
PROGRAMMING IN

VISUAL BASIC 2010

•

..-..,~onnect
Learn
Succeed~

~

Julia Case Bradley
M .. Sdll '"ntt,nit, ("ollt·~t·

L

Anita C. Millspaugh
~L. ~au \tht.nit~ Lolk.;t

The McGrow·Hi/1 Companle>

•
~~onnect Learn

::;.~ Succeed"'

PROCRAM~DNC IN VISUAL BASIC 2010

Published by •lcCraw-Hil~ a business unit of The McCraw-Hill Companies. Inc.. 1221 A•euue of

the Ameria... New York. N¥.10020. Copyright 0 2011 by The McCraw-Hill Companies, Inc.
All rigllls ,....,...ed. No part of this publieadnn moy be reproduced or di!tributcd in any form or by any
ll1eal1l!. or • tored in a datobae or retrie•ol sy•tem. without the prior written consent ol The McCraw-Hill
Companies. Inc., including. but not limited to, in any netlrorl or other electronic ston.ge or transm.ission,
..- broadcast for distance Ieeming.

Some ancillaries, including electronic and print compooenls. may not be available to customers
ootside the United States.

This book is printed on ocid-free psper.

I 23456 7890 WDQ/WDQ 10987 654321 0

ISBN 978.{)..(17 -35172a-4
~rnro 0-07-351725-9

Vice presideni/Editor in chief: Elizabdh ll<uftle
Vice president/Director of lllSJi<.etitljl: j ohn E. Biemal
Ex..,uti•e opnnsoring edilor: Scou f)avUJ.,.
Director of development: SGTah Wood
De•eloprnental editor Il: A/aina. Clay>on
Editorial coocdinator. Alan Palmer

Morlceting manager: Tiffany lrendl
Lead digilal product manager: Damian Moshak
Digit.ol development editor:: Kn:in. Whik

Director. Editing/DcsisnJProduclion: Jm Ann Kosic
Project 111B11ager. Marlena P«<lan

Buyer II: Slu!rry L Kane
S.nior deoil!"""' S.djm• Sar!a110<ic
Manager, Digital production: }aMaliA. U1ky
Media project manager: Carhy L Tepper
CDver design: jon Re>h

lfpeface: 11/13 Badoni
CAmposiiDr:Apj<ua• , Inc.
Printer: Worldcolor
CDver credit: 0 Vm

Library or Cou~'tl"eM Catalogtug: .. ln~Publlc:uJou Data

Bradley, julio Case.
Pl·ogramnling in Viouol &:.ic 2010 I Julia c .. e Bradley. Anita C. llillopsugh.

p.cm.
Include. index.
ISBN-13: 978-0-07-351725-4 (alk. paper)
ISBN-10: 0-07-35172!>-9 (alk. psper)
l. Microsoft Visual BASIC. 2. BASIC (CAmpuler JXOII"'lll lan~) !. Millspaugh,
A. C. (Anita C.) II. Title.

QA 76.73.8386968 20ll
005.2'768--<lc22

2010013744

The Internet addresses listed in the text were accurate at the time of publication. Tbe inclusion of a Web

site doeo not indicate an endorsement by the authors or McC.-ow-HiU. ond McCraw-Rill does n<>t
guarantee the oocuroey of the information preoenled ollh..., sit ...

www.mhhe.com

PREFACE

Visual Basic (VB) has become such a popular programming language for sev
eral reasons. VB is easy to learn, which makes it au excellent tool for under
standing elementary programming concepts. In addition. it has evolved into
such a powerful and popular product that skilled Visual Basic programmers are
in demand in the job market.

Visual Basic is fu!Jy object-oriented and compatible with many other
languages using the .NET Framework. This book incorporates object-oriented
concepti! throughout. as well as the syntax and terminology of the language.

Visual Basic is designed to allow the programmer to develop applications
that mn under Windows and/or in a Web browser without the complexity gener
ally associated with programming. With very tittle effort, the programmer can
design a screen that holds standard elements such as buttons. check boxes. radio
bullons. text boxes. and list boxes. Each of these objects operates as expected.
producing a "standard'' Windows or Web user interface.

About This Text

Thi.s textbook is intended for use in an introductory programming course. which
assumes no prior knowledge of computer programming. The later chapters are
also appropriate for professional programmers ,.·ho are learning a new language
to upgrade their skills.

Thi.s text assumes that the student is familiar with the Windows operating
environment and can use an Internet browser application.

Approach

This text incorporates the basic concepts of programming. problem solving and
programming logic. as well a~ the design techniques of an object-oriented.
event-driven language. VB is a fully object-oriented language. which includes
inheritance and polymorphism. Object-oriented programming (OOP) is intro
duced in Chapter l. and its features appear in every chapter of the book.

Chapter topics are presented in a sequence that allows the programmer Lo
learn how to deal with a visual interface while acquiring important program
ming skills such as creating projects ,~;th objects, decisions. loops. and data
management.

A high priority is given to writing applications that are easy for the user lo
w1derstand and to use. Students are presented with interface design guidelines
throughout the text.

tn

TEXT FEATURES

L o~.~..y.-......,._r-""'-·r•~;r-.. ...,b1-.,...
ltw'flt4...a.,~I•Jiiwo_.,..,

1 ~='"-z:;:-... ',:."":~-=~ ... lp<r. a~_..
l. 'f"W __ ._....,...,,.__.v.. \c.,..

;-;::- ,. AM.f!t ..,_ ('..,..._ ,.....,~-....,.

4 'I'•-¥ •W:.!•.ol..-I•.U.••I\I-oJ .. wloe rl .. .,_
~-.lllloo$oo ,..Fol-.

I. 'T•IlA• .. -~M o\Ollt .,., lf#M.J-rood., _
T...u.Jip"'"""""'

.. ~o~~--lh·O..~..t~rl••'""'""'-••_..,..,,...., ...
t~..t-ot~T-wT.-.

0BJECT-0R IFNTFD CONCEPTS
are presented throughout the text to offer
students an introduction to object-oriented
design before learning to create their own
classes.

User Interlace
Design

1. 01111-..:~-.-.t..lld•..t~t~lobulba_,.,..,.....,n-~ "'-.
.db~llOat..p-..taat .. -.dU.tnd.,.tpCiltllMIIo~l~,.

~ :t~~tt.~•,IO,_., • ..._.fll.._.r~·c....-.......,.~ .
.. ~-~Jtlfll-tflil.wod~lt'-.•t.pt-.. ~~

L JWcal"'.u..,.,;...81UfiD.IIot .. -lll~-o~bJdo:li'*"l
..-... W,O .. .wtll~~CMk~W •~~.IIMIIGiMclhlt,.b
.-qM*"'I, ~iflttl.-6oa.uodr.~,.f"''I.-I.CUti-.liNIIICM..-.
1aoJI' .. to~

.., ""••«MAl 111.ai•~to~ in¥MI!Itat~WRMIII ~.et~,..tltt YI.U.,.n;
1, Diwbtadt•ahle«lriJIIIllf u-woi _tl_,

& Oiloi-W,.. b- --.d."""~~&h•1tluol Endtith -~
lt. o.~~~:.....,.o~;ll) o~.ii"'"flf•l

I I . (.,,,fl-l q r,.....,. ... _."fliaplioil«tlltliooal.r-ar•f<lidl ll,...

co:~b!.doo...aillll.

are presented to offer students a better
understanding of meeting user needs
and employing industry standards.

.. _ • .._ .. _ C::....T..

--·~ a,._ • .._._...._.....,.c-t.w_,
............. ,..w~

.. h ,_..,._ ... -..-~
W ~....._.o.M~:• · r~
......... ~ 1 ...
.,.,...... r&ll•
....... ~L.,. ,,.,.. .,~ ..
wa L.'hiU·CoU:f~h-.
,~...._ ,.._

..-..~ --.. •• u-.._.. ...

:-..::::!7;~·.:~=.3."'.!.~~= ... ~aa~o.-a ... _....,. _
.......... __...~ ... •!llibl-. li--
Jit<;hoiW.,, I • ...Wt

............. ,;.
:::~~~.;~~~:::~ .. u::-~=.,~~':;==::~.0(.

c;.... ~
.,.,..,,-""V'; '""''•-•...., ,......,. • _,.;n ~tt~lr.,...
-·~<~Iii· ,..;.;,..: .. .,...-
,_,....,;,.. ;,. _ _ .,..., \. • ..,, ... VIoul!ll.o:tol.,f<l•olt-

j~~.!•::::'::!.~~~tl.l--=:,l:~~d•~-1:w .. ,. • .,._..,. ..
I 'hi;' ..., HO .IIi ~. . "' I' •• ~·-

give students time to reflect on the
current topic and to evaluate their
understanding of details .

TTPS
in the margins help students avoid
potential trouble spots in their
programs and encourage them to
develop good programming
habits.

)-~~~111!1!111111111111!1!!~:;::::;;;;;::
~-n:-..:.~:."'...-:~~=~·~ cPiiEJ:&Ju.;;;•._ __

t.lf ~=~~.!~1:.n-
UM
Fft.--~ .. OMrt ... f"&l• ... ,.

2. tf F""IJf~flt • T-JA•tr • ...ut .. ttJ:oot ... n.tl
llf'fllltTU~-.1tft • ' Jt 't -"-f,.,t,•

UM

~·-- ,.. _
-~
.. o .. -,. _....,
1t,...4M fl'-...,_• •

R•;.bltN •. ltl" • ' h '• tllttONt ... f tllt,.UJ.•IJf•" ... ,.
). If ' elllll'l9flllt'V•I' o l••JMfOitr A"'

~~IJ.~t cot Or l•ai""IQitf' • 0 TIIM
""•blu:t•• · Tut • ' h '•ti'\Ot,'

UM
R••bltl!tt•.lut • ' Jt '• WN,"

"' " •• """• "'• _ .. ._ •• ..,.. - - .;.J
;, Appi•T...aii • • 'T~ .,.1 o ._.....,..,.,._ ... ,,,..l. 01.,,1o1 ;., 'lleol• ,_ ,_ _ ,.,.

s. , fl ,~~~,, .. , &oil·
·-o.,; .. o~. ,...,.., llol .. -o...,; ;, ...,. ... '"'" ·- ,._ ~
boo&tw t•ncl• A ... l.ololo, .,.11o.1 tv...JoCboolll,., •""•hi t. ..J_.,
• • a..o, ... _ c: l .. tor;-""",.
,.,. Bol uo"*Doei" .. ;'.,."''"'l-,tvnii.C:hu-kllooulooul411..,
t. .. lo (tl• ,...cho"l•lh• .. •l••ofll,;.....,.o""IOioleo;.,..,..,., •,.

Using If Stateme11ts "Lth Radio Uutton.1
and Check Box.,.
r..o..p..- t,... _,.._o--..:t.,....- r ... ndl.ll·- "'"' •looo.f~
.... J ... c.o-.--.. •. ,. .. -· ••

TEXT FEATURES

Progr.tmmin~t Example -------

::::t:--~..zw:::c=;:!::--..i~~:tl.-:
_ l ... lii.M-••d.'* ... ""' J .. _ • .,.....,

n...;n+-t C.. I '• 1-4• '•l:.......__c.U.__,
......... ~..._-J •• -. .. _11~_. •. _.,..,...
odo.dbc-{.,I!Ol.oo,~~-...,. .,J.Idio Oife~4'......-) •ll•_....._

-,., W..oloo •••• llv*-CH ... r. ool.ono.-<:...
d,.,,~).._lc~l-.-"'*koo.l t..o,.~n.,_..b..dt...itl
._...,..,~.~~..-._.........

PROGRAMMl NG

test students' understanding of the
specific programming skills covered in
that chapter.

......... -~ -o.,a..••
-~·-,.---·o.,.... ::::.~....-.. .-.... _

"'fflllo ... __ _._..._ ~~:~oo, .. ___ , __ _

:::,:--..-,-... -..... __
-.-.-..~~.-...........,......,_,, __ ,... __,.

.................

YOUR HANDS-ON

guide students through the process of
planning, writing, and executing Visual Basic
programs .

.... _j_
---~ ... ~j,j

~w..,_.,.u•
~--• JW-. ~-
~--:::~a
::'1.'"';:t-.,..JIJ

1f 1 Uo• t a .. "'
::S..*.,
~;r:·

;'"ieFZ,.~"
•-w ,. .. -... , -loU
=~~

L,...., .. _,_..-.. ..--.-.-.. ,. ·-.. - t
·~ .. ,........,..,..._.,.._.~...... _,..._,....,_. __ .• _,.
_,__ --.~

"~---..._,..,...,.--' .._,_,." .. ___ .,...._,
:z. --...-..--.... -.....-... ----.. AtW>·--•-lho411111ro:...o,..

:===-~---:y~""::~~
.... -.. ... -........
I& , ... ~·-·--... ---..-.
'*~ .. -_,.._.,...,...;w M_.,.._ _ ll_a.._._,.,.__-._
~-

provide continuing-theme exercises that
may be used throughout the course,
providing many opportunities to expand
on previous projects.

FOR THE STUDENT

nRll~t n
"'II..L'~t\lCU

,_;..;;,.;.,.;_;_....;_;__....:;;.;;._ _____ ..=;...._ _ _;;__--It--~ available on the text's Web

CNpt4r 10, ·ca:.~b••• -~phut.o"'f •t'1troduc•• .&00 '4• 'fth•d\ .. t1oo'otoft •
,.,.,. t~cnno~,o,·-v ~~~~~f'IO "Vita .nth" dM~b,~"· ""''d'aotlfo~ ~hO;rll 1\att tc·,
O"f:~ b.-.dti"Q .~ .. (-e!io,t~.e .:t~.v.:t···;, ~nd dJt.;J=t:ts rro9ram:;; ll"dudt>41cceunQ
ddlta fmm both \\.fldol\-S t-erms a.'ld 'I'Jeb t-Of'lns ~tu2nts Jearn tO ord ~ta
t;:b:e_, to~ d.:.t~ Qr".d <Y~d btnd II"Ch ju;) d~ tt-:.~ to c::x-trolt~.,.ud\,:,.:, .lbci.$.1nd
ttra~t'"·un..-t.. :.ih•\1 touu.n ~ •• : ... llOIO<wh••

~li)H _.,. '"'""• t .t110 1'1
_,. •• • n~t••u t~ ~· '~"•"''nf C' "'• • .., m t.t;t •

Mc:jr.av• '" 'X' -~ -· ,._ "'*'""'• ,,...,. 9 lb• y 1 +a • ... =n•"'"'

'1l•ntt·""!P~utti•~~-~""~~~71~-U"'~I~~7-"r-;~,

t~;J',~.:/~ .~~.;·.~-,!';!~~-=-~.:~~:';';' :~:;·:.,
~~-.. ~r·,.~ o...a- ··~:u:.l""-~ Widii:'I~~.IIP'"t:W~··,.W.)O'TI.

U•~wtcpa ... ,~.,~.,, .. ~lh\~·..,.•n~·•tr.,..r41'tt~....,.k!IU
•'-~1 .~n::4"11.e>'hlt :llq~,~~r.fP'('~, .. ~,IKI\xCI'&ll"' v....n
•r~rt) ... l ~-rY-1 """' ~...,~,•~o..,,,,...

site offers a debugging
projec~ database fi les for the
programming exercises and
case studies, graphics, and
sound files.

Visit the VISUAL BASIC 2010 Web site at:
http://www.mhhe.comNB201 0/ for
instructor and student resources.

FOR THE INSTRUCTOR

includes: Instructor's Manual with teaching hints,
outlines, and a matrix of the chapter features
required for each programming exercise;
PowerPoint Slides; Testing Files (using EZ Test
and in Word files); as well as Solutions to End
of-Chapter Exercises.

~~~u~~~~t:;;~!,~~~:~~~~~~~;: ~~~~*~~~~~;.~~.~f:;;.~;' :,.!. .. ,.~ 
, __ ,..,.l',. .. "'lrlt•ft ~T~- ~·~~f·l•ll l ._.fi,J~:"W''I" * ttnll~,_., t t'l(« T niH I t 41f~ I' 

• '-fct':Of:IWoJ!Nt.;.:.t 

;lo"ffttrw;•::t arc •·u~:~f 111• M:I\.O"CC ... t~'"' ;tltl'fCICr~ w IU<"I !'looo t~ nt· "'rt1 ' ,.,,~~~ ... w.,. ;rllllt 
......... J.~t•l'l ~•ti"''• ,_., ...... ,., .. .,.....u\J,...., •. h .... 1od j ~~ ...... , .... ~~··~ ....... 

A~~ .(I....,!Ooth""'~»Mt..l...,l~.ln .... l~th .... ~W'IW.~Iolllolllr~!!)W6 'iollodt'ltl ,.._,_,..~ 
,.II:"'M orlf&-~dci1J"'~J~Ir<l'•d'I-•J,..:I.L~Ic >'t 

......... - ................... -···-- ,.!.. ...... ,.~ •da 



I'K ct l,ll \11 \I ll\ C. I\ 
\ bt; ll 4~1< 2111 • Chapter I 

IJtlW<i.lcUl'liiO 

Vistwl Tht>IC 1010 

,..,._. .,..., •u G.ttlooltff«o 

provide instructors with complete, detailed 
presentations that walk students through the 
important concepts covered in each chapter. 

llttfl-..• ... ·~"""o-" .. ~··-. 

rl
---~·'"'-"'"" -

- -- -

. ' 
~~~~'-·-~~ ' ... -o.., .. 

.-:.b lti~IHl'illtJO~I'.,:ihbrr rh;H-•I•Jo•N be tWJ.INUIIU.I &-f,,../11 >IO! llt ~
......,.,,J•M~to'-9tto•t~!t.&ab0 o&eu.a•'"' '",.,

Visit the VISUAL BASIC 2010 Web site at:
http://www.mhhe.comNB201 0/ for
instructor and student resources.

X

Changes in This Edition

This revision of the text is based on Visual Basic Professional 2010. VB 2010
provides for elimination of the line continuation character under most circum
stances. The array and object initializers also have been improved.

The narrative. step-by-step exercises. screen captures, and appendices
have all been updated to VB 2010. The screen captures are all based on
Windows 7. A section covering collection objects has been added to the chap
ter on arrays.

Features of This Text

Each chapter begins with ident"ifiable objectives and a brief overview. Numer
ous coding examples as well as hands-on projects with guidance for the plan
ning and coding appeur throughout. Thought-provoking feedback quesUons
give students time to reflect on the cw-rent topic and to evaluate their under
standing of the details. The end-of-chapter items include a chapter review,
questions. programming exercises. and four case studies.

Cltopter 1, ''I mrocluction w Vimal lJasic 2010, ''introduces
Microsoft's Visual Studio integrated development enviromnent ODE). The
single environment is used for multiple programming languages. A step
by-step program gels students into programming very quickly (quicker
!han most books). The PrintFonn control is included to allow students to
easily submit screen captures of the form at mn Ume. The chapter
i ntroduces the OOP concepts of objects. prope1ties, methods. and events.
The elements of debugging and using the 1-le\p system are also introduced.

Clt11p1er 2, "Usn l uterfacl' f) I' sign ," demonstrates techniques for
good program design. including making the interface easy for users as
well as guidelines for designing maintainable programs. Several controls
are introduced. including text boxes. rich text boxes. masked text boxes.
group boxes. check boxes. radio buttons. picture boxes. and the new
Shape and Line controls.

ChnJH.er .1, "Vari.u.bles , Constwlts, ll.nd Calculations," presents the
concepts of using data and declaring the duta type. Students leam to
follow standards to indicate the data type and scope of variables and
constants and always to use Option Strict, which forces adherence to
strong data typing.

Euor handling is accomplished usi11g structured exception handling.
The Try /Catch/ Finally structure is introduced in this chapter along
with calculations. The studentleams to disp lay error messages using the
Message Box class and also leams about the OOP concept of overloaded
constructors.

Chapter 4, "Decisions atul Conditions," introduces taking alternate
actions based on expressions fonned \~ith the relational and logical
operators. This chapter uses the If statement to validate input data.
Multiple decisions are handled with both nested If statements and the
Select Case structure.

11 II ll I ' 1\ (; t;

The debugging features of the IDE are covered. including a step-by
step exercise that covers stepping through program statements and
checking intermediate values during execution.

Chapter 5, "!Uerws, Common Dialog Boxes, Sub Procedures,
ancl Function Procedures, " covers the concepts of writing and calling
general sub procedures and function procedures. Students learn to
include both menus and context menus in projects. display the Windows
common dialog boxes, and use the input provided by the user.

Chapter 6, "Multiform Projects," adds splash forms and About forms
to a project. Summary data are presented on a separate form. The Friend
keyword is introduced.

Chapter 7, "Lists, Loops, mtd Printing," incorporates list boxes and
combo boxes into projects, providing the oppot1unity to discuss looping
procedures and printing lists of information. Printing is accomplished
in .NET using a graphics object and a callback event. The printing
controls also include o Print Preview. which allows students ond
instructors to view output without actually printing it.

Chapwr 8 , "Arrays and Collect ions," introduces arrays. which follow
logically from the lists covered in Chapter 7. Students learn to use single- and
multi dimension anays. table lookups. arrays of structures. and collections.

Chapter 9, "Web Applicati-ons," introduces Web applications using
Web Forms. Students learn to design and develop simple Web
applications that consist of Web pages that execute in a browser
application. Multiple-page Web sites are covered along with validator
contJ·ols and an introduction to state management.

Cflapter1 0, "Dawbase Applications," introduces ADO.NET. which
is Microsoft's latest teclmology for accessing data in a database. This
chapter shows how to create binding sources. table adapters. and
datasets. Programs include accessing data from both Windows Fonns and
Web Fonns . Students learn to bind data tables to a data grid and bind
inclividual data fields to controls such as labels and text boxes. LINQ is
used to query system processes.

Chapter 11, "Dcua Files," presents the VB object-oriented teclmiques
for data file handling. Students learn to save and read small amounts of data
using the My object and using streams. TI1e Stream Writer and Stream Reader
objects are used to store and reload the contents of a combo box.

Chapter12, "OOP: Cremiug Object-Ori.ented Programs,"
explains more of the theory of object-oriented programming. Although we
have been using OOP concepts since Chapter 1. in this chapter students
learn the terminology and application of OOP. Inheritance is covered for
visual objects (forms) and for extending e..xisting classes. The samples are
kept simple enough for an introductory class.

Chapterl3, "Gmphics, Auima.tion , S()und, and Drag-and
Drop," covers the classes and methods ofGD[+. The chapter covers
graphics objects. pens . and bmshes for drawing shapes and lines.
Animation is accomplished using the Timer control and the SetBounds
method for moving controls. My.Computer.Audio.Piay is used to provide
sound, and drag-and-drop events are used to transfer the contents of a

text box to a list box and to move images.

XI

xu

Cftapter 14, ·'Adclitiotwl Topks iu Vi.~11al Ba.~ic," introduces some
advanced VB topics. This final chapter covers validating user input using
Error Providers and the Validating event of controls. Students learn to
create applications using multiple document interfaces (MDI), create
toolbars and status bars using TooiStrip and StatusStrip controls. and add
Web content to a Windows Form using the Web Browser control. The code
snippet feature is introduced. Reading and writing XML text Iiles is
covered using the new XML literals and us ing LINQ.

An introduction lo Windows Presentation F'oundation (WPF) includes
using WPF interoperability -..ith a standard \'l' indows Form and creating a
WPF Form project.

Tfte nppemlii-es offer important additional material. Appendix A holds
the answers to all Feedback questions. Appendix B covers methods and
functions for math. string handling. and date manipulation. In OOP style.
most actions that were formerly done -..ith functions are now accomplished
with methods of the Math class and String class.

Appendix C. on mastering the Visual Studio environment. is based on
the .NET fOE and includes instructions for using snap lines for form
design. Appendix D discusses security issues for both Windows and W'eb
programming.

Acknowledgments

Many people have worked very hard to design and produce this text. We would
like to thank our editors, Scott Davidson and AJaina Grayson. Our thanks also
to the many people who produced this text. including Marlena Pechan. David
Shapiro. and Betsy Blumenthal.

We greatly appreciate Theresa Berry of Mt. San Antonio College and Peter
van der Goes of Rose Stale College for tl1eir thorough technical rev iews. con
s tructive c riticism. and many valuable suggestions. We K·ould like to tlmnk
Brenda Nielsen of Mesa Community College for her work in creating the
PowerPoint Presentations that accompany this text and to 111eresa Berry for the
lnstmctor's Manual and Test Bank. And most importantly. we are grateful to
Dennis and Richard for their support and understanding through the long days
and busy phone I ines.

The Authors

We have had fun teaching and KTiting about Visual Basic. We hope that this
feeling is evident as you read this book and that you will enjoy learning or
teaching this outstanding programming language.

Julia Case Bradley
Anita C. .l\1iUspa ug h

PRI\ t',\ C t:

To THE STUDENT

The best way to learn to program in Visual Basic is to do it.lf you enter and run
the sample projects. you will be on your way to writing applications. Reading
the examples without trying to run them is like trying to learn a foreign lan
guage or mathematics by just reading about it. Enter the projects. look up your
questions in the extensive MSDN Help files. and make those projects nm.

Installing Visual Basic

For the programs in this text. you need to install the .NET Framework. Visual
Basic. and the MSDN (Microsoft Developers Network) library. which contains
all of Help and many instructive articles. You do not need to install C++ or C#.

You can download the Express Edition of Visual Basic and Visual Web
Developer from msdn.microsoft.com/express . Using these two products. you
can complete most of the exerci~es in this text.

Format Used for Visual Basic
Statements

Visual Basic statements . methods. and functions are shown in this font . Any
values that you must supply are in italics. Optional items are in [square
brackets]. Braces and a vertical bar indicate that you must choose one or the
other value {one I other}.

Examples

Const Identifier [As Datatype]
Do {While 1 Until} Condition

Value

As you work your way through this textbook. note that you may see a sub
set of the available options for a Visual Basic statement or method. Genernlly.
the options that are included rellect those covered in the chapter. If you want to
see the complete format for any statement or all versions of a method. refer to
Help.

J .C. Il .
A.C.l\'1.

xiD

This page intentionally left blank

About the Authors

Julia Bradley is a professor emeritus of Computer Information Systems at Mt. San
Antonio College. She developed and taught computer programming courses for 25
years and then took early retirement from teaching in order to write full Lime. Most
recently she has taught cour.ses in introductory and advanced Visual Basic. Access
programming. and Microsoft Office. She began writing BASIC textbooks in 1984
using MS-BASIC (GW-BASIC) and has authored or co-authored texts in Macintosh
Basic. QuickBasic. QBas ic. Visual Bas ic. C#. Java, the Internet. and desktop
publishing.

Anitn 1\'liLI,;IJllllf:h teaches programming courses in Visual Basic and C# at Mt. San
Antonio College and served as cbair of the department for eight years. She received
her MBA from California Stale Polytecbnic University, with a bachelor's degree in
Computer Information Systems. She has taught faculty at the National Computer
Educatorelru>titutc and also has led Great Teacher's Confcrcucca for Mt. SAC and
for California Vocational Faculty.

XV

This page intentionally left blank

BRIEF CONTENTS

Ch apter 1
Introduction to Visual Basic
2010 1

f:ha plPI' 2
User lntc l•fncc D esign 63

Ch aple t· 3
Variahles, Constants, and

Calculation!'! 105

Chaple t· 4
Decisions and Conditions 155

Cha ple t· 5
Menus, Common Dialog Boxes,
Suh Procc£ltu·cs, ami Ftmctiou
Procedm·cs 209

Ch a1>le1' 6
Multiform Projec ts 249

Ch aple t· 7
Lists, Loops, aml Pril1ting 283

Ch aple t· 8
Array!'! and Collections 325

Cha pte r 9
Weh Applicntiuns 361

Chapte1· 10
Datahase Applications 397

Ch a}>ter ll
Data Files 437

Chapter 12
OOP: f: •·P.ating Ohjf'rt-O•·iP.ntf'rl
Programs 467

Chapter 13
Graplrics, Animntiun, Sound, an(l
Drag-and-Drop 523

Cbapter 14
Additional Topics in Visual
Basic 559

Appendix A
Answers to F eedhack
Questioll8 601

Append.ix B
Methods aml Ftmctions for
Working with D a tes, Finat1cial
Calculations, Mathematics, and
String Operatiom! 615

Appendix C
Ti}JS and SbortcuttS for Mastet•i11g
the Envil·oruncnt 629

A}>pendix D
Secm·ity 641

Glossary 6 4 5

Index 6 56

xvn

This page intentionally left blank

c D A p T E R

Introduction to Visual
Basic 2010

I ~ Describe the process of vis ua l program design and deve lopment.

2 . Explain the te rm object-oricmed programming.

:1. Explain the concepts of classes. objects, properties. methods, and

events.

4 . Lis t and describe the three steps for writing a Visual Basic project.

5 . Describe the various fil es that make up a Visual Basic project.

&. Identify the elements in the Visual Studio environment.

7 . Define design time, run time. and debug time.

8 . Write. run. save. print. and modify your first Visual Basic project.

9 . Identify syntax errors. run-lime errors. and logic errors.

Use AutoCorrect to correct syntax e rrors.

Look up Visual Basic topics in Help.

2 l ' C Introduction to Visu.al Basic 2010

Writing Windows Applications with Visual

Using this text. you will learn to ltTite computer programs that run in the
Microsoft Windows environment. Your projects will look and act like standard

Windows programs. You will use the tools in Visual Basic (VB) and Windows
Fmms to create windows with familiar elements such as labels. text boxes. but
tons, radio buttons, check boxes, list boxes. menus, and scroll bars. Figure l.l
shows some sample Windows user interfaces.

o.i Message Formatte1

t) Red

Radio .,;:~1+---+) Green
buttons 1 .) Blue

~;[!; Black

Picture --++-----+)~
box ~

IY. Me•sage VIsible

~ <'--11+---':;. Buttons

~

Labels

c_9 R n R tcr Re.ading ·n Refreshment l= I @J~

Menu bar ___. ~ile ~dit HElp

Sdc:d Coffee ond Syrup

Ccffee Flavcr

f . l
zelnu
h Creme

0<-<nge

Beginning in Chapter 9. you will create programs using Web Forms and
Visual Web Developer. You can nm Web applications in a browser such as
Internet Explorer. Google Chrome. or Mozilla Firefox. on the lntemet, or on a
company intranet. Figure 1.2 shows a Web Fonn application.

You also will become acquainted with Microsoft's new screen design tech
nology. Windows Presentation Foundation (WPF), which is covered in Chapter 14.
WPF uses its own designer and design elements, which are different from those
used for Windows Forms.

I

Graphical user interfaces for
application programs designed
with Visual Basic and
Windows Forms.

II

Group box

List box

I'

C II 1\ 1• 'I' I' ll

'#J R •n R •• for Readang and Refreshment • WJndOM rntemet Explorer l = I @l la..a..J

@ Q • I~ ~'tp11locdlhost:653>'/CI100 •l•t I X I 1:> ~)og p ·I
{,ir Fovoritt.~ I w :ii) Sugge>ted Sit« • (t \~cl Sl~e~O,I.cl)' .,.

fj R 'n R ··for Reading·andR~LI &J ~ m· ""O'J @ · Pcgt- s.f<ly . Tools • fJ • »

A

R 'n R Book Sales
Qunntity J

Title I I
Price J

Extended Price.L =-JI i 15% Diocount l __jJ
Discounted Price .I. Jl u.

j Submit I [Clear I I Discou1t Summary J
Conto<t lJs .

' "' '
Done '\. local intrana< I Protect·ed Mode: Off oJl • ~100% .

T he W indows G1·aphical Use •· Inte1·face

Microsoft Windows uses a gr aphical usm· inter face. or GUl (pronounced
"gooey"). The Windows GUI defines how the va1ious elements look and function.
As a Visual Basic programmer, you have available a toolbox of these elements.
You will create new windows, called forms. Then you will use the toolbox to add
the various elements. called controls. The projects tl1at you will write follow a
programming technique called object.-orientecl programming (OOP).

Programming Languages--Procedural,
and Object Oriented

There are literally hundreds of programming languages. Each was developed to
solve a particular type of problem. Most traditional languages. such as BASIC, C,
COBOL. FORTRAN, PIJJ, and Pascal, are considered procedural languages. That
is, the program specifies the exact sequence of all operations. Program logic deter
mines the next instruction to execute in response to conditions and user requests.

The newer programming languages. such as Visual Basic. C#. and Java, use
a different approach: object-oriented programming. As a stepping stone between
procedural programming and object-oriented programming, the early versions of
Visual Basic provided many (but not all) elements of an object-oriented language.
For that reason. Microsoft referred to Visual Basic (version 6 and eadier) as an
event-driven programming language rather than an object-oriented language. But
with Visual Studio, which includes Visual Basic, C#. and F#, we have pro
gramming languages that are truly object oriented. (Another language, C++. has
elements of OOP and of procedural programming.) f #. introduced in 2007.
applies the object-oriented paradigm to scripting languages for cross-platform
development.

A Web Form application created
with Visual Web Devel.oper.
running in a browser.

3

4 v S l l A I, G .\ S (' Introduction to Visual Basic 2010

In the OOP and event-driven model, programs are no longer procedural.
They do not follow a sequential logic. You, as the programmer. do not take
control and determine the sequence of execution. Instead, the user can press
keys and click various buttons and boxes in a window. Each user action can
cause an event to occw:. which triggers a Basic procedure that you have written.
For example. the user clicks on a button labeled Calculate. The clicking causes
the button's Click event to occur, and the program automatically jumps to a
procedure you have written to do the calculation.

The Object Mode l

In Visual Basic you will work with o bj ects. which have (li"Operlies. methods.
and events. Each object is based on a class.

Objec ts

Think of an object as a thing. or a noun. Examples of objects are fonns and con
trols. Forms are the windows and djalog boxes you place on U1e screen; controls
are the components you place inside a form. such as text boxes. buttons. and
list boxes.

Pt·opet·ties

Properties tell something about or control the behavior of an object. such as its
name. color. size, or location. You can think of properties as adjectives that de
scribe objects.

When you refer to a property. you first name the object. add a period. and
U1en name the property. For example. refer to the Text property of a form called
SalesFonn as SalesForm.Text (pronounced "sales fmm dot text'').

1\lethods

Actions associated with objects are called methods. Methods are the verbs of
object-oriented programming. Some typical methods are Close. Show. and
Clear. Each of the predefined objects has a set of methods that you can use.
You willleam to write additional methods to petform actions in your programs.

You rdcr to methods as Objcct.Mcthod ("object dot method"). For exam
ple. a Show method can apply to different objects: BillingForm. Show shows
the form object called BillingForm; ExitButton . Show shows the button object
called ExitButton.

Events

You can write procedures that execute when a particular event occurs. An event
occurs when the user takes an action. such as clicking a button. pressing a key.
scrolling, or closing a '~in dow. Events also can be triggered by actions of other
objects, such as repainting a form or a timer reaching a preset point.

Cl:tsses

A class is a template or blueprint used to create a new object. Classes contain
the definition of all available p roperties. methods. and events.

Each time that you create a new object, it must be based on a class. For ex
ample. you may decide to place three buttons on your form. Each button is based
on the Button class and is considered one object. cnllcd an instance of the class.
Each button (or instance) has its own set of properties . methods. and events. One
button may be labeled "OK" . one "Cancel". and one "Exit". When the user

l~llii:J
The term members is used to refer to

both properties ond methods. •

C II A 1• 'I' " ll

clicks the OK button, that button's Click event occurs: if the user clicks on the
Exit button. that button's Click event occurs. And. of course. you have written
different program instructions for each of the buttons' Click events.

Au Analogy

If the concepts of classes, objects. properties. methods, and events are still a
little unclear. maybe an analogy will help. Consider an Automobile class.
When we say aulomobile, we are not referring to a particular auto, but we know
that an automobile has a make and modeL a color, an engi11e. and a number of
doors. These elements are the properties of the Automobile class.

Each i11dividual auto is an object. or an instance of the Automobile class.
Each Automobile object has its own settings for the available properties. For
example. each object has a Color prope11y. such as MyAuto.Color = I:Hue and
YourAuto.Color = Red.

The methods, or actions. of the Automobile class might be Start.
SpeedUp, SlowDown. and Stop. To refer to the methods of a specific object of
the class, use My Auto . Start and YourAuto . Stop.

The events of an Automobile class could be Arrive or Crash. In a VB pro
gram you write procedures that specify the actions you want to take when a par
ticular event occurs for an object. For example, you might write a procedure for
the YourAuto.Crash event.

Note: Chapter 12 presents object-oriented programmmg m greater depth.

1\'lic•·osoft's Visual Studio

The latest version of Microsoft's Visual Studio. called Visual Studio 2010.
includes Visual Basic. Visual C++. Visual C# (C sharp). Visual F# (F sharp).
]Script, and the .NET 4 Framework.

Tbe . l'fET Frame work

The programming languages in Visual Studio run in the .NET Framework. 'The
Framework provides for easier development of Web-based and Windows-based
applications. allows objects from different languages to operate together. and
standardizes how the languages refer to data and objects. Several third-patty
vendors have created versions of other programming languages to run in the
.NET Framework, including .NET versions of APL by Dyalog. FORTRAN by
Lahey Computer Systems, COBOL by Fujitsu Software Corporation, PERL by
ActiveState. RPG by ASNA. and Java, known as lKVM.NET.

The .NET languages all compile to (are translated to) a common machine
language, called Microsoft Intermediate Language (MSIL). The MSIL code.
called maTULged code, tuns in the Common Language Runtime (CLR). which is
part of the .NET Framework.

Visual Rasic

Microsoft Visual Basic comes with Visual Studio. You also can purchase VB
by itself (without the other languages but with the .NET Framework). VB
is available in an Express version. and in Visual Studio 2010 Professional.
Visual Studio 2010 Premium. and Visual Studio 2010 Ultimate. Anyone
planning to do professional application development that includes the
advanced features of database management should use the Pt·ofessional
ver-sion or higher. You can find a matrix showmg the features of each edition
in Help.

s

6 v S l l ,\ I. C Introduction to Visual Basic 2010

The Professional version is available to educational institutions through
the Microsoft Academic Alliance program and is a great deal. When a campus
department purchases the Academic Alliance. the school can install Visual
Studio on all classroom and lab computers and provide the software to all stu
dents and faculty at no additional charge.

Students can download and install Visual Studio 2010 Professional from the
Microsoft site www.dreamspark.com. On this site. after you are verified as a stu
dent. you can download many of the latest software development products for free.
Microsoft provides an Express version of each of the programming languages.
which you also can download for free (www.microsoft.com/express/
downloads/). You can use Visual Basic Express for Windows development and
Visual Web Developer Express for the Web applications in Chapter 9. 1l1is text
is based on the Professional version of Visual Studio 2010. However. you can do

the projects using Visual Basic 2010 Express and Visual Web Developer 2010
Express. both of which are the CUITent version. Tllis version of Visual Basic is
called both Visual Basic 2010 and Visual Basic 10. You cannot run the projects
in this text in any earlier version of VB.

Writing Visual Basic Projects ,

When you write a Visual Basic application. you follow a three-step process for
planning the project and then repeat the three-step process for creating the pl'Oj
ect. The three steps involve setting up the user interface. defining t11e proper
ties. and then creating the code.

Tl1e Tlll'ee-Ste p P 1·ocess

Plauuiu;:;

1. Design the user interfa.ce. \l'hen you plan the uset• intet-t'ace. you
draw a sketch of the screens the user will see when rutming your proj
ect. On your sketch, show the forms and all the controls that you plan
to use. Indicate the names that you plan to give the form and each of
the objects on the form. Refer to Figure 1.1 for examples of user
intetfaces.

Before you proceed with any more steps. consult with your user and
make sure that you both agree on the look and feel of the project.

2. Plan the properties. For each object. write down the properties that you
plan to set or change during the design of the fonu.

3. Plan the Basic code. In this step. you plan the classes and procedures
that will execute when your project fUllS. You will determine which
events require action to be taken and then make a step-by-step plan for
those actions.

Later. when you actually write the Visual Basic code. you must fol
low the language syntax rules. But during the planning stage, you will
write out the actions using pseudocode, which is an English expres
sion or comment that describes the action. For example, you must plan
for the event that occurs when the user clicks on the Exit button. The
pseudocode for the event could be Terminate the project or Qu.it.

C II ,\I> 'I' I' R

llt·ogrammiug

After you have completed the planning steps and have approval from your user.
you are ready to begin the actual construction of the project. Use the same
three-step process that you used for planning.

l. Define the user interface. When you define the user interface. you cre
ate the forms and controls that you designed in the planning stage.

Think of this step as defining the objects you will use in your
application.

2. Set the properties. When you set the properties of the objects. you give
each object a name and define such attributes as the contents of a label,
the size of the text, and the words that appear on top of a button and in
the form 's title bar.

You might think of this step as describing each object.
3 . ffi-ite the Basic code. You will use Basic programming statements (called

Basic code) to carry out the actions needed by your program. You will be
surprised and pleased by how few statements you need to create a pow
erful Windows program.

You can think of this third step as defming the actions of your program.

Visual Basic Applicalion Files

A Visual Basic application, called a solution, can consist of one or more proj
ects. Since all of the solutions in this text have only one project. you can think
of nn~"> .'lolnt-inn = onP nt•oiP.rt F.:.r.h nl"n-iPor.t r.;tn r.ont~ln nnp or lllOI'P forTn filP.'t _. ~......... l"''"'""J'-' '""''' ----· · t"'"-""J -''-""••__._

In Chapters l through 5. all projects have only one fonn. so you can think of
one project = one form. Starting in Chapte1· 6. your projects will contain mul
tiple forms and additional files. As an example. the Hello World application that
you will create later in this chapter creates the following files:

F ile Name F ile Icon Desc•iption

HelloWorld.sln

L:i
The solution file. A text file that holds

information about the solution and the projects

it contains. This is the primary file for the
solution- the one that you open to l'·ork on or
run your project. Note the ''10"' on the icon~
which refers to VB version 10.

HelloWorld.suo Solution use r options file. Stores i nformation

Note: This file is about the state of the integrated deve lopment
hidden by environment (IDE) so that all customizations
default. can be restored each time you open the

s olution.

HelloForm.vb Va= A . vb file that holds the code procedures that
you write. This is a text file that you can open

~ in any editor. Warning: You should not modify
Lhis file unless you are using the editor in the
Visual Studio environment.

HelloForm.resx

i?
A resource file for the form. This te x1 hie defines

all resources used by the fo1m, including strings ~

of text, numbers. and any grap!Ucs.

7

8 v

Fae Name File Icon

AelloForm.Designer.vb

Hello World. vbproj

tlelloWorld.vbproj.user

S l l ,\ I.

A file created by the Fonn Designer that holds
the definition of the form and its controls. You
s hould not modify this file directly. but make
changes in the Designer and allow it to update
the file.

C Introduction to Visual Basic 2010

The project file: a text file that holds infonnation
about the ftles and options in your project.

The project user option file. This text file holds
IDE option seuings so that the next time you
open the project, all cu•tomizations will be
restored.

Note: You can display file extensions. In Windows i or Vista. open Win
dows Explorer and select Organize I Folders and search options, click on the View

tab. and deselect the check box for Hide extensions for known file types. In Win
dows XP. in the My Computer Tools menu, select Folder Options and the View
tab. Deselect the check box for Hide extensions tor known file types. If you do not
display the extensions. you can identify the fHe types by their icons.

After you run your project. you will find several more files created by the sys
tem. These include the Assemblylnfo.vb. MyApplication.myapp. MyEvents.vb.
Resources.resx, and Resources.vb. The only file that you open directly is the
.sin. or solution file.

The Visual Studio Environment

The Visual Studio euvil·omueut is where you create and test your projects.
A developmenl environment. such as Visual Studio. is called an illtegrctted
development enviroume11t (IDE). The IDE consists of various tools. includ
ing a form designer. which allows you to visually create a fom1; an editor. for
entering and modifying program code; a compiler, for translating the Visual
Basic statements into the intermediate machine code; a debugger, to help
locate and com;,ct program enors; an object browser. to view available classes.

objects. properties, methods. and events; and a Help facility.
In versions of Visual Studio prior to .NET. each language had its own IDE. For

example. to create a VB pmject you would use the VB IDE. and to create a C++
project you would use the C++ IDE. But in Visual Studio. you use one IDE to cre
ate projects in any of the supported languages. Starting with the 2010 release. the
editor is written in Windows Presentation Foundation (WPF), which provides
greater animation than the previous versions. You can adjust the text si7.e with a
scroll of the mouse wheel and have greater customization of the stm1 page.

