CMPE_CMSE371 Analysis of Algorithms Problem Set 2

Q1. Show That: $n^{2} + n = O(n^{3})$ $n^{3} + 4n^{2} = \Omega(n^{2})$ $n^{2} + 5n + 7 = \Theta(n^{2})$ $5n^{2} + 3n + 20 = O(n^{2})$ $\frac{1}{2}n^{2} + 3n = \Theta(n^{2})$ $(n \log n - 2n + 13) = \Omega(n \log n)$ $\frac{1}{2}n^{2} - 3n = \Theta(n^{2})$ $5n + 20 = o(n^{2})$ $10n^{2} + 25n + 7 = o(n^{3})$ $5n^{3} + 20n^{2} + n + 10 = \omega(n^{2})$ $10n^{2} + 25n + 7 = \omega(n)$ Q2. In the following recurrences, give the asymptotic upper and lower bounds of T(n). Assume that T(n) is constant for $n \le 10$. Keep your limits as tight as possible and justify your answers. You can try different solution methods for each option.

(a) $T(n) = 2T(n/3) + n \lg n$ (b) $T(n) = 3T(n/5) + \lg^2 n$ (c) $T(n) = T(n/2) + 2^n$ (d) $T(n) = T(\sqrt{n}) + \Theta(\lg \lg n)$ (e) $T(n) = 10T(n/3) + 17n^{1.2}$ (f) $T(n) = 7T(n/2) + n^3$ (g) $T(n) = T(n/2 + \sqrt{n}) + \sqrt{6046}$ (h) $T(n) = T(n-2) + \lg n$ (i) $T(n) = T(n/5) + T(4n/5) + \Theta(n)$ (j) $T(n) = \sqrt{n} T(\sqrt{n}) + 100n$