ES 103: Data Structures and Algorithms 2012
Instructor — Dr Atul Gupta

[€]

Algorithmic Complexity - II

Atul Gupta

@ Algorithmic Complexity

* A measure of the performance of an algorithm
with respect to input size

— Space complexity
— Time complexity (Mostly used)
* Expressed in terms of Asymptotic Notations
— Bog-Oh (0), Big-Theta (0), Big-Omega (Q)
* What to measure
— Worst case performance
— Average case
— Best case

ES 103: Data Structures and Algorithms 2012

Instructor — Dr Atul Gupta

Y

An indicator of the worst
case performance (upper
bound)
Defined as a function T(n)
which is said to be of O(g(n))
if there exist positive
constants ¢, and ny such that
for all n >=n,, we have

T(n) <= ¢, g(n)
T(n) is asymptotically smaller
than or equal to g(n)

Big-Oh (O)

T(n) <= ¢, g(n)

Y

T(n) = 3n2+4n = O(n?)
T(n) = 3n2+4n = O(n3)
T(n) = 3n2+4n # O(n)
T(n) = (n+1)?2 =0 (n?)

Big-Oh (O): Examples

ES 103: Data Structures and Algorithms 2012
Instructor — Dr Atul Gupta

* Anindicator of the best case
performance (lower bound)

¢ Defined as a function T(n)
which is said to be of a(g(n))
if there exist positive
constants ¢, and ny such that
for all n >=n,, we have

T(n) >=¢, g(n)

* T(n) is asymptotically

greater than or equal to g(n)

@ Big-Omega (Q)

T(n)

c8(n)

T(n) >=c¢, g(n)

T(n) = 3n2+4n = Q(n?)
T(n) = 3n?+4n = Q(n)
Tn=4n+2 = Q(n)
Tn=4n+2 =Q(1)

@ Big-Omega (Q): Examples

ES 103: Data Structures and Algorithms 2012

Instructor — Dr Atul Gupta

[€]

An indicator of the worse
case and best case
performance (asymptotically
tight bound)
Defined as a function T(n)
which is said to be of e (g(n))
if there exist positive
constants c,, ¢, and nysuch
that for all n >=n,, we have
¢, 8(n) <=T(n) <=, g(n)
T(n) is asymptotically equal
to g(n)

Big-Theta (O)

T(n) <= ¢ g(n)

T(n) = 3n2+4n = O(n?)
T(n) = 3n2+4n # O(n)
Tn=4n+2 =0O(n)
Tn=4n+2 # (1)

@ Big-Theta (©): Examples

ES 103: Data Structures and Algorithms 2012

Instructor — Dr Atul Gupta

@ “Divide and Conquer”

* Divide the problem into a number of
subproblems.

e Conquer the subproblems by solving them
recursively.

— If the subproblem sizes are small enough,
however, just solve the subproblems in a
straightforward manner.

e Combine the solutions to the subproblems
into the solution for the original problem.

@ Recursive Algorithms

* Recurrence (or Recurrence Equation)
o(1) ifn<=c

T(n) =
aT(n/b) + D(n) + C(n) otherwise
* Parts
— Solution for smallest subdivision (Terminating condition)
— Subdivision relation (aT(n/b))
— Division efforts (D(n))
— Combining effort (C(n))

ES 103: Data Structures and Algorithms 2012
Instructor — Dr Atul Gupta

@ Merge Sort

e Recurrence Relation

i(I Solving Recurrence

e Substitution Method
e Recursion-tree Method
¢ Master Method

ES 103: Data Structures and Algorithms 2012

Instructor — Dr Atul Gupta

@ Recursion Tree method

Tin)

N
/\ /\

/\

Timi2) Tinf.

o . S o

N\

J\ /\

A
NN

...............

@

Master Theorem

T(n) = aT(n/b) + f(n)

If fin) = 00"““}for some constant [> 0, then T(n) =B(x"*)

If fin) = 0:-}|ar""|f-"’:|5 then T = B(a"8 " 1gn),

If f(n) = 2™***}or some constant [| > 0, and if a f (n/b) < cf (n) for some constant ¢ <
1 and all sufficiently large n, then T (n) = O(f (n)).

ES 103: Data Structures and Algorithms 2012
Instructor — Dr Atul Gupta

@ Master Theorem

Examples:

1. T(n)=9T(n/3) +n

2. T(n)=T(2n/3) + 1

3. T(n)=3T(n/4) + nlog n

@ Summary

* Recursionis a tool for solve problems using

“Divide and Conquer” approach
* Time complexity of a recursive algorithm can be

represented by a recurrence relation
* Therecurrence relation can be solved by

— Recursion Tree Method

— Substitution

— Master Theorem