Note that this text is based on the Visual Basic Professional. If you are
using VB Express, the screens differ somewhat from those t11at you see.

Default E nvil·onment Settjngs

The full version of Visual Studio 2010 provides an option to allow the pro
granuner to select the default profile for the IDE. The first time you open Visual

~ II \ I' 'f •: R

tudio. you ore presented 11i th the Choose Default Environment Settings dialog
box (Figure 1.3). where you can choose Visual Basic Development Settings.

Notice the ins tructions in the dialog box: you can make a different selection
late r from the Too.ls menu.

Not~: If you are us ing the Express version of Yisual Basic. you won't see
this dialog box.

Sdorc you b-c9'"' 1.1)1"19lh; cppllul-.gn(r;n lht fnt tflt~;. you n eed to~ify the ty~:c d <kvd o-pi'Oelt
~tc:tr.ttyyou cn:,•~c it\ the: n~t,. such., \o'i)uol tlcs.c Cf Vi~uol c~. Tnsi'lformotion ..sused to •ppt, •
p·cckftnc:d collc.c:bef\ of tttt1ngs to the dcvelopl"nCn' tf'"1ronmcnc: that o doignc:d feryout
dwcloFmtnt IC'tJm)·

Vo.Jcan d 1oo-ut to us• a different col'«:tion of nttir.9' it tJny time f rom the Took m~nu, <:hooW:
lmpott and hpart S«uf'l~ and t~tn ct-coct Rt toM d t.tftngr;

Choox ycur dcfMit c:nvlrOMIIC"nt x tttt.gst

Cicf'litict OcY"cloprrunt SctLnrp
Pro«< Moooo""cl't Selt;.,o,

Viu.al C,.Oev•loprnef'\t Sttt•ns'
wu O.Vt lop•'""'
Wob U..olopmtftl (Cod• O..y)

Tit(' IDE l nitiaJ Sc·t·t•t•n

Ou.c:upttoru
Opt.unzes the HWtfonment so you ca1 foc\hon
buidrq wotld-das.) •F-plicoticm T+-J~ collntion cf
Sdtaf'gs contofl'l-s custorniut~ to ~he window
.,fO"\. ccmmo"'':l f'QCI'IUj, a l\d '<q-boo~ 5hortcub to
ma\t: common\,.~~ B.c:fc ccmma,d~ n"IOC'f'

.Jcces:s:-tl~.

When you open the Visual tudio rDE. you generally see an empty environ
ment 10·ith o Start Page (Figure 1.4). Ho10·ever, it's easy to customize the envi
ronment. so you may see a different view. In the step-by-step exercise later in
this chapter. you " i ll learn to reset the JDE layout to its default view.

The Start Page contains tabs for getting started. for guidance. and for the lat
est news. You can use the check boxes at the bottom of the page to request that it
close after a project loads and whether to show the page when Visual Studio starts.

You can open an existing project or begin a new projec t using the Sta11
Page or the Fils menu.

T he N t'W P•·oj ('<' l Dia log-

You wiJJ create your first Visual Basic projects by selecting File I New Project
on the menu bar or clicking New Project on the Start Page. either of which
opens the Nsw Project d ialog (Figure 1.5). In the New Project dialog. select

'flu. jirJl ltmt)Oil o~n IM
l 'uua/ Studio IDE.)OU mmt
~II'Ct tht dtfault t>nr ironmtlll
Mllir~gsfM a Vi•ual BasK
devewper.

9

10 v S l l ,\ L (' Introduction to Visual Basic 2010

Fi~nrc 1.1

The Visual Studio IDE with the Start Page open. as it first appears in Windows 7. without an open project.

OOViSual Studio20tOProfesslon.li

t.. !.lllotw.lho1u"~lki:•Jtl..,r•""••

~"*'-*' ... ,...,

~~f,njr(t._

~(IOUplg.JIIt~~pfljN:ll~.tel
JlSI-~Il!\o4.tw

Begin a new VB Windows project using the Windows Fomts Application template.

Select the Windows Fonns

lnmaedl~~t~

" V~:.;ICim

Select ~ WPFI<f''IA;.a,,.,.

Vil'l.nal R::.sir. Oti<<'l

·" Windows Oo«< (o.n:olc ~fllution

R~~ing

~ ShxtPO!nt t ca::l.!bwy

sa~c•lvbt
re:.t j;J \Mlf iiOMoe11.pp/i<'.'ltion
we;
'fftuUiul¥

~llfl~f~SUl,ll 3 t~tyfccjtn

l)he~PflJ Cct li"PP ~ W.ndrw~-sSrrvif"l'
Oottbnc
TetPto~ts

·~ WPFCu:.totn Co11trellibw)'

1~1 'NPI-V:el t.cnbdiJbm y

~ W.t~ltC~".»t ~orm~ C~l'ltroUtbruy

y,..,.,,R-.-...

Typ .. 'IICullhUl:

Afll~ffJrUUti!Vj)lllFPlCI!ICfi U.Ithl
V{im.Ju ... ')u::o i<tt(foo.c

C II ,\1°T t: R

Windows Forms Application if you a re using VB Express. In the Professional
vers ion. first select Visual Basic and Windows in the Installed Templates pane
and Windows Application in the center pane. You also give the project a name in
this dialog box.

The IDE 1\llnin Wimlow

Figure 1.6 shows the Visual Studio environment's main ~+indow and its various
child windows. Note that each window can be moved, resized. opened. closed.
and customized. Some windows have tabs that allow you to display different
contents. Your screen may not look exactly 1 ike Figure 1.6; in all likelihood you
will want to customize the placement of the various windows. The windows in
the lDE are considered either document windmn; or tool 1ti ndows. The Designer
and Editor windows are generally displayed in tabs in the center of the screen
(the Document window). and the various tool windows are docked along the
edges and bottom of the LDE. but the locations and docking behavior are aU
customizable.

'lbe ID.E main window holds the Vis ual Studio menu bar and the toolbars .
You can display or hide the various windol4''S from the View menu.

The Vi~ual Stttdio environmelll. Each 'Window can be mooed. ff<jized. cwsed. or cwU>mi.ted.

II

t' lgar P 1 .6

12 v S l l A I, G .\ S C Introduction to Visual Basic 2010

The Toolbm·s

You can use the buttons on the tool bars as shortcuts for frequently used opera
tions. Each button represent.s a command that also can be selecte(:l from a menu.

Figure 1.7a shows the toolbar buttons on the Standard toolbar for the Professional
veiSion. which displays in the main window of the IDE; Figure 1. 7b shows the
Layout toolbar, which is useful for designing fonns in the Form Designer: and
Figure l.7c shows the Text Editor toolbar. which contains buttons to use in the
Editor window. Select View /Too/bars to display or hide these and other toolbars.

F i g u••e 1.7

The Visual Studio toolbars contain buttons that are shortcuts for menu commands. You can display or hide each of the
toolba;rs: a. the Standard toolbar: b. the Layout toolbar: and c. the Text Editor toolbar.

The Document Will(low

The largest window in the center of the screen is the Oocrnuenl window. No
tice the tabs across the top of the window, which allow you to switch between

C II A 1• 'I' 1•: R

open docmnents. The items that display in the Document window include
the Form Designer. the Code Editor, the Database Designer. and the Object
Browser.

You can switch from one tab to another. or close any of the documents us
ing its Close button.

T he F o1·m Designe•·

The Fon u Designet· is where you design a form that makes up your user in
tetface. In Figure 1.6. the Form Designer for Forml is currently displaying.
You can drag the form's sizing handl e or selection border to change the size of
the form.

When you begin a new Visual Basic Windows application, a new form is
added to the project with the default name Fotml. In tlte step-by-step exercise
later in the chapter. you willleam to change the form's name.

T he SoluLion Expl01·e•· Window

The Solution Explot·et· window holds the filenames for the files included in

your project and a list of the classes it references. The Solution Explorer win
dow and the Window's title bar hold the name of your solution (.sin) file. which
is WindowsApplicationl by default unless you give it a new value in the New
Project dialog box. ln Figure 1.6. the name of the solution is MyFirstProject.

T he Pro·pe•·ties Window

You use the P ropet·Lies windo w to set the properties for the objects in your
project. See "Set Properties" later in this chapter for instructions on chanp;ing
properties .

T he Toolbox

The toolbox holds the tools you use to place controls on a form. You may have
more or different tools in your toolbox. depending on the version of Visual Basic
you are using (Express. Professional, Premium. or Ultimate). Figure 1.8 shows
the VB Professional toolbox.

Help

Visual Studio has an extensive Help feature. which includes the Microsoft
Developer Network library (MSDN). You can find reference materials for Visual
Basic. C++, C#. and Visual Studio: several books; technical articles: and the
Microsoft Knowledge Base. a database of frequently asked questions and their
answers.

Help includes the entire reference manual. as well as many c oding
examples. See the topic "Visual Studio Help" later in this chapter for help on
Help.

When you make a selection from the Help menu. the requested item ap
pears in a new browser window that floats on top of the lDE window (Figure 1.9).
so you can keep both open at the same time.

13

l~ljjl#l
Use Ctrl + Tab to switch to another

open document in the Document
window. •

l~ljjl#l
Y au can sort the properties in the

window either alphabetically or by
categories. Use the buHons on the

Properties window. •

14 v S l l ,\ I. C Introduction to Visual Basic 2010

Toolbox • fl. X
~ All Windows Forms

• Common Controls. - Common controls for

lit Pointer Windows Forms

@ Button

0 CheckBox

[§]] . CheckedlistBox

~ . Com boB ox

'iii DateTimePicker

A Label

A Linklabel

[§:;:] ListBox
~~~ ListView 2~ 

!!;] MaskedT extBox ., MonthCalendar 

~ Notifylcon 

[llil NumericUpDown 

~ PictureBox 

lllD Progre~tB~r 

0 RadioButton 
i!=: 
'F;i Rich T extBox 

~ T extBox '-=-==.;_ ___ .;_~_,<---, ScroU to see more controls 

Design Time, Run Time, and Debug Time 

Visual Basic has three distinct modes. While you are designing the user inter
face and writing code, you are in design time. When you are testing and run
ning your project, you are in run time. If you get a mn-time error or pause 
program execution, you are in d ebug time. TI1e IDE window title bar indicates 
(Rwming) or (Debugging) to indicate that a project is no longer in design time. 

Writing Your First Visual Basic Project 

For your first VB project. you will create a form with three controls (see Figure 
1.10). This simple project will display the message " Hello World" in a label 
when the user clicks the Push Me button and will terminate when tl1e user 
clicks tl1e Exit button. 

Sel u,) Yo m· WOI·IiSI>ace 

Before you can begin a project, you must run the Visual Studio IDE. You also 
may need to customize your workspace. 

Rw1 Visual Studio 

These instructions assume that Visual Studio is installed in the default loca
tion. If you are running in a classroom or lab. tl1e program may be installed in 
an alternate location. such as directly on the desktop. 

Figure 1 . 3 

The toolbox for Visual Studio 
Windows Forms. Your toolbox 
may have more or fewer tools. 
depending on the version yo1t 
are using. 

You can sort the tools in the toolbox: 

Right-click the toolbox and select 

Sort Items Alphabetically from the 

context menu (the shortcut menu). • 



C ll 1\l1 'l' li R IS 

Help displays in a new browser window. intkpendent of the Visual Studio IDE window. 

~ Visual Studio 2010 - WindO'NS rntemet Explo:'et 1= 1121 1~ 

Ou ~ ~ http;//l27.0.0.1;47373(ndPJl'om.helo1mdhod=fl&q•• · I~I~J le ilin9 p • 

);l favO<ites I ..:4 ~ Suggested SitES • li) Web Slice G<llery • 

if) Visual-Studio 2010 r -, f'll · ~ • C.:. ~ · Page • Safety . Tool!; • tQ• » 

. 
1·-·· a. I Visual Studio 2010 00." ....... j V1sual Studio 

l ibrary Homg Sen-d F-ecdbock 
Vi<u•I Studo 2010 
VISUal StUd!O 

This: document prov•des res.ources for leam1ng how to use V1sual S-tudfO Visual Stud!O Ap!:)licetion Ltfecycle Mandgerneu 
.NET F1cmcwork 4 ~o create desktop applications and W eb applications . 

---Related I ink_~ 

I ~ Micro~oft Help Sysh:m Oocumcntctic:m W~lc:oml! to Visual Studio 2010 

Learn about Visual Studio 2010: 

, ~ Visual Studio 2010 Welcome Page 

• Visual S1uoio 2010 Produa ~fighr.ghts 

bd Ooc;umentation 

l earn how to create applications by using Visual 
Studio in the Visual Studio 2010 documemation: 

• Visval S;udio 

• Vi~u:al Studio Application Lifecyde 

I 
Management 

. NET Framework 4 ~ 

& Internet I Protected Mode On ... . ~100% . 
~ ~· 

'ai ~bWvrld iJ7'Y_~_,.,_•_•-~-----
The Hello World form. Tlu! 
"Hello World" message will 
appear in a label when the user 
clicks on the Push Me button. 
The /.abel does not appear until 
the button is pressed. 



16 \ .! S l ' .\ L R \ S ( ' lntrodrtelion lo lliJunl Bwic 2010 

"fEr' 1: Click the Windows Start buuon and move the mouse pointer to AI/ 

Programs. 

STEP 2: Lx:ate Microsoft Visual Studio 2010 or Microsoft Visual Basic 2010 Express. 

-.TF.r' :1: If a submenu appears. select Microsoft Visual Studio 2010. 
Visual Studio (VS) will start and display the Start Page (reler to Fig
ure 1.4). If you are using Visual Studio Professional and this is the 
first time that VS has been opened on th is computer. you may need to 
select Visual Basic Development Settings from the Choose Default Envi

ronment Setting dialog box (refer to Figure 1.3}. 

Note: The VS IDE can be customized to not show the Strut Page when it opens. 

~taJ"I a ['\('\\ Jlrojt•rt 

STEI' 1: Select File I New Project. The New Project dialog box opens (Fig
ure l.ll). Under lnsta/19d Templates, make sure that Visual Basic and 
Windows are selected: in the center pane. select Windows Forms Appli
cation. If you are using Visual Basic Express, the dialog box differs 
slightly and you don't have to choose the language. but you can st ill 
choose a \findows Fonns Application. 

~n:l' 2 : Enter "Hello World'' (without the quotes) for the name of the 
new project and click the OK button. TI1e new project opens 

Enter the name for the 11ew project. 

Recent: T ~mplatcs !.NET framework4 .: 5ort by: [ D<I<Ut 

Figure l.l I 

:a w~ Fo1m1: .lppi1C31101'1 V•SlU18l!SIC 
Type: ViSUII6a5it 

4 ~wo~IB,nic 

WLndows 

\Vi!b 

Office. 
Cloud 

Reporting 

Shart:Poirn 
S.ttvt1llgM 

l est 

WCF 

Wo rkflow 

Cther Langu2ges. 
Other Project l:)lpes 

om~bllse 

Test Projects 

OnliM T c:;mp!.J.tcs 

[;!] 

'"e 

d!l 
~ 

~ 

~ 
~ 

~ 

iS l_ 

W?F 4pplicatiot'l 

Ccruole Appliutcn 

Clu~ Librory 

W?f 6rowse1 Applotion 

Empty Project 

Windows: Se:rvtce 

WPF CI.J-itom Conb'clli-bnry 

W?f Us.c:r Controllibrao · 

\Vlf'Jdows f rJrms Control Ubrary 

v~wi! Sas:ic 

Vi!;l...nl s.,~ic 

v~~~ Bo:sic 

v~..~alBasic 

VI9Jl l BasiC 

Vtst.ut Bas:ic 

Visu~l Basic 

VlS'.J ~!Bo:ts.ic 

VtSU~ l &3s.ic 

A pfOject for Cle:!tlng :tO iSpJ.I <iltion with ct 
Window~ Ulct1nterf.:c~ 



C II A I• 'I' I' R 

(Figure 1.12). At tllis point. your project is stored in a temporary di
rectory. You specify the location for the project later when you save it. 

Note: Your screen may look significantly different from the figure since the 
environment can be customized. 

The Visual Studio IDE with the new Hello World project. 

Fonnat lools Test Window HElp 

t> "-> I • -=: ~ I " - ..;:J- J ~ I ":a C:s ·_. ' Debug ·t ·· 
I!II!III~F~:,~m~I.~vb~t~o.~si;gn~J~x~ • SolutJon Explorer • Y. X 

Set Up Yom· Envil'oJruJent 

In this section. you will customize the environment. For more information on 
customizing windows. floating and docking windows. and altering the location 
and contents of the varions windows. see Appendix C. 

STEP 1: Reset the IDE's default layout by choosing Window I Reset Window 
Layout and respond Yes to the confirmation. The IDE should now 
match Figure 1.12. 

STEP 2: Point to the icon for the toolbox at the left of the IDE window. The 
Toolbox window pops open. Notice the pushpin icon at the top of the 
window (Figure 1.13). 

STEP 3: Click the AutoHide pushpin icon for the Toolbox window, which pins 
the window open rather than allowing it to AutoHide. 

17 



18 \ S l A I. u \ s 

The first step in planning is to design the user interface. Figure 1.14 snows a 
sketch of the form that includes a label and two buttons. You will refer to the 
sketch as you create the project. 

HelloForm~ I l~----+Me55agel.al:>el .__ ______ --..J 

Pu5h Me (-------+-Pu5hButton 

Exit (-------+ExltButton 

FigurP 1.13 

The Toollx>x wiiiClow. 

Figu1• e 1.14 

A sketch of the Hello World 
form f or plawli11g. 



t: II 1\ I' 'I' J; B 

The nexl two steps. plarming the properties and the code. have already 
been done for this first sample project. You will see the planning in the steps 
that foiJow. 

Define the U!!t' r l.nte l'fat't• 

Sf't rp tht> Form 

Notice that the ne~t· form in the Document 1+indo11· has all the standard Win
dows features. such as a Litle bar. maximize and minimize buttons. and a close 
button. 

STEI' 1; Resize the form in the Document window: Drag the handle in the 
lower-right comer down and to the rq;ht (Figure 1.15}. 

11:t forMl 

Drag handle to enlarge form 

Phwf' f.outr·ol~ on thf' f o l'ln 

You are going to place three controls on the form: a La be l and two Buttons. 

STEP 1: Point to the Label tool in the toolbox and click. Then move the pointer 
over t11e form. Notice that the pointer becomes a crosshair with a big 
A and the Label tool appears selected. indicating it is the active tool 
(Figure 1.16). 

19 

Ma~·e th.efonn larger b) 
dragging it. lower-right 
handle diago11ally. The 
ha11dle.1 disappear a.1 rou drag 
the corner of the form. 



20 \ .' S U A I, C lntrod~tction to Vis ~tal Basic 2010 

.Fi~u•·e 1.16 

When you click on the Label tool in the l<>olbox. the tool's button is activated and the mouse pointer becomes a cro.s.shair. 

Crosshair pointer 
\ 

ToolbQ'l( T~){ .. Formbvb [0~1gnl" X 

ll' All Windows Forms . \ 
4 Common Conlro(s t ~\ l=l!§lf121 

It Pointer : 

Label tool is 
activated 

______,. 

@ 

B 
lll 
f=:i!l 
'iii 
A 

A 
~ 
~F 
:;;! 

m 
3 
;m 
til 

Butt em 

CheckBox 

Chcckedh~Box +A 
ComboBox 
OateTimePicker 
Label 

trnklabel 

lidS ox 

li~Yiew 

f\'h~kcdl o±Bo>: 

MonthCoJiend;v 

Nctifykcn 

NumencUpOown 

PictureOox 

STEP 2: Point to a spot where you want the left edge of the label and click. The 
label and its default contents (Labell) will appear (Figure 1.17). 

a ··· ········ ·· 
: Label l 

As long as the label is selected. you can drag it to a new location or 
press the Delete key to delete it. 

The newly ereated label 
appears outlined, indicating 
that it i.s selected. Notice that 
the contents of the label are set 
to Labell by default. 



( ' II ;\ 1• T t: R 

You can tell that a label is selected; it has a dolled border as shown 
in Figure 1.17 when the AutoSize property is True [the default] or siz
ing handles if you set Ute AutoSize property to False. 

l>TEl' 3: Place a button on the form using one of two techniques: (1) You can 
click on the Button tool in the toolbox, position the crosshair pointer 
for one comer of the button. and drag to Ute diagonally oppos ite cor
ner (Figure 1.18); or (2) you can drag and drop the tool from the toolbox. 
which creates a button of the default size. The new button should ap
pear selected and have •·esizing h an£1lcs. Tite blue lines that appear 
are called snap lines. which can help you align your controls. 

·~ Forml c:o IN I~ 1,-------
L>bd l 

!+---------+ - Snap line 

I 

-

While a control is selected. you can delete it or move it. If it has re
sizing handles, you can also res ize it. Refer to Table 1.1 for instruc
tions for selecting. deleting. resizing. and moving controls. Click 
outside of a control to de select it. 

Selecting. J)r•letiu!!, Mo\'ing, nnd R~izing Conu·ob on a Fol'ln 

Select a control 

Delete a control 

Move a control 

Resize a control 

Click on the control. 

Select the control an d then press the Delete key on the keyboard. 

Select the controL point inside the control (not on a handle). press 
the mouse button, and drag it to a new location. 

Make sure the control is selected and bas resizing handles; then 
either point to one of the handles. press the mouse button. and drag 

the handle: or drag the form's bottom border to change the height or 
the side border to change the width. Note that the default format for 
Labels does not aUow resizing. 

Fla n r ~ 1.18 

Sef.e<ot the Butum tool and 
drag diagoooU)' to create a 
new B11Uon control. The bl.ue 

stUJp lines hefp IO align 
conJrol.s. 

Tnbl.- 1.1 

21 



22 v S l l ,\ L ( ' Introduction to Visual Basic 2010 

STEP ,L: Create another button using another technique: While the first button 
is still selected. point to the Button tool in the toolbox and double
click. A new button of the default s ize will appear on top of the last
drawn control (Figure 1 .19). 

STEl' 5: Keep the new button selected, point anywhere inside the button (not on 
a handle). and drag tl1e button below your firs t button (Figure 1.20). 

3} Forrnl 

I 

Label l 

Labell 

BLtton1 

I Button2 

~ .. 

' 

STEP 6: Select each control and move and resize the controls as necessary. 
Make the two buttons the same size and line them up. Use the snap 
lines to help with the s ize nnd alignment. Note that you con move - but 
not resize- the label. 

Fign•· e 1.19 

Place a. new button on thejonn 

by double-clicking the Button 
tool in the toolbox. The new 
button appears on top of the 
previou.sly select.ed control. 

Fit!n•• e 1 . 20 

Drag the new button (Button2) 
below Button]. 

If no control is selected wh~n you 

double-click a tool, the new control 

is added to th e upper-l~ft corner of 

the form. • 



C II A 1• 'I ' " ll 

STEP 7: Point anywhere on the form and click the right mouse button to 
display a context menu. On the context menu. select Lock Controls 

(Figure 1.21). Locking prevents you from accidentally moving the 
controls. When your controls are locked, a selected control has no 
handles. but instead has a small lock symbol in the upper-left comer. 

Note: You can unlock the controls at any time if you wish to re
design the form. Just click again on Lock Controls on the context menu 
to deselect it. 

At this point you have designed the user interface and are ready to set the 
properties. 

'~ Fom)l ~~ 

II I 
l<bel1 

~ Vi.ew.Ccde F7 

II Lock <.ontf'OI:s 

~ .A l'..t• ttrl>\1 

~ r1if Pr;operttes. 
2 

I 

Se t P t·ope t·ties 

Set the Name and Text l't·opcrtics for rbc Label 

STEP 1: Click on the label you placed on the form; an outline appears around 
the control. Next click on the title bar of the Properties window to 
make it the active window (Figure 1.22). Note: If the Properties win
dow is not displaying, select View I Properties Window. 

Notice that the Object box at the top of the Prope1ties window is 
showing Label1 (the name of the object) and System. Windows. Forms. 

Label as tl1e class of the object. The actual class is Label: System. Win
dows. Forms is called the uamcspace. or the hierarchy used to locate 
the class. 

STEI' 2: In the Properties ~indow. click on the Alphabetic button to make sure 
the properties are sort.ed in alphabetic order. Then select the Name 
property. which appears near the top of the list. CHck on (Name) and 
notice that the Settings box shows Label1. t11e default name of the label 
(Figure 1.23). 

23 

After the controls are placed 
into the desired location. lock 

them in place by selecting 
Lock Controls from the cont.ext 
menu. Remember that context 
menus differ depending on the 
current operation and systen~ 
setup. 

If the Properties window is not visi

ble, you con choose View I Prop

erties Window from the menu or 

press the F4 shortcut key to show 

it . • 



24 S l ' \ L R \ S C Introduction to Vuual Ba,ic 2010 

Fi~n••e 1.22 

The currently selected control i• •hown in the Properties window. 

•or ::o1ml 

Sel.,ted object is locked 

'-' 
i;!B! Hei<>WOJ1d 

l!lOi MyPrcj•cl 
l!J Form!.vb 

~~~S~ot,;:;••:io:::,n!a::;:pl~o;re~r lilllr.lt Properties 
o1opert:16 ... ~)(windon..,.

l.JbtJl Syctwn.\\lndewc.Jorrnc Ltbtl • Namespuc:e
and cia,.. of
oelocted
object

Tablnde>.

T•g

·~..,~~···Wbell
Tf"'ot.lhg"
tiuCcmp•bblr:" Fo.s:=

UcttAnernon~e lru#

Text

Object box

Setlinp box

l'"'• tot ~~oo.ltt'd with the: cctrtlot.

Name of selected object

Propt.r:~ -. q x

Alphabetic buuon_ l<bell S>fstem.Wind<M<Forms.L!bel •

~-~. bJ .! I

(App!icJtJOnSttt
tl' (Oa[c:Bindings)

(Namo) L»oll - Settin191 box
Acc.~sibk:Descr

Accts§lb~"''mt

Ac-ces!ibkRole Od•ult

(Named

tndiccto the Mrnc: ux:.:d in code to
•dcnli') the oqccl.

STEP 3 : Type " MessageLabel" (without the quotation marks). See Figure 1.24.
As a shortcut. you may wish to delete the l from the end of Labell.
press the Home key to get to the beginning of the word. and then type
"'Message".

Mter you change the name of the control and press Enter or Tab.
you can see the new name in the Object box's drop-down l ist.

Fl~n1• t> 1.23

The Properti~ window. Click
on the Name propert:y to
change the value in the
Settings box.

C II 1\I0 TIIR

Propertie~ .. ~ X

Sort tile Prupe.rtieo_ l •bell Syst•m.Wtnd<J..-<.Forms.t.ab•l •

list alphabetically "So::. 1 '"
• • t, i" ~

D (Appri<dx=-nS~::tt

~ (OataBinding')

I!§@ MesH9clabd-r-The n e tt· naule appellf'ft

Access-bleDe:scr in the Settings box
Acca,ib~mt

Acc~stb~o~ Ofl~utf

(rbmet

lndi<lt*' the: Nmc u:M::I in code to
,cie"rtifytheot,;ect.

~TEl' 1: Click on the Text property to select it. (Scroll the Properties list if
necessary.)

The Texl pl'opea·ty of a control determines what will be displayed
on the fonn. Because nothing s hould display when lhe program be
gins. you must delete the value of the Text property (as described in
the next hvo sleps).

STEl' 5: Double-click on Lsbe/1 in the Settings box: the entry should appear
selected (highlighted). See F igure 1.25.

Name of control

Proper-Je3. •'1X

I> S.:e 39, 11

le.blndcx 0

l l!g

l!!l:m
l O>Ct.<iiiQn lopuf\

TeJ<t
The: ~CX! u50ci.J:cd with the control.

Value in Settinp box
is selected

STEP 6: Press the Delete key to delete the value of the Text property. TI1en
press Enter and notice that the label on the form nearly disappears.
All you see is the lock symbol and a very small dotted Line (Figure
1.26). and if you click anywhere else on the form. tt·hich deselects the
label. you cam1ot see it a t all.

Type ''llfessageLabel" into the
Settingj ba-r for the Name
property .

Double-click in the Setting~
box to select the entry.

2S

26 l ' s l l " L ll .\ s (' lnlrodru:tion to Ywwl Bmic 2010

I
Label i• empty w1d selected

forn,l vb (()eugn]" X

I '"' ...i'rn UJ"'j.f'~
11,. P:.orml I ~~

jl; HeloWorld

s.i My PrOJEct

::J Forml .vb

~ Solution &.plorer ..
Ptope LeS -qx

Mesggelabel System.Windows.Fonn~ •

~
':_ ~ ~ .§J _,

R.st<Toltit t lo ~

[&..n-x~2 J s;,, 39,U
Tablndex 0

h g

8 ,,,
"' ·-;t:.-· -

loxt
Ttlc lot o»> oh:d wth the cont.1d .

./ Texl de leted from theSetttngs box

Labels have an AutoSize property. which is set to True by default.
Labels shrink or grow to adjust for the Text property. You can set the
AutoSize prope 1ty to False if you want to specify the Label's size. in
which case you can see the outline of the Label on the form_

Note that if you want text to flow to multiple lines in a label. you
should set its AutoSize property to False and use the sizing handle to
make the label large enough.

If you need to select tl1e label after deselecting it. use the Proper
ties window: Drop down the Objec t Ust at the top of the window:
you can see a list of all controls on the form and can make a selection
(FigUI'e 1.27).

Prope:nies • y X

Buttonl Sptun.Windo,_.,.fc;nns.Button
Button_2 'Syst:E:rn.Windows.Fcrms.Burton
for-ml S.ys!en.\MndOIN~form:;;.form

log
l ext

Tect.Aiign

Text

Th(: toct ;:-zoci;:ted -Mthth(: <ontrol.

c

Delete the t'<lu~e for the Te%1
property from the Settings box:
the label on the form alw
appears empty and tJ.e control
mrinks in size beca!Lse the
AutoSi.re propert.y is set to True.

F i rt ur e 1 .2 7

Drop down the Object box in
the Properties window to .elect
any control on the form.

C ll 1\ l1 'l ' li R

Note: As an alternate technique for deleting a property. you can
double-click on the propetty name. which automatically selects the
entry in the Settings box. Then you can press the Delete key or just
begin typing to change the entry.

SPI ''"' N:mtP :mrl ' ll>xt ~·•·o)lf'rtiPs fm· thP Fit-!'lt Bntton

STEr 1: Click on the first button (Butionl) to seleci it and then look at the Prop
erties window. The Object box should show the name (Buttonf) and
class (System. Windows.Forms.Button) of the button. See Figure 1.28.

Problem? If you should double-click and code appears in the Doc
ument window. simply click on the Formf .vb [Design] tab at the top of
the window.

Propcrttes • f1 X

Outtonl 9fstem.Window:s.Forms.9utton • ~ Object box

1 ~10 H IThl .;
~ Size 1S. 31

Tab!ndex 1
TabStop TIUE

Tag r= Te<t Buttool Enter a ne w Text
TedAiign MiddleCenh r property value

T• xt
The tort ~ssoci~ted with the control.

STEP 2: Change the Name property of the button to "PushButton" (~tithout the
quotation marks).

Although the project would work fine without tllis step. we prefer to
give this button a meaningful name, rather than use Button!. its
default name. The guidelines for naming controls appear later in this
chapter in the section "Naming Rules and Conventions for Objects."

STEP 3 : Change the Text propetty to "P ush Me" (without the quotation marks).
This step changes the words that appear on top of the button.

Set the Name and Text llroperties for the Second Huuon
STEP J ; Select Button2 and change its Name property to " ExitBuuon" .

STEP 2: Change the Text property to "Exit".

Cbaugc Pt·opertif.'s of the F'onu

STEP 1: Click anywhere on the form. except on a control. The Properties win
dow Object box should now show the form as the s elected object

(Formf as the object's name and System. Windows. Forms.Form as its
class).

STEP 2: Change the Text property to " Hello World by Your Name" (again. no
quotation marks and use your oa11 name).

The Text property of a form determines the text to appear in the
Iitle bar. Your screen should now look like Figure 1.29.

27

l~lj i I #l
Don't confuse the Name pmpe rty

with the Text property. You will use

the Nome property to refer to the

contro l in your Bn•ic cod e . The Te xt

property determines what the user
will see on the form. Visua l Basic

sets both of these properties to the

some value by default, a nd it is easy

to confuse them. •

F i gu 1•e 1 . 23

Change the properties of the
first button.

Always set the Name property of con

trols befo re writing code. Aqthough

the progra m will still work if you re

verse the order, the method names

won't ma tch the control names, which

can cause confusion. •

28 \ .' S U A I, C Introduction to Visual Basic 2010

The form is selected
and locked

ri2 HeltoWorld byVourf\Jame

p...,.h Ma

E<ll

The form's Text propetty
appears in the title bar

STEI' 3: [n the Properties window. click on the StartPosition property and
notice the arrow on the property setting, indicating a drop-down list.
Drop down the list and select CenterScreen. This will make your form
appear in the center of the screen when the program runs.

STEP 1: ln the Solution Explorer. right-click on Forml.vb and choose Rename
from the context menu. Change the filename to ''HelloFonn.vb". making
sure to retain the .vb extension. Press Enter when finished and
respond "Yes" to the dialog asking i£ all references to Forml should
be changed to Hello Form. This changes the name of the file that saves
to disk as well as the name of the class. (See Figure 1.30.)

Solutoon Explorer • q. X

~~~rni ~E!!Gi 
~~~World -

15!!1 My Project
~ HelloForm.vb

~ ~olutaon l:x
Properties yq. x

Helloform.vb File Properties Properties of file

:§~··~ ! -
Build Action Compile

Copy to OutF Do not copy
Custom Tool
Custom Tool

llllllal: HelloForm.vb

File Name

Name of the file or folder.

Fi~n•·e 1.29

Change thefonn's Text
property to set the text that
appears in the fomt ~ title har.

Fit:n•·e J .30

The Properties window shaws
tlte file's properties with the

new name for the file. Yott can
change the filename in the
Properties window or the
Solution Explorer.

1~11 i I #J
If you change the form's filename be.
fore changing the form's doss nome,
the IDE outomoticolly changes the
form's doss nome to match the file

nome. It does not make the change if
you have changed ihe form's doss

nome yourself. •

C II A 1• 'I' " ll

Figar e 1 . 31

The Properties window for the form. The form's class name now matches the name of the form's file.

The form is selected and locked

Name of the fonn's file

.J1 Hcllo-Wcrtd by Your Ncme

Li£M. J
I E<n I

I =II sl~AJ

... So!ubon E:<plor€.'r • q)(

~ (O;~taS inding

(Name) Hellofom>

AcceptButtor {none)

AccessibleDe
Accesg blel'lla

(N.ame)

Jndk.otcs the n~~me used i·n code to
identify the object.

STEP 5 : Click on the form in the Document 11~ndow. anywhere except on a con
trol. The name of the file appears on the tab at the top of the Designer
window. and the Properties window shows properties for the fom1's
class. not the file. The VB designer changed the name of the form's
class to match the name of the file (Figure 1.31).

Wa·ite Code

Visual Basic Events

While your project is ruuning, the user can do many things. such as move the
mouse around; click on either button; move, resize. or close your form's win
dow; or jump to another application. Each action by the user causes an event to
occur in your Visual Basic project. Some events (like clicking on a button) you
care about, and some events (like moving the mouse and resizing the window)
you do not care about. If you write Basic code for a particular event. then Vi
sual Basic will respond to the event and automatically execute your procedure.
VR ignnrP..< P.IJP.nt.<fnr whir.h nn prnr.P.dnrP..< am writtR.n.

Visual Casic Ew ut Pr·ocednl'es

You write code in Visual Basic in pr·ocedm ·es. For now. each of your proce
dures will be a sub p1·ocedm·e, which begins with the words Private Sub
and ends with End Sub. (Later you will also learn about other types of proce
dures.) Note that many programmers refer to sub procedures as subprograms or
subroutines. Subprogram is acceptable: subroutine is not because Basic actu
ally has a different statement for a subroutine. which is not the same as a sub
procedure. You also can refer to procedures as methods.

Name of
the fonn
class

29

30 v S l l ,\ I. C Introduction to Visual Basic 2010

Visual Basic automatically names your evem pi"Ocedm·es. The name
consists of the object name, an underscore (_). and the name of the event.
For example. the Click event for your button called PushButton will be
PushButton_Click. For the sample project you are writing, you will have a
PushButton_Click procedure and an ExitButton_Click procedure. Note that
another way to refer to these methods is to call them "event-handling methods,"
such as the PushButton_ Click event-handling method.

Visua l Bas ic Code Statements

This first project requires two Visual Basic statements: the t•ernark and the
assignmelll statement. You also will execute a method of an object.

The Remark Sta temeut

Remark statements, sometimes called comments. are used for project docu
mentation only. They are not considered "executable" and have no effect when
the project tuns. The purpose of remarks is to make the project more readable
and understandable by the people who read it.

Good programming practices dictate that programmers include remarks to
clarify their projects. Every procedure should begiu with a remark that de
scribes its purpose. Every project should have remarks that explain the purpose
of the program and provide identifying information such as the name of the pro
grammer and the date the program was written and/or modified. In addition. it
is a good idea to place remarks within the logic of a project. especially if the
purpose of any statements might be unclear.

When you try to read someone else's code. or your own after a period of
time. you will appreciate the generous use of remarks.

Visual Basic remarks begin with an apostrophe. Most of the time your re
marks will be on a separate line that starts with an apostrophe. You can also
add an apostrophe and a remark to the right end of a line of code.

The llemal'k Statement-Examples

~ r--. ~ ' This project was written by Jonathon Edwards .
~ ' Exit the project .
;;- MessageLabel. Text = "Hello World " ' Assign the message to the Text property.

00 ~-----------------------------------The Assignmem St a teme Ill

The assignment statement assigns a value to a property or variable (you learn
about variables in Chapter 3). Assignment statements operate from right to left;
that is. the value appearing on the right side of the equal sign is assigned to the
property named on the left of the equal sign. It is often helpful to read the equal
sign as "is replaced by." For example, the following assignment statement
would read "MessageLabel.Text is replaced by Hello World."

MessageLabel. Text = "Hello World"

C II ,\1°T t: R

::! = :';'1
• ~ OOje<t.Pcopocty • ''""'

The value named on the right side of the equal sign is assigned to (or placed
into) the property named on t11e left.

Tile A.s.:sigumc ut Statcmcnt-Ex:unplc~

Titlelabel.Text = 'A Snazzy Program'
Addresslabel.Text = "1234 South North Street"
Messagelabel.AutoSize = True
Numberlnteger = 12

Notice iliat when the value to assign is some actual text (called a literal). it is
enclosed in quotation marks. This convention allows you to type any combina
tion of alpha and nwneric characters. lf the value is numeric. do not enclose it
in quotation marks. And do not place quotation marks around t11e terms True
and False. which Visual Basic recognizes as special key tenus .

}=nclJJtg a l'l'ognun hy E'-l'•·uting a .\lf' tho11

To execute a method of an object. you write:

Object .Method()

Notice that methods always have parentheses. Although this might seem I ike a
bother. it's helpful to distinguish between properties and metJ10ds: Meiliods al
ways have parenilieses; properties don't.

Example,

HelloButton.Hide()
Messagelabel. Show()

To execute a metJ1od of the current object (ilie fonn itself). you use the Me
keyword for the object. And ilie method tJmt closes the form and terminates the
project execution is Close.

Me . Close()

In most c ases. you will include Me . Cl ose (} in the sub procedure for an Exit
button or an Exit menu choice.

Note: The keyword Me refers to the current object. You can omit Me since a
method wiiliout an object reference defaults to the current object.

31

I

If you don't type the parentheses after

a method, the editor adds it lor you,

lor most (but not a ll) methods. •

32 l ' C Introduction to Visual Basic 2010

Code the Even t Proced m·es f01· He llo Wod d

Code the Click Event fol' the l'nsh Me Button

STEP 1: Double-click the Push Me button. The Visual Studio editor opens '~ith
the first and last lines of your sub procedure already in place, with the
insertion point indented inside the sub procedure (Figure 1.32).

/ The class list /The methocllist

HeficForm:vb* X • _

~" Pu,hButton Y -I .f CIKI< /

ElPubl ic Clc~~ Hellofon• ~

I •

I End Sub

EJ Pri\ftte sub PushButton_click(ByVa l sender As system.O!>ject , ByVal ~

t~nd class

STEP 2: Type this remark statement:

' Display the Hello World message .

Notice that the editor automatically displays remarks in green (un
less you or someone else has changed the color with an Environment
option).

Follow good coding conventions and indent aU lines between
Private Sub and End Sub. The smart editor attempts to help you fol
low this convention. Also. always leave a blank line alier the remarks
at the top of a sub procedme.

STEP 3: Press Enter twice and then type this assignment statement:

Messagelabel.Text = "Hello World "

Note: When you type the names of objects and prope1ties. allow In
telliSense to help you. When you type the first character of a name.
such as the "M" of "MessageLabel". lntelliSense pops up a list of pos
sible object names from your program (Figure 1.33). When several
items match the first letter. you can type additional characters until
you get a match. or you can use your keyboard down arrow or the
mouse to highlight the correct item. To accept the correct item when it
is highlighted. press the punctuation character that should follow the
item, such as the period. spacebar. equal sign, Tab key. or Enter key.
or double-click the item witJ1 your mouse. For example. accept"Mes
sageLabel" by pressing the period and accept "Text" by pressing the
spacebar, because those are the chamcters that follow the selected
items.

F i g ur e 1. 32

The Ediwr window. showing
the first and last lines of the
PushButwn_Click event
procedure.

C II ,\P'I' I\ R

Public Chs.s J-lclloFora

Pr i vat e Sub PushButb:m_Clid: (6yV.:.l s ender- ~ Sy s tcm.Cbje"ct ,
• Display t he Udlo World mes:::.ogc .

Mesl
End 'Is lv1css~Box

-~d c_~ l i IJ1essagel abel r-
10 ProcessKeyMess;~ge
Common LAttj

The assignment statement

Messagelabel .Text = "Hello World "

assigns the literal " Hello World" to the Text prope1ty of the control
called MessageLabel. Compare your screen to F igure 1.34.

/Ed;tor tab

Hello-Fornl:\lb"' X

(t#(General)

B Poblic Cl~ss Be llo fcnll'

/Form Designer tab

·I~ (Oed antions)

I
El Pri vate SI.Jb Pu shButt<~n_Click(ByV<a l sender As Sy:;tem. O~jc:ct~ ByV~l

' Display the He Uo \lor l d message.

I~

Mcssogel.:~bel.Text- •Hello Wo~ld
End Sub "'-.,_ '

End Cl o s s """' S

~- ~ Remark statement
"Assignment statement

STEl' ·~· : Return to the form's design view (Figure 1.29) by clicking on the
Hel/oForm. vb [Design] form designer tab on the Document window (re
fer to Figure 1.34).

Code the O i ck Even L fo1· the Exit Button

STEP l : Double-click the Exit button to open the editor for the
ExitButton_Ciick event.

sn:r 2: Type this remark:

' Exit the project.

snJ> 3: Press Enter twice and type this Basic statement:

Me. Cl ose()

Note: You can omit the parentheses; the sma11 editor "ill add them
for you.

STEP 4.: Make sure your code looks I ike the code shown in Figure 1.35.

Fi~Rr e 1 .3 3

lntelli.Sense pops up to help
you. Select the correct item
fron~ the list and press the
period, spacebar, Tab key. or
Enter key to accept the text.

Ijpe the remark and
assignment statement for
the PushButton_ Click event
procedure.

33

Allow the Editor and lntelliSense to

help you. If the lntelliSense list does

not pop up, you probably misspelled

the nome of the control. And don' t

worry about capita lization when

you type the no me of o n object; if

the nome matches a defined object,

the Editor fixes the copitolizotion. •

Accept on entry from the lnte lli.

Sense popup list by typing the punc·

tuatio n tha t follows the entry or by

pressing the Enter key. You con a lso

scroll the list a nd select with your

mouse. •

34 v S l l :\ L G ,\ S (' Introduction to Visual Basic 2010

_/Asterisk indicates unsaved changes

f';j (General) -ID (Oedac•tions)

HPUblic class Hellofom l±.
Jl Privat e Sub Pushl3uttcn_C1icl<(8yVat sender As System, O!>jeCT , ByVa l

' Display the Hello World 111eo;sagf! .

