Q. Consider the following concurrently running processes P and P1.
Shared data:

bool waiting [0] = false, waiting [1] = false;
int turn = ();

Process P0: Process P1:
while (true) while (true)
{

al. waiting [0] = true; b1 wailing [1] = trug;
a2 while (turn 1=0)— b2 while (turn != 1)

{ { ,
a3 while (waiting [1]); b3 while (waiting [0]):.
a4 turn = 0; b4 turn = 1;

! H

Eritical Section code l LC ritical Section code j

waiting [1] = false:

waiting [0] = false;

~4 LRemaindcr Section code —I E@mainder Section code _,
H

Give a sequence of instructions in terms of ai’s and bi’s to show that mutual exclusion is
not satisfied.

Sequence:

©0.3. (15 peoints) There are 3 robots (red. blue, green) — each is controlled by its own
process. We need to ensure that the robots only move in the following order: red, blue, green,
red, blue, green, etc. Add the necessary code below that performs the appropriate
initializations and enforces this execution order. Use only semaphores for your

synchronization.

Shared Variables:

SemaphoreR=l......, .B=0....., G=0......;

Process Robot_red Process Robot_blue Process Robot_green
do { do{ do {

MOVE(); MOVE(); MOVE();
Jwhile(truce); twhile(true);

Iwhile(true);

