CMPE 371 Analysis of Algorithms							
Department:							
Computer Engineer	ring						
Program Name: Computer Engineering			Program Code: 25				
Course Number:	ing	Credits:		Year/Semester:			
CMPE371		4 Cr		2021-2022 FALL			
Required Course Elective Course (click on and check the appropriate box)							
Prerequisite(s): CMPE231							
Catalog Description: Definition and properties of Algorithms. Design, analysis, and representation of Algorithms. Data abstraction. Pseudo code conventions. Models of computation. Mathematical Foundations: Growth of functions, asymptotic notations. Study of recursive algorithms and associated recurrence relations (substitution method, iteration method, master method, recursion trees). Design paradigms for algorithms: Brute-Force (Exhaustive Search), Divide-and-Conquer (Merge Sort, Binary Search Tree) Dynamic Programming (Matrix-Chain multiplication, LCS-length, 01-Knapsack Problem). Greedy algorithms (Greedy Activity Selector, Fractional Knapsack Problem). Graph Algorithms: Representation of sets and graphs. Breadth-first search, depth-first search Course Web Page:							
https://staff.emu.edu.tr/ahmetunveren/en/teaching/cmpe371/							
Textbook(s): Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, "Introduction to ALGORITHMS", MIT Press. Lab Manual: NA							
Indicative Basic Reading List : Anany Levitin "Introduction to Design and Analysis of Algorithms", Addvison Wesley, 2003							
Topics Covered and Class Schedule: (4 hours of lectures per week)							
Week 1-2	Definition and properties of Algorithms. Design, analysis, and representation of Algorithms. Data abstraction. Pseudo code conventions. Models of computation.						
Week 3-4	Mathematical Foundations: Growth of functions, asymptotic notations.			ototic notations.			
Week 5-6-7	Study of recursive algorithms and associated recurrence relations (substitution method, iteration method, master method, recursion trees).			ce relations (substitution method,			
Week 8-9	Midterm Exam						
Week 10-11	Brute-Force Tree).	(Exhaustive Search), Divide-and-Conquer (Merge Sort, Binary Search				
Week 12-13	Dynamic Pro Problem).	ogramming (Matrix	Chain Multiplication, LCS-length, 0-1 Knapsack				
Week 13	Midterm Ex	am					
Week 14	Greedy algor	ithms (Greedy Acti	vity Selector, Fractional Knapsack Problem.				
Weeks 15	Graph Algorithms: Representation of sets and graphs. Breadth-first search, depth-first search.						
Week 16-17-18	Final Exami	nation					

Tutorials/Laboratory Schedule: (2 hours of laboratory per week)

There will be regular tutorial/lab lectures. Schedules will be announced in class.

Course Learning Outcomes:

At the end of the course, student must be able to

- **1**. Find time complexity of an algorithm.
 - They can use asymptotic notations while comparing time complexity of algorithms. Can formulate the recurrence relation for the algorithm and solve it.
- 2. Carry out a complete algorithmic design process (design, analysis, implementation, results).
- They can solve problems involving algorithmic design, analysis, and implementation.
- **3**. Analyze the given problem and solve it by using appropriate programming technique.
 - They can use Brute-Force, Divide-and-Conquer, Dynamic Programming and Greedy algorithms for the solution of the given problem.
- **4**. Possess the mathematical knowledge and skills necessary to the analysis of algorithms:Reinforce mathematical fundamentals including techniques for solving summations and recurrences and the asymptotic growth rate of functions.
- 5. Gain insight into algorithmic design: The mechanisms that affect algorithmic logic, structure, and performance.
- 6. Demonstrate their ability to carry out a complete algorithmic design process (design, analysis, implementation, results).
- 7. Gain an understanding of certain classes of algorithms, along with models for future algorithmic work.
- 8. Introduce a number of standard algorithms, both classical and modern, as objects for algorithmic analysis.
- 9. Address problems involving algorithmic design, analysis, and implementation.
- **10.** Apply proof techniques and mathematical concepts to demonstrate the correctness and assess the performance of standard algorithms

	Method	#	Percentage
Assessment	Midterm 1	1	25%
	Midterm 2	1	25%
	Lab Work(s): Tutorials	8	5 %
	Final Examination	1	45%

Contribution of Course to Criterion 5

Credit Hours for:

Mathematics & Basic Science : 0

Engineering Sciences and Design : 4

General Education : 0

Relationship of Course to Program Outcomes

The course supports achievement of the following program objectives

- I. Identify, formulate and solve computer engineering and science problems ...
- VII. Apply modern engineering tools and techniques innovatively;
- X. Pursue graduate studies in related fields.

This course is used to assess the following items of Program Outcomes

- 1) an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics.
- 6) an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions

Prepared by: Asst. Prof. Dr. Ahmet Ünveren

Date Prepared: September 2021