Ne~sagetabe l. Text = •wello World"
End Sub

El Private: Sub ExitButton_Click(ByV~:~l sender As System. Object ~ ByV.;,l
' Exit t he project.

Me .close()
frld Sub

End class

Run the Project

After you have finished writing the code. you are ready to run (execute) the
project. Use one of these three techniques:

1. Open the Debug menu and choose Start Debugging.

2. Press the Start Debugging button on the toolbar.
3. Press FS. the shortcut key for the Start Debugging command.

Start tb<' ProJect Hunniug

STEP 1: Choose one of the three methods previously listed to start your project
running (Figure 1.36).

Problems? See ".Finding and Fixing Errors" later in this chapter.
You must correct any errors and restart the program.

If all went well. the Visual Studio title bar now indicates that you are rmming.

w9 Hello World by Your Name l:o. l l2l.~l

1'1

II
1.1

Fig u r e 1.35

Type the rode for the
ExitButton_Click event

procedure. Notice that an
asterisk appears on the tab at

the top of the window.
indicating that there are
unsaved changes in the file.

Fif.(u••e l.:l6

The form of the mnning
application.

C II ,\I>'I' I' R

Click the l~ush Me Buuou

STEP 1: Click the Push Me button. Your " Hello World" message appears in the
label (Figure 1.37).

Click tbe Exi t Buuon

STEP 1 : Click the Exit button. Your project te1minates. and you retum to desip;n
time.

Oil Hello World by Your Na111e

Save Yom· Wm·k

Hdlo Wodd

~
I Em I

35

l~ljji#J
If your form disoppeors during run
time, click its button on the Windows
task bar. •

li' i l! ••••e 1.37

Click the Push Me button and
"Hello World" appears in the
label.

Of course, you must always save your work often. Except for a very small pro-
ject like this one, you wilJ usualJy save your work as you go along. Unless you L:~~~li .. i .. I .. :J.~_ ____ _
(or someone else) has changed the setting in the IDE's Options dialog box. your Click the Save All toolbor button to
files are automatically saved each time you build (compile) or execute (run) quickly sove a ll 0 f your work. •
your project after your initial save. You also can save the files as you work.

Save the Files

STEt> 1: Open the Visual Studio File menu and choose Save All. Tlus option saves
the current form. project. and solution files. You already selected the
name for the project when you first created the project. but you can
change it here if you ~tish. Make sure to set the location to the folder in
which you want to store the project. Press the Browse button to select a
location other d1an the one specified.

Leave the check box for Create directory tor solution checked. This
causes the IDE to create a new folder for the solution files. You will
have a folder within a folder: the outer folder holds only the solution
files. which makes it easy to reopen your projects. Click Save.

Close the Project

STEJ> 1: Open d1e File menu and choose Close Project. If you haven' t saved
since your last change, you wilJ be prompted to save.

36 l ' (' Introduction to Visual Basic 2010

Op<•n lbf' Pro.iecl

Now is the time to test your save operation by opening the project from disk.
You can choose one of three ways to open a saved project:

• Select Open Project from the Visual Studio File menu and browse to find
your .sin file.

• Choose the project from the Files I Recent Projects and Solutions menu item.

• Choose the project from the Start Page.

Or•cn the P1·ojcct File

STEP 1: Open your project by choosing one of the previously listed methods.
Remember that the file to open is the solution (.sin) file.

If you do not see your fonn on the screen, check the Solution Ex
rlorP.r winrlow- it f>houlrl ;;ay Ht:!lloWortd for tllf~ rrojP.~t. SP.IP.r.t thP.
icon for your form: HelloForm.vb. You can double-click the icon or
single-click and click on the View Designer button at the top of the
Solution Explorer (Figure 1.38): your form will appear in the Designer
window. Notice that you also can click on the View Code button to dis
play your form's code in the Editor window.

View Code button

~ Sclution £'.it ••

Modify Llw Pr·oj ecl

Now it's time to make some changes to the project. We'll change the size of
the " Hello World" message. display the message in two different languages,
add a Print button. and display the programmer name (that's you) on the
form.

Change the Size and Alignment of the Message

STEP l : Right-click on the fonn to display the context menu. If your controls
are ctmently locked, select Lock Controls to unlock the controls so that
you can make changes.

To display the fomt layout,
select the fonn name and click
on the View Designer button,
or double-click on the fornt
11ame. Click on the View Code
button to display the code in
the editor.

C:: II A I• 'rt;K

l>TEl' 2: Drop down the Objec t list at the top of tl1e Properties window and
select MessageLabel. which will make the tiny label appear
selected.

STEP 3: Scroll to the Font propel1y in the Properties window. The Font prop
erty is actually a Font object that has a number of properties. To see
the Font properties. click on the small triangle on the lefi (Fig
ure 1.39); the Font properties will appear showing the current values
(Figure 1.40).

Prcpenies • ~ X

Me:ssagelabel S.yct~m.Windo-Nt.l 9

~ ~ .!1
FlatStyle Standard ~

Click to expand the F'ontlist - ~ , @ Mtcrosoft s(;J
~ori!Cdor • Conhailfl1_

F'nnt propertie•

Generatdlrn True

Imcge D (non<)

Imogi:A.Iig., 11/iddlc:Ccnlc:t
Imaqelndeo; ntnon<) -

font
~fol'lt meet to dt"~llY tPirt 1n tM
<Omrol,

Properties

Me<"'!)et•~ system. \'liNlo..-s.Form; •

:. i l iii ·'

Foot

Urit Pomt
Bo:.d False

G<iCh..Stt
GdiiVuttuJf-, F.1lse

Ita!ic false

& rik.ro.rt False

Ul"'deff.-.e False

The font used to display ted i"' ti-le
conb"ol.

Settings box

Propertie• button

You can change any of the Font properties in the Properties win
do~-. such as setting the Font's Size. Bold. or Italic properties. You also
can display the Font dialog box and make changes there.

Figure 1.39

Click on the F onl 's triangle to
uiew the proper~ of the Font
object.

37

You ca.n change the illdivMJual
properties of the Fo11t objed,

38 v S l l ,\ L (' Introduction to Visual Basic 2010

STEP ,L: lf the Properties button (with the ellipsis on top) does not appear. click
on the Font prope1ty. Then click the Prope1ties button to display the
Font dialog box (Figure 1.41). Select 12 point if it is available. (If it
isn' t available. choose another number larger than the current setting.)
Click OK to close the Font dialog box.

Font

'='Fo:"nt'-: --:-::--:--:--- '::Fo:..:rt..:;otyl:c.•:.:.: -----., 9 » :
Mcro,cft S:!M Serif Regulo3r

)Jodenl\o. ~

MO!Wt:):!"'C"""""
MSOutiook

Efted•

F smkeou
l:l Undonno

A @'M!If:l
Oblique

"l Bold
Bold Obliqut

Sample

1\oBbYyZz

STEP 5: Select MessageLabel's TextAlign property. The Prope1ties button that
appears with the down-pointing arrow indicates a drop-down list of
choices. Drop down the list (Figure 1.42) and choose the center box;
the alignment property changes to MiddleCenter.

Properties • q X

Messagel.abel Sy;tem.\'lindows.FOI'm> •

t= Siu
To:~blndo::

Tag
l ex!

TertAlign

o. 20

Oetern1ines the position of the tEXt within
the label.

Add a New Label for Your Name

Prope1ties button

Select MiddleCenter
align ment

STEP 1: Click on the Label tool in the toolbox and create a new label along the
bottom edge of your form (Figure 1.43). (You can resize the form if
necessary. but you must unlock the controls first.)

Fig n•• e 1 . 41

Choose 12 point in the Font
dialog box.

When you cha nge o property from

its defa ult value, the property nome

a ppears ba lded; you can scan

down the property list a nd easily

identify the properties tha t ore
changed from their default value. •

F i ,: n1• e J .4 2:

Select the center box for the
TextAlign property.

You can cha nge the Font property
of the form, which sets the defa ult

font for a ll objects on the form. •

C II A I•'I' I'R

a"} Hd lo World by Yout Ntme

Pu;:h Me
Enter your name
;,t a lahel

STEP 2: Change the label's Text property to "by Your Name". (Use your name
and omit the quotation marks.)

Note: You do not need to change the name of this label because it
will never be refeJTed to iJ1 the code.

Cbange the Location and Tex t of tbe Push Me Buuou

Because we plan to display the message in one of two languages. we'll change
the text on the Push Me button to "English'' and move the button to allow for a
second button.

STEP 1: Select the Push Me button and change its Text property to English.
STEP 2: Move the English button to the left to make room for a Spanish button

(see Figure 1.44).
Note: If you catulot move the button. check your Lock Controls set

ting in the context menu.

" t-telloWorld byYour N•m•

Engl<h

byYo.u N~

39

Add a new label for your name
at the bottom of the fonn.

Fig11r e 1 . 44

Move the English button to the
left and add a Spanish button.

40 \ S l \ L If \ s (' lntroductio11 to l'i.<ual Bmic 2010

\dd n SJJaui><h Huuon

STEP 1: Add a new button. Move and resize the buttons as necessary, referring
to Figure 1.44.

STEI' 2 : Change the Name property of the new button to Spani.shButton.
STEI' 3: Change the Text property of the new button to Spanish.

Add au E,·e m Pl"Ocedm·e fo1· 1he S p:mi"b Huuon

STEI' I • Double-click on the Spanish button to open the editor for
Spanish Button_ Click.

STEI' 2 : Add a remark:

' Display t he Hello World message in Spanish .

STEI' :1: Press Enter twice and type the following Basic code line:

Messagelabel .Text = "Hola Mundo'

ST EI' 4-: Return lo design view.

\ tid u Prim Huuou

STEI' 1: Add another button and name it Print Button.
STEI' 2 : Change the button's Text property to "Print'' .
STEI' 3: Move and resize the buttons as necessary.

\cltl u P•·iULFut'lll f'oiiiJHIIII'III

Visual Basic 2010 includes a Pr int Form component. You ~t-ill add the Print
Form component to your form. but it is not a vi.~ ible element. such as the con
trols you have already added.

You can choose to send the printer output to the printer or to the Print Pre
view windo~t·. which saves paper while you are testing your prognun.

STEI' 1: Scroll d01m to the bottom of the toolbox and find the header for Visual

Basic PowsrPacks.
STEI' 2 : Click on the triangle to open the section of the toolbox. You should see

the PrintForrn component listed (Figure 1.45).
11TEI' 3: Double-click on the Print Form componenl. Or you can drag and

drop the component on the form. In either case, the component ap
pears in a new pane that opens at the bottom of the Fonn Designer
(Figure 1.46). This pane. called the compoucut u·ay. holds c om
ponents that do not have a visual representation at run time. You •~ill
see more controls that use the component tray later in this text.

4 Vsual Basic Pow-eo-Pack;;

at Pointer

~ PrintForm

"- UneShape

An eosy W<:T'f lo creole mukiple sim

ilar controls is lo copy on exisling

control and posle il on lhe form. You

con posle muhiple limes lo creole

multiple conlrols. •

Filo(ure 1. 45

Open the V..,ual Basic
Puwer Packs sed ion of the
toolhox and oouble-click on
the PrintForm component.

C II A 1• 'I ' II ll

Start Page ~lloForm vb" HelloForrn.vb [Design!~ X

o1; Hello lllorld by Your Name ~[~]I,.Q.j

~
I &a I
by Your Name

PrintForm component

Add an Event Procedure fo1· Lhe Print Button

STEP 1: Double-click the Print button to open the editor.
STEP 2 : Add the remark and press Enter h~ice.

' Print the form on the printer.

Component tray

STEP 3: Allow lntelliSense to help you set the PrintAction property of the Print
Form component: Type "Print£" and the PrintF01ml item is selected in
the lntelliSense list. Then press the period to accept the name. and the
list of possible properties and methods for that object pops up. Select
PrintAclion by using the keyboard down aJTOW, by typing enough let
ters to automatically select the property. or by clicking with the mouse.

Then accept PrintAction by pressing the spacebar or the equal
sign. lf you pressed the spacebar, type an equal sign, and the list of
possible choices will pop up. Choose Printing . PrintAction . Print
ToPreview and press the spacebar or the Enter key to accept it. Your
line of code should look like this:

41

Fi J(ur e 1. 4 6

The new PrintFol7n component
goeJ in the component tray at
the bottom of the F omt
Designer window.

PrintForm1 .PrintAction = Printing . PrintAction . PrintToPreview

STEP ,~, Add the last line of code. which starts the print operation. The Print
method sends the output to the device specified in the PrintAction
property. which defaults to the printer.

PrintForm1 .Print()

STEP 5: Retum to design view.

42 v C Introduction to Visual Basic 2010

Loek the Couu·o ls

STEP 1: When you are satisfied with the placement of the controls on the fonn.
display the context menu and select Lock Controls again.

Save <md l::.un the P rojec t

STEP 1: Save your project again. You can use the File/ Save All menu command
or the Save All toolbar button.

STEP 2 : Run your project again. Try clicking on the English button and the
Spanish button.

Problems? See "Finding and Fixing Errors" later in this chapter.
STEP 3 : Click on the Print button to test the Print Preview function.
STEP tJ.: Click the Exit button to end program execution.

Add Remm•ks

Good documentation guidelines require some more remarks in the project. Al
ways begiJ1 each procedure with remarks that tell the purpose of the procedure.
In addition. each project file needs identifying remarks at the top.

The Declarations secJ.iou at the top of the file is a good location for these
remarks.
STEP 1: Display the code in the editor and click in front of the first line

(Public Class HelloForm) . Make sure that you have an insertion
point: if the entire first line is selected. press the left arrow to set the
insertion point.

STEI' 2 : Press Enter to create a blank line.
Warning: lf you accidentally deleted the first line. click Undo (or

press Ctrl + Z) and try again.
Sl 'EP 3 : Move the insertion point up to the blank line and type the following

remarks. one per line (Figure 1.47):

• Project :
Programmer :

• Date:
Description:

Hello World
Your Name (Use your own name here.)
(Fill in today ' s date .)
This project will display a "Hello World "
message in two different languages
and print the form .

Enter remarks at the tcp of the fonn file.

Press Ctrl + l·lome to quickly move

the insertion poiont to the top of the

f;l

Fig ua·e 1. 47

HelloForm.vb [Des• n]• •

Prograntner: vour Name (Use your own name here.)
Date: (Fill in today ' s date .)
Description: -his project will display a "Hello World"

nessage in two different languages
and print the form.

Public Class Helloforn

Private Sub PushButton_Click(ByVal s ender As System.Object ,
' Display the Hello World message.

~lessagelabel , Text = "Hello 1-lorld"
End Sub

C II A 1• 'I' " ll

Explo t·e tbe Editot· Window

STEP 1: Notice the two drop-down list boxes at the top of the Editor window.
called the Class Name list and the Method Name list. You can use
these lists to move to any procedure in your code.

STEP 2: Click on the left down-pointing arrow to view the Class Name list. No
tice that every object in your fonn is listed there (Figure 1.48). Near
the top of the list, you see the name of your form: Hel/oForm.

f (HelloForm Events)

o~ ExitButton

.,<~ Labell

ov MessageLabel

o'-~ PrintButton

/J PrintForml

o"' PushButton
message.

j Wor ld"

STEI' 3: Select Spanish Button from the Class Name list. The inse11ion point
jwnps to the first line within the SpanishButton_Click event procedure.

STEP 4·: Drop down the Method Name list (the right list); it shows all possible
events for a Button control. Notice that the Click event is bold and the
rest are not. Any event for which you have written an event procedure
appears in bold.

To write code for more than one event for an object. you can use the Method
Name drop-down list. When you select a new event from the Method Name list.
the editor generales the Private Sub and End Sub lines for that procedure
and moves the insertion point to the new procedure.

Finish Up

STEP 1: Save the project again.

Pl'inl the Code

Select tbe Printing Options

STEP 1: Make sure that the Edjtor window is open. showing your form's code.
TI1e IDE's File I Print command is disabled unless the code is display

ing and its window selected.
Note: lf the File I Print command is disabled. click an inset1ion point

in the Editor window.
STEP 2 : Open the File menu and choose Print. Click OK.

Fi g nr e 1 .4 8

View the list of objects in this
form by dropping d-own the
Class Name list. Select an
object front the list to display
the sub proced-ures for that
object.

43

44 ' !- l \ L II \ S l ' Introduction lo 17Jua/ Bruic 2010

A Sample Printout

TI1is output is produced when you print the fonn's code. Notice the It symbol
used to continue long lines on the printout. On the screen. those long lines are
not split. but scroll off tJ1e right s ide of the screen.

C:\Users\ . . \HelloWorld\ Hell oForm.vb

'Proj ect:
' Programmer :
'Date :
• Description:

Public Class HelloForm

Hello World
Your Name
Today •s Date
This project will display a 'Hello World'
message in two different l anguages and print the form.

Private Sub PushButton_Click(ByVal sender As Systen.Object, ByVal e As System. It
EventArgs) Handles PushButton.Click

• Display the Hello World Message .

uessageLabel.Text • 'Hello World '
End Sub

Private Sub ExitButton_Click(ByVal sender As Systen.Object, ByVal e As System. "
EventArgs) Handles ExitButton.Click

• Exit the project.

Me .Close()
End Sub

Private Sub SpanishButton_Click(ByVal sender As system.Object, ByVal e AS system. IC
EventArgs) Handles SpanishButton .Cl ick

• Display the Hello World message in Spanish.

UessageLabel .Text = 'Hola Mundo '
End Sub

Private Sub PrintButton_Click(Byval sender As systen .Object, ByVal e As
System.EventArgs) Handles PrintButton.Click

• Print the form.

PrintForm1.Print Action Printing . PrintAct ion.Print ToPreview
PrintForm1.Print()

End Sub

End Class

Finding and Fixing Errors I

You already may haYe seen some errors as you entered the first sample project.
Programming errors come in three varieties: synta.x e r r o 1·s, nm-time errors.
and logic C ITOI'S.

C II 1\ 1• 'I' I' ll

Syntax E1Tot·s

When you break VB's rules for punctuation, format. or spelling. you generate a
syntax error. Fortunately. the smart editor finds most syntax errors and even
corrects many of them for you. TI1e syntax errors that the editor cannot identify
are found and reported by the compiler as it attempts to conve1t the code into
intermediate machine language. A compiler-reported syntax error may be re
ferred to as a compile error.

The editor can correct some syntax errors by making assumptions and not
even report the error to you. For example. a string of characters must have
opening and closing quotes. such as " Hello World". But if you type the open
ing quote and forget the closing quote. the editor automatically adds the clos
ing quote when you move to the next line. And if you forget the opening and
closing parentheses after a method name. such as Close(). again the editor
will add them for you when you move off the line. Of course. sometimes the
editor will make a wrong assumption. but you will be watching, right?

The editor identifies syntax enors as you move off the offending line. A blue
squiggly line appears under the part of the line that the editor cannot interpret.
You can view the error message by pausing the mouse pointer over the enor, which
t:x>ps up a box that describes the enur (Figure 1.49). You also can display an Ermr
List window (View I Error List). which appears at the oottom of the Editor window
and shows all error messages along with the line number of the statement that
caused the error. You can display line numbers on the sow-ce code (Figme 1.50)
with Tools I Options. lf Show All Settings is selected in the Options dialog box.
choose Text Editor I Basic and check Line Numbers; if Show All Settings is not
checked. then choose Text Editor I Basic I Editor and check Line Numbers.

The quickest way to jump to an error line is to point to a message in the
EtTor List window and double-click. The line in enor is selected in the Editor
window and a list of suggested conections pops up.

At tin1es the editor can recognize enors and offer suggested solutions. This is
more likely to occur in later chapters as you begin to use new keywords. ln Chap
ter 3 you leam to declare elements that can use a data type called Decimal. If you
accidentally mistype the word Decimal. a small red line appears at the end of the
word. Point to the line and an AutoCot·rect box appears. offering to change the
word to the correct spelling. Figure 1.51 shows AutoCorrect in action.

If a syntax enor is found by the compiler, you will see the dialog box shown
i.n Figure 1.52. Click No and retum to the editor. correct your enors. and run
the program again.

EJ Public Class ~llofom

I
EJ Private Sub PushButton_Click(ByVal sender As System. Object , ByVal e As

' Oio;,pl~y 'thP HPlln Wnrl rl mPc:.c:.~eP .

EJ Pr i vate Sub ExitButton Click(ByVal sender As System.Obiect , ByVal e As I ' Exit the project.

45

l~ljii:J
The Visual Basic AutoCarrect fea

ture can suggest corrections for

common syntax error). •

F i J,! ur e 1.49

The editor identifies a syntax
error with a squiggly blue line.
and you can point to an error
to pop tp the error message.

46 \ l S U A I, C lntrod~tction to Vis ~tal Basic 2010

You can display the Error List window and line numbers in the source code to help locate the error lines.

I fellor om1.vb* X llellor o rm.vb [Ces1 n]* •

~Helloform
1 13 ' Project :
2 l• Progr ammer:

Date:

· m (Declarations)

Hello World
Your Name (Use your own name her e.)
(Fill in today' s date,)

4 Description:
5

This project will display a "Hello World"
message in two differ ent l anguages

6 and print the form.
7
8 B Public Class Hellofona

9 I
1a 8 Pr ivate Sub PushButt on_Click(ByVal sender As System.Object , ByVal t

l1 1 ' Display the Hello World message.
12
l3 Mesagel abel. Text = "Hello World"
14 End sub("'
15
16 Pr1vate Sub ExltButton_Cllck(ByVal sender As System.Object, ByVal e
17 I Exit the proiect.

1oo% • •I "'

Errorlist • 11 X

0 1 Error .1:, 0 Warnings I (j) 0 Messages

Description File

0 1 'Mesagelabel' is not declared HelloForm.vb
It may be inaccessi ble due to
its protection level.

Line

13

Column

9

Project

HelloWorld

Double-d ick anyll·here on this line to jump to the error

Oim AmountDecimal As Dec"'a

0~
Type 'Decmal' is not defined..

,.... ,_,_,,,, __ ,,.
[(;han2e:o~111aEto :P.e.~irnal::!

Gen~rate 'Class DKmal'

Gen;t;rate new type-.

Microsoft Visuol Studio

CD There were build E((Ors. Would you like to (Ontinue and run the last
succeScsrul bl.lild?

L-_.'f•'"''-.JI LI __ N_o _ _,

Fl Do not show this dialcg again

--- -

Fif.(n•• e 1 . 51

Point to the small red line and

the AutoCotrect feature pops

up a message and a box with
a down arrow. Display the
mggestions by clicking the
down arrow.

Figur e 1 . 5 2:

When the compiler identifies
syntax errors, it cannot
continue. Click No to return to
the editor and correct the error.

C II ,\I> 'I' I' R

Run-Time E1To rs

If your project halts during execution. it is called a nm-time error or an excep
tum. Visual Basic displays a dialog box and highlights the statement causing
the problem.

Statements that cannot execute coJ'l'ectly cause tun-time en·ors. T he state

ments are correctly formed Basic statements that pass the syntax checking;
however, the statements fail to execute due to some serious issue. You can
cause mn-time errors by attempting to do impossible arithmetic operations.
such as calculate with nonnumeric data. divide by zero, or find the square root
of a negative number.

In Chapter 3 you will learn to catch exceptions so that the program does not
come to a halt when an enor occurs.

Logic Eno1·s

When your program contains logic enors. your project runs but produces in
con·ect results. Perhaps the results of a calculation are incorrect or the wrong
text appears or the text is okay but appears in the wrong location.

Beginning programmers often overlook their logic errors. If the project
runs. it must be right- right? All too often. that statement is not correct. You
may need to use a calculator to check the output. Check all aspects of the proj
ect output: computations, text. and spacing.

For example. the Hello World project in this chapter has event procedures
for displaying " Hello World" in English and in Spanish. If the contents of the
two procedures were switched, the program would work but the results would
be incorrect.

The following code does not give the proper instmctions to display the
message in Spanish:

Private Sub SpanishButton_ClicK
' Display the Hello World Message in Spanish .

Messagelabel .Text
End Sub

Pro,jeet De bugging

"Hello World "

If you talk to any computer programmer. you .. -ill learn that programs don't have

errors. but that programs get "bugs" in them. Finding and fiXing these bugs is
called clebugging.

For syntax errors and run-tin1e errors. your job is easier. Visual Basic dis
plays the Editor window with t11e offending line highlighted. However, you must
identify and locate logic errors yourself.

VB has a very popular feature: edit-and-continue. If you are able to iden
tify the run-time enor and fix it. you can continue project execution from that
location by clicking on the Continue button. pressing FS. or choosing Debug I
Continue. You also can correct the error and restart from the begim1ing.

The Visual Studio IDE has some very helpful tools to aid in debugging your
projects. The debugging tools are covered in Chapter 4.

47

48 ~· s l l \ •• IC t\ s C lnrra<!rtctil>n to Vi.mfll Ba.,ir; 2010

A Cl~:tn C.ompilt•

When you start executing your p rogram, the first s tep is called compiling,
which means that the VB stalements are converted to Microsoft Intermediate
Language (MSIL). Your goal is to have no errors dm·ing the compile process: a
clcun compile. Figure 1.53 shows the Error List 1~indow for a clean compile:
0 Errors; 0 Warnings; 0 Messages.

fiUf l1~t - ~

0 0 Errors .,.b 0 Warnin~5 Q) 0 M ess-ag es

Dcscript~on Fite wnc Column Projed

Nmuing Rul.-s and C•mvNllio us fo1· Obj._·t~ ls

Using good cm1sistent names for objects can make a project easier to read and
unders tand. as well as ea~ier to debug. You must follow the Visua l Basic rules
for naming objects. procedures. and variables. In addition. conscientious pro
gr>~mmAI"!< 11l~o follow r.Art>~in naming r.onvf>ntiom~.

Most professional programming shops have a set of standards U1at their
programmers must use. Those sta ndards may differ from the ones you find in
this book. but the most important point is this: Good programmers follow stan
dards. You slwuld have a set of standards and always folLow them.

The Naming- Rul~s

\Vhen you select a name for an object, Visual Basic requires the name to begin
with a letter or an underscore. The name can contain letters. digits. and u nder
scores. An object name cannot include a space or punctuation mark and can
not be a reserved word. such as Button or Close. but can contain one. For
example, Exit Button and CloseBuuon are legal.

The NmHing Couveutious

This text follo1vs standard naming_ conventions. which. help make projects more
understandabl e. When naming controls. use Pascal casing, which means that
you begin the name with an uppercase character and capitalize each additional
word in the name. Make up a meaningful name and append the full name of the
control's class. Do not use an abbreviation unless it is a commonly used term
that everyone will understand. All names must be meaningful and indicate the
pmp ose of the object.

Examples
Messagel.abel
ExitButton
DataEntryForm
D iscountRateLabel

If you get the message •There were

build errors. Continue?" always say

No. If you soy Yes, the last cleanly

compiled version runs, rather than

the current version. •

F I J(11 •• e I • 5 3

Zero error!. warnings. and
messages meal!.! that. you have

a. clean compile.

(; II ,\ I ' 'I ' 1•: ll

Do not krep thc defauh names 11ssigned by Visual Basic. such as llutton l
ond Lubel3. Also. do not name your objects with numbers. The exception to
this rule is for labels or other controLs that never ch811£e during project execu
tion. Labels usually hold items such as titles. instructions. and labels for other
controls. Leaving the;,e labels with their defauh names is perfectly acceptable
and is pract iced in this text.

Refer to Table 1.2 for sample object names.

Recomllll' lld<'tl N:uulug Com·cutions for· VisLtal Basic Objects

O hjt•rt Ct

Form OatoEut ryFon11

Buthln Exit Button

T•~tBox Puymf'n• A mounlTextBox

Radio button BoldHnclioBullon

CheekBnx l'l'intSitlumuryCiwck !lox

llorizontal ocroll L.or l~ateHorizontaiScroi!Bar

Verlieall!<'rull bar Temperature Vert icalSeroliBor

Pictur~Oox Lond.capePictureBox

Combo Box BookName,.ComboBox

Liolllo<

Soundl'ln~rr I nt rol'ugcSoundPiayer

Visual Studio Help i

Vi~tllll Situ lin 2010 hn11 11 r.omplPtoly nP.w HP.lp sysiAm. r.llllP.r! thP. HP.Ip ViAwPr.
Rather than display Help topics in the Visual Studio IDE. the Help Viewer dis
plays its content in a separate browser window, using the default browser on the
local compute r. You can display Help in any browser, such as Firefox. Chrome.
or Internet Explorer.

One advantage of the new Help system is that Microsoft can keep it up-to-date.

Scuiul! Up lldp fm· Yow· Compute r·

You can set up Help to s tore and display topics offline (local) or use
Microsoft's online resources. called Mic rosoft Developers Network library
(MSDN). Of course. to display online content. you must have an active
interne t connection.

49

Table- • 2

so \ s l l ' t It \ S (' lntroductiM to V'uual Ba.ic 2010

At the time you install Visual Studio. you make the choice for online or local
content. But it is easy to change your selection later using the Help Library
Manager. Select Help/ Manage H91p Settings to display the Help Library Manager
(Figure l.54a). Click the first link for Choose online or local help to make these
lection (Figure 1.54b). If you choose local, you can specify where you ,.·ant to
s tore the Help files: you also can check online for updates to your local content.

Figure 1.54

a. Select Help I Manage Help Settings to open the Help library Manager: b. Make your selection for online or local help.
For local help. yo11 can specify th4! locaJion to store the files.

(a)

Help Library Manager

A '~~,.,..,..,.~

I t DI«Ji:f,,.~n.Qf1loflf'

.... Pi•tiUII, LI'b•

J't(t ftHro • Ol"tt-•

X ~~~~

Vie\\·in~ H('lp Topics

-"'~'-

Selling<

lb'al)'k).C.tf!lo!lol'lo

--C:I~<ov· ... -;o .. ~,.

(b)

The quickest and easiest way to view a Help topic that relates to Visual Basic is
to use Fl. or comext-sensith ·e Relp. Select a VB object. such as a button or
label. or place an insertion point in a word in the editor. and press Fl. A browser
window ,.;u open ,.ith the corresponding Help topic displayed, if possible.

The Help Viewer window (Figure 1.55) di~plays a table of contents (TOC)
that sho,.·s the ctment topic indented below its parent. and a furtJ1er indented
list of its subtopics. so you can see the hierarchy of topics. You can click any of
the links in the TOC to ee other topics. Figure 1.56 shows the next level of top
;"" nnnP.r th" T .ahP.I \.lass pagP..

Use the Search box above the TOC to search for a specific topic. You can
search for multiword terms and use AND. OR. and NOT in your search tenus.

If you want to see Help topics about the Visual Studio fOE. select an ele
ment. such as the Properties Hilldow. and press Shift-Fl.

C II A I•TI\ R

The Help Viewer displays in the default browser. Select topics .fron~ the TOC on the leji side of the window. or type a term
into the Search box above the TOC. You also can click on links in the large Content pane on the right .

• ·~ X It> 8ing

1!' label Members (Systern.Windows.Forms)
-- ----- -------------

~~ny~ -- -----

MSON libretr(
.NET DEVElopment
• NET Framework.& Fie lease Candidate (RC)
.NET Frame\•.:ork Class Librort
systam.W!I'ldo't\>s.Forms. Namespace
Label Class

lobd Members
Labe-l cons.truaor
label Methods
label Proo(rtl ~
l~be! EVE!fl[S

Related Linl<.

Acces.stbiltty N.amQSpace
Mcr<.'lsoft.A::.PN!l.Snapifl Narn-espare
Microsoft.Buad.BuildEng!n<: Namespace
M!c.rosoft.Bu~d.cons1ruaion Namespace
Mlnos.oft Suitd.Conversion N.,mespace
Mcrosoft.Suid.Debtv,jgmg Nan1espace
M·crosoft s~..~-M.evaluation Namespace
McrosoftBuid.Excephons Namespace
MtcrosottBu11d.Execut!on Nam(!spxa
Microsoft Build.Ffarnel\onrlc Nangspace
Mcrosoft.auad.Frarnework.XamiTypes Namest=
Mtcrcsott.Sulid.loggtng Nam(!space
M oosortaui!d.Tasks Nam9space
Mcrosolt.Build.Tasks.Deployment.Bootstrappe
M!cros:on:.BuKdJasks.D~IO'JmentM.ln!f2stU:ih
M<rosoiL.Bu~d.Tasks.Hosting Namesp~ce
M·cros:-oft.Buitd.Tasks.Vflndows Name!ipoce
Mcro-s:oftsutd.Taslc's.X.aml Namespc.ce

•
Label Members _..,. ... -;msdn
This: page !S speofic to .NET ~---ame\VOIX Verslcn: 1.1 2.0 3.0 3.5 4

RE-pr~s~nts a standard Windows: label .

The Lilbel type exposes the following membt>r>.

Constructors
Description

initializes a new Instance of the label class.

Top

M@thods
Name

AcctssiiY.I!tyNotifyCI:en\s
("-a:ess1bleEvents int32)

Accessib'l,tyl'<o\cyCrents
(A{'CQSS!bl.eEVQnts:. !.r1t32, ln132)

Seglolnvoke{De'•g•t•)

Description

Notifies the acces.s.ibaity d ient applications
of the speofied Access1bleE·v-ents for the
spedfied chiid control. (lnharited tram
Contro'.)

Notifies the accessibarty d ient applications
of th2 speafled AccQssibleEvents tor th2
specified chad control . anherited from
Control.)

http;i/m>dn.microsoft.comten-us/,braty/system.w\ndowsJonr

Sl

52 v S l l ,\ I. C Introduction to Visual Basic 2010

Di.splay the properties of a Label control. along with an explanation of each. by selecting Label Properties in the TOC.

~ !..:!bel Properlies (Syskm.Wtndowsh rm$) • Wfndo·l'ls [nkmet Explorer

0 0 ~ ~ http:,'. nHd."'l.microsoH.com en ·.;sll·btl)tS)'rlcmollindo'l#s.fo-•m~.f~bd p-roocrbest'VSJ(-- ~.,. X It> e~g p ... ~

-(t f norites ,; label Properti~ (Synem.Windau;.s.form~) SJ • ~ ... P ~ ...- P.,ge • S:.fdy ... Tooh »

. a
Label Properties _,.,..!; msdn

MSDN Library
,NET Oc..,ck>pmcnl

lh1s paag 1': spec1f1c to: 1\11:: ~nmc~\lort 'IHS-Ion 1.1 2/J 31J 3~ 4

.NET Fram~.vorl4 Re!ea .. e Cancf:datf: (RQ

.NET f rame-A·oO:cL;,ss Lior.1rJ
S.y~t~m.W•ndo\\s.Form~ Na~space
label Class

Label Properties
AutoEI' ipsis PropE!rty
AUtOSize Propeny
Gackground:magc Propfrty
6actgro1•rd~m"tgelayout Pre pert)·
SorderStyle Property
Cre.at~:,~Params: PropE!fty
O(!~au~Jm<!Mode Propert)'
Oe:Jult~1J:rg!n Proper:y
0-efr~ult~ze Prope-t't)'
Aa>SlJ'• Pcop€rty
Image Property
bra;;eAI!gn Property
[magelndex Prope:-rf
£mage Key Property
lmagel.st Prop~n}
rme.V1odc Property
PreferredHeighi Propeny
PrfforredWKI1h Property
RE>oderTransmtrent Properl)

Managing Windows

The l<~bet type exposes. the follo~ing members.

Pro()erties
Name

'!if ~ccessibi!ityObji!d

rJff Acces. ... ible:oescripttof'\

r'!fl ~ct>ssibleName

'f! >.ccesSibleRole

Description

Gets th~ AccessibiE!Objea assigned to the control.
(JnhErited kom control.)

Gets or s~ts th~ d;.fau!t acbon description of the
control tor use by access:bflity client apphc.a!ions.
(Jnher~ed fmm Control.)

G9t'i or SQts thE! d~scription of the ccmrot used by
accessibility di~nt appliCdtions. (lnherited from
Control.)

Gets o r sets the name of the contr-ol osed by
accessibility d iEnt applications. (lnh~rited frorn
controq

Gets or sets thEi
(tnher~ed from I

At times you may have more windows and tabs open than you want. You can
hide or close any window. or switch to a different 1rindow.

To close a window that is a part of a tabbed windol!', click the window's
Close button. Only the selected window will close.

To switch to another window that is part of a tabbed window. click on
its tab.

For additional help with the environment. see Appendix C. "Tips and
Shortcuts for Maste1ing the Visual Studio Environment."

Note: Answers for Feedback questions appear in Appendix A.

l. Display and examine the list of properties for a Button control.
2. Display the Editor window of your Hello World project. Click on the

Close method to place the inse1tion point. Press the Fl key to view
context-sensitive Help.

I ~

C II A I>1't: R S3

Your Hands-On Programming Example --------

Write a program for R 'n R--For Reading and Refreshment to display the cur
rent special promotions . Include labels to display the current special and the
promotion code and buttons for each of the follolling departments: Books, Mu
s ic. Periodicals . and Coffee Bar.

TI1e user interface should also have buttons for Print and Exit and a label
with the programmer's name. Change the name of the form to MainForm, and
place "R ·n R--For Reading a11d Refreshment" in the title bar of the form.

The Print button should display the form in a P rint Preview window.

Planuing the Project

ketch a form (Figure 1.57). 11-hich your users sign off on as meeting their needs.
Note: Although this s tep may seem unnecessary. having your users s ign off

is s tandard progranuning practice and documents that your users have been
involved and have approved the design.

A Planning sketch oftheformfor th.e h.a.nds-on programming example.

Book6Button- ;+[Book6 I

F i l! tt re 1 .57

Mu6tcButton- ~ Mu6tc I Curn:nt Promotion]..._ ________ __,/....- Promotlonlat:><:t

Pertodtcai6Button-r-+! Pertodlcal61

CoffeeBarButton-M_ Coffee Bar I

Prtnt6utton- ~ Print I
ExltButton-~ Exit I

Promotion Code ~~---k--------+PromotlonCodela~el

Programmed f Your Name

I
Lat?cl1 Lal7cl2 l.!l~OI3

S4 ,. s l \ L It \ s t: Introduction to Vi>ual BaJi<: 2010

Plan the Objects and Properties Plan the proper1y settings for the foiTD and for
each control.

Objeel

MainFonn

Bookslluttoo

MullicButton

Pe riodica.lsBullon

CoffeeBarButlon

PrintBllllon

ExitBullon

Labell

Label2

Label3

Promot.ionLabel

PromotionCodeLahel

Print Form!

P ror>erty

Name

Text
Sta.rtPO!Iition

Nrune
Text

Nrune

Text

Name

Text

Name

Text

Name
Text

Name

Text

Text

Text

Text

Name

AutoSize
BorclerStyle

Text
TextAiign

N ame

AutoSize
BorclerStyle

Text

TcxtAiign

Name

Setting

Ma.inFonn
R 'n R--For Re ading and Refre~~hmenl

CenterScreen

Boolu!Button
Boob

MusicButton
Music

Pe riodica.lsButton
Periodical•

CoffeeBo.rButton

Coffee Bar

PrintBullon
Print

Exit Button
Exit

Current Promotion

Promotion Code

Progrnmmed by Your Name

PromotionLabel
False
FixedSingle

{blank)
Middle Left

PromotionCodeLabel
False
FixedSingle

(blank)

Middle Left

PrintFo<ml

Plan the Event Procedul'l's You will need e ve nt procedures for each button.
Write the actions in pseudocode, which is English language that is "like code."

Procedure

BooksButton_Oick

Music Button_Clic k

PeriodicalsButton_Ciick

Actio•lii--PS<"udoc.•Ofle

Display "Buy tt.·o. get the second one fOO" half price" and

code 8608.

Display "'Get a free 1>1P3 do>mload •·ith purchase of a CD"

and code M608.

Display •'Elite members: recei~·e 10% ofT every pt.uchase"

and code 1'608.

C II 1\ I0 Tt: R

Coffee BnrButton_Ciick Display ·'Celebrate the"""""" with 20% ofT opecialty
drinks" and code C608.

PrintButt.on_Ciick

ExitButton_Ciick

Set the print action IQ Print Preview.
Call the Print method.

End the project.

\"(rite the Project Follow the sketch in Figure 1.57 to create the form.
Figure 1.58 shows the completed fonn.

Set the properties of each object, as you have planned.

Working from the pseudocode . write each event procedu.re.

\l'hen you complete the code. thoroughly lest the project.

The fomt.for tlte hand.-on programming exampk .

I •} K n R-·for R••ding •nd ;tetroshmonl

, __

~
~
~
[Coll .. e.r J

?"""oto-1Code 1.__ ___ _,1

'nte Pt·ojeet C..:odiu~t Solution

ChOtHandsOn
Bradley/Millspaugh
June 2010

li
I li

II

-

'Project:
'Programmer:
'Date:
'Description: This project displays current promotions tor each department .

Public Class MainForm

Private Sub BooksButton_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles BooksButton.Click

' Display the books current promotion .

Promotionlabel. Text = "Buy two, get the second one for half price. •
PromotionCodeLabel.Text = "8608"

End Sub

ss

56 ,. S l l \ L R \ 'i (" lrnroduction eo Vu ual 811.1ic 2010

Private Sub MusicButton_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles MusicButton.Click

' Display the music current promotion.

PromotionLabel.Text = 'Get a free MP3 download with purchase of a CD. '
PromotionCodeLabel .Text = "MSOB"

End Sub

Private Sub PeriodicalsButton_Click(ByVal sender As system.Object,
ByVal e As System.EventArgs) Handles PeriodicalsButton.Click

' Display the periodicals current promotion.

Promotion Label. Text = 'Elite members receive 10% off every purchase."
PromotionCodeLabel .Text = "PSOB"

End Sub

Private Sub CoffeeBarButton_Click(ByVal sender As system.Object ,
ByVal e As System.EventArgs) Handles CoffeeBarButton.Click

' Display the coffee current promotion.

PromotionLabel.Text = "Celebrate the season with 20% off specialty drinks."
PromotionCodeLabel. Text = "CSOB"

End Sub

Private Sub PrintButton_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles PrintButton.Click

· Print the form .

PrintForm1.PrintAction = Printing.PrintAction .PrintToPreview
PrintForm1 .Print()

End Sub

Private Sub ExitButton_Click(ByVal sender As system.Object,
ByVal e As System.EventArgs) Handles Exit8utton .Click

' End the program.

Me .Close()
End Sub

End Class

l. Visual Basic is an object-oriented language prima rily used to write appli
cation programs that run in Windows or on the Inte rnet us ing a graphical
user interface (GUT).

2. h1 the OOP object model. classes are used to create objects that have prop
erties. methods. and events .

3 . The .NET Frame work provides an environment for the objects from many
languages to inte mperate. Each language compiles to Microsoft Jntennedi
ate Language (MSJ L) and runs in the Common Language Runtime (CLR).

C II A I'l't: R

4 . The current release of Visual Basic is called 2010. Visual Basic is part of
Visual Studio. VB 2010 has an Express version. as well as the Visual Basic
portion of Visual Studio 2010 Professional, Visual tudio 2010 Premium.
and Visual Studio 2010 Ultimate.

5 . To plan a project. first ske tch the user interface and then list the objects
and properties needed. Then plan the necessary event procedures.

6 . The three steps to c reating a Visual Basic project are (1) define the user in
terface. (2) set t11e properties. and (3) write the Basic oode.

7. A Visual Basic application is called a solution. Each solution can contain
multiple projects. and each project may contain multiple forms and addi
tional files. The solution rile has an extension of .sin. a project Cile has an
extension of .vbproj. and fonn files and additional VB files have an exten
s ion of .vb. In addition. ilie Visual Studio environment and the VB com
piler botJ1 create several more files.

8 . The Visual Studio integrated development environment (LDE) consists of
several tools. including a fom1 designer. an editor. a compiler, a debugger.
an object browser. and a Help facility.

9. You can customize the Visual Studio IDE and reset all customizations back
to tlteir default s tate.

10. You c reate the user interface for an application by adding controls from the
toolbox to a form. You can move, resize. and delete the controls.

