum of elements/number of elements A sample run of the program must be as follows:
*** Program to claculate find the average of elements of an integer array ***
Enter the elements of the array A: 32415
The average of the array A is 3.0.
2) The dot-product of the two arrays $x[m]$ and $y[m]$ is computed as: dot_product $=x[0] * y[0]+x[1] * y[1]+\ldots \ldots .+x[m-1] * y[m-1]$
Write a C++ code to read two $1-D$ integer arrays with size m (x[m], y[m]) and computes their dot-product.
3) Write one C++ program to do the following tasks:
a) Read the grades of 10 students from the keyboard. Store the grades in a one-dimensional array called "grade" of type integer.
b) Find the average of the grades
c) Find and print the maximum grade
d) Add to each students grades the following Bonus value: 100maximum
e) Print from the monitor the students new grades
4) The following code finds the sum of two matrices M1 and M2 with the size of two rows and three columns:
\#include<iostream>
\#include<cmath>
using namespace std;
int main() \{
float M1[2][3], M2[2][3],Result[2][3];
int row, col;
// Read matrix 1
for (row=0; row<2; row++)
for (col=0; col<3; col++)
cin >> M1[row][col];
// Read matrix 2
for (row=0; row<2; row++)
for (col=0; col<3; col++) cin >> M2[row][col];
// Add the two matrices
for (row=0; row<2; row++)
for (col=0; col<3; col++) Result[row][col]= M1[row][col] + M2[row][col];
// Display the result
for (row=0; row<2; row++)
\{
for (col=0; col<3; col++) cout \ll Result [row] [col] \ll ' $\backslash t^{\prime}$;
cout << endl;
\}
return 0; \}
a) Edit, compile and execute this code. Use the following input values for the elements of M1 and M2:
$M 1=\left(\begin{array}{rrr}1 & -5 & 3 \\ 2 & -1 & -3\end{array}\right), M 2=\left(\begin{array}{rrr}3 & 2 & 4 \\ -2 & -3 & 7\end{array}\right)$
b) Modify this code to find the maximum element of the matrix Result.
c) How can you find the average of each row of the matrix Result?
5) The expectation value $\langle X\rangle$ of M numbers $X_{i}(i=1, \ldots, M)$ is defined by

$$
\langle X\rangle=\frac{1}{M} \sum_{i=1}^{M} X_{i}
$$

Write a C++ code that reads integer numbers from the keyboard as input and then computes and prints the expectation value of those numbers that are in the following range [0:100], numbers that are not in this range will not be included [use continue statement]. Also, the program should be terminated if the number -1000 is entered [use break statement].
6) Exercise - Write a C code that will read the age of 10 students in a one dimensional array and then order the array in ascending order.

Use the following input: 23, 25, 18, 23, 16, 19, 22, 21, 27, and 18

