IENG505

Problem-1.

What is the increase in dBs of a noise that doubles in intensity?

Solution:

$$
\mathrm{L}=20 \log (\text { Prms } / \text { Pref })=20 x \log (2)=6.02 \mathrm{dBs} .
$$

Problem-2.

In the printing office at EMU, an all-day study revealed the following noise sources:

1. During 1 hour, 105 dBA ;
2. During 3 hours 90 dBA ;
3. During 4 hours 85 dBA .
a)- What is the Dose Exposure?

Dose $=100(1 / 1+3 / 8+4 / 16)=162.5 \%$
b)- What is the TWA noise level?

TWA=16.61 $\log (D / 100)+90=16.61 \log (162.5 / 100)+90=93.5 d B A$.
c)- Is the printing office in compliance with OSHA standards?

No, since Dose=162.5 > 100 or TWA=93.5>85 dBA.
d)- Consider the first exposure is in the room of Papers-Cutting. That room has 5 identical Paper-cutting machines operating simultaneously. Assume, it is possible not to operate all these identical machines at the same time and do the cutting jobs using any number, less than 5 , of such machines. How many machines should the printing office use so that the dose of noise exposure not to exceed 100 ?

$$
\begin{aligned}
& \text { L }_{\text {TOT }}=105 \mathrm{dBA}=10 \log \left(5 \times 10^{(\mathrm{X} / 10)}\right) \rightarrow 10.5=\log \left(5 \times 10^{(\mathrm{X} / 10)}\right) \rightarrow 10^{(10.5)}=5 \times\left(10^{(\mathrm{X} / 10)}\right) \rightarrow \\
& \quad(1 / 5) \times 10^{(10.5)}=10^{(\mathrm{X} / 10)} \rightarrow \log \left((1 / 5) \times 10^{(10.5)}\right)=\mathrm{X} / 10 \rightarrow X=10 \times \log \left((1 / 5) \times 10^{(10.5)}\right)=98 \mathrm{dBA} .
\end{aligned}
$$

Lets start by operating only one machine in the Papers-Cutting room:
Assume this machine will be used for 1 hour only. Therefore;
Permissible Time for $98 \mathrm{dBA}=8 / 2^{((98-90) / 5)}=2.64$ hours.
Therefore; Dose becomes equal to: $100(1 / 2.64+3 / 8+4 / 16)^{2}=100.38 \%$

So, there is no way, operating even one machine in the Papers-Cutting room is risky on the health of the operator. Therefore; we should perform a 'Noise Administrative Control.