11. VB has three modes: design lime. run time. and debug time.
12. The Name property of a control is used to refer to the control in code. The

Text property holds the words that the user sees on the screen.
l3. Visual Basic code is IHitten in procedures. Sub procedures begin ''ith the

word Sub and end witJt End Sub.
14. Project remarks are used for documentation. Good programming practice

requires remarks in every procedure and in the Declarations section of
a file.

15. Assignment s tatements assign a value to a property or a variable. Assign
ment statements work from right to left. assigning the value on the right
side of the equal sign to the property or variable named on the left side of
the equal s ign.

16. The Me. Close() metJ1od tenninates program execution.
17. Each event to which you want to respond requires an event procedure.
18. You can print out the Visual Basic code for documentation. You also can

use the PrintForm component in an application to print the current form.
eithe r to the printer or to t11e Print Preview window.

19. Three types of errors can occur in a Visual Basic project: syntax errors.
which violate the syntax mles of the Basic language: run-time errors. which
conta in a statement that cannot execute properly: and logic errors. which
produce erroneous results.

20. Finding and fixing progmm errors is called debugging.
21. You should have a clean compile before you mn t11e program.
22. Following good naming conventions can help make a project easier to

debug.
23. Visual Basic Help has very complete descriptions of all project elements

and their uses. You can search Help topics or use context-sensitive Help.

57

S8

assignment s tatement 30
AutoCorrect 45
Button 19
class 4
clean compile 48
code 6
component tray 40
context menu 23
context-sensitive Help 50
control 3
debug Lime 14
debugging 47
Declarations section 42
design time 14
Document ll;ndow 14
event 4
event procedure 30
Express version 5
fonn 3
Form Designer 13

\

graphical user interface (GUI) 3
handle 13
Help 13
integrated development environment

(IDE) 8
Label 19
logic error 44
method 4

S l \ L

narnespace 23
object 4

n .\ s

object-oriented programming
(OOP) 3

Pascal casing 48
Print~'orm 40
procedure 29
Professional version 5
Properties window 13
property 4
pseudocode 6
remark 30
resizing handle 21
run time 14
mn-time error 44
snap lines 21
solution 7
Solution Explorer window 13
solution file 8
sub procedure 29
syntax error 44
Text property 25
toolbar 12
toolbox 13
Ultimate vers ion 5
user interface 6
Visual Studio environment 8

l. What are objects and properties? How are they related to each other?

C Introduction to V"uual Basic 2010

2. What are the three steps for planning and creating Visual Basic projects?
Describe 1rhat happens in each step.

3 . What is the pUipose of these Visual Basic file types: .sin . . suo. and .vb?
4. When is Visual Bas ic in design time? run time? debug time?
5. 'What is the purpose of the Name property of a control?
6 . Which property de tennines what appears on the form for a Label control?
7. What is the purpose of the Text property of a button? the Text property of

a form?
8. Wnat does PushButton_ Click mean? To what does PushButton refer? To

what does Click refer?
9. What is a Visual Basic event? Give some examples of events.

10. What property must be set to center text in a label? What should be the
value of the property?

C ll i\1'1'F. H

11. Wl1at is the Declarations section of a file? What belongs there?
12. What is meant by the Lenn rkbugging?
13. What is a syntax error. ~·hen does it occur. and what might cause it?
14. What is a run-time error. when does it occur. and what might cause it?
15. \Vhat is a logic e rror. when does it occur. and wha t might cause it?
16. Tell the class of control and the likely purpose of each of these object

nan1es:
AddressLabel
ExitBullon
NameTextBox
TextBiueRadioButton

17. What does context-sens itive Help mean? Ho~· can you use it to see the
Help page for a button?

1.1 For your first Visual Basic exercise. you must first complete the Hello
World project. Then add butlons and event procedures to display the
" Hello World" message in two more languages. You may substitute any
other languages for those shown. Feel free to modify the user interface to
suit yourself (or your instructor).

Make sure to use meaningful names for your new buttons. foiJm,ing the
naming conventions in Table 1.2. Include remarks a l the top of every pro
cedure and at the top of the file.

" Hello World'' in French:
" He llo World" in Italian:

Bonjour Lout le monde
Ciao Mondo

1.2 Write a new Visual Basic project that displays a different greeting. or
make it display U1e name of your school or your company. Include at least
three buttons to display the greeting. print. and exit the projec t.

Include a labe l that holds your name at the bottom of the fom1 and
change the Text property of the fonn to something meaningful.

Follow good nanling conventions for object names: include remarks at
the top of every procedure and at the top of the ftle.

Select a d iffe rent font name and font s ize for the greeting label. Lf you
~ish. you also can select a different color for the font. Select each font at
tribute from the Font dialog box from the Properties windo~·.

L.3 " 'rite a project that displays four sayings. such as '·The early bird gets the
~·om1" or "A penny saved i.s a penny eamed." (You "; 11 want to keep the
sayings short. as each must be entered on one line.) When the saying dis
plays on your fom1. long lines will mn off tJ1e form if U1e label's AutoSize
property is set to True. To wrap text ,~;t11in U1e label. change the AutoSize
property to False and use the sizing handles to make the label large enough.

Make a button for each saying with a descriptive Text properly for
each. a button to print. and a button to exit the project.

Include a label U1at holds your name at the boltom of the form. Also.
make sure to change the form's title bar to someiliing meaningful.

59

60 \ ' S Ll \ L u ,\ s C Introduction to Visual Basic 2010

You may change the Font properties of the large label to the font and
size of your choice.

Make sure the buttons are large enough to hold their entire Text
properties.

Follow good naming conventions for object names: include remarks at
the top of every procedure and at the top of the file.

1.4. Write a project to display company contact infom1a tion. Include buttons
and labels for the contact person. department. and phone. When the user
clicks on one of the buttons. display the contact information in the corre
sponding label. Include a button to print and anothe r to exit.

Include a label that holds your name at the bouom of the form and
change the title bar of the fonn to something meaningful.

You may change the Font properties of the labels to the font and size of
your choice.

·Follow good naming conventions for object names: include remarks at
the Lop of every procedure and at the Lop of the flle.

1.5 Create a project to display the daily ~pecials for "your" diner. Make up a
name for your diner and display it in a label at the top of the form. Add a
label to display the appropriate special depending 011 the button that is
pressed. The buttons should be

• Soup of the Day

• Chefs Special

• Daily Fish

Also include a Print button and an Exit button.

Sample Da ta: Dorothy's Diner is offering Tortilla Soup. a California
Cobb Salad. and Hazelnut-Coated Mahi Mahi.

C ll i\ l•l' E IC 61

Very Busy (VB) Mall Order

Lf you don't have the time to look for all those hard-to
fmd items. tell us what you're looking for. We'll send you
a catalog from the appropriate company or order for you.

We can place an order and ship it to you. We also
he lp a;th shopping for gifts; your order can be gift
wrapped and sent anywhere you wish.

The company title 11ill be shortened to VB Mail
Order. Include this name on the title bar of the first
form of each project that you create for this case study.

Your first job is to c reate a project that will display
the name and telephone nwnber for the contact pe rson
for the customer relations, marketing. order process
ing. and shipping departments.

fnclude a button for each department. When the
user clicks on the button for a department. display the
name and telephone number for the contact person in

two labels. AJso include identifying labels ll'ith Text
"Department Contact'' and "Telephone Nwnber".

Be sure to include a button for Print and one for
Exit.

Include a label at the bottom of the form that
holds your name.

Tesl Dah•

Dcp nr·tme n l Dcpartm~nt Telephone
Contoc t. Numl.e1·

Customer Rel~tion~ Tricia Mill, 500- 1111

Marketing Michelle Rigner 500-2222

Order Processing Kenna DeVoss 500-3333

Shipping Eric Andre .. ·s 500-4444

Valley Boulevard (VB) Auto £enier

Valley Boulevard Auto Center will meet all of your au
tomobile needs . The center has fac ilities uith every
thing for your vehicles including sales and leasing for
new and used cars and RV s . auto service and repair.
detail shop. car wash. and auto parts.

The company title will be shortened to VB Auto
Center. This name should appear as the title bar on the
first form of every project that you create throughout
the text for this case study.

Your first job is to c reate a project t11at will dis play
current notices.

Include four buttons labeled "Auto Sales".
"Service Center''. " Detail Shop'' . and " Employment
Opportunities". One label will be used to display
the information when the buttons are clicked. Be sure
to include a Print button and an Exit buuon.

Include your name in a label at the bottom of the
form.

T eiiil 0 111o

Butlon

Auto Sale•

Sen--ice Center

Detail Shop

Employment Opportunities

Label TeJ<I

Family wat~:on. immaculate
condilion $12.995

Lube. oil. filter $25.99

Complete detail S79.95 for
most cars

S ales position, contact Mr. Mann

551-2134 x475

62 ' S l \ L G A S 4.' Introduction !o V"uualfk>ic 21JIO

VIdeo Bo11anza

This neighborhood s tore is an independently owned
video rental business. The owners ~t·ould like to allow
their customers to use the computer to look up the
aisle number for movies by category.

Create a fonn witl1 a bullon for each category.
When the user clicks on a button. display the corre
sponding aisle number in a label. Include a button to
print and one to exit.

Include a label that holds your name at the bot1om
of the fonn and change the title bar of the form to
Video Bonanza.

You may change tl1e font properties of tl1e labels to
the font and size of your choice. Include additional
categories. if you wish.

Follo11· good programming conventions for object
names: include remarks at the top of every procedure
and at the top of tl1e file.

Test D ata

B utto n

Comedy

Drama

Action

Sci-Fi

Horror

Ncw Release8

Locat ion

Aisle l

Aisle 2

Awl~ 3

Aisle 4

Aisle 5

Bock Wall

Very Very Boarth

This chain of stores features a full line of clothing and
equipment for snowboard and skateboanl enthusiasts.
~lanagement wants a compute r application to allow
their employees to display the address and hours for
each of their branches.

Create a form •~ith a but1on for each s tore branch.
When the user clicks on a button. display the correct
address and hours.

Include a label that holds your name at tl1e bottom
of the form and change the title bar of the form to Very
Very Boards.

You may change the font properties of the labels to
the font and size of your choice.

Include a Print button and an Exit button. Follow
good progranuning conventions for object names: in
clude remarks at the top of every procedure and at the
top of the file.

Store Branches: The three branches are Down
town, Mall. and Suburbs. Make up hours and locations
for each.

B A p T E R

User Interlace
Design

I . Use text boxes. masked text boxes. rich text boxe>. group boxes . check boxes.

radio buttons. picture boxes. and line and shape controls effectively.

%. Set the BorderStyle property to make controls appear fiat or three-dimensional.

:JJ Select multiple controls and move them. align them. and set common properties.

4 . Make your projects easy for the user to understand and operate by defining

access keys. setting an Accept and a Cancel hull on. controlling the tab
sequence .. resetting the focus during program execution. and causing

ToolTips to appear.

5 . Clear the contents of text boxes and labels.

G. Make a control visible or invisible at run time by setting its Visible property.

1. Disable and enable controls al design time and run time.

8 . Change text color during program execution.

9 . Code multiple statements for one control using the With and End With

statements.

Concatenate (join) strings of text.

Continue long program lines using implicit continuation or expHcit line

continuation characters.

64 v S l l ,\ I. C User Interface Design

Introducing More Controls

In Chapter 1 you learned to use labels and buttons. In this chapter you will
learn to use several more control types: text boxes. group boxes. check boxes.
radio buttons. picture boxes. and line and shape controls. Figure 2.1 shows the
toolbox with the Common Controls, Containers, and Visual Basic PowerPacks tabs
open. to show the tools for these new controls. Figure 2.2 shows some of these
controls on a form.

Each class of controls has its own set of properties. To see a complete list
of the propetties for any class of control, you can (1) place a control on a form
and examine the propetties list in the Properties window. or (2) click on a tool
or a control and press F1 for context-sensitive Help. Visual Studio will display
the Help page for that control. and you can view a list of U1e properties and an
explanation of their use.

The toolbox with three tabs open. showing the new controls that are covered in this chapter. Click the triangles on the tabs to
open and close each section.

Toolbox ... 11- Click to open - " Containers
1> All Windows Form~ or close tab It Pointer

Click to open - " Common Controls ~ FlowlayoutP an el
or close tab ~ Pointer GroupBox LJ GroupBox

@ Button CJ Panel
CheckBox 0 CheckBox OJ SplitContainer

rm Checkedli~Box Ll Tab(ontrol
.
~ Com boB ox § T ablelayoutPan el

'ill Date TimePicker 1> Menus & Tool bars

A Label I> Data

A linklabel 1> Components

~ list Box 1> Printing

9f!2 Li~View I> Dialogs
9:~

Maske<trextBox - ,....-.'>~ Maskedl extBox 1> WPF lnteroperability

1m MonthCalendar
I> Reporting

8 Notifylcon
" Visual Basic PowerPacks

~ Pointer
lrn NumericUpDown

~ PrintForm
PictureBox ~ PictureBox

" [!!J ProgrssBar
LineShape Line5hape

RadioButton - ~e RadioButton
OvaiShape 0 OvaiShape

~\l!= Rich T extBox
RectangleShape - f--->c::l RectangleShape

RichTextBox - ~ ~ Data Rep eater
TextBox fill TextBox

t6 TooiTip

·~:: TreeView

[fJ WebBrowser

C II 1\ I' 'I' 1•: ll

Thi.s form uses labels. text
boxes. a check box, radio
butto11s, group boxes. and a

Group

boxes
~--------~·!-----+1-=- Text boxe• pii'lure box.

Radio

Use a text oox control when you want the user to type some input. The fonn in
Figure 2.2 has two text boxes. The user can move from one box to the next, make
corrections. cut and paste if des ired. and click the Display bull on when finished.
l.n your program code you can use the Text pt'OJ)(' I'LY of each text box.

Example

NameLabel.Text = NameTextBox.Text

In this example. whatever the user enters into the text box is assigned to
the Text property of NameLabel. If you want to display some text in a text box
during program execution. assign a literal to the Text properly:

MessageTextBox.Text = "Watson, come here ."

You can set the TextAligu pl'Ope t'ty of lexl boxes to change the alignment
of text within the box. In the Properties window. set the property to Left. Right.

or Center. In code. you can set the property using tbese values:

Horizonta!Al ignment.Left
Horizonta!Alignment.Hight
Horizonta!Alignment.Center

MessageTextBox.TextAlign HorizontalAlignment.Left

6S

66 v S l l ,\ I. C User Interface Design

Example Names for 1exl Boxes

TitleTextBox
CompanyTextBox

:Masked Text Boxes

A specialized form of the TextBox control is the !\'laskedText.Box. You can
specify the formal (the Mask property) of the data required of the user. For
example. you can select a mask for a ZIP code. a date. a phone number. or a
social security number. Figure 2.3 shows the Input Mask dialog box where you
can select the mask and even try it out. At mn time the user cannot enter char
acters that do not conf01m to the mask. For example. the phone number and
social security number masks do not allow input other than numeric digits.

Example Names for Masked Text Boxes

DateMaskedTextBox
PhoneMaskedTextBox

Note: For a date or time mask. the user can enter only numeric digits but
may possibly enter an invalid value: for example. a month or hour greater than
12. The mask ,~;u accept any numeric digits. which could possibly cause your
program to generate a run-time error. You willleam to check the input values
in Chapter 4.

Select a fonnat for the input mask in the Input Mask dialog box, which supplies the
Mask property of the MaskedTextBox control.

Input Ma;k J!i).l-.-1

Select a predefined mask description from the list below or select Custom to define a custom mask.

Mask Description

Numeric (5-digits)

Phore number

Phore number no area code

Short date
Short date and time (US)

Socicl security number

Time (European/ Military)
Time (US)

Zip Code

<Cus-tom>

Mask:

Preview:

Data Format

12345
(574) 555-0123
555-0123

12/11/2003

12/11/200311:20
000-00-1234

23:20

11:20

98052-6399

Validating Type

lnt32
(none)
(none)

Date Time

Date Time

(none)

Date Time

Date Time

(none)

(none)

[t] Use Validating Type

OK II Cancel

C II .\ 1• T t: R

Ridt Text Boxe-s

Another variety of text box is the RichText Hox control. which offers a variety
of formalling features (Figure 2.4). l n a regular text box, all of the text is fom1nt
ted the same. but in a rich text box. the user can apply character and paragraph
formatting to selected text. much like using a word processor.

One common use for a rich text box is for displaying URL addresses. [n a
regular text box. the address appears in the default font color. but the rich text
box displays it as a link when the DetectU rl property is set to True. Note that it is
not an active link. but it does have the formatting to show the URL as an address.

You also can load fom1atted text into a rich text box from a file s tored in
rich text format (rtf). Use the Load File method of the rich text box. In this ex
ample. the file "Rich 1ht Boxes.rlf' is stored in the bin/debug folder. but you
could include the complete path to load a file from another location.

sampleRichTextBox. LoadFile ("Rich Text Boxes. rtf •)

Pamper Yourself
All Your Favorite Books

ich Text Boxes Contents of .rti file

Allow ...
• Mubple Color<

• Font .1tyles
• Bulleted Lists

AutoonaticaUy formatted URI.

Regular text box

Displaying Text o n UuJti(>le U ues

Both the regular text box and tl1e rich text box have properties that allow you to
display text on multiple lines. The Wm·dWra p proper·ty determines whether
the contents should ~Tap to a second line if they do not fit on a single line. The
property is set to True by default. Both controls also have a Multiline propet·ty.
which is set to False by default on a text box and True on a rich text box. Both
WordWrap and Multiline must be set to True for text to wrap to a second line.

For a regular text box. you must set Multiline to True and then adjust the
height to accommodate multiple lines. If Multiline is False (tl1e default). a text
box does not have resizing handles for vertical resizing. Be aware that a text box

67

U$ing the RichTextBox control.
you can apply font style.s to
selected t e>1, $how formatted

U RLs. and display text from a
formatted Jtjjile

68 ,. S U .\ L G .\ S (' u- lnrerface De.ign

will not automatically resize to display multiple lines even though Multiline is
True: you must make the height tall enough to display tJ1e lines.

You can set the Text property of n multiline text box (or rich text box) to a
long value: t11e value nill wrap to fit in the width of the box. You also can enter
multiple lines nnd choose the location of the line breaks: the techniques differ de
pending on whether you set the Text property at design time or in code. At design
time. click on t11e Text property in the Properties window nnd click on the Prop
erties button (the down llTfOW): a small editing window pops up ~titJJ instructions to
press Enter at the end of each line and Ctrl + Enter to accept the text (Figure 2.5).
In code. you can use n NewLine clnu·actc•· (Environment. Newline) in the
text string where you "·ant the line to brenk. Joining strings of text is called con
catenation and is covered in "Concatenating Text" later in this chapter.

TitleRichTextBox.Text ~ • Pamper Yourself" & Environment.NewLine &
"All Your Favorite Books "

Properu~

S.mpleRichTe><tllox System.Wndows.For •

~: ~ I 1m .;

ShowSdcdionMorgi FaiJc
e. ~-)CUL_ 11f\

T•blndex 0

TabStop True
Tog

.---j__jliiQII•••L ___ Jf.~t-- Properties button

Press !ftobee nan~ 11e
~'K1 •£n'•rt .Joe: ~,.P.t

G1·ou1J Boxes

Editor for entering
the Text proper1 y

GroupBox controls are used as coutaiue •·s for otJ1er controls. Usually.
groups of radio buttons or check boxes are placed in group boxes. Using group
boxes to group controls can make your forms easier to understand by separat
ing the controls into logical groups.

Set a group box's Text property to the words you want to appear on the top
edge of the box.

Example Names for Group Boxes

ColorGroupBox
StyleGroupBox

Fla;fnrc- 2. 5

Click the Properties button for

thl' Text property and a mwll
edilin.g box popJ up. To enter
multiple line.< of text. presJ

Enter at the end of each line
and Ctrl + Emer to accept
the t.ext.

C II A 1• 'I' " ll

Clu•ck Boxes

Cbeck boxes allow the user to select (or deselect) an option. In any group of
check boxes. any number can be selected. The Otecked property of a check
box is set to False if unchecked or True if checked.

You can write an event procedure for the CheckedChanged event, which
executes when the user clicks in the box. In Chapter 4. when you learn about
If statements. you can take one action when the box is checked and another
action when it is unchecked.

Use the Text property of a check box for the text you want to appear next to
the bux.

Example Names for Check Boxes

BoldCheci<Box
ItalicCheci<Box

Radio Buuons

Use •·adio buuoms when only one button of a group may be selected. Any ra
dio buttons that you place directly on the form (not in a group box) function as
a group. A group of radio buttons inside a group box function together. The best
method is to first create a group box and then create each ra.dio button inside
the group box.

When you need separate lists of radio buttons for different purposes. you
must include each list in a separate group box. You can find an example pro
gram later in this chapter that demonstrates using two groups of radio buttons.
one for seiting the background color of the form and a second set for selecting
the color of the text on the form. See "Using Radio Buttons for Selecting Colors."

The Checked propetty of a radio button is set to True if selected or to False
if unselected. You can write an event procedure to execute when the user se
lects a radio button using the control's CheckedChanged event. In Chapter 4
you will learn to determine in your code whether or not a button is selected.

Set a radio button's Text property to the text you want to appear next to the
button.

Example Names for Radio Buttons

RedRadioButton
BlueRadioButton

P ictm·e Boxes

A l)icuu·eBox conu·ol can hold an image. You can set a picture box's lmage
Jn·ope t·ty to a graphic file with an extension of .bmp •. gif. .jpg. .jpeg .. png . .ico .
. emf. or .mnf. You first add your images to the project's resources: then you can
assign the resource to the Image prope11y of a PictureBox control.

Place a PictureBox control on a f01m and then select its Image property in
the Properties window. Click on the Prope1ties button (Figure 2.6) to display a
Select Resource dialog box where you can select images that you have al
ready added or add new images (Figure 2.7).

69

70 \ ! s l l " •• u \ s (' u,_ Interface De•ign

PrDptflies -q x
Blql'ktuu.Sox System.\Vndow>.Form~ •

~: ~l a ~

G~dltMtmbc:r True:

@I 0 (nonoJ Q+- - Properties bullon
l~t.loc~tion ~

o lnlialmoge ~ Syslem.Dr<tt
r> Loc•non 42. ZSl ~

Loctca Fol<t

v M"!l.n 3. 3, 3, 3
MDlmumShe 0,0

M:ftmumSize 0, 0

1..,.,e
Tin: im~gedi~pl~d in lhePfcturc=BoL

Select Ruource

RHOUIU: context
C Local r~ource:

~ Proje<t 1ecource ne:
I Rc:!!ovr<:es.re:sx -I

fnl><lrt ...

OK II Cancol

Click on the lmporl button of the Select Resource dialog box to add images.
An Open dialog box appears (Figure 2.8). where you can navigate to your image
ftles. A preview of the image appears in the preview box.

Note: To add files with an .ico extension. select All Files for the Files of type
in the Open dialog box.

Fl~nrt> 2.6

Qick on the Image propaty
for a Picturt&x control. and
a Properties button appearJ.
aick on the Properties button
to r•iew the S919ct Resourc9
dinlog bo.~.

Figure 2.7

Tht 59/«l Resourc9 diak>g
box. Make yo!lr selection here

for the graphic file you want to
appear in the PU:tureBox
control; click Import to add an
image to the list.

(.; II 1\ I' 'I' 1•: II

Find the text graphic files and icor~jiles supplied by Microsoft in the
Student Data\Craphics folder.

Open

QQ~[.JU « VB2010 t StudentOdld ~ Graphics t

:r Fo.otit<S

• Otktop

...a. Download~
~ Recent Places

i.,;ll~Mit<

J:!1 Oocull'lent~
Jt Music

~ Pictures

8v.d..,..

4 Homegroup

;:f ComputEr

C.os(C·J

Miao~ftlcon' Book.png

~
Cofftt.png Cup.BMP

Ale: name;

~
• [1moge Foes(' .git.'.jpg;• !P"9;:-;:J

Open EJ I Cancel

You can use any graphic file (with the proper format) that you have avail
able. You will find many graphic files included with the Student Data files on
the text Web site (www.mhhe.comNB2010).

Picture Box controls hove several useful prope11 ie.~ that you can set at design
time or mn time. For example. set the SizeMude pl'Opel'ly to StretchJmage to
make the graphic resize to fill tl1e control. You can set the Visible property to
False to make the pictw·e box disappear.

For example, to make a picture box invisible at run time, use this code
statement:

LogoPictureBox.Visible = False

You can assign a graphic from the Resources folder at run time. You use
the My keyword. which is a special VB keyword that gives you access to many
system settings. In the follmting example, "Sunset" is the name of a graphic
(without its extension) in the Resources folder of the project.

SamplePictureBox . Image = My .Resources .Sunset

71

72 v S l l :\ L G ,\ S (' User Interface Design

Addi11,2; and R~moviug Resom·ces

Jn Figure 2.6 you saw the easiest way to add a new graphic to the Resources
folder. which you perform as you set the Image property of a PictureBox
control. You also can add. remove. and rename resources using the Visual
Studio P t·oject Desigum·. From the Project menu. select ProjectName Proper
ties (which always shows the name of t11e currelll project). The Project
Designer opens in the main Document window: click on the Resources tab to
display the project resources (Figure 2.9). You can use the buttons at the top
of the window to add and remove images. or right-click an existing resource to
rename or remove it.

Ch02ChangePidwes X

Applicotion

Compile

Debug

Retere11ces

Re>ources:

Service~

Signing

My &tensions

Security Winter

Publish

Line ami Shape Con11·ols

The line and shape controls are in a separate section at the bottom of the tool
box. The Visual Basic PowerPacks controls were added as a separate download
in Visual Studio 2008 but come installed with the 2010 version.

You can use the LineShape. OvalShape. and RectangleShape controls to
create graphic shapes on your form. Figure 2.10 shows many sample shapes
along with the tools in the toolbox.

Place the Couu·ols ou a Form

To place a control on the form. click on the tool in the toolbox and use the
mouse pointer to draw the shape that you want on the form. Alternately. you can
double-click one of the tools to create a default size control that you can move
and resize as desired.

The line and shape controls have many properties that you can set. as
well as events, such as Click and DoubleClick. for which you can write event
procedures.

Click on the Resources tab of
the Project Designer to work
with project resources.
Yon can add. remove, and
rename resources on this page.

C II 1\ 1• 'I' I' ll

Toolbox • ~ x
() AU Windows- Formt

I> Common ContJob-

1> Containers
t- Menus & T oolbars

!> Data
~ Components

I>' Printing
1> Oial.-?9~

~
~ PrintForm

'-. lineShape

0 Ovoi.Shape

Cl RedangiEShape

;; OataRepeater

1> GcnO'ol

'* Toolbox

~ Line and Shape Contrru.

Properties of a line include BorderStyle (Solid. Dot, Dash. and a few more).
Border Width (the width of the line. in pixels). BorderColor. and the locations
tor the two endpoints of the line (X1, X2, X3. X4). Of course. you can move and
resize the line visually. but it sometimes is more precise to set t11e pixel loca
tion exactly.

The propetties of the OvalShape and RectangleShape controls are more in
teresting. You can set transparency with the BackStyle property and the border
with BorderColor. BorderStyle. and BorderWidtJ1. Set ilie interior of ilie shape
using FillColor. Fil!GradientColor. Fil!GradientStyle. and FillStyle. You can
give a rectangle rounded corners by setting the ComerRadius. which defaults
to zero for square comers.

Drawiug Lines

[n addition to using the LineShape control for a line. you also can draw a line
on a fonn by using the Label control. Set the label's AutoSize property to False.
the Text property to blank. and the BorderStyle to None, and change the Back
Color to the color you want for the line. You can control the size of the line with
the Width and Height properties. located beneath the Size prope1ty.

Another way to draw a line on a form is to use the graphics methods. Draw
ing graphics is covered in Chapter 13.

Using Sma1·t Tags

You can use smart tags to set the most common properties of many controls.
When you add a PictureBox or a TextBox to a form, for example, you see a
small an-ow in the upper-right corner of the control. Click on the arrow to open
the smart tag for that control (Figure 2.11). The smart. tag shows a few proper
ties that you can set from there, which is just a shortcut for making the changes
from the Prope1ties window.

The line and shape controls in
the Visual Basic Power Packs

section of the toolbox, with
some sample controls on the
form.

73

74 l ' C User Interface Design

/ Smatt tag arrow

a!;! form! /
0."'""~''0"'""ll PictureBox Tasks

d Choose Image
;; ...,..-.,.-----.==ill

d--'-'-""""0'"'-'-'-'-'-'-'- Size Mode I Norm<l BJ

+- - Popup
smart tag

Docie in parent confainer

Usiug Images fo1· Fol"lns al){l Cont1·ols

You can use an image as the background of a form or a control. For a fonu . set
the Backgroundlmage propetty to a graphic resource; also set the form's Back
groundlmageLayout property to Tile, Center. Stretch. or Zoom.

Controls such as buttons, check boxes. and radio buttons have an Image
property that you can set to a graphic from the project's resources.

SeLLing a Bot'(le•· and Style

Most oontrols can appear to be three-dimemional or flat. Labels. text boxes. and
picture boxes all have a Bot·d et·Style propm·ty with choices of None.

FixedSingle. or Fixed30. Text boxes default to Fixed30; labels and picture boxes
default to None. Of course. you can change the property to tlte style of your choice.

Create a picture box control that displays an enlarged icon and appears in a 3D
box. Make up a name that confonus to this textbook's naming convention.

Pl'OJ>el1y SeUiu;-

Name

Border5tyle

SizeMode

Visible

Working with Multiple Controls

You can select more than one control at a time. which means that you can move
the controls as a group. set similar properties for the group. resize, and align the
controls.

F igur e 2.1 1

Point to the smart tag arrow

to open the smart tag for a
control. For this PictltreBox
control. you can set the Image,

Size Mock. and Dock propi!rties
in the smart tag.

C II A 1• 'I' " ll

Selecting Multiple Cont1·ols

There are several methods of selecting multiple controls. If the controls are near
each o~1er. the easiest technique is to use the mouse to drag a selection box around
the controls. Point to a spot that you want to be one comer of a box surrounding the
controls, press the mouse button. and drag to the opposite comer (Figure 2.12).
When you release the mouse button. the controls will all be selected (Figure 2.13).
Note that selected labels and check boxes with AutoSize set to True do not have

resizing handles: other selected controls do have resizing handles.
You also can select multiple controls, one at a time. Click on one control to

select it. hold down the Ctrl key or the Shift key. and click on the next control.
You can keep the Ctrl or Shift key down and continue clicking on controls you
wish to select. Ctrl-click (or Shift-click) on a control a second time to deselect

it without changing the rest of the group.
When you want to select most of the controls on the form. use a combina

tion of the two methods. Drag a selection box around aJJ of the controls to select
them and then Ctrl-click on the ones you want to deselect. You also can select
aJJ of the controls using the Select All option on the Edit menu or its keyboard
shortcut: Ctrl + A.

Deselecting a G1·oup of Cont1·ols

When you are finished working '~ith a group of controls. it's easy to deselect
them. Just click anywhere on the form (not on a control) or select another pre
v iuu::;l y uu::;electeJ cuutrul.

Start here

Selection
handles

I t

II

·~ Forml

...,.
Labell

L.abel2

aQ Forml

Ee::l~~

I

~
Drag to here

I

r-= ···························!R;
Q 0
"""'"~~1.&1 ~---r- Resizing

t . handles

75

You con choose the control to be the
dominant control for aligning and

resizing. Use Shift"click to make the
first selected control dominant; use

Ctrl-d ick to make the last selected

control dominant. •

Fi~1tre 2.12

Use the point~r to drag a
selection box around the
controls you wish to select.

Figur e 2.13

When multiple controls are
selected, each has resizing
handles (if resizable).

76 ~· It i\ S (" User Interface Design

Moving Cont1·ols us u G1·oup

After selecting multiple controls. you can move them as a group. To do this.
point inside one of the selected controls. press the mouse button. and drag the
entire group to a new location (Figure 2.14).

aD Form1

You can set some common properties for groups of controls. After selecting the
group. look at the Propet1ies window. Any propetties that appear in the window
are shared by all of the controls and can be changed all at once. For example.
you may want to set the BorderStyle property for a group of controls to three
dimensional or change the font used for a group of labels. Some properties
appear empty; those properties do not share a common value. You can enter a
new value that will apply to all selected controls .

AJigning Conlt·ob

After you select a group of controls, it is easy to resize and align them using the
buttons on the Layout toolbar (Figure 2.15) or the corresponding items on the
Format menu. Select your group of controls and choose any of the resizing but
tons. These cru1 make the controls equal in width. height. or both. Then select
another button to align the tops. bott.oms. or cente rs of the controls. You a'lso
can move the entire group to a new location.

Resiu and align nudtiple controls lLSing the Layout toolbar.

F l ~t n•·«- %. 1 4

Drag a group of Mlected
controls to m.ove the entire
group to a n<1w location.

M ake sure lo read Appendix C for

lips and shortcuts for w orking with

controls. •

Se»ing the font for the form chonges

the defouh font for a ll controls on the

form. •

Fl jtu re 2. 1 5

C II ,\I> 'I' I' R

Note: The aligrunent options align the group of controls to the control that
is active (the sizing handles are white). Referring to Figure 2.13, the upper text
box is the active control. To make another selected control the active control.
simply click on it.

To set the spacing between controls. use the buttons for horizontal and/or
vertical spacing. These buttons enable you to create equal spacing between

conirols or to increase or decrease the space between controls.
Note: If the Layout toolbar is not displaying. select View I Too/bars I Layout.

Designing Your Applications for User Convenienc

One of the goals of good programming is to create programs that are easy to use.
Your user interface should be clear and consistent. One school of thought says
that if users misuse a program. it's the fault of the programmer. not the users.
Because most of your users will already know how to operate Windows programs.
you should strive to make your programs look and behave like other Windows
programs. Some of the ways to accomplish this are to make the controls operate
in the standard way. define keyboard access keys. set a default button. and make
the Tab key work correctly. You also can define ToolTips. which are those small
labels that pop up when the user pauses the mouse pointer over a control.

D esigning the Use•· lnte1·face

The design of the screen should be easy to understand and "comfottable" for
the user. The best way to accomplish these goals is to follow industry standards
for the color. size. and placement of controls. Once users become accustomed
to a screen design. they will expect (and feel more familiar '~ith) applications
that follow the same design criteria.

You should design your applications to match other Windows applications.
Microsoft has done e:densive program testing nith users of different ages. gen
ders. nationalities, and disabilities. We should take advantage of this research
and follow their guidelines. Take some time to examine the screens and dialog
boxes in Microsoft Office as well as those in Visual Studio.

One recommendation about interface design concerns color. You have
probably noticed that Windows applications are predominantly gray. A reason
for this choice is that many people are color blind. Also. research shows that
gray is easiest for the majority of users. Although you may personally prefer
brighter colors. your applications will look more professional if you stick with
gray. or the system palette tl1e user chooses.

Note: By default the BackColor property of fom1s and controls is set to Control.
which is a color included in the operating system's palette. If the user changes the
system theme or color, your fonns and controls 11ill conform to their new settings.

Colors can indicate to the user what is expected. Use a white background
for text boxes to indicate that the user should input information. Use a gray
background for labels, which the user cannot change. Labels that will display
a message should have a border around them: labels that provide text on the
screen should have no border (the default).

Group your controls on the form to aid the user. A good practice is to cre
ate group boxes to hold related items, especially those controls that require

77

78 v S l l :\ L G ,\ S (' User Interface Design

user input. This visual aid helps the user understand the information that is
being presented or requested.

Use a sans se1if font on your forms. such as the default MS Sans Serif. and
do not make them boldface. Limit large font sizes to a few items, such as the
company name.

Defining Keyhoard Access Keys

Many people prefer to use the keyboard. rather than a mouse, for most opera
tions. Windows is set up so that most functions can be done with either the key
board or a mouse. You can make your projects respond to the keyboard by
defining access keys, also called hot keys. For example. in Figure 2.16 you
can select the OK button with Alt + o and the Exit button with Alt + x.

•] K~yboard or Mous~ b€11-.a..l

tjame
J

fhone

QK

You can set access keys tor buttons. radio buttons. and check boxes when
you define their Text properties. Type an ampersand (&) in front of the char
acter you want for the access key; Visual Basic underlines the character.
You also can set an access key for a label: see "Setting the Tab Order for
Controls" later in this chapter.

For examples of access keys on buttons. type the following for the button's
Text property:

for .O.K

for it

When you define access keys. you need to watch for several pitfalls. First,
try to use the Windows-standard keys whenever possible. For example. use the
Ji. of Exit and the S of Save. Second. make sure you don't give two controls the
same access key. It confuses the user and doesn't work correctly. Only the next
control (from the currently active control) in the tab sequence is activated when
the user presses the access key.

Note: To view the access keys on controls or menus, you may have to press

the Alt key, depending on your system settings. You can set Windows to always
show underlined shortcuts in the Control Panel. In Windows 7 select Ease of
Access Center and choose Ma·ke the keyboard easier to use. In Windows Vista.

Flgur.-. 2.16

The underlined character

defines an access key: The uJer
can select the OK button by
pressing Alt + o and the Exit
button with Alt + x.

Use two ampersa nds when you wont

to make on ampersand appear in the

Text property: &Health && Welfa re

for ".l:ieolth & We Wore•. •

C II A 1• 'I' " ll

select Ease of Use and Change how your keyboard works. Then, in either.
check the box for Underline keyboard shortcuts and access keys.

Selling the Accept ami Cancel Bullous

Are you a keyboard user"? If so. do you mind having to pick up the mouse and
click a. button after typing text into a text box? Once a person's fingers are on
the keyboard, most people prefer to press the Enter key. rather than to click the
mouse. If one of the buttons on the fonu is the Accept button. pressing Enter is
the same as clicking the button.

You can make one of your buttons the Accept button by setting the
AcceptButtou pt·opet·ty of the form to the button name. When the user
presses the Enter key. that button is automatically selected.

You also can select a Cancel button. The Cancel button is the button that is
selected when the user presses the Esc key. You can make a button the Cancel
button by setting the fonn's Cauce~Huuou pr o pet·ty. An example of a good
time to set the CancelButton property is on a fom1 with OK and Cancel buttons.
You may want to set the form's AcceptButton to OK Button and the CancelBut
ton propetty to CancelButton.

Selling the Tab 01•der fo1• CoutJ•ols

Tn Winrlnw;< prng1·;un~. nnP. r.nntrnl nn thA fnnn alway!< hns thP. fmm~ . Ynu r.an

see the focus change as you tab from control to control. For many controls. such
as buttons. the focus appears as a thick border. Other controls indicate the fo
cus by a dotted line or a shaded background. For text boxes. the insertion point
(also called the cursor) appears inside the box.

Some controls can receive the focus; others crumot. For example. text boxes
and buttons can receive the focus. but labels and picture boxes cannot.

Tbc Tab Order

Two properties determine whether the focus stops on a control and the order in
which the focus moves. Controls that are capable of receiving focus have a
TabSto p pl·opet·ty. which you can set to Tme or False. If you do not want the
focus to stop on a control when the user presses the Tab key, set the TabStop
property to False.

TI1e Tabludex pr o pm·ty determines the order the focus moves as the Tab
key is pressed. As you create controls on your fonu. Visual Studio assigns the
Tablndex property in sequence. Most of the time that order is coJTect. but if you
want to tab in some other sequence or if you add controls later. you 'till need to
modify the Tab Index properties of your controls.

When yow- program begins running, the focus is on the control with the
lowest Tablndex (usually 0). Since you generally want the insertion point to ap
pear in the first control on the form. its Tablndex should be set to 0. The next
control should be set to 1; the next to 2; and so forth.

You may bepuz7led by the properties of labels. which have a Tab Index prop
erty but not a TabStop. A label cannot receive focus, but it has a location in the
tab sequence. This fact allows you to create keyboard access keys for text boxes.
When the user types an access key that is in a label. such as Alt + N. the focus
jumps to the fust Tablndex following the label (the text box). See Figure 2.17.

By default. buttons. text boxes, and radio buttons have their TabStop prop
erty set to True. Be aware that the behavior of radio buttons in the tab sequence

79

80 v S l l ,\ L (' User Interface Design

•51 Keyboard or Mouse

Tablndex = 2 - :----7~

--- +.-Tablndex= l

,.___ +.- Tablndex = 3

l co»<K- ll--· -~-Tablndex=4

L~Exit~--!!_JI• --t- Tab!ndex = 5

is different from other controls: The Tab key takes you only to one radio button
in a group (the selected button). even though all buttons in the group have their
TabS top and Tab Index properties set. If you are using the keyboard to select ra
dio buttons, you must tab to the group and then use your up and down arrow
keys to select the correct button.

Selling the Tab Onlc•·

To set the tab order for controls. you can set each control's Tablndex property in
the Propel1ies window. Or you can use Visual Studio's great feature that helps
you set Tab Indexes automatically. To use this feature. make sure that the Design
window is active and select View/ Tab Order or click the Tab Order button on the
Layout toolbar. (fhe Tab Order item does not appear on the menu and is not
available on the Layout toolbar unless the Design window is active.) Small num
bers appear in the upper-left corner of each conb·ol; these are the current
Tab Index properties of the controls. Click first in the control that you want to be
Tab Index zero. then click on the control for Tablndex one, then click on the next
control until you have set the Tablndex for all controls (Figure 2.18).

~ Keyboard or Mouse

I!Jme IJ

F i g u r e 2.17

To use a keyboard access key
for a text box. the Tab Index of
the label must precede the
Tablndex of the text box.

Moke sure to not hove duplicate
numbers for the To blndex pro perties

o r duplicate keyboard access keys.
The result varies depending on the

locol ion o f lhe focus a nd is very

confusing. •

F i ~ n•• e 2.13

Click on each control, in
seqlLence. to set the Tab/ ndex
property of the controls
automatically.

C ll \ 1°Tt: R 2

When you have fi nished setting the Tab Index for all controls. the white
numbered boxes change to blue. Selec t View I Tab Order again to hide the
sequence numbers or press the Esc key. 1f you make a mistake and 1mnt to
change the tab order. tum the option off and on again. and start over with
Tablndex zero again. or you can keep clicking on the control w1til the nwnber
wraps around to the desired value.

S(.'Lling th(.' Fo rm's Locatio n on the Sc•·cen

When your project runs, the fonn appears in the upper-left comer of the screen
by default. You can set the fom1's screen position by setting the Sta."t Position
p•·upl'l·ty of the fonn. Figure 2.19 shows your choices for the properly setting.
To center your form on the user's screen. set the StartPosition property to
CenterScreen.

Cn•alin~of TooiT ips

Proputlt< • q X

Fomtl System.Windows.Forms.fo1r

5mGropltylo ~uto

@§&;;:.p •lc=Ouee~
lJ"..lllnUi l

'Nim:fow~d.,..Jft.LOC4tion

V.lndC~A's0e1auft8ounds

Ctr~teJPJrtni: ~
._,w"""l'lnoo=wom"'•au.,..-..,.,,..,orm=a _ _.

Sbrtf'osition

OdaMlMCS the pe»~ion o(4 form
~Jtflf"rt oppcon.

If you are a Windows user. you probably appreciate and rely on TooiTips.
those small labels that pop up when you pause your mouse pointer over a tool
bar button or control. You can easily add Tool Tips to your projects by adding a
TooiTip compo nc>nl lo a fom1. After you add the component to your form.
each of the form's controls has a new property: TooiT ip on Tool'l' ipl. assum
ing that you keep the default name. TooiTipL for the control.

To define TooiTips. select the ToolTip tool from the toolbox (Figure 2.20)
and click anywhere on the form or double-click the TooiTip tool in the toolbox.
The new control appears in the component tray that opens at the bottom of the
Form Designer {Figure 2.21). The component tray holds controls that do not
have a visual representation at rw1 time. such as the PrintForm control that you
used in Chapter l.

I ~ ToofTip I

81

b21iil #l
To set the tab order for o group of

controls, liC$1 set the Toblndex prop
erty for the group box and then set

the Tablndex for controls inside the
group. •

F i g ur e 2. 1 9

Set the StartPo!ition property
of the form to CenterScreen

to make the f orm appear in the
cenl<!r of the user s screen when
the program runs.

F i g ur e 2 . 2 0

Add a Tooffip component to
yoUT form: ea.ch of the form's
controls willluwe a new property
to hold the text of the Tool Tip.

