
ES 103: Data Structures and Algorithms 2012

Instructor – Dr Atul Gupta

1

Algorithmic Complexity - II

Atul GuptaAtul Gupta

Algorithmic Complexity

• A measure of the performance of an algorithm
with respect to input size
– Space complexity

– Time complexity (Mostly used)

• Expressed in terms of Asymptotic Notations
– Bog-Oh (O), Big-Theta (Θ), Big-Omega (Ω)

• What to measure
– Worst case performance

– Average case

– Best case

ES 103: Data Structures and Algorithms 2012

Instructor – Dr Atul Gupta

2

Big-Oh (O)

• An indicator of the worst

case performance (upper

bound)

• Defined as a function T(n)

which is said to be of O(g(n))

if there exist positive

constants c0 and n0 such that

for all n >= n0, we have

T(n) < = c0 g(n)

• T(n) is asymptotically smaller

than or equal to g(n)

n0

cg(n)

T(n)

T(n) <= c0 g(n)

nn0

cg(n)

T(n)

T(n) <= c0 g(n)

n

Big-Oh (O): Examples

• T(n) = 3n2+4n = O(n2)

• T(n) = 3n2+4n = O(n3)

• T(n) = 3n2+4n ≠ O(n)

• T(n) = (n+1)2 = O (n2)

ES 103: Data Structures and Algorithms 2012

Instructor – Dr Atul Gupta

3

Big-Omega (ΩΩ)

• An indicator of the best case

performance (lower bound)

• Defined as a function T(n)

which is said to be of ΩΩ(g(n))

if there exist positive

constants c0 and n0 such that

for all n >= n0, we have

T(n) > = c0 g(n)

• T(n) is asymptotically

greater than or equal to g(n) n0

c0g(n)

T(n)

T(n) >= c0 g(n)

n

Big-Omega (ΩΩ): Examples

• T(n) = 3n2+4n = ΩΩ(n2)

• T(n) = 3n2+4n = ΩΩ(n)

• Tn = 4n+2 = ΩΩ(n)(n)

• Tn = 4n+2 = ΩΩ(1)(1)

ES 103: Data Structures and Algorithms 2012

Instructor – Dr Atul Gupta

4

Big-Theta (ΘΘ)

• An indicator of the worse
case and best case
performance (asymptotically
tight bound)

• Defined as a function T(n)
which is said to be of ΘΘ (g(n))
if there exist positive
constants c1, c2 and n0 such
that for all n >= n0, we have

c1 g(n) <= T(n) <= c2 g(n)

• T(n) is asymptotically equal
to g(n)

n0

c2g(n)

T(n)

T(n) <= c0 g(n)

nn0

T(n)

T(n) <= c0 g(n)

n

c1g(n)

Big-Theta (ΘΘ): Examples

• T(n) = 3n2+4n = ΘΘ(n2)

• T(n) = 3n2+4n ≠ ΘΘ(n)

• Tn = 4n+2 = ΘΘ(n)(n)

• Tn = 4n+2 ≠ ΘΘ(1)(1)

ES 103: Data Structures and Algorithms 2012

Instructor – Dr Atul Gupta

5

“Divide and Conquer”

• Divide the problem into a number of
subproblems.

• Conquer the subproblems by solving them
recursively.

– If the subproblem sizes are small enough,
however, just solve the subproblems in a
straightforward manner.

• Combine the solutions to the subproblems
into the solution for the original problem.

Recursive Algorithms

• Divide: Divide the n-element sequence to be

sorted into two subsequences of n/2

elements each.

• Conquer: Sort the two subsequences

recursively using merge sort.

• Combine: Merge the two sorted subsequences

to produce the sorted answer.

• Recurrence (or Recurrence Equation)

Θ(1) if n <= c

T(n) =

aT(n/b) + D(n) + C(n) otherwise

• Parts

– Solution for smallest subdivision (Terminating condition)

– Subdivision relation (aT(n/b))

– Division efforts (D(n))

– Combining effort (C(n))

• Recurrence (or Recurrence Equation)

Θ(1) if n <= c

T(n) =

aT(n/b) + D(n) + C(n) otherwise

• Parts

– Solution for smallest subdivision (Terminating condition)

– Subdivision relation (aT(n/b))

– Division efforts (D(n))

– Combining effort (C(n))

ES 103: Data Structures and Algorithms 2012

Instructor – Dr Atul Gupta

6

Merge Sort

• Recurrence Relation

Solving Recurrence

• Substitution Method

• Recursion-tree Method

• Master Method

ES 103: Data Structures and Algorithms 2012

Instructor – Dr Atul Gupta

7

Recursion Tree method

Master Theorem

T(n) = aT(n/b) + f(n)

ES 103: Data Structures and Algorithms 2012

Instructor – Dr Atul Gupta

8

Master Theorem

Examples:

1. T(n) = 9T(n/3) + n

2. T(n) = T(2n/3) + 1

3. T(n) = 3T(n/4) + n log n

Summary

• Recursion is a tool for solve problems using
“Divide and Conquer” approach

• Time complexity of a recursive algorithm can be
represented by a recurrence relation

• The recurrence relation can be solved by

– Recursion Tree Method

– Substitution

– Master Theorem