82 \ .' S U A I, C User Interface Design

Forrol.vb JDe;ign]' X

~roe

ftione

•
; ~ 1oo1Tipt

After you add the ToolTip component. examine the properties list for other
controls on the f01m. such as buttons, text boxes. labels. radio buttons. check
boxes. and even the form itself. Each has a new ToolTip on ToolTipl property.

Try this example: Add a button to any fonn and add a ToolTip component.
01ange the button's Text prope11y to Exit and set its TooiTip on ToolTipl prop
eity to Close and Exit the program. Now run the project. point to the Exit button,
and pause; the ToolTip will appear (Figure 2.22).

-

ojil Keyboard ex Moose I = l!i21 I~

t!_crne

£hone

J
I

~
DD

I Close and fXittt~€ ~
IJ

You also can add multiline ToolTips. In the Tool'fip on Tool'fipl property. click
the drop-down arrow. 'fl1is drops do>m a white editing box in which you enter the
text of the ToolTip. Type the first line and press Enter to create a second line; press
Ctrl + Enter to accept the text (or click somewhere outside the Propmty window).

You can modify the appearance of a ToolTip by setting properties of the
ToolTip component. Select the TooiTip component in the component tray and try
changing tl1e Back Color and ForeColor properties. You also can set the Is Balloon
properly to True for a different appearance and include an icon in the ToolTips

l"i~ur e 2.21

The new ToolTip component
goes in the component tray at
the bottom of the Form
Designer window.

Figure 2.2:t

Use the Too/Tip on ToolTipl
property to define a ToolT'tp.

C II 1\ 1• 'I' I' ll

Select Picture to Display

® Sunset 6 Water

by selecting an icon for the ToolTiplcon property (Figure 2.23). Once you set
properties for a ToolTip component. they apply to all Too\Tips displayed with
that component. If you want to create a variety of appearances. the best ap
proach is to create multiple ToolTip components, giving each a unique name.
For example. you might create three ToolTip components. in which case you
would have properties for ToolTip on ToolTipL ToolTip on Too1Tip2. and
TooiTip on Too1Tip3 for the form and each control.

Coding for the Controls

You already know how to set initial properties for controls at design time. You
also may want to set some properties in code. as your project executes. You can
clear out the contents of text boxes and labels. reset the focus (the active con
trol), change the color of text. or change the text in a Too !Tip.

Cleas·ing Te xl Bon's and Labl'ls

You can clear out the contents of a text box or label by setting the property to an
e mpty su·ing. Use"" (no space between the hvo quotation marks). This empty
string is also called a null string or zero-length string. You also can clear out a
text box using the Clear method or setting the Text property to String . Empty.
Note that the Clear method works for text boxes but not for labels.

Examples

' Clear the contents of text boxes and labels .
NameTextBox .Text = ""
MessageLabel .Text =
DataTextBox.Clear()
MessageLabel .Text = St ring . Empty

Fi~ttr e 2 . 23

A Too/Tip with properties
modified for lsBalloon,
Tool.Tiplcon, BackColor. and
ForeColor.

83

84 v S l l ,\ I. C User Interface Design

Reselling the F ocus

As your program runs. you want the insertion point to appear in the text box
where the user is expected to type. The focus should therefore begin in the first
text box. But what about later? If you clear the form's text boxes. you should re
set the focus to the first text box. TI1e Focus method handles this situation.
Remember. the convention is Object. Method. so the statement to set the im;er
tion point in the text box called NameTextBox is as follows:

' Make the insertion point appear in this text box .
NameTextBox.Focus()

Note: You cannot set the focus to a control that has been disabled. See
"Disabling Controls" later in this chapter.

SeLLing thf' Checked Pt·o pet·ty of Rad io Bullo us
and Check Boxes

Of course, the purpose of radio buttons and check boxes is to allow the user to
make selections. However. at times you need to select or deselect a control in
code. You can select or deselect radio buttons and check boxes at design time
(to set initial status) or at run time (to respond to an event).

To make a radio button or check box appear selected initially. set its
Checked property to True in the Properties ~tindow. In code, assign True to its
Checked property:

' Make button selected.
RedRadioButton . Checked = True

· Make check box checked .
DisplayCheckBox.Checked = True

' Make check box unchecked.
DisplayCheckBox.Checked = False

At times. you need to reset the selected radio button at run time, usually
for a second request. You only need to set the Checked property to True for
one button of the group: the rest of the buttons in the group will set to False
automatically. Recall that only one radio button of a group can be selected at
one time.

SeLLing Visibility at Ruu T imE'

You can set the visibility of a control at run time.

' Make label invisible.
MessageLabel .Visible = False

You may want the visibility of a control to depend on the selection a user
makes in a check box or radio button. This statement makes the visibility

C II A 1• 'I' " ll

match the check box: When the check box is checked (Checked = True). the
label is visible (Visible= True).

' Make the visibility of the label match the setting in the check box .
MessageLabel .Visible - DisplayCheckBox . Checked

Disabling Cont1·ols

The Enabled Jn·opeJ'ty of a control determines whether the control is available
or "grayed-out." The Enabled property for controls is set to True by default, but
you can change the value either at design time or run time. You might want to
disable a button or other control initially and enable it in cocle, depending on an
action of the user. lf you disable a button control (Enabled = False) at design
time. you can use the following code to enable the button at run time.

DisplayButton.Enabled = True

When you have a choice to disable or hide a control. it's usually best to dis
able it. Having a control disabled is more understandable to a user than having
it disappear.

To disable radio buttons. consider disabling the group box holding the
buttons. rather than the buttons themselves. Disabling the group box grays the
entire group.

OepartmentGroupBox .Enabled = False

Note: Even though a control has its TabStop property set to True and its
Tablndex is in the proper order. you cannot tab to a control that has been disabled.

Fl't•<lhack 2.2 •

l. Write the Basic statements to clear the text box called CompanyTextBox
and reset the insertion point into the box.

2. Write the Basic statements to clear the label called CustomerLabel and
place the insertion point into a text box called OrderTextBox.

3. What will be the effect of each of these Basic statements?
(a) PrintCheckBox.Checked = True
(b) ColorRadioButton .Checked = True
(c) DrawingPictureBox.Visible = False
(d) Locationlabel .Borderstyle = Borderstyle .Fixed3D
(e) Citylabel .Text = CityTextBox.Text
(f) RedRadioButton . Enabled = True

Selling P 1·ope •·ties Based on Use•· Actio ns

Often you need to change the Enabled or Visible property of a control based on
an action of the user. For example. you may have controls that are disabled or
invisible until the user signs in. In the following example. when the user logs in
and clicks the Sign In button, several controls become visible. others become
invisible. and a group box of radio buttons is enabled:

85

86 l '

Private Sub SigninButton_Click(ByVal sender As System.Object,
ByVal e As System. EventArgs) Handles SigninButton .Click

C User Interface Design

· Set up the screen to display the department promotions and the
' welcome message . Hide the sign-in controls .

' Hide and disable the sign -in controls.
CheckinGroupBox .Visible =· False
SigninButton . Enabled = False

' Enable the group of radio buttons .
DepartmentGroupBox .Enabled = True

' Show the promotions controls .
PromotionTextBox.Visible = True
ImageVisibleCheckBox.Visible = True
WelcomeRichTextBox .Visible = True

'Display the welcome message .
WelcomeRichTextBox .Text = "Welcome Member# " & MemberiDMaskedTextBox .Text &

Environment .Newline & NameTextBox.Text
End Sub

Changing the Colo r of Text

You can change the color of text by changing the ForeColor property of a
control. Actually. most controls have a ForeColor and a Back Color property.
The ForeColor property changes the color of the text; the Back Color property
determines the color around the text.

TJ1c Colot• Constants

VisuaJ Basic provides an easy way to specify a large number of colors. These
colot· constants are in the Color class. If you type the keyword Color and a
period in the editor. you can see a full list of colors. Some of the colors are
listed below.

Color.AliceBlue
Color .AntiqueWhite
Color .Bisque
Color .BlanchedAlmond
Color.Blue

Examples

NameTextBox . ForeColor = Color.Red
Messagelabel. ForeColor = Color .White

Using Ra{lio Buuons fo t· Selecting Colot·s

Here is a small example (Figure 2.24) that demonstrates using two groups of
radio buttons to change the color of the form (the form's Back Color property)
and the color of the text (the fonn's ForeColor property). The radio buttons in
each group box operate together. independently of those in t11e other group box.

C II A 1• 'I' " ll

a!t Change Colors

One group of - ---:> Select Fonn Color

radio buttons @ ~eige

B B!ue

B Yellow

e> §ray

Another group _ :...c,. Select Text Color

of radio buttons @ Blac!s.

0 'M!~e

Ch02Colors
Bradley/Millspaugh
June 2010

The radio buttons in each
group box fimctron
independently of the other
group. Each button changes a

prope1ty of the form:
BackColor changes the
background of the fornt itself
and ForeColor changes the
color of the text on the fomt.

' Project :
'Programmer:
' Date :
' Description: Demonstrate changing a form ' s background and foreground

colors using two groups of radio buttons .

Public Class ColorsForm

Private Sub BeigeRadioButton_CheckedChanged(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles BeigeRadioButton.CheckedChanged

· Set the form color to beige.

Me.BackColor = Color.Beige
End Sub

Private Sub BlueRadioButton_CheckedChanged(ByVal sender As system.Object,
ByVal e As System.EventArgs) Handles BlueRadioButton .CheckedChanged

' Set the form color to blue.

Me .BackColor Color .Blue
End Sub

Private Sub YellowRadioButton_CheckedChanged(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles YellowRadioButton .CheckedChanged

' Set the form color to yellow .

Me.BackColor = Color .Yellow
End Sub

Private Sub GrayRadioButton_CheckedChanged(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles GrayRadioButton .CheckedChanged

· Set the form color to gray .

Me.BackColor = Color .Gray
End Sub

87

88 v S l l ,\ I. C User Interface Design

Private Sub BlackRadioButton_CheckedChanged(ByVal sender As System. Object ,
ByVal e As System.EventArgs) Handles BlackRadioButton .CheckedChanged

' Set the text color to black .

Me.ForeColor = Color.Black
End Sub

Private Sub WhiteRadioButton_CheckedChanged(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles WhiteRadioButton . CheckedChanged

' Set the text color to white .

Me . ForeColor = Color.White
End Sub

End Class

Changing Muhiplc P rope1·ties of a Contt·ol

By now you can see that there are times when you will want to change several
properties of a single control. In early versions of Visual Basic. you had to write
out the entire name (Object.Property) for each statement.

TitleTextBox .Visible = True
TitleTextBox . ForeColor = Color.White
TitleTextBox.Focus()

Of course. you can still specify the statements this way. but Visual Basic
provides a better way: the With and End With statements.

Tlu• With aml End With St.·uemeuts-Ceueral Fol'm

r~f With ObjectName
~ ~ ' Statement(s)

e., End With

You specify an object name in the With statement. All subsequent statements
w1til the End With relate to that object.

Tbe Wilb and End With S tate mem ,;-Exruuple

~P--.)'!

"' 5
"C
;-

With Ti tleTextBox
.Visible = True
. ForeColor = Color.White
. Focus()

End With

The statements beginning with With and ending with End Wi th are called a
With block. TI1e statements inside the block are indented for readability. Al
though indentation is not required by VB. it is required by good programming
practice and aids in readability.

C II ,\I> 'I' I' R

The real advantage of using the With statement. rather than spelling out
the object for each statement. is that With is more efficient. Your Visual Basic
projects will nm a little faster if you use With. On a large. complicated project.
the savings can be significant.

Concatenating Text

At times you need to join strings of text. For example, you may want to join a
literal and a property. You can "tack" one string of characters to the end of an
other in the process called conccuenation. Use an ampersand(&). preceded
and followed by a space. between the two strings.

Examples

89

Messagelabel. Text = "Your name is: " & NameTextBox. Text
NameAndAddressLabel. Text = NameTextBox. Text & " " & AddressTextBox. Text

Continuing Long P•·ogL·am Lines

Basic interprets the code on one line as one statement. You can type very long
lines in the Editor window; the window scrolls sideways to allow you to keep
typing. However, this method is inconvenient; it isn't easy to see the ends of the
long lines.

New to Visual Basic 2010, if you break a line in an acceptable location.
you can use implicit line continuation. You also can continue to use explicit
line continuation characters as in previous versions of Visual Basic.

Implicit Line Continuation

Visual Basic 10 allows you to just press Enter to split a single statement into
multiple lines as long as you follow certain rules. For the Basic statements you
have learned so far. you can break a line

l. After a comma.
2. Either after an opening parenthesis or before a closing parenthesis.
3 . After a concatenation operator(&).
4. After the equal sign(=) in an assignment statement.

You can find a complete list of rules under the Help topic "Statements in
Visual Basic".

As an example. you can split an assignment statement following the equal
sign but not before it:

Legal

PromotionTextBox.Text
"Get a free MP3 download with the purchase of a CD"

Greetingslabel. Text = "Greetings " & NameTextBox . Text & "· " &
"You have been selected to win a free prize . " &
"Just send us $100 for postage and handling. "

lvliil ::J
Although in some situations Basic a~
lows concatenation with the + oper·

otor, the practice is not advised.

Depending on the contents of the

text box, the compiler may interpret

the + operator as on addition oper·

otor rather tho n o concatenation op

erator, giving unpredictable results

or on error. •

90 \ S l \ I. IC \ S

Illegal

PromotionTextBox.Text
= 'Get a free MP3 download with the purchase of a CD'

GreetingsLabel. Text = "Greetings ' & NameTextBox. Text & ' ·
& 'You have been selected to win a free prize. •
& 'Just send us $100 for postage and handling."

EJq>lit'it Line Continuation

(' U.,.. lnterfoce De•ign

When a Basic statement becomes too long for one line. you can use a Line
continuation l'hm·actet·. Type a space and an underscore. press Enter. and
continue the s tatement on the nextliJJe. Jt is OK to indent the continued lines.
The only restriction is that the line-continuation chamcter must appear
between elements: you cannot place a continuation in the middle of a literal or
spli t the name of an object or property.

Example

Private Sub BlackRadioButton_CheckedChanged(ByVal sender
As System.Object, ByVal e As System.EventArgs)
Handles BlackRadioButton.CheckedChanged

Your Hands-On Programming Example --------

Create a fonn that allows members to log in and view special promotions for
R 'n R. The member name is entered in a text box. and the member I D is entered
in a masked text box that allows five numeric digits. Include three buttons: one
for Sign ln. one for Print, and one for Exit. Set the AcceptButton to the Sign In

button. and use the Exit bntlon for the Cancel Button. Include keyboard short
cuts as needed.

Use a group box of radio buttons for the departments and another group box
to visually separate the data entry boxes (the text box and masked text box).

A check box allows the user to choose whether an image should display for
the selected department. You 1vill need an image to display for each deprut
menl. You can use any images that: you have available. find them on the Web,
or use images from the text Web site.

Wben the program begins. the Department group box should be disabled
and visible. and the controls for the image. promotion. and check box should be
invisible. When the user clicks on the Sign In button. the data entJy boxes and
labels should disappear. and the promotions text box. the department image.
ru1d the check box should appear. Display the user name and member m con
catenated in a rich text box. (Hint: If you place the data entry controls in a
group box. you can simply set the group box visibility to False.)

Add TooiTips as appropriate. The TooiTip for the Member ID text box
should say: "Your 5 digit member nwnber."

Pl:mui.JI!: the Project

Sketch a form (Figure 2.25). which your users sign off as meeting their needs.

C ll i\ 1°T E il 91

A planning sketch if'theformfor the hands-on programming txample.

MalnFonn ----~--,

DepartmentGroupBox
Book6R.9dtoButton

Mu6lcR.9dloButton

Pertodtcai6R.9dtoButton

CoffeeBa rRsdtoButton

DepartmentPictureBox

PromotlonT t:XtBox

Music

Pertoalcal6

0 ~offee Bar

r ------- --- -,
I
I
I
I
I
I

---,~f- ChecklnGroupBcx
,....----- ---, NameTextBox

L _ _j+----t--1:-- MemberiDMa61<edTextBox

WelcomeRichTextBox

SlgnlnButton

PrtntButton

ExltButton

L _________________ :::::=:=:=:=:t-- lmageV161171eCheckBox

Note: AILhough Lhis step may seem unnecessary. having your users sign off
is standard programming practice and documents that your users have been in
volved and have approved the design.

l~lan the Obj .. rts and l0ropel"lie" Plan the property settin&S for the form and for each control.

Ohject Property Set lin~

Main Form N ame MainFonn

Text R 'n R--For Heading and Refreshment"

Accept Button SignlnButton

CaneelButton ExitButton

StortPo•ition CenterScrecn

Oe partmentGroupBox Name OepartmentGroupBox

Text Department

Books Radio Button Name BoohRadioButton

Text &Books

MusicHadio Bullon Name Musi~RadioButton

Te:<l &MW!io

Periodical•RadioButton Name Periodic:t1lsRadioButton

Text Perio&dicnl•

CoffeeBarRadioButton Name CoffeellarRadioButton

Text &Coffee Bar

SignlnButton Name SignlnButton

Text &Sign In

92 ,. s l \ L It \ s t: u,.,, lntoface De>ign

Ohjeet Proper ly Sell inj:

PrintButton Name PrintButlaJ

Texl &Print

ExitButton Name Exit Button

Text E&xit

0Ppl'llr1mP_ntPirlllrf'lBn~ Nttmf• 0Pp:u1mP.ntPirtllr~Rm:

Visible F'aloe

SizeMode Stretch! mage

I mage VisibleChcckBox Name Image VisibleChcckBox

Text Image &Visible

Visible False

PromotionTe xtBox Name Promotion TextBox

Text (blank)

ChecL:lnCroupBox Name ChecklnCroupBox

Text Elite Member Check In

Labell Text &Name

Label2 Text Member&lD

NameTe~tBox Name NameTextBox

Te.,t {blank)

MemberlDMaskedTextBox Name !llemberiDMaskedTexLBox

Text {blank)

Mask 00000

Wclcon1e1UchTextBox Name WelcomeRichTextBox

Texl {blank)

PrintF'onnl Name Printl<"onnl

Tool'lipl Name TooiTirl

Plan the Event Procedures You will need event procedures for each button,
radio button. and check box.

Pro rc d m·e

BooksRadioButton_CheckedChanged

MusicRadioButlon_CheckedChanged

Actions-P~udoeode

Display "Buy lwo. gel tbe second one for haU
price" and the books image.

Display ''Get a free M.P3 download K'ith purchase
of a CO'' and the mus.ic image.

C ll i\ 11 T ER 2

Procedur-e

PeriodicalsRadioButton_Checkec:IChanged

CoffeeBarRad;oButton_Checke<IChanged

1 mage VisibleCheckBox_ Checked Changed

SignlnBullon_Ciick

PrintButton_Click

Exit Button_ Click

Actions-P~udocode

Display ··Elite members receive 10% ofT
every purchase'!'! and the periodicals image.

Di.play "'Celebrate the season with 20% off

specialty drinka" and the coffee image.

Set the visibility of the department image.

Hide the check-in group box.

Disable the sign-in button.

Enable the Department group box.

Make the check box. promotion text bo.~.
and the "'~I come text Lox vi•ible.

Concatenate the name and member ID
and display them in the welcome rich
text bo>.

Set the print octioo lo Print Preview.

Call the Print method.

End tho project.

Write the Project f ollow the sketch in figure 2.25to create the fonn. Figure 2.26
shows the completed form.

• Set the properties of each object. as you have planned. Make sure to set the
tab order of the controls .

• Working from the pseudocode. M'file each event procedure.

• When you complete the code. thoroughly test the project.

•. R 'n R--For Readong and Refreshment

.') Music

·:; Periogicals

:;, c.;:o~~ .. e ..
:~--~-------------~-1

i

Site Member Check 1-1

Meoroer!D

~ ... _ , , ,
lEJ image~ i

Fl~ture 2 . 26

The form for the hand.-on.
programming example.

93

94 S l \ L
n ' "

C U.er Interf ace O.•ign

The P1·ujt'N Cotliug Sulutluu

'Project:
'Programmer:
'Date:
'Description:

Ch02HandsOn
Bradley/Millspaugh
June 2010
Allow the user to sign in and display current sales promotion.

Public Class MainForm

Private Sub BooksRadioButton_CheckedChanged(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles BooksRadioButton .CheckedChanged

' Display the image and promotion for the Books department .

DepartmentPictureBox . Image = My.Resources .Book
PromotionTextBox .Text = "Buy two, get the second one for half price . "

End Sub

Private Sub CoffeeBarRadioButton_ChecKedChanged(ByVal sender As Object,
ByVal e As System.EventArgs) Handles COffeeBarRadioButton.CheckedChanged

' Display the image and promotion for the Coffee Bar.

DepartmentPictureBox.Image = My.Resources.Coffee
PromotionTextBox.Text =

"Celebrate the season with 20% off specialty drinks. •
End Sub

Private Sub MusicRadioButton_CheckedChanged(ByVal sender As Object,
ByVal e As System.EventArgs) Handles MusicRadioButton.ChecKedChanged

' Display the image and promotion for the Music department.

DepartmentPictureBox . Image = My .Resources .Music
PromotionTextBox .Text ="Get a free MP3 download With purchase of a CD. '

End Sub

Private Sub PeriodicalsRadioButton_CheckedChanged(ByVal sender As Object,
ByVal e As system.EventArgs) Handles PeriodicalsRadioButton.CheckedChanged

' Display the image and promotion for the Periodicals department .

DepartmentPictureBox.Image = My.Resources .Periodicals
PromotionTextBox.Text ="Elite members receive 10' off every purchase."

End Sub

Private Sub ImageVisibleCheckBox_CheckedChanged(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles ImageVisibleCheckBox.CheckedChanged

' Set the visibility of the department image.

DepartmentPictureBox.Visible = ImageVisibleCheckBox .Checked
End Sub

Private Sub SigninButton_Click(ByVal sender ~s System.Object,
ByVal e As System.EventArgs) Handles SigninButton.Click

' set up the screen to display the department promotions and the
' welcome message. Hide the sign-in controls.

' Hide and disable the sign-in controls .
ChecklnGroupBox.Visible = False
SigninButton.Enabled = False

' Enable the group of radio buttons.
DepartmentGroupBox .Enabled = True

C IIAI•T•: n

' Show the promotions controls .
PromotionTextBox .Visible =True
ImageVisibleCheckBox.Visible =True
WelcomeRichTextBox.Visible = True

' Display the welcome message.
WelcomeRichTextBox.Text = "Welcome Member#" & MemberiOMaskedTextBox.rext &

Environment.NewLine & NameTextsox.Taxt
End Sub

Private Sub PrintButton_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles PrintButton.Click

' Print the form in the Print Preview window.

PrintForm1.PrintAction = Printing.PrintAction.PrintToPreview
PrintForm1 .Print()

End Sub

Private Sub ExitButton_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles ExitButton .Click

' End the program.

Me.Close()
End Sub

End Class

Good Programming 1-Iabits I

l. Always test the tab orde r on your forms. Fix it if necessary by changing
the Tab Index properties ofthe controls.

2. Provide visual separation for input fields and output fields and always
make it clear to the user which are which.

3. Make sure that your forms can be navigated and entered from the key
board. Always set an Accept button (AcceptBullon prope11y) for every
fonn.

4. To make a label maintain its s ize regardless of the value of the Text
property, set AutoSize to False.

5. 'lb make the text in a text box right justified or centered. set the
TextA!ign property.

6 . You can use the Checked property of a check box to set other properties
that must be True or False.

l. Text boxes are used primarily for user input. The Text property holds the
value input by tl1e user. You also can assign a literal to the Text property
during design time or run lime.

2. A MaskedTextBox has a Mask property that allows you to specify the data
type and format of the input data.

3 . A RichTextBox is a specialized text box tha t aU01rs additional formatting of
tl1e text.

95

96 \ s l l .\ l u \ s C u- Interface De.ign

4. Both text boxes and rich text boxes have Mulliline and WordWrap proper
ties that can allow a long Text property to wrap to multiple lines. The text
K'ill wrap to the width of the control. which must be tall enough to display
multiple lines.

5. Group boxes are used as containers f·lr other controls and to group like
items on a form.

6. Check boxes and radio buttons allow the user to make choices . . In a group
of radio buttons. only one can be selected: but in a group of check boxes.
any number of the boxes may be selected.

7. The current state of check boxes and radio buttons is stored in the Checked
property: the Checked Changed event occurs when the user clicks on one of
the controls.

8. Pic ture box controls hold a graphic. which is assigned to the lmage prop
erty. Set the Size Mode property to Stretc:hlmage to make the image resize to
fit the control.

9. The Resources tab of the Project Designer can be used to add. remove. and
rename images in the project Resources folder.

10. Forms and controls can display images from the project's resources. Use
the form's Background Image property and a control's Image property.

11. The BorderStyle property of many controls can be set to None. FlxedSingle.

or Fixed3D to determine whether the control appears flat or three
dimensional.

12. To create a line on a fom1. you can use the UneShape control included in
the Visual Basic PowerPacks or use a Label control.

13. You can select multiple controls and treat them as a group. including
setting common properties at once. moving them. or aligning them.

14. Make your programs easier to use by following Windows standard guide
lines for colors. control size and placement. acress keys. default and Cancel
buttons. and tab order.

15. Define keyboard access keys by including an ampersand in the Text
property of buttons. radio buttons. check boxes. and labels.

16. Set the Accept Button property of the form to the desired bullon so that the
user can press Enter to select the button.lf you set the form's CanceiButton
property to a button. that button will be selected ... -hen the user presses the
Esc key.

17. The focus moves from control to control as the user presses the Tab key.
The sequence for tabbing is determined by the Tablndex prope~ties of the
controls. The Tab key stops only on controls that have their TabStop prop
erty set to True and are enabled.

18. Set the fonn's location on the screen by selling the StmtPosition prope1ty.
19. Add a ToolTip control to a form and then set the ToolTip on Too1Tip1

properly of a control to make a ToolTip appear when the user pauses the
mouse pointer over the control. You can set properties of the ToolTip
component to modify the background. foreground. shape. and an icon for
the ToolTips.

20. Clear the Text properly of a text box or a lalJel by selling il to an empty
string. Text boxes also can be c leared using the Clear method.

21 . To make a control have the focus, which makes it the active control. use
tJ1e Focus method. Using the Focus method of a text box makes the
insertion point appear in the text box. You cannot set the focus to a dis
abled control.

C ll i\1'1'E H

22. You can set the Checked property of a radio button or c heck box at nm
time and also set the Visible property of controls in code.

23. Controls can be disabled by selling the Enabled property to False.
24. Change the color of text in a control by changing ill; F'oreColor property.
25. You can use the color constants to change colors d uring run time.
26. The With and End With statements provide an easy way to refer to an

object multiple limes without repeating the object's name.
27. Joining two strings of text is called conca~enation and is accomplished by

placing an ampersand between the two elements. (A space must precede
and follow the ampersand.)

28. Use a space and an underscore to continue a long state ment on another line.
The underscore is not needed if the line breaks after a comma. assignment
ope rator. or concatenation operator as well as after an opening parenthesis
or before a closing parenthesis.

Accept Button property 79
access key 78
BorderStyle property 74
Cancel Button property 79
check box 69
Checked property 69
color constant 86
concatenation 89
container 68
empty s tring 83
Enabled property 85
focus 79
Focus method 84
ForeColor property 86
GroupBox control 68
Image property 69
implicit line continuation 89
line-continuation character 90
MaskedTextBox 66
Multiline property 67
NewLine cha racte r 68

PictureBox control 69
Project Designer 72
radio button 69
RichTex.tBox 67
Select Resource dialog box 69
SizeMode property 71
Start Position property 81
Stretch/mage 71
Tablndex property 79
TabStop property 79
text box 65
Text property 6.5
TextAlign property 65
ToolTip 81
TooiTip component 81
Tool Tip on TooiTipl property 81
Visible property 71
Wi ttl and End Ni th statements 88
With block 8fJ
WordWrap property 67

1. You can display program output in a text box or a label . When should you
use a text box? \\'hen is a label appropriate?

2. What would be the advantage of us ing a masked text box rather than a text
box?

3. When would it be appropriate to use a rich text box instead of a text box?

97

98 \ s l .\ I. u .\ s l ' U.er lmerface De.ign

4. What properties of a Text Box and llichTextBox must be set to allow a long
Text property to wrap to multiple lines?

5. How does the behavior of radio buttons differ from the behavior of check
boxes?

6. If you want two groups of radio buttons on a form. how can you make the
groups operate independently?

7. Explain how to make a graphic appear in a picture box control.
8. Describe how to select several labels and set them aU to 12-poi.nt font size

at once.
9. What is the purpose of keyboard access keys? How can you define them in

your project? How do they operate at run time?
10. Explain the purpose of the AcceptButton and Cru1ce!Button properties of

the form. Give an example of a good use for each.
11 . What is a TooiTip? How can you make a Too!Tip appelli?
12. What is the focus? How can you control which object has the focus?
13. Assume you are testing your project ru1d don't like the initial position of the

insertion point. Explain how to make the insertion point appear in a differ
ent text box when the program begins.

14. During program execution. you want to re turn the insertion point to a text
box called Address Text Box. What Basic statement will you use to make that
happen?

15. What Basic statements will clear the current contents of a text box and a
label?

16. How are the With and End With statements used? Give an example.
17. What is concatenation and when would it be useful?
18. Explain how to continue a very long Basic statement onto another line.

l.nclude discussion of an implicit line continuation.

Graphics Files: You can find the icon files in the StudentData\Graphics folder
on the text Web site (www.mhhe.com/VB2010).

2. 1 Create a project that K·ill switch a light bulb on and off. using the user
interface shoK,l below as a guide.
Form.: Include a text box for the user to enter his or her name. Create two
picture boxes. one on top of the other. Only one will be visible at a lime.
Use radio buttons to select the color of the text in tl1e label beneath the
light bulb picture box.

Include keyboard access keys for the radio buttons and the buttons.
Make the Exit button the Cancel button. Create ToolTips for both light
bulb picture boxes: make the TooiTips say "Click here lo turn the light
on or off."
Project Operation: 'lne user will enter a name and clic:k a radio button for
the color (not necessarily in that order). "\l'hen the light bulb is clicked.
display the other pic ture box and change the message below il'. Concate
nate the user name to the end of the message.

C ll i\ I'T E IC 2

The hm icon illes are LightOfT.ico and LightOn.ioo and are found in the
following folder:

Graphics\Microsofticons

(See the note at the top of the exercises for graphic file locations.)
Coding: In the click event procedure for each Color radio button, change
the color of the message below the light bulb.

O"OOMilcdor

ii ;:Q.~}
o-.oow1 cdot

9)~~~~

J Etue

~ E.ed

1 CO=

2.2 Write a project to display the flags of four diffe rent countries. depend
ing on the setting of the radio buttons. In addition. display the name
of the country in the large label under the flag picture box. The user
also can choose to display or hjde the form's title. the country name,
and the name of the programme r. Use check boxes for the display/hide
choices.

Include keyboard access keys for all radio buttons, check boxes. and
buttons . Make the Exit button the Cancel button. Include TooiTips.

You can choose the countries and flags.
Hints: \Vhen a project begins running. the focus goes to the control

with the lowest Tablndex. Because that control likely is a radio button,
one button will appear selected. You must e ither display the first flag to
match the radio button or make the focus begin in 11 different control. You
might consider beginning the focus on the button.

Set the Visible property of a control to the Checked property of the cor
responding check box. That 11·ay when the check box is selected. the con
trol becomes visible.

Because all three selectable controls ~till be visible when the project
begins. set the Checked property of the three check boxes to True at
design time. Set the flag picture box to Visible = False so it won't
appear at startup. (lf you plan to display the picture box at sta rtup. its
Visible property must be set to True.)

99

100 \ ' s t t \ I. u \ s

Make sum to set the SizeMode property of the picture box control to
Stretch/mage.

7-f Flag Viewer

Flag v;ewer
COU'Itly

UrWed Stales

~· Jaoan

~. Mexico

I

~rwned by: 1\. Pr>g~ [j~ . J

Display

GO Tile

ttl CqurtJy Home

I'll Procra!Tiller

2.3 W1ite a project to dis play a weatJ1er report . 1l1e user can choose one of the
radio buttons and display an icon and a message. The message should
give tbe weather report in M·ords and include the person's name (taken
from the text box at the top of the form). For example. if the user chooses
the Sunny button. you might display "lt looks like sunny weather today.
John" (asswning tJ1at tJ1e user entered John in the text box).

Include keyboard access keys for the button and radio buttons. Make
the Exit button the Cancel button and include ToolTips.

1l1e four icons displayed are called Cloud.ico. Rain.ico. Sno11·.ico. and
SWJ.ico. (See the note at the top of the exercises for graphic fie locations.)

' Weather Report = _§_~
----------------------~

.f!rteryourname here:

(Qoudy

~ed by: A. Progranvner

2.4 Write a project that will input the user name and display a message of the
day in a label. along 1~ith the user's name. lnclude bullons (with keyboard

C ll i\ l•l'E IC 2

access keys) for Display. Clear. and Exit. Make the !Asplay button the
Accept button and the Clear button the Cancel button. Include Tool Tips
where appropriate.

Include a group of radio buttons for users to select the color of themes
sage. Give them a choice of four different colors.

Make your form display a changeable picture box. You can use the
happy face icon files or any other images you have available (FaceOl.ico.
Face02.ico. and Face03.ico). (See the note at the top of the exercises for
graphic me locations.)

You may choose to have only one message of the day. or you can have
several that the user can select with radio buttons. You might want to
choose messages that go with the different face icons.

2.5 Create a project that allows the user to input information and then display
the lines of output for a mailing labe l.

Remember that fields to be input by the user require text boxes. but
display tl1e output in labels. Use text boxes for tl1c first name. last name.
street address. city. s tale. and ZIP code; give meaningful names to the text
boxes and set the initial Text properties to blank. Add appropriate labels
to each text box to tell the user which data will be entered into each box
and also provide TooiTips .

Use buttons for Display Label Info. Clear. and Exit. Make the Display

button the Accept button and the Clear button the Cancel button.
Use three labels for displaying the information for Line 1. Line 2. and

Line 3.
Use a masked text box for the ZIP code.
A click event on the !Asplay Label Info button will display the follm~ing:

Line 1-The first name and last name concatenated together with a
space between.
Line 2-The street address.
Line 3- The city. stale. and ZIP code concatenated together. (Make s ure
to concatenate a comma and a space behveen the city and state. using
"."and hvo spaces between the s tate and ZIP code.)

VB !Uall OrtiPr I

101

Design and code a project that displays shipping
information.

Use w1 appropriate image in a picture box in tl1e
upper-left corner of the form.

radio bu!lons for Express and Ground. Make the
second group box have a Text property of Payment

Type and include radio but1ons for Charge. COD. and
Money Order.

Use text boxes with identifying labels for Catalog
Code. Page Number. and Part Number.

Use two groups of radio buttons on the form; en
close each group in a group box. The first group box
should have a Text property of Shipping and contain

Use a check box for New Customer.
Add buttons for Print. Clear. and Exit. Make the

Clear button the Cancel button.
Add Tool Tips as appropriate.

102 ' S l \ L G A S 4_" U.er Interface De>ign

VB Auto Center

Modify the project from the Chapter 1 VB Auto Center
case study. replacing the buttons 1•ith images in pic
ture boxes. (See "Copy and Move Projects" in Appen
dix C for help in making a copy of the Chapter 1
project to use for this project.) Above each picture
box. place a label that indicates which department or
commanrl thP. g raphic rP.prP.sP.nl.~- A r.l ick on a pir.lltTP.

box will produce the appropriate information in the
special notices label.

Add an image in a pic ture box that clears the spe
c ial notices label. Include a ToolTip for each picture
box to help the user understand the purpose of the
graphic.

Add radio buttons that wiiJ aU ow the user to view
the special notices label in different colors.

Include a check box labeled Hottrs. When the
check box is selected. a new label will display the
message "Open 24 Hours--7 days a week'".

By default. the images are all stored in the Icons
folder. (See the note at the top of the exercises for
graphic file locations.)

DcJ>artnJe ut/ Conlflltwd (UlA{,f'C ror Picture box

Auto Salea Can~.ico

Service Cente r Wrench.ico

Detail Shop Water.ico

Employment Opportunities ~tAILl2.ico

Exit MSCBOXOl.ico

\ 'Ideo Bonanza

Design and code a project that displays the location of
videos using radio buttons. Use a radio button for each
of the movie categories and a label to display tl1e aisle
nwnber. A check box will allow tl1e ttser to display or
hide a message for members. \'~Then tl1e check box is
selected. a message stating "All Members Receive a
10% Discount" will appear.

Include buttons (with keyboard access keys) for
Clear and Exit. 'The Clear button should be set as the
Accept button and the Exit as the Cancel button.

Place a label on the fom1 in a 24-point font that
reads "Video Bonanza". Use a line to separate the

label from the rest of the inted'ace. Lnclude an image
in a picture box.

Rodio Bu11 on Lorntion

Co~y Aisle l

Drama Aisle 2

Action Aisle 3

Sci-Fi Aisle 4

Horror Aisle 5

\ 1er y Ver y BoardM

Create a project to display an adveitising screen for
Very Very Boards. Include the company nan1e. a slo
gan (use "The very best in boards"' or make up your
own slogan). and a gmphic image for a logo. You may
use the graphic included with the text materials
(Skateboard.gif) or one of you:r o1m.

Allow the user to select the color for the slogan
text using radio buttons . AdditionaHy. the user may
choose to display or hide the company name. the s lo
gan. and the logo. Use check boxes for the display
options so that the user can select each option
independently.

C II 1\I1 TER

Include keyboard access keys for the radio but
tons and the butlon.s. Make the Exit butlon the Cancel
bullon. Create ToolTips for the company name ("Our
company name"). the slogan ("Our slogan''). and the
logo ("Our logo'l

When the project begins execution. the slogan
text should be red and the Red radio button selected.
'll'hen the user selects a new color, change the color of
the s logan text to match.

Each of the check boxes must appear selected ini
tially. since the company name.. slogan. logo. and pro
grammer name display when the form appears. Each
lime the lL~er selects or deselects a check box. make
the corresponding item display or hide.

Make the form appear in the cente r of the screen.

103

Cool Boards I

The very be.sl1a boa~-

Sbgan(.olor {)sol ..

ij\~ ~Q>olp«')'l'lcrr..

_, Due ~ So:Jan

,I

~ J

This page intentionally left blank

u A p T E R

Variables, Constants,
and Calculations

I . Dis tinguish between variables. constants. and controls.

2. Differentia te among the various data types.

3. Apply naming conventions incorporating standards and indicating the

data type.

4. Declare variables and cons tants.

G. Select the appropriate scope for a variable.

G. Convert te.l(l input to numeric values.

7. Perform calculations using variables and constants.

8. Convert be tween numeric data types using implicit and explic it

conversions.

9. Round decimal values using the Decimal. Round method.

Format values for output using the ToString method.

Use Try /Catch blocks for error handling.

Display message boxes with error messages.

Accumulate sums and generate counts.

106 v S l l ,\ I. C Variables. Comtants. and Calculations

In this chapter you will learn to do calculations in Visual Basic. You will stm1
with text values input by the user. convert them to nume1ic values. a11d perlorm
calculations on them. You will also learn to format the results of your calcula
tions and display them for the user.

Although the calculations themselves are quite simple (addition. subtrac
tion. multiplication, and division). there are some important issues to discuss
first. You must learn about variables and constants. the various types of data
used by Visual Basic, and how and where to declare variables and constants.
Variables are declared differently, depending on where you want to use them
and how long you need to retain their values.

The code below is a small preview to show the calculation of the product of
two text boxes. The first group of statements (the Dims) declares the variables
and their data types. TI1e second group of statements converts the text box con
tents to numeric and places the values into the variables. The last line perlorms
the multiplication and places the result into a variable. TI1e following sections
of this chapter describe how to set up your code for calculations.

' Declare the variables.
Dim auantitylnteger As Integer
Dim PriceDecimal, ExtendedPriceDecimal As Decimal

' Convert input text to numeric and assign values to variables .
auantitylnteger = Integer .Parse(QuantityTextBox.Text)
PriceDecimal = Decimal.Parse(PriceTextBox.Text)

' Calculate the product.
ExtendedPriceDecimal = Quantitylnteger * PriceDecimal

Data-Variables and Constants

So far. all data you have used in your projects have been properties of objects.
You have worked with the Text property of text boxes and labels. Now you will
work ~tith values that are not properties. Basic allows you to set up locations in
memory and give each location a name. You can visualize each memory loca
tion as a scratch pad; the contents of the scratch pad can change as the need
arises. In this example. the memory location is called Maximumlnteger.

Maximumlnteger 100 Maximumlnteger

100

After executing this statement, the value of Maximumlnteger is 100. You
Call change the value of Maximumlnteger, use it in calculations. or display it in
a control.

ln the preceding example. the memory location called Maximum Integer is
a variable. Memory locations that hold data that can be changed during proj
ect execution are called variables: locations that hold data that cannot change
during execution ru·e called constauts. For example. the customer's name will
vary as the information for each individual is processed. However. t11e name of
the company and the sales tax rate will remain the same (at least for that clay).

C II A 1• 'I' 1•: ll

When you declare 11 varial>le or a named cons t:u.t. Visunl Basic reserves
an area of memory and assigns it a name, called an idem ifier. You specify
identifier names according to the rules of Basic as well as some recommended
naming conventions.

The 41~c·.hwation statements establish your project's va riables a nd con
stants, give them names. and specify the type of da ta they will hold. The state
ments are not considered executable; that is, they are not executed in the flow
of instructions during program execution. An exception to this 1ule occurs when
you initialize a variable on the same line as the decla ration.

Here an : some sample declaration statements:

' Declare a str ing variable .
Dim Namestring As String

1 Declare integer variabl es.
Dim Count er lnteger As Int eger
Dim Maxinteger As Integer = 100

I Declare a named constant.
Const DISCOUNT_RATE_Decimal As Decimal = .15D

The next few sections describe the data types, the rules for naming vari
ables and con~tants, and the formal of the declamtions.

Data Types

The d utn type of a variable or constant indicates what type of informa tion will
be stored in the allocated memory space: perhaps a name. a dollar amount. a
date. or a total. The data types i.n VB are actually classes. and the variables are
objects of the class. Table 3.1 shows the VB data types.

The most common types of variables and cons tants we will use are String,
Integer. and Decimal. When deciding whjch data type to use. follo~>· this guide
line: U the data will be used in a calcttlation. then it must be numeric (usually
Integer or Decimal); if it is not used in a calculation. it will be String. Use Dec
ima l as the data type for any decimal fractions in business applications; Single
ar1d Double data types are generally used ir1 scienli.fic applications.

Consider the following examples:

C onte n111

Social secuL-ity number String

Pay rale Dechual

Hours "M'orked Decimal

Phone number String

Quantity Integer

llt·uson

Not used i.n a calculation.

Use<l in a calculation: contains a d ecima1
point.

Used in a calculation: may contain a

decimal point. (Decimal can be usecl for
any decimal fraction. not just dollars.)

Not used in a calculation.

Used in calculations; contains a w·hole
number.

107

108 v s u ,, I, C Variables. Con.stants, and Calculations

T be Visual Basic Da ta Tn:~es, Common Language Hmllime (CLR)
Data Types, tbe Kind of Ua ta Eacb Type Bolds, and tbe
Amount of Memory Allocated fo1· Each Tnb l e 3 . 1

VB Data Tn~e

Boolean

Byte

Char

Date

Decimal

Si ngle

Double

Short

Integer

Long

String

I Object

Common Ltuaguage RttutiJ.ue
(CLR) Data Type

Boolean

Byte

Char

Date 'lime

Decimal

Single

Double

lntl6

lnt32

lnt64

String

Object

Use For

True or False values

0 to 255. binary data

Single Unicode character

11110001 through 1213119999

Decimal fractions. such as dollars and cenls

Single-precision flo.,ting-point numbers

Double-precision floating-point munbers with

14 digits of accuracy

Small integer in the range - 32,768 to 32,767

Whole numbers in the range - 2.147.483.648
to + 2.147,483,647

Larger ,.-hole nwnbers

Alphanumeric data: letters, digits. and

Any type of data

S to rage Size
iu bytes

2

1

2

8

16

4

8

2

4

8

Varies

4

Nole: Generally you will use the Visusl Basic data types: but for some conversion meUl<xls, you must use the corresponding CLR data type.

Naming Rules

A programmer has to name (identify) the variables and named constants that will
LJe used in a project. Basic requires identifiers for variables and named constants
to follow these rules: names may consist ofletters, digits. and underscores: they
must begin with a letter or an underscore; they cmmot contain any spaces or pe
riods; and they may not be reserved won:ls. (Reserved words. also called key
words. m·e words to which Basic has assigned some meaning, such as print. name.
and value.)

Identifiers in VB are not case sensitive. Therefore. the names sumlnteger,
Sum Integer. suminteger. and SUM INTEGER all refer to the same variable.

Note: You can make variable names as long as you wish: the maximum
ltmgtlt uf au itleulifier i.s 16,383 cltaracler.s.

Naming Conventions

When naming variables and constants, you must follow the rules of Basic. In
addition. you should follow some naming conventions. Conventions are the
guidelines that separate good names from bad {or not so good) names. The
meaning and use of all identifiers should always be clear.

Just as we established conventions for naming objects in Chapter l. in this
chapter we adopt conventions for naming variables and constants. The follow
ing conventions are widely used iu the programming industry:

C II ,\I>'I' I' R

l. Identifiers must be meaningful. Choose a name that clearly indicates its
purpose. Do not abbreviate unless the meaning is obvious and do not
use very short identifiers. such as X or Y.

2. Include the class (data type) of the variable.
3 . Begin with an uppercase letter and then capitalize each successive

word of the name. Always use mixed case for variables; uppercase for
constanis.

Sample I den tillers

Field of Dnht Posoi ble Identifier

Social security number Socia!Securit yN umberStri ng

Pay rate PayRateDecimal

How·s,.wked HoursWorke<IDecimal

Phone number PhoneNumhetString

Quantity Quantitylnteger

Tax rate {constant) TAX_RATE_Decimal

Quota {constant) QUOTA_Integer

Population PopulationLong

Indicate whether each of the following identifiers conforms to the rules of Ba
sic and to the naming conventions. If the identifier is invalid. give the reason.
Remember, the answers to Feedback questions are found in Appendix A.

l. omitted 7. SubString
2. #SOldinteger 8. text
3. Number Sold Integer 9. Maximum
4. Number .Sold . Integer 10. MinimumRateoecimal
5. Amount$Decimal 11. MaximumCheckDecimal
6. Sub 12. CompanyNameString

Constants: Named and lnll·insic

Constants provide a way to use words to describe a value that doesn't change.
In Chapter 2 you used the Visual Studio constants Color.Blue, Color. Red.
Color. Yellow. and so on. TI10se constants are built into the environment and
called intrinsic constants; you don't need to define them anywhere. The con
stants that you define for yourself are called named constants.

Named Constants

You declare named constants using the keyword Con st. You give the constant
a name, a data type. and a value. Once a value is declared as a constant, its
value cannot be changed dtuing the execution of the project. The data type that
you declare and the data type of the value must match. For example. if you de
clare an integer constant. you must give it an integer value.

109

110 ,,
s u " I. n " s C Variables. Constants. and Calculations

You will find two important advantages to using named constants rather
than the actual values in code. The code is easier to read: for example. seeing
the identifier MAXlMUM_ PAY_ Decimal is more meaningful than seeing a
number, such as 1,000. In addition, if you need to change the value at a later
time. you need to change the constant declaration only once: you do not have to
change every reference to it throughout the code.

Coust Statement-General Form

~rl 5 ~ Const Identifier [As Datatype} Value

Naming conventions for constants require that you include the data type in the
name as well as the As clause that actually declares the data type. Use all up
percase for the name with individual words separated by underscores.

This example sets the company name. address. and the sales tax rate as
constants:

•
Coust Statemem- Examples

~ P---~ ~ Const COMPANY_NAME_String As String = "R ' n R for Reading ' n Refreshment "
:!.. Const COMPANY_ADDRESS_String As String = "101 S. Main Street"
~ Const SALES_TAX_RATE_Decimal As Decimal = .080

~ ~-----------------------------------Assigning Values to Constan ts

The values you assign to constants must follow certain mles. You have already
seen that a text (string) value must be enclosed in quotation marks; numeric
values are not enclosed. However. you must be aware of some additional rules.

Numeric constants may contain only the digits (0- 9). a decimal point, and
a sign (+ or -) at the left side. You cannot include a comma. dollar sign, any
other special characters. or a sign at the right side. You can declare the data
type of numeric constants by appending a type-declaration character. Jf you do
not append a type-declaration character to a numeric constant, any whole num
ber is assumed to be Integer and any fractional value is assumed to be Double.
The type-declaration characters are

Decimal
Double
Integer
Long
Short
Single

D
R
I
L
s
F

String literals (also called string constants) may contain letters. digits. and
special characters. such as$#@%&*. You '~ill have a problem when you want
to include quotation marks inside a string literal since quotation marks enclose
the literal. The solution is to use two quotation mru'ks together inside the literal.
Visual Basic will interpret the pair as one symbol. For example. "He said,
"" I like it . """ produces this string: He said, "I like it ."

Although you can use numeric digits inside a string literal. remember that
these numbers are text and cannot be used for calculations.

The string values are referred to as string liter(/.ls because they contain
exactly (literally) whatever is inside the quotation marks.

C II A 1• 'I' 1•: R 3

The following table lists example constants.

Data Type

Integer

Single

Decimal

Double

Long

String uterals

[ntrinsic Coust::mts

Cons tant Value Example

5
125
2170
2000
- 100
123456781

101 .25F
- 5 . 0F

850 . 500
- 1000

52875 . 8
52875.8R
- 52875 . 8R

134257987L
- 8250758L

"Visual Basic "
"ABC Incorporated "
"1415 J Street "
"102''
"She said "" Hello ."""

lntriusic coustauts are system-defmed constants. Many sets of intrinsic con
stants are declared in system class libraries and are available for use in your
VB programs. For example, the color constants that you used in Chapter 2 are
inb·insic constants.

You must specify the class name or group name as well as the constant
name when you use intrinsic constants. For example, Color. Red is the constant
"Red" in the class "Color". Later in this chapter you willleam to use constants
from the Message Box class for displaying message boxes to the user.

Dedm·ing Va1·iablcs

Although there are several ways to declare a variable. inside a procedure you
must use the Dim statement. Later in this chapter you ~tillleam to declare vari
ables outside of a procedure. using the Public. Private, or Dim statement.

Llcdamtiou Staltmcuts-Ccuet·al For·m

6'~ S ~ Public JPrivate JDim Identifier (As Datatype)
~

If you omit the optional data type. the variable's type defaults to Object. It is
recommended practice to always declare the data type.

Note: If Option Strict is On. you receive a syntax error if you omit the

data type.

111

112 v S l l ,\ I. C Variables. Comtants. atul Calculations

Oeclm·atiou S tatement-Examples

~ P---~ ~

" { ..
"'

Dim CustomerNameString As String
Private TotalSoldlnteger As Integer
Dim TemperatureSingle As Single
Dim PriceDecimal As Decimal
Private CostDecimal As Decimal

The reserved word Dim is really short for dimension, which means "size."
When you declare a variable. the amount of memory resenred depends on its
data type. Refer to Table 3.1 (page 108) for the size of each data type.

You also can declare several variables in one statement: the data type you
uedare iu tile As dawse applies lu all of Lite variaLies 011 Lite li11e. Separate Lite

variable names with commas. Here are some sample declarations:

Dim NameString, AddressString, PhoneString As String
Dim PriceDecimal, TotalDecimal As Decimal

Emer·ing Declaration Statements

Visual Basic's IntelliSense feature helps you enter Private. Public. and Dim
statements. After you type the space that follows VariableName As. a list pops
up (Figure 3.1). 'Ll1is list shows the possible entries to complete the statement.
The easiest way to complete the statement is to begin typing the correct entty;
the list automatically scrolls to the correct section (Figure 3.2). When the cor
rect entry is highlighted or is the only .item showing, press Enter. Tab, or the
spacebar to select the entry. or double-click if you prefer using the mouse.

Din PriceDecirnal As ..,d•,:.' l ________________ -,

'1: DebuggerDisplayAttribute

~ Oebugge•HiddenA.ttribute

4$: Oebuggc:rNonUstrCo-dc.Attributt

'U DebuggerStepperBoundaryAtlribute
<U DebuggerStepThroughAttribute

<.ii OebuggerTypePro>.yA..."tribute

Rename a variable or control using

the handy Ren&me feature: Right
click on the nome ond choose R~

nome from the context menu. The
identifier will be changed every

where it occurs. •

As soon as you type the space
after As. the lntelliSense menn
pops up. You can mah-e a
selectihn from the list with
your mouse or the keyboard.

Fign•·e 3.2

T,'pe the first few characters of
the data type and the
lntelliSense list quickly scrolls
to the correct section. When the
carrect word is highUghr-ed.
press Enter, Tab, or the
spacebar to select the entry.

C II A 1• 'I' " ll

Note: Some people tlnd the lntelliSense feature annoying rather than helpful.
You can tum off the feature by selecting Tools I Options. In the Options dialog box,
make sure that Show all settings is selected and choose Text Editor I Basic /General;
deselect Auto list members and Parameter information. If you are working in a shared
classroom or lab, never change options without permission of an insb1Jctor.

Write a declaration us ing the Dim statement for the following s ituations; make
up an appropriate variable identifier.

l. You need variables for payroll processing to store the following:
(a) Number of hours, which can hold a decimal value.
(b) Employee's name.
(c) Department munber (not used in calculati•)ns).

2. You need variables for inventory control to store the following:
(a) lnteger quantity.
(b) Description of the item.
(c) Part number.
(d) Cost.
(e) Selling price.

Scope and Life LimE' of Variables

A variable may exist and be visible for an entire project. for only one form, or for
only one procedure. 111e visibility of a variable is referred to as its scope. Visi
bility really means "this variable can be used or 'seen' in this location." The
scope is said to be namespace, module level, local, or block. A uamespace
level var·iable may be used in all procedures of the namespace, which is gener
ally the entire project. Module-level variables. also called class-level
variaMes. are accessible from all procedures of a fom1. A l ocal variaMe may
be used only within the procedure in which it is declared. and a block-level
vat·iable is used only within a block of code inside a procedure.

You declare the scope of a variable by choosing where to place the decla
ration statement and by choosing the appropriate declaration keyword. such as
Private.

Not-e: Previous versions of VB and some other programming languages
refer to namespace variables as global 1-uriables.

V:U'iabl<' Lif<'time

ll'l1en you create a variable. you must be aware of its lifetime. The lifetime of
a variable is the period of time that the variable exists. The lifetime of a local
or block variable is normally one execution of a procedure. For example. each
time you execute a sub procedure, the local Dim statements are executed. Each
variable is created as a "fresh" new one, with an initial value of 0 for numeric
variables and an empty string for string variables. When the procedure fin
ishes. its variables disappear; that is. their memory locations are released.

The lifetime of a module-level variable is the entire time the form is
loaded. generally the lifetime of the entire project. If you want to maintain the
value of a variable for multiple executions of a procedur-for example. to cal
culate a running total- you must use a module-level variable (or a variable de
clared as Static, wh.ich is discussed in Chapters 6 and 7).

113

114 \ ' S U A I, C Variables. Constants. and Cak!t.la.tion.s

Lot·al Oedm·a1ions

Any variable that you declare inside a procedure js local in scope. which
means that it is kno1t11 only to that procedure . Use the keyword Dim for local
declarations. A Dim statement may appear anywhere ins ide the procedure as
long as it appears prior to the first use of the variable in a statement. However.
good programming practice dictates that Dims should appear at the top of the
procedure. prior to all other code statements (aft er the remarks).

' Module- level declarations.
Const DISCOUNT_RATE_Decimal As Decimal = 0.15D

Private Sub CalculateButton_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles CalculateButton.Click)

' Calculate the price and discount.
Dim auantitylnteger As Integer
Dim Priceoecimal, ExtendedPriceoecimal, OiscountOecimal,

OiscountedPriceOecimal As Decimal

Convert input values to numeric variables .
auantityinteger = Integer . Parse(QuantityTextBox .Text)
PriceDecimal = Oecimal.Parse(PriceTextBox.Text)

' Calculate values.
ExtendedPriceDecimal = auantitylnteger * PriceDecimal
DiscountDecimal = Dectmal . Round(

(ExtendedPriceDecimal * DISCOUNT_RATE_Decimal), 2)
DiscountedPriceOecimal = ExtendedPriceOecimal - OiscountOecimal

Notice the Const statement in the preceding example. Although you can
declare named constants to be local, block. module leveL or namespace in
scope. just ns you can variables. good programming practice dictates that con
slants should be declared at the module level. This technique places all constant
declarations a t the top of the code and makes them easy to find in case you
need to make c hanges.

Note: Any variables thai you declare but do not use nre marked with a gray
squiggle underline. You can ignore the marks if you have just declared the vari
able and not yet written the code.

Muclult' -Le' PI Bec·lm·atiun~

At times you need to be able to use a variable or constant in more than one pro
cedure of a form. When you declare a vatiable or constant as module leveL you
can use it anywhere in that fotm. '"''11en you write module-level declarations. you
can use the Dim. Public. or Private keyword. The preferred practice is to use
either the Public or Private keyword for module-level variables rather than
Dim. In Chapter 6 you 1villleam how and why to choose Public or Private. Un
til then we will declare all module-level variables using the Private keyword.

Place the declarations (Private or Const) for module-level vatiables and
constants in the Declarations section of the form. (Recall that you have been
using the Declarations section for remarks since Chapter 1.) H' you wis h to
accumulate a smu or count items fm· multiple executions of a p•·oce
dure, you should declm·e the vm·iable at the module level.

C II A 1• 'I' " ll

Figure 3.3 illustrates the locations for coding local vaiiables and module
level variables.

(DeclaratiOns section)

Private Modulet.eve!Variab!es
Const NamedConslants

Prtvate Sub CalculateButton_Oick
Dim LocaiVarlables

End Sub

Private Sub SummaryButton_Oick
Dim LocaiVariables

End Sub

Private SubOearButton_Oi<:k
Dim LocaiVariables

End Sub

' Declarations section of a form .

Declare module -level variables and constants .
Private auantitySumlnteger,SaleCountlnteger As Integer
Private DiscountSumDecimal As Decimal
Const MAXIMUM_DISCOUNT_Decimal As Decimal = 100 . 0D

Coding l\lodulc-L('vel OeclaJ'a tions

To enter module-level declarations. you must be in the Editor window at the top
of your code (Figure 3.4). Place the Private and Const statements after the
Class declaration but before your first procedure.

Code module-level declarations in the Declarations section at the top of your code.

i c Class: BookSalefortt

• Decl a re oodule-level variables and co nstant !O .
Private QoantitySuni nteger 1 Sa l eCountinteger As Integer
Private DiscountSu~nl>eci.mal, Oi.scountedPriceSw:Oec i.na l A~ Oecinal
Const imal As Oecirr:al - G .150

l<'l g u.t• e 3 . 3

The vari-ables yoz£ declare
inside a procedure are local.
Variables th.at you declare in

the Declarations section are
module level.

liS

11 6 l ' C Variables. Con.stants, and Calculations

Block-l .evel :UJd Namcspace -L('vel Declar ations

You won't use block-level or namespace-level declarations in this chapter.
Block-level variables and constants have a scope of a block of code. such as
If I End If or Do I Loop. These statements are covered later in this text.

Namespace-level variables and constants can sometimes be useful when a
project has multiple forms and/or modules, but good programming practice
excludes the use of namespace-level variables.

Write the declarations (Dim. Private, or Const statements) for each of the fol
lowing situations and indicate where each statement will appear.

l. The total of the payroll that will be needed in a Calculate event proce
dure and in a Summary event procedure.

2. The sales tax rate that cannot be changed during execution of the pro
gram but will be used by multiple procedures.

3. The number of participants that are being cotmted in the Calculate
event procedure but not displayed until the Summary event procedure.

Calculations ·1

In programming you can perform calculations with variables. with constants,
and with dte prope1ties of certain objects. The prope11ies you will use, such as
the Text property of a text box or a labeL are usually strings of text characters.
These character strings. such as " Howdy" or "12345". carmot be used directly
in calculations unless you first conve1t them to the correct data type.

Conve t·Ling Stt·ings Lo a Ntune t·ic Da ta Typ~

You can use a Parse method to convert the Text property of a control to its nu
meric form before you use the value in a calculation. The class that you use de
pends on the data type of the variable to which you are assigning the value. For
example. to convert text to an integer. use the Integer .Parse method; to con
vert to a decimal value, use Decimal. Parse. Pass the text string that you want
to conve1t as an argtlllleut of the Parse method.

' Convert input values to numeric variables .
auantityinteger = Integer.Parse(QuantityTextBox.Text)
PriceDecimal = Decimal . Parse(PriceTextBox . Text)

' Calculate the extended price .
ExtendedPriceDecimal = auantitylnteger * PriceDecimal

Converting from one data type to another is sometimes called casting. In the
preceding example. the String value from the QuantityTextBox.Text property is
cast into an Integer data type and the String from PriceTextBox.Text is cast into
a Decimal data type.

Usiug the Pru·se Metho ds

As you know, objects have methods that pe1fonn actions. such as the Focus
method for a text box. The data types that you use to declare variables are

C II ,\I> 'I' I' R

classes, which have properties and methods. Each of the nwneric data type
classes has a Parse method. which you will use to convert text strings into
the con-eel numeric value for that type. 'The Decimal class has a Parse method
that converts the value inside the parentheses to a decimal value while the
Integer class has a Parse method to convert the value to an integer.

The l~ru·s(' 1\lethods-C('ueral Fot•tus

11 7

r5r---~ c ' Convert to Integer .
~ Integer . Parse(Stringroconvert)
::..
~ ' Convert to Decimal
8 Decimal.Parse(StringToConvert)
'J>

The expression you wish to convert can be the property of a control, a string
variable, or a string constant. The Parse method retums (produces) a value that
can be used in a statement. such as the assignment statements in the following
examples.

Tbe Pru·se Methods-Examples

~ ~ Quantityinteger = Integer . Parse(QuantityTextBox .Text)
8 Priceoecirnal = Decimal .Parse(PriceTextBox.Text) 1f WholeNumberinteger = Integer . Parse(DigitString)

The Parse methods examine the value stored in the argument and attempt to
convert it to a number in a process called parsiilg. which means to pick apart.
character by character, and convert to another format.

When a Parse method encounters a value that it cannot parse to a number.
such as a blank or nonnumeric character. an error occurs. You will learn how
to avoid those en-ors later in this chapter in the section titled "Handling
Exceptions."

You will use the Integer . Parse and Decimal . Parse methods for most of
your programs. But in case you need to convert. to Long. Single, or Double. VB
also has a Parse method for each of those data type classes.

Couvet·ting to Su·iug

When you assign a value to a variable, you must take care to assign like types.
For example. you assign an integer value to an Integer variable and a decimal
value to a Decimal variable. Any value that you assign to a String variable or
the Text property of a control must be string. You can convert any of the nu
meric data types to a string value using the ToString method. Later in this
chapter you will learn to formal numbers for output using parameters of the
ToString method.

Note: The rule about assigning only like types has some exceptions. See
" Implicit Conversions" later in tllis chapter.

Examples

ResultTextBox .Text = ResultDecimal . ToString()
countTextBox .Text = countinteger .ToString()
IDString = IDinteger.ToString()

11 8 l ' C Variables , Constants. aJul Calculations

Aritlune tjc Ope1·a1ions

The aritluuetic operations you can pe1f01m in Visual Dasic include addition • .sub
traction. multiplication. division, integer division, modulus. and exponentiation.

Opemlion

+ Addition

SLLbtraction

* Multiplication

Oi,•ision

lntegel' division

Mod Modulus--Remainder of divjsion

Exponentiation

The first four operations are self-explanatory, but you may not be familiar
with \. Mod. or A.

lntcge1· Division (\)

Use integer division (\) to divide one integer by another. giving an integer result
and truncating (dropping) any remainder. For example. if TotalMinuteslnteger
= 150. then

Hourslnteger = TotalMinutesinteger \ 60

returns 2 for Hourslnteger.

Mod
The Mod operator returns the remainder of a division operation. For example,
if TotalMinutesinteger = 150. then

Minutesint eger = TotalMinutesinteger Mod 60

returns 30 for Minuteslnteger.

Exr•oneutiation (A)

The exponentiation operator (A) raises a number to the power specified and re
turns (produces) a result of the Double data type. The following are examples of
exponentiation.

SquaredDoub1e = NumberDecimal • 2
CubedDouble = Numberoecimal • 3

' Square the number--Raise to the 2nd power.
' Cube the number--Raise to the 3rd power .

C II ,\I> 'I' I' R

O•·<le t· o f OperaLions

The order in which operations a1·e pelformed determines the result. Consider
the expression 3 + 4 * 2. 'What is the result? If the addition is done first. the
result is 14. However. if the multiplication is done first. the result is 11.

The hierarchy of operations. or order· of precedence. in arithmetic ex-
pressions from highest to lowest is

l. Any operation inside parentheses
2. Exponentiation
3 . Multjp!ication and division
4 . Integer division
5. Modulus
6 . Addition and subtraction

In the previous example. the multiplication is performed before the addi
tion, yielding a result of 11. To change the order of evaluation, use parentheses.
The expression

(3 + 4) * 2

will yield 14 as ihe result. One sei of parentheses may be used inside another
set. l11 that case. the parentheses are said to be nested. The following is an ex
ample of nested parentheses:

((Score1Integer + Score2Integer + Score3Integer) 1 3) * 1.2

Extra parentheses can always be used for clarity. The expressions

2 * Costoecimal * Rateoecimal

and

(2 * Costoecimal) * Rateoecimal

are equivalent. but the second is easier to understand.
Multiple opcrntions ot the same level (such ns multiplicntion nnd division)

are perfom1ed from left to right. The example 8/4 * 2 yields 4 as its result, not
l. The first operation is 8/4. and 2 * 2 is the second.

Evaluation of an expression occurs in this order:

l. All operations within parentheses. Multiple operations within the
parentheses are perfonned according to the rules of precedence.

2. All exponentiation. Multiple exponentiation operations are performed
from left to right.

3 . All multiplication and division. Multiple operations are performed from
left to right.

4. All integer division. Multiple operations are performed from left to right.
5. Mod operations. Multiple operations are performed from left to right.
6 . All addition and subtraction operations are performed from left to right.

119

I-'ll i I ::J
Use extra parentheses to make the

precedence clearer. The operation

will be easier to understand and the

parentheses hove no negative effect

on execution. •

120 v S l l ,\ I. C Variables. Comtants. and Calculations

Although the precedence of operations in Basic is the same as in algebra.
take note of one important difference: There are no implied operations in Ba
sic. The following expressions would be valid in mathematics, but they are not
valid in Basic:

Mathenutt;i cal Notation

2A

3(X + Y)

(X + Y)(X - Y)

E.:tuivale nl Buoic Fnnctiou

2 * A

3 * (X +Y)

(X + Y) * (X - Y)

What will be the result of the following calculations using the order of precedence?
Assume that: Firstinteger = 2, Second Integer = 4. Thirdlnteger = 3

l. First Integer + Second Integer A 2
2. 81 Secondlnteger I Firstlnteger
3. FirstJnteger * (Firstlnteger + l)
4. First Integer* First Integer + 1
5. Secuw.llnteger" F in;lluteger + Tiuniiuleger "' 2
6. Second Integer A (First Integer + Thirdlnteger) * 2
7. (Second Integer A First Integer) + 'TI1irdinteger * 2
8. ((Secondlnteger A First Integer) + Thirdlnteger) * 2

Using Calculations iu Code

You perfonn calculations in assignment statements. Recall that whatever ap
peal'S on the right side of an = (assignment operator) is assigned to the item on
the left. The left side may be the property of a control or a variable.

Examples

Averageoecimal = sumoecimal 1 countlnteger
AmountDueLabel.Text = (Priceoecimal- (Priceoecimal * DiscountRateDecimal)) .ToString()
CommissionTextBox.Text = (SalesTotalDecimal * CommissionRateDecimal) .ToString()

In the preceding examples. the results of the calculations were assigned to
a variable, the Text property of a labeL and the Text property of a text box. In
most cases you will assign calculation results to variables or to the Text prop·
erties of text boxes . When you assign the result of a calculation to a Text prop
erty. you must place parentheses around the entire calculation and convert the
result of the calculation to a string.

Assigmneut OJJCJ'a lor·s

ln addition to the equal sign(=) as an assignment opemtot·. VB has several
operators that can perfonn a calculation and assign the result as one operation.
The combined assignment operators are +=. - =, *=. 1=. \=. and &=. Each of
these assignment operators is a shortcut for the standard method; you can
use the standard (longer) form or the shortcut. The shortcuts allow you to

C II A 1• 'I' " ll

type a variable name only once instead of having to type it on both sides of
the equal sign.

For example. to add Sales Decimal to TotalSalesOecimal. the long version is

' Accumulate a total.
TotalSalesoecimal = TotalSalesoecimal + Salesoecimal

[nstead you can use the shortcut assignment operator:

· Accumulate a total.
TotalSalesoecimal += Salesoecimal

The two statements have the same effect.
To subtract 1 from a variable, the long version is

' Subtract 1 from a variable.
CountDownlnteger ~ CountDownlnteger -

And the shortcut, using the - = operator:

' Subtract 1 from a variable.
countDown Integer - = 1

The assignment operators that you will use most often are += and - =. The
following are examples of other assignment operators:

' Multiply Resultlnteger by 2 and assign the result to Resultlnteger.
Resultlnteger *= 2

' Divide sumoecimal by countlnteger and assign the result to sumoecimal .
sumoecimal / = countlnteger

· Concatenate SmallString to the end of BigString .
BigString &= SmallString

l. Wdte two statements to add 5 to Countlnteger. using (a) the standard.
long version; and (b) the assignment operator.

2. Wdte two statements to subtract WithdrawalDecimal from Balance
Decimal. using (a) the standard. long version: and (b) the assigmnent
operator.

3. Wdte two statements to multiply PriceOecimal by Countlnteger and
place the result into PdceDecimal. Use (a) the standard. long version;
and (b) the assignment operator.

Option Explic it and O ption Stric t

Visual Basic provides hvo options that can significantly change the behavior of
the editor and compiler. Not using these two options. O ption .Explicit and
Optiou S u ·ic t. can make coding somewhat easier but provide oppot1unities for
hard-to-find errors and very sloppy programming.

121

122 S l l \ I , l ' Voriablr.'J. Con .. ,twrt.,, aml Coicu.latilm.'i

O ruluu E'l'llt'll

When Option Explicit is tumed off. you can use any variable name without first
declaring it. The first time you use a variable name. VB allocates a new vari
able. For example. you could write the line

z ,. MyTotal + 1

without first declaring either Z or MyTotal. This is a th rowback to very old ver
sions of Bask that did not require variable declaration. In those days. pro
grammers spent many hours debugging programs that had just a small
misspelling or typo in a variable name.

You should always program with Option Explicit tumed on. In VB. the
option is turned on by default for s ll new projects. If you need to turn it off (not
a recommended practice). place the line

Option Explicit Off

before the firsl I ine of code in a file.

C lruluu ~u·l•· t

Option Stric t is un option that makes VB more like other s tl'ougly t)'(Jc tl lan
guuges. such as C++. Java. and C#. When Option Strict is turned on. the editor
and compiler t ry to help you keep from making hard-to-find mistakes. Specifi
cally. Option Strict docs not allow any implicit {automatic) convers ions fTOrn 11

wider data type to a narroM·er one. or between tring and numeric data types.
All of the code you have seen so far in tlus text has been written with Option

Strict tumed on . \l' ith this option. you must convert to the desired data type from
Iring or from a wider datu type to a narrower type. such as from Decimal to

Integer.
With Option trictturnecl off. code such as this is legal:

auantitylnteger = OuantityTextBox.Text

and

Amountlnteger • Amountlong

and

Totallnteger += SaleAmountDecimal

With each of these legal {but dangerous) statements. the VB compiler
makes assumptions about your data. And the majority of the time. the assump
tions are COITect. But bad input data or very large numbers can cause enoneous
results or run-time errors.

The best practice is to always tum on Option Strict. This technique will
save you from developing poor pTOgramming habits and Mill also like ly save

C II A 1• 'I' " ll

you hours of debugging time. You can tum on Option Strict either in code or in
the Project Designer for the current project. Place the line

Option Strict on

before the first line of code, after the general remarks at the top of a file.

Example

' Project:
'Date:
' Programmer:
'Description:

MyProject
Today
Your Name
This project calculates correctly.

Option Strict on

Public Class MyForm

To tum on Option Strict or Option Explicit for all files of a project, open the
Project Designer by selecting Project I Properlies or double-clicking My Project
in the Solution Explorer. On the Compile tab you will find settings for both
Option Explicit and Option Strict. By default. Option Explicit is turned on and
Option Strict is turned off. Select On for Option Strict.

A better approach is to set Option Strict on by default. Select Tools I

Options I Projects and Solutions I VB Defaults and set t11e defaults. Changing the
default ~till affect all new projects begun after the change but will not change
the open project or any previously written projects that you open. Use the Pro
ject Designer to change the option in existing projects.

Note: Option Strict includes all of the requirements of Option Explicit. If
Option Strict is turned on. variables must be declared, regardless of the setting
of Option Explicit.

Co nvm·ting be tween Nmnel'ic Da ta Types

ln VB you can convert data from one numeric data type to another. Some con
versions can be performed implicitly (automatically) and some you must spec
ify explicitly. And some cannot be converted if the value would be lost in the
conversion.

ID1[1lidt Conwrsions

If you are converting a value from a narrower data type to a wider type. where
there is no danger of losing any precision. the conversion can be performed by
an implicit couvet-sion. For example. the statement

BigNumberDouble = SmallNumberlnteger

does not generate any error message. assuming that both variables are properly
declared. The value of SmallNumberinteger is successfully converted and
stored in BigNumberDouble. However. to convert in the opposite direction
could cause problems and cannot be done implicitly.

The following list shows selected data type conversions that can be per
formed implicitly in VB:

123

124

Byte

Short

Integer

Long

Decimal

Single

v S l l ,\ I.

To

Sho1t, Integer, Long. Single. Double, or Decimal

Integer. Long. Single, Double. or Decimal

Long, Single. Douhle, or Decimal

Single. Double, or Decimal

Si11gle. Double

Double

C Variables. Comtants. atul Calculations

Notice that Double does not convert to any other type and you cannot con
vert implicitly from floating point (Single or Double) to Decimal.

Explicit Conversions

lf you want to conve1t behveen data types that do not have implicit conversions.
you must use an explicit. conve1·sion. also called CltSI.iug. But beware: If you
perform a conversion that causes significant digits to be lost. an exception is
generated. (Exceptions are covered later in this chapter in the section titled
"Handling Exceptions.")

Use methods of the Convert class to convert between data types. The
Convert class has methods that begin with "To" for each of the data types:
ToDecimal, ToSingle, and ToDouble. However, you must specify the integer
data types using their .NET class names rather than the VB data types.

For the VB data typet Use the met.hod for the .NET data l>l""

Short Tolnt16

Integer Tolnt32

Long Tolnt64

The following are examples of explicit conversion. For each. assume that the
variables are already declared following the textbook naming standards.

Numberoecimal = convert .ToDecimal(NumberSingle}
ValueinteQer Convert.Tolnt32(Valueoouble)
AmountSingle = Convert .ToSingle(AmountDecimal)

You should perform a conversion ti·om a wider data type to a narrower one
only when you know tl1at the value will fit, without losing significant digits.
Fractional values are rounded to fit into integer data types. and a single or dou
ble value converted to decimal is rounded to fit in 28 digits.

P e rfo1·ming CaJculations with Untikc Data Types

When you perfo1m calculations with unlike data types. VB performs the calcula
tion using the wider data type. For example, Countlnteger I NumberDecimal
produces a decimal result. If you want to convert the result to a different
data type. you must perform a cast: convert. Tolnt32(Countlnteger I
NumberDecimal) orConvert . ToSinQle(Countlnteger I NumberDecimal).

C II i\ 11 'I' 1•: ll

Note. however. that VB does not convert to a different data type until it is neces
sary. The expression Countlnteger I 2 * AmountDecimal is evaluated as
integer division for Countlnteger 1 2. producing an integer intennediate
re.~ult: then the multiplication is pe.forrned on the integer and decimal value
(Amount Decimal). producing a decimal result.

Note: The methods of the Convert class use the .NET data types rather than
the VB data types. Use lnt32 for lntet;er. Tntl6 for Short. and Tnt64 for long.

Rounding Numbc1·s

At times you may want to round dec imal fractions . You can use the
Decimal. Round method to round decimal value.~ to the desired number of
decimal positions.

Tlu• Honnrl i'IINhmi-Cf'IH' I'al Fonu

Decimal.Round(Decima1Va1ue, IntegerNumberOfDecimalPositions)

The Decimal .Round method re turns a decimal result. rounded to the s pecified
number of decimal positions. which can be an integer in the range 0- 28.

Th<' Ronnel MNhuti- Exnmplf'><

125

~ P--. e ' Round to two decimal positions.
~ ResultDecimal = Decimal .Round(AmountDecimal, 2)

r
' Round to zero decimal positions.
WholeDollarsDecimal = Decimal.Round(DollarsAndCentsDecimal, 0)

' Round the result of a calculation .
DiscountDecimal = Decimal .Round(ExtendedPriceDecimal * DISCOUNT_RATE_ Decimal, 2)

The Decimal. Round method and the Convert methods round us ing a tech
nique called "rounding toward even." If the digit to the right of the final digit is
exactly 5. the number is rounded so that the final digit is even.

Examples

D ecimal V:ulue to Ro und N umbe r o f D ccin1al P 08itio ns Result

1.455 2 1.46

1.445 2 1.44

1.5 0 2

2.5 0 2

In addition to the Decimal . Round method. you can use the Round method
of the Math class to round either decimal or double values. See Appendix B for
the methods of the Math class.

126 v S l l ,\ I. C Variables. Comtants. and Calculations

Note: Visual Basic provides many functions for mathematical operations.
financial calculations, and string manipulation. These functions can simplify
many programming tasks. When Microsoft moved Visual Basic to object
oriented programming. they made the decision to keep many functions from
previous versions of VB. although the fw1ctions do not follow the OOP pattern
of Object. Method. You can find many of these helpful functions in Appendix B.
The authors of this text elected to consistently use OOP methods rather than
mix methods and functions.

Formatting Data for Display

When you want to display numeric data in the Text property of a label or text
box. you must fust convert the value to string. You also can for mal the data for
display, which controls the way the output looks. For example, 12 is just a nwn
ber. but $12.00 conveys more meaning for dollar amounts. Using the ToString
method and formatting codes. you can choose to display a dollar sign. a percent
sign, and commas. You also can specify the number of digits to appear to the
right of the decimal point. VB rounds the value to return the requested number
of decimal positions.

If you use the ToString method with an empty argument. the method re
turns an unformatted string. This is perfectly acceptable when displaying inte
ger values. For example. the following statement converts Numberlnteger to a
string and displays it in DisplayTextBox.Text.

Disp1ayTextBox.Text = Numberinteger.ToString()

Using Fo1·mat Spec ific•· Codes

You can use the format specitler codes to format the display of output. These
predefined codes can fom1at a numeric value to have commas and dollar signs,
if you wish.

Note: The default format of each of the formatting codes is based on the
computer's regional setting. The f01mats presented here are for the default Eng
lish (United States) values.

' Display as currency .
ExtendedPriceTextBox.Text = (Quantitylnteger • PriceDecimal).ToString("C")

The "C" code specifies currency. By default. the string will be formatted
with a dollar sign, commas separating each group of 3 digits. and 2 digits to the
right of the decimal point.

' Display as numeric .
DiscountTextBox . Text = DiscountDecimal . ToString ("N")

The "N" code star1ds for number. By default. the slling will be formatted
with commas separating each group of 3 digits. with 2 digits to the right of the
decimal point.

C ll i\l• 'ri•: R 3

You can specify the number of decimal positions by placing a numeric digi t
following the code. For example. "CO'' displays as currency with zero digits to
the right of the decimal point. The value is rounded to l11e specified number of
decimal positions.

Format

Speeifi.,o· Code• N IWle

Core Currency

F orf Fixed-point

N oru Number

D ord Digits

P orp Percent

Examples

Vorinbl<' Vulue

Total Decimal 1125.6744

Total Decimal 1125.6744

TotalDecimal 1125.6744

BalanceDeciDlill 1125.6714

BalanceDecimal 1125.6744

Pinl.nteger 123

RateDecimal 0.075

RateDecimal 0.075

RateDecimal 0.075

Value lnteger - 10

Value lnteger - 10

Valuelnteger - 10

Oe&crj[Jlio u

Fonnats with a dollar • ign. commOl!. and 2
decimal places. Negative values are enclosed in

parenthcse&.

F onnats as a string of numeric digits. no

oonunW!. 2 decimal pla~:e~~. and • minWI oign at
the left for negative values.

r om1ats ~-i_th COill.lllaS~ 2 decimal p laces. and 3

minus • iBn a! the left for negative values.

Use only for integer data !}-pes. Formals with a

left miJOu~ sign for ne511tive •Ahx:s. Usually u..,d
to force a s pecified numher of digits to display.

Multiplies the va lue by 100. adds a l!j>Oce and a
percent sign, and rounds to 2 decimal places:

negalivo value~ ha\'e a 1ni nWJ r;ign at tile lefl.

Fonnol S p<'c ilit•o• Cod e O utrmt

"C'' $1.125.67

"N" 1.125.67

"NO" L.l26

"N3 " 1.125.674

"FO " 1126

"06 " 000123

•p ll 7.50 %

' P3 " 7.500 %

"PO" 8%

'C" ($10.00)

MNII - 10.00

"03 " --010

127

128 l ' C Variables , Constants. aJul Calculations

Note that the formatted value returned by the ToString method is no longer
purely numeric and cannot be used in further calculations. For example. con
sider the following lines of code:

Amountoecirnal += Chargesoecirnal
AmountTextBox . Text = Amountoecirnal. ToString("C")

Assume that Amount Decimal holds 1050 after the calculation. and Amount
Text Box. Text displays $1.050.00. lf you want to do any further calculations
with this amount. such a~ adding it to a total. you must use AmountDecimal. not
AmountTextBox.Text. The variable AmountDecin1al holds a numeric value;
AmountTextBox.Text holds a string of (nonnumeiic) characters.

You also can fonnat Date Time values using format codes and the ToString
method. UnHke the numeric format codes. the date codes are case sensitive.
The stiings returned are based on the computer's regional settings and can be
changed. The following are default values for US-English in Windows Vista.

Date

Specifiel' Code NaJUe Descr-iption

d ahot1 date Mm/dcl!yyyy

D long date Day. Month dd. yyyy

short time hh:mm AMIPM

T long ti me hh:mm:ss AMI PM

full date/time Day. Month del. yyyy bh:mm AMIPM

(short time)

F full date/time Day, Month dd, Yl'YY bh:rum:ss AMI PM
(long time)

g general Mru/dcl!yyyy hh:mm AMI PM
(short time)

G general Mm/dcl!yyyy hh:nuu:ss AMIPM

(long time)

M or tU month Month dd

Rorr GMT pattern Day. dd mnmt yyyy hh:nun:ss GMT

Note that you can also use methods of the Date Time structure for fmmat
ting dates: ToLongDateString. ToShortDateString. ToLongHmeString,
ToShortTirneString. See Appendix B or MSDN for additional infmmation.

Choosing the Controls fot· Pt·ogt·am Output

Some programmers prefer to display program output in labels; others prefer text
boxes. Both approaches have advantages. but whichever approach you use. you
should clearly differentiate between (editable) input areas and {unediiable) out
put areas.

Users generally get clues about input and output fields from their color. By
Windows convention, input text boxes have a white background: output text has

Example of Default Seuiug

61161'2008

Monday, June 16. 2008

4<55 PM

4<55:45PM

Monday. June 16, 2008 4:55PM

Monday, June 16, 2008 4:55:45 PM

61161'2008 11:00 AM

611612008 11:00:15 A M

June 16

Mon. 16 Jun 2008 11 :00:15 GMT

(; II A I' 'I' 1•: ll

a gray background. The default background color of text boxes (BackColor
property) is set to white: the default Back Color of labels is gray. Ho11·ever. you
can change the Back Color property and the BorderStyle property of both text
boxes and labels so that the two controls look very similar. You might wonder
why a person ll"ould ~t·ant to do that. but there are some very good reasons.

Using lext boxes for output can provide some advantages: The controls do
not disappear ll"hen the Text property is cleared. and the borders and sizes of the
output boxPS <'an match those of the input boxes. making the form more visu
aiJy unifom1. Abo. the user <'an select the text and copy it to another program
using the \\7indoii""S clipboard.

If you choose to display output in labels (the traditional approach). set the
AutoSize property to F'olse so that the Iobei does not disappear when the Text
property is blank. You also genemlly set the BorderStyle property of the labels
to Fix9d3D or Fix«JS/ngle. so that the outline of the label appears.

To use a text box for output. set its ReadOnly property to True (to prevent
the user from allempting to edit the text} and set it.> TabStop property lo False.
so that tlw focus will not ~top on that control when the user tabs from one con
trol to the next. Notice thnl when you set ReadOnly to true. the BackColor prop
erly automatically changes to Control. which is the system default for labels.

The example programs in tl1is chapter use text boxes. rather than labels. for
output.

Give the line of <'Ode that assign~ the formatted output and tell how the output
will display for the specified value.

I. A calculated variable called AveragePayDecimal has a value of
123.456 and should display in a text box called AveragePayTextBox.

2. 'f1te vuriable Quantitylnteger. which contains 176123. must be dis·
played in the text box called QuantityTextBox.

3. The total amount collected in a fwtd drive is being accumulated in a
variable <'alled Total Collected Decimal. What statementt1ill display the
t•ariablt> inotextl>Ol called TotaiTextBox uitb commas and two decimal
positions but no dollar signs?

A Calculation Programming Example

R 'n R-for Reading 'n Refreshment needs to calculate prices and discounts
for books sold. The company is currently having a big sale. offering a 15 per
cent discount on all books. In this project you will calculate the amount due for
a quantity of books. dete rmine the 15 percent discount, and deduct the dis
count. giving the new amount due--the discounted amount. Use text boxes with
the ReadOnly property set to True for the output fields.

Plannin~ th<' Proj<'<'l

Sketch a form (Figure 3.5) that meets the needs of your users.

129

130 v s l l ,, •• C Variables. Constants. and Calc~tlations

A planning sketch of the form for the calculation programming example.

BookSaleForm
~ Book Sales

Quant ity r=::J
] t ie I

f rlce [::=!

Extended Price I
15% Discount I
Discounted Price I

!Pnnt Fom1J !Ca lculateJ !Clear SaleJ

1 5
·"" \ \ \

.--
I'<

J~ r-r-

I ~
.--

J~r- -
k-r--
]~ f--

I Exit I
~
'\

GroupBox1

Quant ltyT extBox

TitleTextBox

PriceTextBox

GroupBox2

ExtendedPriceTextBox

DIGCount TextBox

DlscountedPriceTextBox

PrintButton CalculateButton ClearButton ExltButton

Plan tile ObJects and l1 rofWI"ties

Plan the property settings for the form and each of the controls.

Objecl

BookSale Form

Labell

GroupBoxl

Labe12

QuantityTextBox

Labe13

'IitleTextBox

Lahel4

Name
Text

AcceptButton

Cancel Button

Text
Font

Name

Text

Text

Name
Text

Text

Name

Text

Text

Naw~

Text

Setting

BookSaleForm
R 'n R for Reading 'n Refre~hruent

CalculateButton

Clear Button

Book Sales
Bold, 12 point

GroupBoxl

(blank)

&Quantity

QuantityTextBox
(blank)

&'Iitle

TitleTextBox

(blank)

&Price

Pd.4;e Te x.lDux

(blank)

C II A I• 'I' I' R 3

Objec t P roperly Setting

GroupBox2 Name GroupBox2
Text (blank)

LabelS Text E.xtended Price

ExtendedPriceTextBox Nan1e ExtendedPriceTex1Box

TextAlign Right
R ead Only True
TahStop False

Label6 Text 15% Discount

DiscountTextBox Name DiscountTex1Box

TextAlign Right
Read Only True
TahStop False

Lahel7 Text Discounted Price

DiscountedPriceTextBox Name DiscountedPriceTextBox

TextAlign Right
ReadOnly True

Ta bStop False

Print Button Name PrintButtou

Text Print &Form

CalculateButton Name Calculate Button
Text &Calculate

ClearButton Name Clear Button

Text Clear &Sale

ExitButton Name ExitButton

Text E&xit

(llau Lhe Event Procedm·e.s

Su1ce you have four buttons, you need to plan the actions for four event pro
cedures.

Event Procedure

PrintButton_Click

CalculateButton_CUck

ClearButton_Ciick

Jo:xitllutton_Click

Actiou ... Pseudoeode

Set the print ac tion lo preview.

Print the fom1.

Declare the variables.
Convert the input Quantity and Price to numeric.
Calculate Ex1ended Price = Quantity * Price.
Calculate and round: Discount = Extended Price • Discount Rate.
Calculate Discow1ted Price = E.xtended Price - Discount

Format and display the output in text boxes.

Clear each le.xl box.
Set the focus in the iirsttext box.

t::xit the project.

131

132 l ' C Variables , Constants. aJul Calculations

Wl'ile the Pl'oject

Follow the sketch in Figure 3.5 to create the form. Figure 3.6 shows the com
pleted form.

l. Set the properties of each object. as you have planned.
2. Write the code. Working from the pseudocode. write each event

procedure.
3. When you complete the code. use a variety of test data to thoroughly

test the project.

'i2 rt n R lor Reading 'n Refreshment I=.!.(§]a..~

Book Sales

Q.u""ltY ,-1 ---~
~· ~~~~--------

Ex!cnded Prk:e

15%0i~oour.t

Pont foom II Calculate II Oear Sale I ~

Note: If the user enters no1mumeric data or leaves a numeric field blank.
the program will cancel with a run-time error. In the "Handling Exceptions"
section that follows this program, you will learn to handle the errors.

Tl1e P1·ojec t Coding Solution

' Project:
' Date :
' Programmer:
' Description:

Chapter Example BookSale
June 2010
Bradley/Millspaugh
This project inputs sales information for books .
It calculates the extended price and discount for
a sale .
Uses variables, constants, and calculations .

The form for the calculation

programming example

Note that no error trapping is included in this version
of the program.

' Folder : Ch03BookSale

Public Class BookSaleForm

' Declare the constant .
Const DISCOUNT_RATE_Decimal As Decimal - 0 . 150

C II A 1• 'I' " ll

Private Sub PrintButton_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles PrintButton .Click

' Print the form.

PrintForm1 .PrintAction = Printing .PrintAction .PrintToPreview
PrintForm1 .Print()

End Sub

Private Sub CalculateButton_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles CalculateButton .Click

' Calculate the price and discount.
Dim auantityinteger As Integer
Dim PriceDecimal, ExtendedPriceDecimal , DiscountDecimal,

DiscountedPriceDecimal As Decimal

' Convert input values to numeric variables .
auantityinteger = Integer.Parse(Quant ityTextBox .Text)
PriceDecimal = Decimal .Parse(PriceTextBox .Text)

' Calculate values .
ExtendedPriceDecimal = auantitylnteger * PriceDecimal
DiscountDecimal = Decimal . Round(

(ExtendedPriceDecimal * DISCOUNT_RATE_Decimal), 2)
DiscountedPriceDecimal = ExtendedPriceDecimal - DiscountDecimal

' Format and display answers.
ExtendedPriceTextBox .Text = ExtendedPriceDecimal .ToString("C")
DiscountTextBox .Text = DiscountDecimal .ToString("N")
DiscountedPriceTextBox.Text = DiscountedPriceDecimal .ToString("C")

End Sub

Private Sub ClearButton_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles clearButton .Click

' Clear previous amounts from the form.

TitleTextBox .Clear()
PriceTextBox .Clear()
ExtendedPriceTextBox . Clear()
DiscountTextBox .Clear()
DiscountedPriceTextBox.Clear()
With auantityTextBox

. Clear()

. Focus()
End With

End Sub

Private Sub ExitButton_Click(ByVal sender As System.Object,
ByVal e As System. EventArgs) Handles ExitButton. Click

' Exit the project.

Me. Close()
End Sub

End Class

Handling Exceptions

When you allow users to input numbers and use those numbers in calculations.
lots of things can go wrong. The Parse methods. Integer . Parse and
Decimal. Parse, fail if the user enters nonnumeric data or leaves the text box

-

133

134 l ' C Variables , Constants. aJul Calculations

blank. Or your user may enter a number that results in an attempt to divide by
zero. Each of those situations causes an except.ion to occur. or. as program
mers like to say, throws an exception.

You can easily "catch" program exceptions by using structured exception
handling. You catch the exceptions before they can cause a run-time error. and
handle the situation, if possible, within the program. Catching exceptions as they
happen and writing code to take care of the problems is called exception handling.
The exception handling in Visual Studio is standardized for all of the languages
using the Common Language Runtime. which greatly improves on the old
error trapping in early versions of VB.

T•·y/Catch Blocks

To trap or catch exceptions. enclose any statement(s) that might cause an error
in a Try/Cat ch block. If an exception occurs while the statements in the
Try block are executing, program control transfers to the Catch block: if a
Finally statement is included, the code in that section executes last, whether
or not an exception occurred.

The Try IUock-Geueral Form

Try
Statements that may cause an error.

Catch [VariableName As ExceptionType)
statements tor action when an exception occurs.

[Finally
' Statements that always execute before exit of the Try block)

End Try

The Tr·y Hlock-Ex:un ple

~ ~ Try t Quantity! nteger = Integer . Parse (OuantityTextBox . Text)
~ auantityTextBox .Text = auantityinteger . ToString()

Catch
Messagelabel. Text = "Error in input data. "

End Try

The Catch as it appears in the preceding example will catch any exception.
You also can specify the type of exception that you want to catch, and even
'\Tile several Catch statements, each to catch a different type of exception. For
example. you might want to display one message for bad input data and a dif
ferent message for a calculation problem.

To specify a particular type of exception to catch. use one of the predefined
exception classes. which are all based on. or derived from. the SystemExcep
tion class. Table 3.2 shows some of the common exception classes.

To catch bad input data that cannot be converted to numeric. write this
Catch statement:

Catch TheException As FormatException
MessageLabel. Text = "Error in input data .'

In the Ed itor window, rype ' Try" and

press Ente<. The editor will insert a

skeleton Try !Catch block. •

C II ,\I>'I' I' R

The Excc(Hiou CJass

Each exception is an instance of the Exception class. The properties of this class
allow you to detennine the code location of the error, the type of error. and the
cause. The Message property contains a text message about the error. and the
Source property contains the name of the object causing the error. The Stack
Trace property can identify the location in the code where the error occurred.

Common Exception Classes

FormatException

lnvalidCastException

ArithmeticException

System.IO .. EndO£StreamException

OutOfMe moryExce ption

Exception

Caused By

Failure of a numeric conversion. s uch as

Integer . Parse or Decimal . Parse.
Usually blank or nonnumeric data.

Failure of a con version operation. May be caused
by los:lil of 9igni6cant digits or an illegal
conversion.

A ca lculation error, s uch as division by zero or

overflow of a variable.

Failure of an input or output operation such as

reading from a file.

Not enough memory to create an object.

Generic.

You can include the text message associated with the type of exception by
specifying the Message property of the Exception object. as declared by the
variable you named on the Catch statement. Be aware that the messages for ex
ceptions are usually somewhat terse and not oriented to users. but they can
sometimes be helpful.

Catch TheException As FormatException

1' abl e !1.2

Messagelabel. Text = "Error in input data : " & TheException . Message

Handling Multiple Exceptions

If you want to trap for more than one type of exception, you can include multi
ple Catch blocks (handlers). When an exception occurs. the Catch statements
are checked in sequence. The first one with a matching exception type is used.

Catch TheException As FormatException
' Statements for nonnumeric data .

Catch TheException As ArithmeticException
' Statements for calculation problem.

Catch TheException As Exception
' Statements for any other exception.

The last Catch will handle any exceptions that do not match either of the first
two exception types. Note that it is acceptable to use the same variable name
for muliiple Catch statemenis; each Catch represents a separate code block. so
the variable's scope is only that block.

Later in this chapter in the "Testing Multiple Fields" section. you will see
how to nest one Try I Catch block inside another one.

13S

136 v S l l ,\ I. C Variables. Comtants. and Calculations

Displaying Messages in Message Boxes ·

You may want to display a message when the user has entered invalid data or
neglected to enter a required data value. You can display a message to the
user in a message box. which is a special type of window. You can specify the
message. an optional icon. title bar text, and button(s) for the message box
(Figure 3.7).

1lvo sample message bo~·es created with the MessageBox class.

Figure 3 . 7

Coffee Sales Summary

You haveentEnd an invalid amount. Try agai·n.

OK

a. b.

You use the Show method of the MessageBox object to display a message
box. The MessageBox object is a predefined instance of the MessageBox class
that you can use any time you need to display a message.

TlH~ 1\'Jcs~<ageBox Object-General Forms

There is more than one way to call the Show method. Each of the following
statements is a valid call: you can choose the fonnat you want to use. It's very
important that the arguments you supply exactly match one of the fonnats.
For example. you cannot reverse, transpose. or leave out any of the argu
ments. When there are multiple ways to call a method, the method is said to
be overloaded. See the section "Using Overloaded Methods" later in this
chapter.

MessageBox .Show(TextMessage)
MessageBox.Show(ToxtMossago, TitlobarToxt)

o Number of Orde1s.: 3

Total Sales' Sl8.32

Average Sale $12.77

OK

MessageBox.Show(TextMessage , TitlebarText, MessageBoxButtons)
MessageBox.Show(TextMessage , TitlebarText, MessageBoxButtons, MessageBoxicon)

The TextMessage is the message you want to appear in the message box.
The Ti tlebarText appears on the title bar of the MessageBox window. The Mes
sageBoxButtons argument specifies the buttons to display. And the Message
Boxlcon determines the icon to display.

C II A 1• 'I' " ll 137

The AlessageBox Statement-Examples

~ r---~ ~ MessageBox.Show("Enter numeric data. ")
t:
~ MessageBox .Show("Try again ." , "Data Entry Error")
fl

MessageBox .Show("This is a message ." , "This is a title bar", MessageBoxButtons . OK)

Try
auantitylnteger = Integer .Parse(OuantityTextBox.Text)
auantityTextBox .Text = auantitylnteger .ToString()

Catch ex As FormatException
MessageBox .Show("Nonnumeric Data. ", "Error ",

MessageBoxButtons.OK, MessageBoxicon.Exclamation)
End Try

The Textl\1essage Stt·ing

The message string you display may be a string literal enclosed in quotes or it
may be a string variable. You also may want to concatenate several items, for
example. combining a literal with a value from a variable. If the message you
specify is too long for one line. Visual Basic will 1nap it to the next line.

T he Titlcbat· Text

The string that you specify for TitlebarText will appear in the title bar of the
message box. If you choose the first form of the Show method. without the
TitlebarText. the title bar will appear empty.

}l essage BoxBuuons

When you show a message box. you can specify the button(s) to display. In Chap
ter 4, after you leam to make selections using the If statement. you will display
more than one button and take alternate actions based on which button the user
clicks. You specify the buttons using the MessageBoxButtons constants from
the MessageBox class. The choices are OK, OKCanoel, RetryCanceL YesNo.
YesNoCancel, and AbortRetrylgnore. The default for the Show method is OK. so
unless you specify otherwise. you will get only the OK button in your message box.

Message Boxlcon

The easy way to select the icon to display is to type MessageBoxlcon and ape
riod into the editor; the IntelliSense list pops up with the complete list. The ac
tual appearance of the icons varies from one operating system to another. You can
see a description of the icons in Help under " MessageBoxlcon Enumeration."

Constants fot· MessagcBoxl con
Asteiisk
Error
Exclamation
Hand
Infmmation
None
Question
Stop
Warning

138 v s u ,, I, C Variables. Con.stants, and Calculations

Using Oved oaded 1\felltods

As you saw earlier, you can call the Show methocl with several different argu
ment lists. This feature. called o·verloa.ding. allows the Show method to act
differently for different arguments. Each argument list is called a sigtwtu.re. so
you can say that the Show method has several signatures.

When you call the Show method, the arguments that you supply must
exactly match one of the signatures provided by the method. You must supply
the correct number of arguments of the correct data type and in the correct
sequence.

Fortunately, the Visual Studio smart editor helps you enter the argu
ments; you don't have to memorize or look up the argument lists. Type
''MessageBox.ShowC' and lntelliSense pops up with the first of the signatures
for the Show method (Figure 3.8). Notice in the figure that there are 21 possi
ble forms of the argument list. or 21 signatures for the Show method. (We only
showed 4 of the 21 signatures in the previous example, to simplify the concept.)

To select the signature that you want to use, use the up or down arrows at
the left end of the IntelliSense popup. For example. to select the signature that
needs only the text of the message and the title bar caption, select the second for
mat (Figure 3.9). The argument that you are expected to enter is shown in bold.
and a description of that argument appears in the last line of the popup. After
you type the text of the message and a comma. the second argument appears in
bold and the description changes to tell you about that argument (l'igure 3.10).

HessageBox, Showd

• 1 of 21 Y Show(teKt As String) As System.Windows.Forms.DiatogResult

Displays a message box with specified text.

text: The text to display in the message box

MessageBox , Show(

• 2 of 21 "' Show(teKt As String, caption As String) As System.Windows.Forms.DialogResult

Displays a message box with specified text and caption.

text: The tm to dis~ lay in the message box.

Mes sageBox . Show("Inval id data entered. •• Jl

• 1 of 10 Y Show(text As String, ca·ption As String) As System.Windows.Forms.DiatogResult

Displays a message box: with specified text and caption.

caption: The text to display in the title bar of the message box.

1~11 i I :I
Y au con use the keyboard up

and down arrow keys rather than

the mouse to view and select the

signature. •

F i " n1•e 3 .8

lntelliSense pops up the first of
21 signatures for the Show
method. Use the up and d=n
arrows to see the other possible
argument lists.

Select the second signature to see
the argument list. The currently
selected argument is sh=n in
bold, and the description of the
argument appears in the last
line of the popup.

Fig n••e 3 . 1 0

Type the first argument and a
comma. a.nd lntelUSen.se bold..s

the second argument and
displays a description of the
needed data.

C II ,\I> 'I' I' R

Test ing l\fnlliple Fields

When you have more than one input field, each field presents an opportunity
for an exception.lf you would like your exception messages to indicate the field
I hal causeJ the errur. you cau ue::;L oue TI'Y /Catch Llock iusiJe another one.

Nested Tt·y/C:ucb Blocks

One Try I Catch block that is completely contained inside another one is called
a uested Try /Catch block. You can nest another Try /Catch block within the
Try block or the Catch block.

Try ' Outer try block for first field.
' Convert first field to numeric .

Try ' Inner Try block for second field .
Convert second field to numeric .

' Perf orm the cal cul at ions for the fie l ds that passed convers i on.

Catch SecondException As FormatException
' Handle any exceptions for the second field .
' Display a message and reset the focus for the second field .

End Try ' End of inner Try blocK for second field.
Catch FirstException As FormatException

' Handle exceptions for first field .
' Display a message and reset the focus for the first field .

Catch AnyOtherException as Exception
' Handle any generic exceptions .
' Display a message.

End Try

You can nest the Try /Catch blocks as deeply as you need. Make sure to
place the calculations within the most deeply nested Try; you do not want to
perfonn the calculations unless all of the input values are converted without an
exception.

By testing each Parse method individually. you can be specific about
which field caused the error and set the focus back to the field in error. Also.
by using tl1e SelectAll method of the text box. you can make the text appear
selected to aid the user. Here are the calculations from the earlier program,
rewritten with nested Try /Catch blocks.

Private Sub CalculateButton_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles CalculateButton .Click

' Calculate the price and discount .
Dim ouantityinteger As Integer
Dim PriceDecimal, ExtendedPriceDecimal, DiscountDecimal,

DiscountedPriceDecimal, AverageDiscountDecimal As Decimal
Try

' Convert quantity to numeric variables .
auantityinteger = Int eger .Parse(QuantityTextBox.Text)
Try

' Convert price if quantity was successful .
PriceDecimal = Decimal. Parse (PriceTextBox . Text)

139

140 v S l l ,\ I. C Variables. Comtants. and Calculations

' Calculate values for sale .
ExtendedPriceDecimal = auantitylnteger • PriceDecimal
DiscountDecimal = Decimal.Round(

(ExtendedPriceDecimal • DISCOUNT_RATE_Decimal), 2)
DiscountedPriceDecimal = ExtendedPriceDecimal - DiscountDecimal
' Calculate summary values .
auantitysumlnteger += auantitylnteger
DiscountSumDecimal += DiscountDecimal
DiscountedPricesumDecimal += DiscountedPriceDecimal
SaleCountinteger += 1
AverageDiscountDecimal = DiscountSumDecimal 1 SaleCountinteger
' Format and display answers for the sale.
ExtendedPriceTextBox . Text = ExtendedPriceDecimal . ToString ("C")
DiscountTextBox. Text - DiscountDecirnal. ToString("N")
OiscountadPriceTextBox, Text = OiscountadPriceoecimal, ToString ("c ")

· Format and display summary values .
auantitySumTextBox.Text = auantitySuminteger .ToString()
DiscountSumTextBox .Text = DiscountSumDecimal.ToString("C")
DiscountAmountSumTextBox.Text = DiscountedPricesumDecimal.ToString("C")
AverageDiscountTextBox. Text = AVerageDiscountDecimal . ToString ("c ")

Catch PriceException As FormatException
· Handle a price exception.
MessageBox .ShOw("Price must be numeric ." , "Data Entry Error ",

MessageBoxButtons .OK, MessageBoxicon .Exclamation)
With PriceTextBox

. Focus()

. SelectAll ()
End With

End Try

Catch auantityException As FormatException
' Handle a quantity exception .
MessageBox .Show("Quantity must be numeric . ", "Data Entry Error " ,

MessageBoxButtons .OK, MessageBoxicon .Exclamation)
With auantityTextBox

.Focus()

. SelectAll ()
End With

Catch AnException As Exception
' Handle any other exception.
MessageBox .Show("Error : " & An Exception . Message)

End Try
End Sub

Counting and Accumulating Sums

Programs often need to calculate the sum of numbers. For example. in the pre
vious programming exercise. each sale is displayed individually. If you want to
nccumulntc totnls of the snlcs amounts, of the discounts, or of the number of

books sold. you need some new variables and new techniques.
As you know. the variables you declare inside a procedure are local to that

procedure. They are re-created each time the procedure is called; that is. their
lifetime is one time through the procedure. Each time the procedure is entered.
you have a new fresh variable with an initial value of 0. Jf you want a variable
to retain its value for multiple calls. in order to accumulate totals. you must

C II A 1• 1' t: R

declare the variable as modttle level. (Another approach. us ing Static variables.
is discussed in Chapter 7.)

Smnmin~ N umbe 1·s

The technique for summing the sales amounts for multiple sales is to declare a
module-level variable for the total. Then. in the Calculate Button_Ciick event
procedure for each sale. add the current amow1tto the total:

DiscountedPricesumoecimal += DiscountedPriceOecimal

This assi£nment statement adds the current value for DiscountedPriceDec
imal into the sum held in DiscountedPriceSumDecimal.

Countin~

lf you want to count something, such as the nwnberof sales in the previous exam
ple. you need another module-level variable. Declare a counter variable as integer:

Private Sal eCountinteger as Integer

TI1en. in the calculateButton_Ciick event procedure. add l to the cow1ter
variable:

Sal eCounti nteger += 1

Titis statement adds l to the current contents of SaleCount lnteger. The s tate
ment ,~;)] execute one time for each time the CalculateButton_Click event pro
cedure executes. Therefore. SaleCountinteger will always hold a running count
of the number of sales.

CalcuJalin~ an AV£•rag-e

To calculate an average. divide the sum of the items by the count of the items.
In the R 'n R book example. we can calcula te the average sale by dividing the
sum of the discounted prices by the count of the sales:

AverageDiscountedSaleDecimal = DiscountedPricesumoecimal 1 SaleCountinteger

141

Your Hands-On Programming Example --------

In this project. R ' n R-for Reading ' n Refreshment needs to expand the book
sale project done previously in this chapte r. In addition to calcula ting individ
ual sales and discounts. management wants to know the total number of books
sold. the totaJ number of discounts given. the total discounted amount. and the
average discou.nt per saJe .

Help the user by adding ToolTips wherever you think they will be useful.
Add e rror handling to the program. so that miss ing or nonnumeric data ,~;u

not cause a run-time error.

ftl:llluin~ the P roject

Sketch a form (Figure 3.11) that your users sign off as meeting their needs.

142 \ s l .\ l G .\ S t • VIJI'iabl .. , Corutant•. a111l Calculalwns

Book5aleForm

·~
Book Sales

Quantlty I I
Iftlt: I

fYice I I

Extended Pt1ce

157. Dl6count

Discounted Price

1 4"~

J+-1-t-

J+-~
1--

I ~

I J+-I-f-
I]+-I-f-

GroupBox1

QuantltyT~Box

ntleTextBox

rr· ceTextBox

GroupBox2

~nde.:tPrtceTextBox

Di&eountT~Box

Di&eoun~dPHceTextBox

t' ljtnre 3 . 11

A planning sketch of the form
for the hands-on programming
example.

Summ"ry
Total Numl1er of Books I
Total Discounts Given I
Total Discounted /\mounts I

Avera!Je Discount I

j4")..--

]+-1-j-

J+-r-~
]+-r-f-
]+-r-~

GroupBox3

Quantlty5umTextBox

Di&eountSumTextBox

Di&eoun~dAmount5umTextBox

A~erageDiscountTextBox

IPrint Formllcalculat.el lclear Salel I Exit I
i i '\ '\
\ \ \

""'
PlintButton Calcula~Button ClearButton EXItButton

Plan the Objects and Properties Plan the property settings for the form and
each control. These objects and properties are the same as the previous exam
ple. with the addition of the summary information beginning with GroupBox3.

Note: The TooiTips have not been added to the planning fonns. Make up
11.11d odd your own.

O bjee t

BookSaleFocm

LabeiJ

Group Boxl

Label2

P roJ>erty

Name
Text

AcceptButton
Cancel Button

Te~t

FCIIlt

Name

Text

Text

s .. uin~

BookSaleFonn
R "n R for Reading 'n Refreshment

Calculate Button

ClearButton

Book Sales
Bold. 12 point

Grou pBoxl

(blank)

&Quantity

c II ,, •• T E R :J 143

O Ljeet Prot>er1y Selling

QuantityTextBox Name QuantityTextBox
Text (bla,.k)

Label3 Text &Title

TitleTcxtBox Name TitleTextBmt
Text (blank)

Label <I Text &Price

PriceTextBox Name Price Text Box
Text (blank)

GroupBox2 Name GroupBox2
Text (blank)

LabelS Text Extende<l Price

ExtendedPriceTextBox Name Extende<IPriceTextBox
Text (blaok)
Read Only True
TexLAiign Right

Lubel6 Text 15% Oil!<:ount

DiscountTextBox Name DiocountTeltt Box
Text (blank)
Read Only True
TexLAlign Rig~t

Lubel7 Text Diocounted Price

Di$countedPriceTe.~tBo.~ Name Oi~K:OltntedPriceTexlBo:x

Text (blank)
TextAlign Rig~t

Read Only True

PrintButton Name PrirdButton
Text Print &Form

Calculate Button Name CalculateButton
Text &Calculate

ClearButton Name Cle.aButlon

Texl Clear &Sale

ExitButton Name ExitButton
Text E&xit

GroupBox3 Name Group8ox3
Text Summary

LabelS Text Total Numher of BooL:a

QuantitySumTextBox Name Qu,mtitySumTextBox
Text (Blank)
Read Only True
TexLAiign RigLt

Label9 Text Total Discounts Given

144

O bjec t

DiscountSumTe l-1 Box

LahellO

s l

Propet·l)'

Name

Text
Read Only

TexLAiign

Text

\ L It \ ..

s .. ""'ll
Oisco UDtSum TextBox

(blank)

True
Right

Total Discounte d Amounts

C VCJTiabla. Corutanl.,, and Calculations

Discounted.AmountSwnTextBox Name
Text

OiscountedAmountSumTextBox

(blank)

Labell I

AverageDiscountTe xtBox

Read Only
TextAlign

Text

Name

Text
Read Only
TextAiign

True

Right

Average Discount

AverageOiscountTextBox

(blank)
True
Right

Plan I he Event Procedure::. The planning that you did for the previous example
will save you time now. The only procedure that requires more steps is the Cal
culate Button_ Click event.

Event Proce.-1 ure

Print Button_ Click

CalculateButton_Ciick

ClearButton_Click

ExitButton_Click

Actio ns-Pi!clulof'oc:le

Set the print acr-ion to preview.
Print the Conn.

Declare the variables.

Try
Convert the input Quantity to numeric.

Try
Convert the input Price to numeric
Calculate Extend e.! Price = Quantity • Price.
Calculate Discount= Extende.l Price • Di•count Rate.

Calculate Discounted Price = Extende<l Price- Discoont.
Calculate the oumruary values:

Add Quantity to Quantity Sum.
Add Di"""unt to Discount Sum.
Add Diocounte<l Price to Discoonted Price Sum.

Add I to Sale Count.

Calculate Average Discount = Discount Sum I Sale Count.
Format and display sale output.
Format and display summary •alues.

Catch any Price exception

Display error message and resat the focus to Price.

Catch a ny Quantity exception
Display error message and reset the focus to Quantity.

Catch any generic exception

Display error message.

Clear each text box except Summary fieJ.:ls.
Set the focus in the first text boL

Exit the project.

C II 1\ I' T E ll

" 'rite the Project Follow the sketch in Figure 3.11 to create the form. Figure
3.12 shows the completed form.

• Set the properties of each of the objects. as you have planned.

• Write the code. Working from the pseudocode. write each event procedure.

• When you comple te the code. use a varie ty of tes t data to thoroughly test
the project. Test "; th nonnumeric data and blank entries.

olil II 'n R fa f!eading 'n Ref•es~ment

Book Sales

TCial OICOUl"lsGlven

Tcaol Dscotned l'rrolftl

PtirtE•m I I ~ ... II a. .. s.to I~

11w l~t·ojN'I Codlug Solution

'Project :
'Date:
'Programmer:
'Description :

'Folder:

Ch03Hands0n
June 2010
Bradley/Millspaugh
This project inputs sales information for books.
It calculates the extended price and discount for
a sale and maintains summary information for all
sales.
Uses variables , constants, calculations , error
handling, and a message box to the user.
Ch03HandsOn

The form for the hands-on
programming example.

14S

146 \ S L \ I. ll \ s C Variable>. CoiUtanl.,, and Calculationv

Public Class BookSaleForm

' Decl are module-level variables and constants.
Private QuantitySumi nteger, SaleCounti nteger As Integer
Private DiscountSumDecimal, DiscountedPriceSumDecimal As Decimal
Const DISCOUNT_RATE_Decimal As Decimal = 0. 15D

Private Sub PrintButton_Click(ByVal sender As System.Object ,
ByVal e As System.EventArgs) Handles PrintButton .Click

' Print the form.

PrintForm1.PrintAction = Printing.PrintAction .PrintToPreview
PrintForm1 . Print()

End Sub

Private Sub CalculateButton_Click(ByVal sender As System.Object ,
ByVal e As System.EventArgs) Handles CalculateButton.Click

' Calculate the price and discount.
Dim auantityinteger As Integer
Dim PriceDecimal, ExtendedPriceDecimal, DiscountDecimal,

DiscountedPriceDecimal, AverageDiscountDecimal As Decimal

Try
' Convert quantity to numeric variable.
auantityinteger = Integer .Parse(QuantityTextBox.Text)

Try
' Convert price if quantity was successful .
Priceoecimal = Decimal.Parse (PriceTextBox_Text)
' Calculate values for sale .
ExtendedPriceDecimal = auantityinteger * PriceDecimal
DiscountDecimal = Decimal .Round(

(ExtendedPriceDecimal * DISCO~NT RATE Decimal), 2)
DiscountedPriceDecimal = ExtendedPriceOecimal - DiscountDecimal

' Calculate summary values.
auantitySuminteger += auantityrnteger
DiscountSumDecimal += DiscountOecimal
Discount edPricesumDecimal += DiscountedPriceDecimal
SaleCountinteger += 1
AverageOiscountDecimal = Discountsumoecimal 1 SaleCountlnteger

' Format and display answers for the sale.
ExtendedPriceTextBox _Text = ExtendedPriceDecimal . ToString ('C")
DiscountText Box . Text = DiscountDecimal. ToString("N")
DiscountedPriceText Box.Text = OiscountedPriceDecimal .ToString('C')

' Format and display summary values.
auantitySumTextBox.Text = auantitySuminteger .ToString ()
Discount SumTextBox.Text = DiscountSumDecimal .ToSt r ing("C")
DiscountAmountSumTextBox.Text : DiscountedPriceSumDecimal .ToString('C')
AverageDiscountTextBox_Text = AverageDiscountDecimal .ToString('C')

Catch PriceException As FormatException
' Handle a price exception.
MessageBox.Show(' Price must be numeric . • , "Data Entry Error • ,

MessageBoxButtons .OK, MessageBoxicon .Exclamation)
With PriceTextBox

.Focus()

.SelectAll {)
End With

End Try

C II A I' T E R

catch auantityException As FormatException
' Handle a quantity exception .
MessageBox. Show(' Quantity must be numeric . ", "Dat a Entry Error ",

MessageBoxButtons .OK, MessageBoxicon .Exclamat ion)
With QuantityTextBox

. Focus()

. SelectAll ()
End With

Catch AnException As Exception
' Handle any other exception .
MessageBox.Show(' Error: • & AnException.Message)

End Try
End Sub

Private Sub ClearButton_Click(ByVal sender As Syst em.Object ,
ByVal e As System.EventArgs) Handles ClearButton. Click

' Clear previous amounts from the form.

TitleTextBox.Clear()
PriceTextBox.Clear ()
ExtendedPriceTextBox.Clear()
DiscountTextBox .Clear()
DiscountedPriceTextBox.Clear()
With auantityTextBox

. Clear()

. Focus()
End With

End Sub

Private Sub ExitButton_Click (ByVal sender As system.Object,
ByVal e As System.EventArgs) Handles ExitButton.Click

' Exit the project.

Me.Close()
End Sub

End Class

l. Variables are temporary memory locations tha t have a name (called an
identifier). a data type, and a scope. A co!llltant also has a name, data type,
and scope. but it also must have a value assigned to it when it is declared.
The value s tored in a variable can be changed during the execution of the
project: the values stored in constants cannot change.

2. The data typ e de termines what type of values may be assigned to a variable
or constant. The most common data types are SITing. Integer. Decimal.
Single. and Boolean.

3. Identifiers for variables and constants must follow the Visual Basic naming
rules and should follow good naming s tandards. called conventions. An
identifie r should be meaningful and have the data type appended at the

147

148 \ S U \ L 11 .\ s C Variabl ... Corutanl•. ami CalculatioM

end. Variable names should begin with an uppercase character and be
mixed uppe r- and lowercase. while constants are all uppercase.

4 . Identifiers should include the data type of the variable or constant.
5. Intrinsic constants. such as Color.Red and Color. Blue. are predefined and

built into the .NET Frame~t·ork. Named constants are programmer-defined
constants and are declared using the Const statement. The location of the
Const statement determines the scope of the constant.

6 . Variables are declared using the Private or Dim statement; the location of
the statement determines the scope of the variable. Use the Dim s tatement
to declare local variables inside a procedure; use the Private statement to
declare module-level variables at the lop of the program. outside of any
procedure.

7. The scope of a variable may be namespace level. module level. local. or
block level. Block-level and local variables are available only 1\ilhin the
procedure in which they are declared: module-level variables are accessible
in all procedures within a torm; namespace variables are available in all pro
cedures of all classes in a namespace. ~t-hich is usually the entire project.

8 . The Hfelime of local and block-level variables is one execution of the pro
cedure in which they are declared. The lifetime of module-level variables
is the length of time that the form is loaded.

9 . Use the Parse methods to conve11 text values to numeric before perform
ing any calculations.

10 . Calculations may be performed using the values of numeric variables. con
s tants . and the properties of controls. The result of a calculation may be as
s igned to a numeric variable or to the property of a control.

Ll. A calculation operation with more than one operator follows the order of
precedence in detennining the result of the calculation. Parentheses alter
the order of ope rat ions.

12. To explicitly convert between numeric data types . use tl1e Convert class.
Some conversions can be performed implicitly.

13. The Decimal. Round method rounds a decimal value to the specified num
ber of decimal positions.

14. The ToString metl1od can be used to specify tl1e appearance of values for
display. By using fom1atting codes . you can specify dollar signs. commas.
percent signs. and the number of decimal digits to dis play. The method
rounds values to fit the fom1at.

15. Try /Catch/ Finally statements provide a technique for checking for user
errors such as blank or nonnumeric data or an entry that might result in a
calculation error.

16 . A run-time error is called an exception: catching and taking care of excep
tions is called error trapping and error handling.

17. You can trap for different types of errors by s pecifying the exception ty pe
on the Catch statement. and you can have multiple Catch statements to
catch more than one type of exception. Each exception is an instance of the
Exception class: you can refer to the properties of the Exception object for
furtl1er inf01mation.

18 . A message box is a windmv for displaying information to the user.
19 . The Show metJ10d of the MessageBox class is overloaded. which means that

the method may be called with different argument lists. called signatures.
20. You can calculate a sum by adding each transaction to a module-level vari

able. In a similar fashion. you can calculate a count by adding to a module
level variable.

C ll i\ I' T E II

argument 116
assignment operator 120
block-level variable 113
casting 124
cla>s-level variable 113
constant 106
data type 107
declaration 107
exception 134
expHcit conversion 124
formal 127
formal specifier 127
ide ntifier 107
implicit conversion 123
intrinsic constant 111
lifetime 113
local variable 113

MessageBox 136
module-level variable 113
named constant 1 07
namespace-level variable I 13
nested Try /Catch block 139
Option Explicit 121
Option Strict 121
order of precedence 119
overloading 138
scope ll3
Show method 136
signature 138
string literal 110
strongly typed 122
Try / Catch block 134
variable 106

l. Name and give the purpose of five data types available in Vis ual Basic .
2. What does declaring a variabk mean?
3. What effect does the location of a declaration statement have on the vari

able it declares?
4. Explain the difference behveen a constant and a variable.
5. Wlut is the purpose of the Integer . Parse method? the Decimal . Parse

method?
6. Expla in the orde r of precedence of operators for calculations.
7. What sta teme nt(s) can be used to declare a variable?
8. Explain how to make an interest ra te sto red in RateDecimal display in

Rate Text Box as a percentage with three decimal digits.
9. What are implicit conversions? explicit conversion~? Whe n would each be

used?
10. Wl1en should you use Try/ Catch blocks? Why?
11. What is a message box and when s hould you use one?
12. Explain why the MessageBox. Show method has multiple signatures.
13. '\l'11y must you use module-level variables if you want to accumulate a run

ning total of transactions?

3.1 Create a project that calculates the total of fat. carbohydrate. and protein
calories. Allow the user to enter (in text boxes) Lhe grams of fat. the grams
of carbohydrates. and the grams of protein. Each gram of fat is nine calo
ries: a gram of protein or carbohydrate is four calories.

Display the total calories for the cu!Tent food item in a text box. Use
two other text boxes to display an accumulated sum of the calories and a
count of the items entered.

149

ISO \ S l \ L IJ \ s (V(ll'iables. ConsWTils. and Cakulations

Form: The fonn should have three text boxes for the user to enter the
grams for each category. Include labels next to each text box indicating
what the user is to enter.

Include bullons to Calcufata. to Cl6ar the text boxes. to Print ths Form.

and to Exit.
Make the fonn's Text property ''Calorie Counter~.

Cock: Write the code for each bullon. Make sure to catch any bad input
data and display a mess:~ge box to the user.

3.2 Lennie McPherson. proprietor of Lennie's Bail Bonds. needs to calculate
the amount due for selling bail. Lennie requires something of value as
collateraL and his fee is 10 percent of the bail amount. He wants the
screen to provide boxes to enter t11e bail amow1t and the item being used
for collateral. The program must calculate the fee.
Form: Include text boxe> for entering the amount of bail and the descrip
tion of the collateral. Lobel each text box.

Include buttons for Calculata. Clear. Print. and Exit.

'llte lexl properly for the fonn should be "Lennie's Bail Bonds".
Code: Include event procedures for the click event of each button. Calcu
late the amount due us LO percent of ilie bail amount and d isplay it in a
text box. formalled as currency. Make sure to catch any bad input data
and display a mE'Ssage to the user.

3.3 In retail j;ales. management needs to know the average inventory figure and
the tumover of merchandise. Create a project iliat allows the user to enter
tbe beginning inventory. the ending inventory. and ilie cost of goods sold.
Form: Include labeled text boxes for the beginning inventory. the ending
inventory. and the cost of goods sold. After calculating the ans"·ers. dis
play the average im·entory and the turnover formalled in text boxes.

Include buttons for Calculate. Gear. Print. and Exit. The formulas for the
calculations are

A
.

1
Be!inning inventory + Ending inventory

verage mven ory =

Turnover = Cost of good3 sold
Average inventory

2

Note: The average imentory is expressed in dollars: the turnover is the
number of limes the inventory tums over.
Code: Include procedures for the click event of each button. Display thE'
results in text boxes. Forma l the average inventory as currency and the
turnove r as n number with one digit to the right of the decimal. Make sure
to catch any bad input data and display a message to U1e user.

Tv.•t IJaw

Bep.iuu.ing Endint: Co~t or Good. SotJ Averu~~ L_n e ntury

58500 17000 <WOOOO S52.750.00

75300 13600 515400 -l4..l50.00

3000 19600 18000 11.300.00

Turno\cr

7.6

11.6

1.2

C ll i\ I•T t; ll

3.4 A local recording studio rents its facilities for $200 per hour. Manage
ment charges only for the number of minutes used. Create a project in
~t•hich the input is th<' name of the group and the nwnber of minutes it
used the studio. Your program calculates the appropriate charges. accu
mulates the total charges for all groups. and computes the average charge
and the number of groups that used the studio.
Form: Use labeled text boxes for the name of the group and the number of
minutes used. The charges for the c urrent group should be displayed for
matted in a text box. Create a group box for the summary infonnation. In
side the group box. display the total charges for all groups. the number of
groups. and the average charge per group. Fonnat all output appropri
ately. Include buttons for Calculat9. Clear, Print. and Exit.

Code: Use a constant for the rental rate per hour. divide that by 60 to
gel the rental rate per minute. Do not allow bad input data to cancel the
progrwn.

TeM /)aw

G ro UJl

Pooches

Hounds

Mutts

Total Cl' nr;:"A
fo r Gro up

S316.67

S16.67

$ 1.600.00

1\ol in ui(•A

95

5

480

To1ltl umber

of Grout"'

2

3

A'\-er~ae TotalC~

Cho:r~ for All Gr·oul"'

$316.67 $316.67

Sl66.67 $333.33

$6.WM $1933.33

3.5 Create a projec t that determines the future value of an investment at a
given interest rote for a given number of years. TI1e fonnula for the calcu
lation is

Future value = Investment amount * (1 + Interest rate) " Years

Form: Use labeled text boxes for the amount of investment. the interest
rate (as a decimal fraction). and the number of years the investment will
be held. Display the future value in a text box formatted as currency.

Include buttons for Calcu/ats. Claar. Print. and Exit. Format all dollar
amounts. Display a message to the user for nonnumeric or missing input
data.

lSI

1S2 \ S l \ L u \ s l Variabln. Coruwnl,. and Calculations

I

TPM IJntrt

Ani OUUI Ralr

2000.00 .15 5

123~.56 .075 3

l :hPrk Fill'""·~

Ful u rt• Valuf"

M.022.71

Sl.5l3.69

Hint: Remember that the result of an exponentialion operalion is a
Double data type.

3.6 Write a project tJ1at calculales 1he shipping charge for a package if the
shipping rate is $0.12 per ounce.

10

Form: Use a masked text box for lhe package-identification code (a
six-digil code) and labeled text boxes for the weight of the package---one
box for pounds and another one for ow1ces. Use a text box to display the
shipping charge.

Include buttons for Calculate. Claar. Print. and Exit.
Com!: Include e,·ent procedures for each button. Use a constant for the
shipping rate. calculate the shipping charge. and display it formatted in a
text box. Display a nleSl:age to the user for any bad input data.
Calculation hint: There are 16 ounces in a poWld.

Sh ipping Cha'1"'

IM96P 0 lb.5 oz. S0.60

jl955K 21b.O oz. $3.84

zooooz ltb.t oz. $"2.M

3. 7 Create a project for the local car rental agency that calculates rental
charges. The agency charges Sl 5 per day plus $0.12 per mile.
Form: Uso text boxes for tJ1e customer name. address. city. state. ZIP
code. beginning odometer reading. ending odometer reading. and the
number of days the car was used. Use text boxes to display the miles driven
and the total charge. ronnat the output appropriately.

Include buttons for Calculate. Claar. Print. and Exit.

Code: Include an event procedure for each button. For the calculation.
subtract tJ1e beginning odometer reading from the ending odometer read
ing to get the number of miles traveled. Use a constant for the $15 per day
charge and the $0.12 mileage rate. Display a message to the user for any

bad input data.

C II 1\ I1 T E il

3.8 Create a project that will input an employee's sales and calculate the
gross pay. deductions. and net pay. Each employee will receive a base pay
of $900 plus a sales commission of 6 percent of sales.

After calculating the net pay. calculate the budget amount for each cat
egory based on the percentages given.

Pn.r

Base pay S9<X>: use a ruuned constant

6%uf•al••

Gro ... pay Swll of base pay and commiB•ion

Deduction• 18% of gross pay

Ne t pay GroOll pay minus deduclion•

1-lou•ing 30% of ncl pay

Food and clothing 15% of ncl pay

Enter1ainmenl 50% of net pay

Miscellaneous 5% ol net pay

Form; Use text boxes to input the employee's name and the dollar amount
of the sales. Use text boxes to display the results of the calculations.

Provide buttons for Calculate. Clear. Print. and Exit. Display a message
to the user for any bad input data.

VB lUaU Ord...-

153

'111e company has instituted a bonus program to give
its employees an incentive to sell more. For every dol
lar the s tore makes in a four-week period, the employ
ees receive 2 percent of sales. The amount of bonus
each employee receives is based upon the percentage
of hours he or she worked during the bonus period (a
total of 160 hours).

of the store's total sales. The amount of sales needs to
be entered only for the first employee. (Hin~: Don't
clear it.)

The screen will allo11· the user to ente r the em
ployee's name. the total hours worked. and the amount

The Calculate button will detennine the bonus
earned by this employee. and the Clear button will
clear only the name. hours-worked. and bonus amount
fields. A Print button allows the user to print the form.
Do not allow missing or bad input data to cancel the
program: instead display a message to the user.

154 \ :" l l \ I. u \ s (' ~viablt•. Cofl.!llJn/,, and Calculations

VB Auto C~nt~r

Salespeople for used cars are compensated using a
commission system. The commission is based on the
costs incurred for the \'ehide:

Commission= Commission rate •

(Sales price- Cost value)

The fom1 will allow the user to enter the sales
person's name. the selling price of the vehicle. and the
cost value of the vehicle. Use a constant of 20 percent
for the commission rate.

The Calculate button will determine the commis
s ion earned by the salesperson: the Clear button will
clear the text boxes. A Print button allows the user to
print the form. Do not allow bad input data to cancel
the program: instead display a message to the user.

VIdeo Bona•za I
Design and code a project to calculate the amount due
and provide a summary of rentals. All movies rent
for $1.80 and all cus tomers receive a 10 percent
discount.

The fom1 s hould contain input for the member
number and the number of movies rented. Ins ide a
group box. display the re nta l amount. the 10 percent
discount. and the amount due. Inside a second group

box. display the number of customers served and the
total rental income (after d iscount).

Include buttons for Calculate. Clear. Print. and Exit.

The Clear button c lears the information for the current
rental but does not clear the summary information. A
Print button allows the user to print the form. Do not
allow bad input data to cancel the program: instead
display a message to the user.

Very \ 'ery BoardM

Very Very Boards rents sno11i>oards during the s no11·
season. A person can rent a ~no11·board without boots
or with boots. Create a project that ll'ill calculate and
display the information for each rental. In addition.
calculate the summary information for each day's
rentals.

For each rental. input the person's name. the driv
er's license or ID number. the number of snowboards.
and the number of snow boards with boots. Snowboards
without boots rent for $20: snow boards with boots rent
for$30.

Calculate and display the c harges for snowboards
and s nowboards "ith boots. and the rental total. In ad
dition. mainta in summary totals. Use constants for the
sno\\·bottrd rental rntc and the snowboard with boots
rental rate.

Create a summary frame ui th bo'<es to indicate
the day's totals for the number of snowboards and
snowboards with boots rented. total charges. and aver
age charge per customer.

Include buttons for Calculate Order. Clear. Gear A".
Print. w1d Exit. 1l1e Clear All command should clear the
summary totals to begin u new day's summary. Hint:
You must set each of the summary variables to zero as
~t·ell as clear the summary boxes.

Make your buttons easy to use for keyboard entry.
Make the Calculate button the Accept button and the
Clear button the Cancel bullon.

Do not allow bad input data to cancel the program:
instead display a message to the user.

c D A p T E R

Decisions and
Conditions

I . Use If statements to control the flow of logic.

2 . Understand and use nested If statements.

3 . Read and create action diagrams that illustrate the logic in a selection

process.

4 . Evaluate conditions using the comparison operators (>. <. =. >=. <=. <>).

5 . Combine conditions using And. Or. AndAlso. and OrElse.

G. Test the Checked properly of radio buttons and check boxes.

7 . Perform validation on numeric fields.

8 . Use a Case structure for multiple decisions.

9 . Use one event procedure to respond to the events for multiple controls

and determine which control caused the event.

Call an event procedure from another procedure.

Create message boxes with multiple buttons and choose alternate

actions based on the user response.

Debug projects using breakpoints. stepping program execution. and
displaying intermediate results.

156 ' !- l \ L II \ S l ' lkcisimu wul Condi,r~on.~

In l11is chapter you will leam to write applications that can take one action or
another. based on a condition. For example, you may need to keep track of
sales separately for different classes of employees. different sections of the
country. or different departments. You also will learn alternate techniques for
checking the val idity of input data and how to display multiple buttons in a
message box and take dille rent actions depending on t11e user response.

If Statements I

A powerful capability of the computer is its ability to make decisions and to
take altemate courses of action based on tl1e outcome.

A decision made by the computer is fom1ed as a que.~tion: ls a given con
dition true or false? If it is true. do one t11ing: iJ it is false. do something else.

lf the sun is shining Then
go to the beach

Else
go to class

End lf

or

lf you don't succeed Then
try, try again

End lf

(condition)
(action to take if condition is true)

(action to take if condition is false)
(See figure 4.1.)

(condition)
(action)
(See Figure 4.2.)

Fl~ure 4.1

The lcgic of an If I Then
Else Jtatement in Unifud
Modeling lnnguage (UML)
activity diagraTiljorm.

Fi~nre 4 . 2

The logic of an If statement
without an Else action in
UML activity diagram form.

C ll 1\ l1 'l ' li R -1

Notice in the second example that no action is specified if the condition is
not true.

In an If statement, when the condition is true. only the Then clause is
executed. When the condition is false. only the Else clause. if present. is
executed.

IJ I Then / Else St:u emem-Cenet•al Fot•m

If (condition) Then
statement(s)

[Elseif (condition) Then
statement(s))

[Else
statement s(s) 1

End If

A block If I Then I Else must always conclude with End If. The word
Then must appear on the same line as the If with nothing following Then
(except a remark). End If and Else (if used) must appear alone on a line.
The statements under the Then and Else clauses are indented for readability
and clarity.

Notice that the keyword Elself is all one word but that End If is two
words.

IJ I Tbeu I Else Sta temem- Example

When the number of units in UnitsDecimal is less than 32. select the radio but
ton for Freshman; othenvise. make sure the radio button is deselected (see Fig
ure 4.3). Remember thai. when a radio button is selected. the Checked property
has a Boolean value ofTtue.

157

~ P--. ;>(

e c
'2..
"'

UnitsDecimal = Decimal .Parse(UnitsTextBox .Text)
If UnitsDecimal < 320 Then

FreshmanRadioButton .Checked True
Else

FreshmanRadioButton .cnecked
End If

False

Fig u re 4 . 3

The If statement logic in
UML activity diagram form. If
the number of units is fewer
than 32. the Freshman radio
buuon will be selected;
othenvise the Freshman radio
buuon will be deselected.

ISS l ' C Decisio"s and Conditions

Cbm·ting [f Statements

A Unified Modeling Language (UML) activity diagram is a useful tool for
showing the logic of an If statement. It has been said that one picture is worth
a thousand words. Many programmers find that a diagram helps them organize
their thoughts and design projects more quickly.

The UML specification includes several types of diagrams. The activity di
agram is a visual planning tool for decisions and actions for an entire applica
tion or a single procedure. The diamond-shape symbol (called a decision
symbol) represents a condition. The branches from the decision symbol indicate
which path to take for different results of the decision (Figure 4.4).

The UML a.ctivity diagram symbols used for program decisions and activities.

The He lpful Edit01·

You will find that the code editor can be very helpful as you enter If state
ments. When you type an If statement and the condition and press Enter, the
editor automatically adds the Then and End If statements and places the
inse11ion point on a blank line. indented from the If. And if you type End If
without the space, the editor adds the space for you.

The editor also attempts to correct some en-ors for you. If you type the word
Else and another statement on the same line, which is illegal syntax, the edi
tor adds a colon. A colon is a statement terminator, which allows you to have
multiple statements on one line. However. goocl programming practice dictates
that you should have only one statement per line, so if you find an extra colon
in your code. remove it and correct the syntax.

Here is an example of illegal syntax:

' Illegal syntax .
If Unitsoecimal < 320 Then

FreshmanRadioButton .Checked = True
Else FreshmanRadioButton.Checked = False
End If

The editor's automatic con-ection. which you will fix. is

' The editor's automatic correction.
If Unitsoecimal < 320 Then

FreshmanRadioButton .Checked = True
Else : FreshmanRadioButton .Checked = False
End If

C II ,\I>'I' I' R 4

Fix this poor solution by separating the two statements into two separate lines:

' The preferred syntax .
If Unitsoecimal < 320 Then

FreshmanRadioButton .Checked True
Else

FreshmanRadioButton .Checked False
End If

Boolean Expressions

The lest in an If statement is a Boolean expression, which evaluates as True or
False. To form Boolean expt·essious. also referred to as conclitio11s. you use
compm•isou O(Jet·ato t·s (fable 4.1). also called relati01wl opemtors. The
comparison is evaluated and the result is either True or False.

Boolean expressions can be formed with numeric variables and constants.
string variables and constants. object properties. and arithmetic expressions.
However. it is important to note that comparisons must be made on like types;
that is. strings can be compared only to other strings, and numeric values can
be compared only to other numeric values. whether a variable. constant.
property. or atithmetic expression.

Tbe Compm·isou Operators

Symbol Re la tion Tested Examt>tes

Tabl e 4. 1

> greater than Decimal .Parse(AmountTextBox.Text) > LimitDecimal
Correctlnteger > 75

< less than

equal to

<> not equal to

Integer .Parse(SalesTextBox.Text) < 10000
NameTextBox .Text < Namestring

PasswordTextBox . Text = "101 "

FreshmanRadioButton .Checked <> True
NameTextBox. Text <> ""

>= greater than or equal to Integer.Parse(QuantityTextBox .Text) >= 500

<= less than or equal to Name1TextBox.Text <= Name2TextBox.Text

Compal'ing Numc l'ic Vad a bles and ConsLants

When numeric values are involved in a lest. an algebraic comparison is made;
that is. the sign of the number is taken into account. Therefore. negative 20 is
less than 10. and negative 2 is less than negative l.

An equal sign(=) means replacement in an assignment statement. In a com
patison. the equal sign is used to lest for equality. For example. the Boolean
expression in the statement:

If Decimal. Parse(PriceTextBox . Text) = Maximumoecimal Then

means "Is the current numetic value stored in PriceTextBox.Text equal to the
value stored in MaximumDecimal?"

159

160 v S l l A I, G .\ S C Decisions and Conditions

Sample Compmisons

Boole an Expa·ess.ion

Alpha Integer = Bravolnteger

Charlielnleger < 0 True

Bravolnleger > Alphalnleger False

Charlielnteger <= Bravolnleger True

Alpha Integer>= 5 True

Alphalnteger <> Charlielnteger True

Comparin~ Strings

String variables can be compared to other string variables. string properties. or
string literals enclosed in quotation marks. The comparison begins 1tith the
left-most character and proceeds one character at a time from left to right. As
soon as a character in one string is not equal to the conesponding character in
the second string, the comparison is terminated. and the string with the lower
ranking character is judged less than the other.

The determination of which character is less than another is based on the
code used to store characters internally in the computer. The code. called the
ANSl. code. has an established order (called the coUating sequence) for all let
ters, numbers. and special characters. (ANSI stands for American National
Standards Institute.) In Table 4.2. A is less than B. Lis greater than K. and all
numeric digits are less than all letters. Some special symbols are lower than the
numbers. some are higher, and the blank space is lower than the rest of the
characters sh01m.

Note: VB actually stores string characters in Unicode, a coding system that
uses 2 bytes to store every character. Using Unicode. all characters and sym
bols in foreign languages can be represented. For systems that do not use the
foreign symbols. only the first byte of each character is used. And the first byte
of Unicode is the same as the ANSI code. For compruison, Unicode can store
65.536 unique characters, ANSI code can store 256 unique characters. and
ASCII, the earlier coding method. can store 128 unique characters. The first
128 characters of ANSI and Unicode are the same as the ASCil characters.

Person! TextB ox. Text Person2TextBox.Texl

JOHN JOAN

The expression Person1 Text Box. Text< Person2TextBox . Text evaluates
False. The A in JOAN is lower ranking than the H in JOHN.

(' II ;\ •• T •: R 161

Tlw ANSI colla ting S(' I] IIC UI'e Tab 1.- ·L2

Code Ch nra1c te r Code Chara<>tc r· Code Cha r11.cter

32 Space (blank) (» @ 96

33 65 A 97

34 66 B 98 b

35 # 67 c 99 0

36 $ 68 0 100 d

37 % 69 E LOL c

38 & 70 F 10"2

39 ' (apo~lropl.~) 71 G 103 g

40 72 H 1~ h

41 73 105

42 • 74 106

43 + 75 K 107 k

4.4. . (comma) 76 L 108

45 77 M 109 U1

46 78 N 110 11

4.7 79 0 111 0

48 0 80 p 112 I'

49 81 Q 113 q

50 2 82 R 114

51 3 83 s 115

52 4 8-l T 116

53 5 85 u 117 u

54 6 86 v 118

55 7 87 w 119 ..
56 8 88 X 120

57 9 89 y 121 y

58 90 z 122

59 91 123

60 < 9'2 124

61 93 125

62 > 94 126

63 95 127 Del

162 v s u :\ •. C Decisions and Conditions

Wordl1extBox.Text Word2TextBox.Text

HOPE HOPELESS

The expression Word1TextBox . Text < Word2TextBox . Text evaluates
True. When one string is shorter than the other. it compares as if the shorter
string is padded with blanks to the right of the string, and the blank space is
compared to a character in the longer string.

CarlLabei.Text Car2Labei.Text

300Z,'{ Porsche

The express ion Car1 Label . Text < Car2Label . Text evaluates True.
When the number 3 is compared to the letter P. the 3 is lower, since all num
bers are lower ranking than all letters.

CountOnelnteger CountTwol nteger CountTh reelnteger FourTex1Box.Text

5 5 -5 "Bit"

Determine which expressions will evaluate True and which ones will evaluate
False.

l. CountOneinteger >= CountTwointeger
2. countThreeinteger < o
3. CountThreeinteger < CountTwointeger
4. countOneinteger <> countTwointeger
5. countOneinteger + 2 > countTwointeger + 2
6. FourTextBox.rext < FiveTextBox .Text
7. FourTextBox . rext <> FiveTextBox .Text
8. FourTextBox.rext > "D"
9. '' 2 .. <> '' Two ""

10. " $ " <= "? "

Testing fol' T1·ue OJ' Faist~

You can use shortcuts when testing for True or False. Visual Basic evaluates the
condition in an If statement. If the condition is a Boolean variable, it holds the
values True or False.

For example:

If SuccessfulOperationBoolean True Then ...

is equivalent to

If successfulOperationBoolean Then . . .

Comparing Uppe1-case and Lowc•·casc Cha•·acteJ•s

When comparing strings, the case of the characters is important. An uppercase
Y is not equal to a lowercase y. Because tl1e user may type a name or word in
uppercase, in lowercase. or as a combination of cases. we must check all pos
sibilities. The best way is to use the ToUpper and To l ower methods of the

FiveTextBcx.Text

"bit"'

C II A 1• 'I' " ll 163

String class. which return the uppercase or lowercase equivalent of a string.
respectively.

Tbc ToUppct· nud ToLowct• Mcthods- Ccnct·nl F'ot•u ts

rr1 TextString . ToUpper()
~ ~ TextString . ToLower()

:0

Tbc ToUppct· and Tolowct· Methods-Examples

I

~.--. ~ NameTextBox.Texl Value NnmeTextBox.Text.ToUpJ>et'() - NameTextBox. Text.ToLowet'()
5

"!:!

f
Basic
PROGRAMMING
Robert Jones
hello

BASIC
PROGRAMMING
ROBERT JONES
HELLO

An example of a Boolean expression using the ToUpper method follows.

If NameTextBox.Text.ToUpper() ="BASIC" Then
' Do something .

End If

Note: When you convert NameTextBox.Text to uppercase. you must com
pare it to an uppercase literal ("BASIC'') if you want it to evaluate as True.

Compo und Boolean Exp•·essions

You can use compoml<l Boolean exp1·essions to test more than one condition.
Create compound expressions by joining conditions with logical ope•·atoJ·s.
which compare each expression and retum a Boolean result. TI1e logical operators
are Or. And. Not. AndAlso. OrElse. and Xor.

l.o.g!cal
Operato1·

Or

Meaning

If one expression or
both expressions are
True, the entire
expression is True.

Example

Integer. Parse(Numberlabel .Text) 1 Or
Integer. Parse(Numberlabel .Text) = 2

basic
programming
robert jones
hello

Explru1at1ou

E•aluates 1hte "'·hen
Nurnberl..abel.Text is
either "1" or "Z·.

And Both expressions must
be 'frue for the entire
expression to be 'frue.

Integer.Parse(NumberTextBox.Text) > o And
Integer.Parse(NumberTextBox.Text) < 10

Evaluates 'Ihle when
Nurnbet'I'extBox.Text is
"1", ''2", "'3". "4", "5''.
''& ... "7" ~ i'S", or '9'~.

Not Reverses the condition Not Integer . Parse (Numberl abel. Text) 0
so that a Thte expression
will eTaluate False and
vice versa .

Evaluates True when
Nurnberl..abel.Text is any
value other than "0".

AndAlso Short-circuiti~version BalanceDecimal > 00 AndAlso WithinlimitBoolean lfBalsnceDecimal is not
greater than 0, the

condition evaluate3 False
and the second condition
is not tested; otherwise

works the same as an
And.

of And. If the first
expression is False, the

entire expression
returns False and the
second expression is
not eYaluated.

conlinu.ed

164

Logical
Oporator

v S l l ,\ I.

Meaning ElUIUlple

C Decisions and Conditions

Explru!allou

OrElse Short-circuiting NumberCorrectlnteger > 70 OrElse \VaiverBoolean If NumberCorrectlnteger

is greater than 70, the
condition evaluates 'fiue
and the second condition
is not tested.

Xor

version of Or.lf the

first expression is True,
the entire expression
returns 'fiue and the
second expression is
not evaluated.

Exclusive Or;
evaluates True if one

or the other expression
is 'fiue, but not bot b.

Countlnteger > 10 Xor VipBoolean

ComJlOimd Hooleau Expressions--Examples

Evalustes 'fiue when

Countlnteger > lOor
VipBoolean is True. If
bo'h conditions evaluate
either lhleor False. this
condition evaluates
False.

~ .---... " a
""' ;-
"'

If MaleRadioButton . Checked And Integer.Parse(AgeTextBox . Text) < 21 Then
MinorMaleCOuntinteger += 1

End If

If JuniorRadioButton.Checked or SeniorRadioButton.Checked Then
UpperClassmaninteger += 1

End If

The first example requires that both the radio button test and the age test be
True for the count to be incremented. In the second example. only one of the
conditions must be True.

One caution when using compound expressions: Each side of the logical
operator must be a complete expression. l'or example.

countlnteger > 10 or < o

is incorrect. Instead. it must be

Countlnteger > 10 Or Countlnteger < 0

Combinin~ Logical O pemtor-s

You can create compound Boolean expressions that combine multiple logical
conditions. Wl1en you have both an And and an Or. the And is evaluated before

the Or. However. you can change the order of evaluation by using parentheses;
any expression inside parentheses will be evaluated first.

For example. '~ill the following condition evaluate True or False? Try it with
various values for SaleDecimal. DiscountRadioButton, and StateTextBox.Text.

If Sale Decimal > 1000. oo Or DiscountRadioButton .Checked And StateTextBox . Text. ToUpper () <> "CA" Then
' CodQ hQrQ to calculatQ thQ discount .

End If

Next. by placing parentheses around the first two condition;; "(SaleDecimal >

1000 . OD Or DiscountRadioButton . Checked)" and reevaluate '~ith the same
values for SaleDecimal, DiscountRadioButton, and StateTextBox.Text.

C II A 1• 'I' " ll

SaleD eeimal DiscouutRadio Buttou .Checked S ta teTextBox. Text. To Upper

1500.0 False CA

1000.0 True OH

1000.0 True CA

1500.0 True NY

1000.0 False CA

Coutiuuiug Long Pt·ogram Lines

Recall that you can use implicit line continuation in VB 2010, as long as you
break the line in a legal location. You can break a condition after a relational or
logical operator, but not before. So you can write the If statement in the previous
section as

If Saledecimal > 10000 or
DiscountRadioButton .Checked And
StateTextBox .Text .ToUpper() <> "OA" Then
' Code here to calculate the discount .

End If

Short-Ci•·cuit 0 1)e1·aLio ns

Visual Basic has two operators that provide short-circuit evaluation for com
pound expressions: the AndA1so and OrE1se. When evaluating a compound ex
pression formed with an And, VB evaluates both expressions for True or False.
then evaluates the And. But you might prefer to not evaluate the second expression
if the fits ! expression evaluates False. For example. the following two statements
both evaluate False when Countlnteger = 0. but the first statement evaluates both
expressions and the second one stops after evaluating the frrst expression:

Evalua tes

True

True

False

True

False

countlnteger > o And countlnteger <= 10 ' Always tests both conditions .
countlnteger > o AndAlso countlnteger <= 10 ' Short circuits when the first

' expression evaluates False .

The Or Else is designed to short circuit when the first expression evaluates
True. In a regular Or operation. if one or the other expression is Tme. the entire
compound expression is True. So if the first expression is Tme, it really isn' t
necessary to test U1e second expression. These two examples both evaluate
True ifTotallnteger = - 1 (negative 1), but the second example will peiform one
less comparison:

Totallnteger < o or Totallnteger > 10
Totallnteger < 0 OrElse Totallnteger > 10

You may be wondering whether to use these short-circuit operators. which
are included here for completeness. Generally. the AndAlso and OrElse are
used for more advanced programming. when the second expression should not
be executed for some reason. For your programs in this chapter. you can stick
with the And and Or operators.

165

166 v S l l ,\ I. C Decisions and Conditions

Nested If Statements

1n many programs. another If statement is one of the statements to be executed
when a condition tests True or False. If statements that contain additional If
statements are said to be nested If statements. The following example shows a
nested If statement in which the second If occurs in the Then portion ofthefir'St
If (Figure 4.5).

[femplnteger > 32]

If Templnteger > 32 Then
If Templnteger > 80 Then

Comment label. Text "Hot"
Else

Commentlabel .Text "Moderate "
End If

Else
Commentlabel .Text "Freezing "

End If

To nest If statements in the Else pm1ion. you may use either of the fol
lowing approaches; however. your code is simpler if you me the second method
(using Else If I Then).

' One approach.
If Templnteger <= 32 Then

CommentLabel .Text = "Freezing "
Else

If Templnteger > 80 Then
Commentlabel.Text "Hot "

Else
Commentlabel .Text

End If
End If

"Moderate "

F igur e 4.5

Diagramming a nested If
statement.

C II A 1• 'I' " ll

' A simpler approach .
If Tempinteger <= 32 Then

Commentlabel. Text = "Freezing"
Elseif Tempinteger > so Then

Commentlabel.Text "Hot "
Else

Commentlabel.Text "Moderate "
End If

You cwt uest I f s iu Lotlt the Then allll Else. Iu fact, you utay cuutiuue to

nest Ifs within Ifs as long as each If has an End If. However. projects be
come very difficult to follow (and may not perfonn as intended) when Ifs be
come too deeply nested (Figure 4.6).

Fi J(ur e 4 .6

A diagram of a nested If statement with Ifs nested on both sides of the original If.

[MaleRadioButton not checked] [Male RadioButton checke<l]

If MaleRadioButton .Checked Then

Else

If Integer.Parse(AgoTextBox .Text) < 21 Then
MinorMaleCountlnteger += 1

Else
MaleCountinteger += 1

End If

If Integer.Parse(AgeTextBox.Text) < 21 Then
MinorFemaleCountinteger += 1

Else
FemaleCountlnteger += 1

End If
End If

167

168 l ' C DecisioM and Conditions

Assume that Frogs Integer = 10. Toads Integer = 5. and Polliwogslnteger
6. What will be displayed for each of the folloll'ing statements?

l. If Frogsinteger > Polliwogsinteger Then
FrogsRadioButton.Checked True

Else
FrogsRadioButton .Checked False

End If
2. If Frogsinteger > Toadsinteger + Polliwogsinteger Then

ResultTextBox .Text ' It ' s the frogs. "
Else

l~iii::J
Indentation can help you catch er·

rors. Visual Basic always matches

on Else with the last unmatched

If regardless of the indentation. •

ResultTextBox .Text
End If

' It ' s the toads and the polliwogs .'

3. If Polliwogsinteger > Toadsinteger And
Frogsinteger <> 0 Or Toadsinteger = 0 Then

ResultTextBox .Text ' It ' s true ."
Else

ResultTextBox .Text
EOO If

' It's false .'

4. Write the statements necessary to compare the numeric values stored
in ApplesTextBox.Text and OrangesTextBox.Text. Display in Most
Text.Box.Text which has more, the apples or the oranges.

5. Write the Basic statements that will test the current value of Bal
anceDecimal. When BalanceDecimal is greater than zero. the check
box for Funds Available. called FundsCheckBox. should be selected.
the BalanceDecimal set back to zero, and Counti nteger incremented by
one. When Balance Decimal is zero or less, FundsCheckBox should not
be selected (do not change the value of Balance Decimal or increment
the counter).

Using If Statements with Radio Buttons:
and Check Boxes

In Chapter 2 you used U1e Checked Changed event for radio buttons and check
boxes to carry out the desired action. Now that you can use If statements. you
should not take action in the Checked Changed event procedures for these con
trols. Instead. use If statements to detennine which options are selected.

'Jo conlorm to good programming practice and make your programs consis
tent with standard Windows applications, place your code in the Click event of
buttons. such as an OK button or an Apply button. For example. refer to the
Visual Studio Print dialog box (Figure 4. 7); no action will occur when you click
on a radio button or check box. [nstead, when you click on the OK button. VS
checks to see which options are selected.

C II 1\ 1• 'I' I' ll 4

Print I 'i'.l...a-1

Printer

Name: I Cdnon lnkjet i9900 •I I Propcriie~ ...

Std u:.: Reddy 1!J Prlnttof~e
Type: Conon Inkjet i9900

Where; USOOO!

Comment:

Print range Copies

@ All Select1on Number of copies:

Pages. nom: 1_1 m 1_1

Print what

0 Hide col?opsed rcg1ons

[] Include line numbers

!iJK J l Cancel

In an application such as the radio button color change project in Chap
ter 2 (refer to Figure 2.24), you could modify the code for the Display button to
include code similar to the following:

If BeigeRadioButton .Checked Then
Me .BackColor = Color.Beige

Elself BlueRadioButton .Checked Then
Me.BackColor = Color.Blue

Elself YeUowRadioButton .Checked Then
Me.BackColor Color .Yellow

Else
Me .BackColor Color. Gray

End If

If BlackRadioButton .Checked Then
ForeColor Color .Black

Else
ForeCol.or Color. White

End If

Addil ional Examplt>s

If FastShipCheckBox .Checked Then
Total Decimal += FastShipRateDecimal

End If

If GiftWrapCheckBox. Checked Then
Tot alOecimal += WRAP_AMOUNT_Oecimal

End If

169

F igur e 4. 7

The Print dialog box. When the
user clicks 0 K the program
ckecks the s.tate of all radio
buttons and check ba."les.

170 s l l \ • • {' Decision .. ~ 1mrl C01ulifinns

A "Simpl£> Sample"

Test your understanding of the use of the If s ta tement by coding some short
examples.

T•'-"' tlu' Vnhw uf a Clu·•·k ll01x

Create a small project tha t contains a check box, a label. and a button. Name
the button TestButton. the check box TestCheck.Box. and the label Messagel..a
bel. In the Click event procedure for Test Button, check the value of the check
box. If the check box is currently checked. display "Check box is checked'" in
Message LabeL

Private Sub TestButton_Click(ByVal sender As System .Object ,
ByVal e As System.EventArgs) Handles TestButton.ClicK

' Test the value of the checK box.

If TestChecKBox.ChecKed Then
Messagelabel .Text = "ChecK box is checKed. "

End If

Test your project. When it works. add an Else to the code that dis plays
"Check box is not checked."

Test the State of Hadio Buttons

Remove the check box from the previous project and replace it with two radio
buttons. named F'reslunanRadioButton and SophomoreRadioButton and labeled
"<= 32 units" and "> 32 lmits". Now change the If s tatement to d isplay
"F reshman" or "Sophomore" in the label.

If FreshmanRadioButton.ChecKed Then
Messagelabel.Text

Else
Messagelabel.Text

End If

'Freshman'

'Sophomore"

Can you modify the sample to work for Freshman. Sophomore. Junior. and
Senior? In the sections that follow, you will see code for testing multiple radio
buttons and check boxes.

Checking Lhe Sta le of a Radio Buuon Group

Nested If statements work very well for determining which button of a radio
button group i s selected. Recall that in any group of radio buttons. only one
button can be selected. Assume that your form has a group of radio buttons for
Freshman. Sophomore. Junior. or Senior. In a calculation procedure. you want
to add 1 to one of four counter variables. depending on which radio button is
selected:

C II A 1• 'I' " ll

If FreshmanRadioButton .Checked Then
Freshmancountinteger += 1

Elseif SophomoreRadioButton .Checked Then
Sophomorecountinteger += 1

Elseif JuniorRadioButton.Checked Then
Juniorcountinteger += 1

Elseif SeniorRadioButton.Checked Then
seniorcountlnteger += 1

End If

Note that in most situations, the final condition test is unnecessaq. You
should be able to use an Else and add to SeniorCountlnteger if the first three
expressions are false. You might prefer to code the condition to make the
statement more clear, if no radio button is set initially. or if the program sets all
radio buttons to False.

Checking the Stale of Multi[)lc Check B oxes

Although nested If statements work very well for groups of radio buttons. the
same is not true for a series of check boxes. Recall that if you have a series of
check boxes. any number of the boxes may be selected. In this situation. as
sume that you have check boxes for Discount, Taxable. and Delivery. You will
need separate If statements for each condition.

If OiscountCheckBox .Checked Then
' Calculate the discount.

End If
If TaxableCheckBox . Checked Then

' Calculate the tax.
End If
If OeliveryCheckBox.Checked Then

' Calculate the delivery charges .
End If

Enhancing Message Boxes

In Chapter 3 you learned to display a message box to the user. Now it's time to
add such features as controlling the fom1at of the message. displaying multiple
buttons. checking which button the user clicks, and performing alternate ac
tions depending on the user's selection.

Dis [>laying the Message St1·ing

The message string you display in a message box may be a shing literal en
closed in quotes or it may be a string variable. You also may want to concate
nate several items. for example. combining a literal with a value from a

171

172 v S l l ,\ I. C Decisions and Conditions

variable. It's usually a good idea to create a variable for the message and format
the message before calling the Show method: if nothing else. it makes your code
easier to read and follow.

Combining Va1ues inlo a Message Striug

You can concatenate a literal such as "Total Sales:" with the value from a vari
able. You may need to include an extra space inside the literal to make sure
that thA valnA il'< !<Ap:mtt.Ail from thA litAral.

Dim MessageString As String

l~ljji#J
Specify only the message for a

"quick and dirty" message box for

debugging purposes. It will display

a n OK button a nd on empty title

bar: MessageBox . Show (" I 'm
here .") •

MessageString = "Total Sales : " & TotalSalesDecimal. ToString("C")
MessageBox . Show(MessageString, "Sales summary " , MessageBoxButtons .OK)

Creating Multiple Uues of Output.

Jf your message is too long for one line. VB wraps it to a second line. But if you
would like to control the line length and position of the split. you can insert a
NewLine chara.cter into the string message. Use the Visual Studio intrinsic con
stant Environment . Newline to determine line endings. You can concatenate
this constant into a message string to set up multiple lines.

In tllis example. a second line is added to the Message Box from the previ
ous example.

Dim FormattedTotalString
Dim FormattedAvgString
Dim Messagestring

As String
As String
As String

FormattedTotalString TotalSalesDecimal. ToString ("N")
FormattedAvgString = AverageSaleDecimal. ToString("N")
MessageString = "Total Sales : " & FormattedTotalString &

Environment.Newline & "Average Sale : " & FormattedAvgString

MessageBox . Show(MessageString, "Sales summary " , MessageBoxButtons .OK)

You can combine multiple Newline constants to achieve double spacing
and create multiple message lines (Figure 4.8).

Coffee Sales Sum mery

1
0 Number of Orden:: 3

Total S-aleS! S38.32

Ave.rcge Sole·: 512.77

OK

Figur e 4 .3

A message box with multiple
lines of output. created by
concatenating two Newline
characters at the end of each
line.

C II A 1• 'I' " ll

' Concatenat e the message string .
MessageString = "Number of Orders : " & customercount .ToString() &

Environment .NewLine & Environment.NewLine &
"Total Sales : " & GrandTotalDecimal. ToString ("C") &
Environment . NewLine & Environment.NewLine &
"Average Sale: " & AverageDecimal. ToString("C")

' Display the message box .
MessageBox . Show(MessageString, "Coffee Sales Summary " , MessageBoxButtons .OK,

MessageBoxicon . Information)

Using the Couu·oiCbars Constants

In addition to the Environment . Newline constant, you also can use VB's Con
trolChars . Newline constant. The ControlChars constants are part of the
Visual Basic library. while the Environment constants come from the System
library and are more generic (usable in other .NET languages).

The VB ControlChars constant l ist includes several other intrinsic con
stants in addition to the NewLine constant. Type "ControiCbars" and a period
into the editor to see the complete list.

CoutroJCbar Constan t

CrLf

cr

Lf

NewLine

NullChar

Tab

Back

FormFeed

VerticalTab

Quote

Dese•·iption

CatTiage return/line feeJ character combi nation.

Carriage return.

Line feed.

Newline character. Same effect as a carriage return/ line
feed character combination.

Character with a value of zero.

Tab character.

Backspace character.

Formfeed character (not useful in Microsoft Windo11·s).

Vertical tab character (not useful in Microsoft Windows).

Quo tation ruark character.

Displaying Muhij>le Bullous

You can choose the buttons to display on the message box using the Message
BoxButtons constants (Figme 4.9). Figme 4.10 shows a MessageBox with two
buttons using the MessageBoxButtons. YesNo constant. The Show method retums
a IJialogResuh object that you can check to see which button the user clicked.

til Mes:o;:ageBoxBut1ons:.AbortRe,hylgnore

G Mess119cBoxButtons.OK

0 Mess.ageBoxButtons.OKCancel
@ Me,~ageBoxButton!: ,RetryCancel

G fv1c.~s.:~ geBoxBul-tons.Ye:.No

W Mess.ageBoxButtons.VesNoCancel
Common I_AI~

Choose the button(s) to
display from the
MessageBoxButtons
constants.

173

174 v S l l ,\ I. C Decisions and Conditions

Clear Order

8 Clear the current order figu res?

Yes J l No

Oetenuiuiug the Rctum Type of a Aletl10d
How do you know that the Show method retums an object of the DialogResult
class? An easy way is to JX>int to the ShOW keyword and pause: the argument list
that you are using pops up (Figure 4.11).

Public Shared Function .Show(text As String, caption As String) As System.Windows.Fonns.DialogResult
Displays a messag-e box with specified text and caption.

Declaring au Object Variable for the :!\'lethod J{euu·u

To capture the infonnation about the outcome of the Show method, you must de
clare a variable that can hold an instance of the DialogResult type.

Dim WhichButtonDialogResult As DialogResult

Then you assign the return value of the Show method to the new variable.

Display Yes and No buttons
on a message box using
MessageBoxButtons. YesNo.

Pause the mouse pointer over
the Show keywcrd and
lntelliSen.se pops up with the
argument lMt you are using. It
also shows the method's retltrn
type.

WhichButtonDialogResult = MessageBox .Show("Clear the current order figures?",
"ClQar OrdQr ", MQssagoBoxButtons . YosNo, MossagoBoxicon.OuQstion)

The next step is to check the value of the retum, comparing to the DialogResult
constants. such as Yes. No, OK. Retry, Abort. and Cancel.

If WhichButtonDialogResult = DialogResult .Yes Then
· Code to clear the order .

End If

Specifying a Default Buuou and OJ>lious

Two additional signatures for the MessageBox . Show method are as follows:

MessageBox.Show(TextMessage, TitlebarText, MessageBoxButtons, MessageBoxlcons,
MessageBoxDefaultButton)

MessageBox.Show(TextMessage, TitlebarText, MessageBoxButtons, MessageBoxicons,
MessageBoxDefaultButton, MessageBoxOptions)

C II ,\I> 'I' I' R 4

When you display multiple buttons, you may want one of the buttons to be the
default (the Accept button). For example. to make the second button (the No
button) the default, use this statement:

175

ResponseDi alogResult = MessageBox. Show("Clear the current order f i gures? " , "Cl ear Order " ,
MessageBoxButtons .YesNo, MessageBoxlcon .Question, MessageBoxDefaultButton .Butt on2)

You can right-align the message in the message box by setting the Message
BoxOptions argtunent:

ResponseDialogResult = MessageBox .Show("Clear the current order figures? " , "Cl ear Order " ,
MessageBoxButtons .YesNo, MessageBoxl con .Question, MessageBoxDefault Button .Button2,
MessageBoxOptions . RightAlign)

Input Validation

Careful programmers check the values entered into text boxes before beginning
the calculations. Validation is a form of self-protection: it is better to reject bad
data than to spend hours (and sometimes days) trying to find an error only to
discover that the problem was caused by a "user error." Finding and correcting
the error early can often keep the program from producing erroneous results or
halting with a run-time error.

Checking to verify that appropriate values have been entered for a text box
is called 'Vlllidatio n. TI1e validation may include making sure that the input is
numeric, checking for specific values. checking a range of values, or making
sure that required items are entered.

In Chapter 3 you learned to use Try /Catch blocks to trap for nonnumeric
values. This chapter presents some additional validation techniques using If
statements.

Note: Chapter 14 has some advanced validation techniques using the Val
idating event and error providers.

Checking fo a· a Ran~e of Values

Data validation may include checking the reasonableness of a value. Assume
you are using a text box to input the number of hours worked in a day. Even
with ove11ime. the company does not allow more than 10 work hours in a single
day. You could check the input for reasonableness with this code:

If Integer .Parse(HoursTextBox .Text) <= 10 Then
' Code to perform calculations .

Else
MessageBox . Show(" Too many hours ." , "Invalid Data " , MessageBoxButtons . OK)

End If

Checking fo a· a Re<Jnit·ed Field

Sometimes you need to be certain that a value has been entered into a text box
before proceeding. You can compare a text box value to an empty string literal.

176 v S l l ,\ I. C Decisions and Conditions

If NameTextBox .Text <> "" Then
' Code to perform some action .

Else
MessageBox .Show("Required Entry", "Sales summary", MessageBoxButtons.OK)

End If

By checking separately for blank or nommmeric data, you can display a
better message to the user. Make sure to check for blanks first, since a blank
field will throw an exception with a parsing method. For example. if you reverse
the order of the If and Try blocks in the following example. blanks in Quanti
tyTextDox will always trigger the nonnumeric message in the Catch block.

If QuantityTextBox. Text <> "" Then ' Not blank .
Try

QuantityDecimal = Decimal .Parse(QuantityTextBox.Text)
Catch ' Nonnumeric data.

MessageString = "Nonnumeric data entered for quantity . "
MessageBox.Show(MessageString, "Data Entry Error")

End Try
Else ' Missing data.

MessageString = "Enter the quantity. "
MessageBox .Show(MessageString, "Data Entry Error ")

End If

Pe l'f(mning Muhi1>le Validations

When you need to validate several input fields, how many message boxes do
you want to display for the user? Assume that the user has neglected to fill five
text boxes or make a required selection and clicked on Calculate. You can
avoid displaying multiple message boxes in a row by using a nested It state
ment. This way you check the second value only if the first one passes. and you
can exit the processing if a problem is found with a single field.

If NameTextBox.Text <> "" Then
Try

UnitsDecimal = Decimal.Parse(UnitsTextBox.Text)
If FreshmanRadioButton.Checked Or SophomoreRadioButton.Checked Or

JuniorRadioButton .Checked or SeniorRadioButton .Checked Then

Else

' Data valid - Do calculations or processing here .

MessageBox . Show ("Please select a Grade Level. " , "Data Entry Error " ,
MessageBoxButtons . OK)

End If
Catch AnException As FormatException

MessageBox .Show ("Enter number of units ." , "Data Entry Error",
MessageBoxButtons . OK)

UnitsTextBox . Focus()
End Try

Else
MessageBox. Show ("Please enter a name, ", "Data Entry Error ",

MessageBoxButtons . OK)
NameTextBox.Focus()

End If

C II A 1• 'I ' " ll

The Case Structure

Earlier you used the If statement for testing conditions and making decisions.
Whenever you want to test a single variable for multiple values. the Case
su·uctw·e provides a flexible and powerful solution. Any decisions dtat you
can code with a Case structure also can be coded with nested If statements.
but usually the Case structure is simpler and clearer.

Tb<' Sd ('(· t Cas<' Stat<'tue ut-Geue!·al Form

Select case expression
case ConstantList

[Statement(s) 1
[Case constantList

[Statement(s) II

[Case Else)
[Statement(s) 1

End Select

Tite expression in a Case structure is usually a variable or property that you
wish to test.

Tite constant list is the value that you want to match: it may be a numeric
or string constant or variable. a range of values, a relational expression, or a
combination of these.

There is no limit to the number of statements that can follow a Case
statement.

The Sd cct Case Stat.e me nt.-Exa mpl<'s

Select case Scorelnteger
case Is >= 100

MessageLabel1 . Text
MessageLabel2.Text

case so To 99
MessageLabel1 . Text
MessageLabel2 .Text

case 60 To 79
MessageLabel1 .Text
MessageLabel2 . Text

case Else
MessageLabel1 . Text
MessageLabel2 . Text

End Select

Select Case Listlndexlnteger
case o

"Excellent Score"
"Give yourself a pat on the bacl< ."

"Very Good "
"You should be proud ."

"Satisfactory Score"
"You should have a nice warm feeling ."

"Your score shows room for improvement. "

' Code to handle item zero.
case 1, 2, 3

' Code to handle items 1, 2, or 3.
case Else

' Code to handle any other value .
End Select

177

178 v S l l ,\ I. C Decisions and Conditions

The examples show a combination of comparison operators. constant ranges.
and multiple constants. Notice these points from the examples:

• When using a comparison operator (e.g .. Is >= 100). the word Is must
be used.

• To indicate a range of constants. use the word To (e.g., 80 To 99). Note
that "To" is inclusive and actually means "through".

• Multiple constants should be separated by commas.

The elements used for the constant list may have any of these forms:

cons-rant [, constant . . . 1
constant To constant
Is comparison-operator constant

case 2, 5, 9
case 25 To 50
case Is > 100

You could also use all these forms in one Case statement to test for multiple
conditions:

Case 2 , s, 9 , 25 To 50, Is > 100

\Vhen you want to test for a string value. you must include quotation marks
around the literals.

Example

Select case TeamNameTextBox .Text
case "Tigers "

' Code for Tigers .
case "Leopards"

' Code for Leopards .
case "Cougars " , "Panthers "

' Code for cougars and Panthers .
case Else

' Code for any nonmatch .
End Select

Note that in the previous example. the capitalization must also match exactly.
A better solution would be

Select case TeamNameTextBox . Text . ToUpper()
Case "TIGERS"

' Code for Tigers .
Case "LEOPARDS"

' Code for Leopards.
Case "COUGARS" , "PANTHERS "

' Code for Cougars and Panthers .
case Else

' Code for any nonmatch .
End Select

Although the Case Else clause is optional. generally you will want to include
it iJ1 Select Case statements. The statements you code beneath Case Else
execute only if none of the other Case expressions is matched. This clause pro
vides checking for any invalid or tmexpected values of the expression being tested.
If the Case Else clause is omitted and none of the Case conditions is True. the
program continues execution at the statement following the End Select.

lf more than one Case value is matched by the expression. only the state
ments in the .first matched Case clause execute.

C ll i\I'Tt: R

Convert the folloning If statements to Select Case statements.

1. If Templnteger <= 32 Then
Commentlabel. Text = ' Freezing"

Elself Templnteger > so Then
commentlabel.Text ' Hot '

Else
commentlabel.Text

l:nd If
' Moderate"

2. If Countlnteger = o Then
MessageBox. Show("No items were entered . •)

Elself Countlnteger < 11 Then
MessageBox . Show(" 1 - 10 items were entered .")

Elself countlnteger < 21 Then
MessageBox . Show(" 11 - 20 items were entered. ')

Else
MessageBox. Show("More than 20 items were entered. •)

l:nd If

Sharing an Event Procedure

A very hauJy feature uf VB is the ability tu share 1m event vruceJure fur
several controls. For example. assume that you have a group of five radio but
tons to allow the user to choose a color (Figure 4.12). Each of the radio buttons
must have its mm name and nill ordinarily have its own event procedure. But
you can add e1•ents to the Handles clause at the lop of an event procedure to
make the procedure respond to events of other controls.

Private Sub RadioButtons_CheckedChanged (ByVal sender As System.Object,
ByVal e As System.l:ventArgs) _
Handles BlueRadioButton.CheckedChanged , BlackRadioButton .CheckedChanged,
RedRadioButton .CheckedChanged, WhiteRadioButton.CheckedChanged,
YellowRadioButton.CheckedChanged

Select Color

~ ~·
'- Bl.ack

0 Xelow tH QK J

Figu re 4 . 1 2

The five radio buttons allow
the user to choose the color.

179

180 v S l l ,\ I. C Decisions and Conditions

After you have added the additional events to the Handles clause. this
event procedure will execute when the user selects any of the radio buttons.

A good. professional technique is to set up a module-level variable to hold
the selection that the user makes. Then, in the OK button's event procedme you
can take action based on which of the buttons was selected.

The key to using the shared event procedure is the sender argument that
is passed to the CheckedChanged event procedme. The sender is defined as
an object. which has a Name property. However. if you refer to sender. Name
with Option Strict turned on. you generate a compiler error telling you that late
binding is not allowed. Late biud.ing means that the type cannot be deter
mined at compile time but must be detennined at run time. Late binding is al
lowed with Option Strict tumed off but sltould be avoided if possible for
perfonnance reasons.

You can use the properties of the sender argument if you first cast (con
vert) sender to a specific object type instead of the generic object. You can use
VB's CType fm1ctiou to convett from one object type to anothe1~

CType(ValueToConvert, NewType)

The CType function retums an object of the new type. If the ValueToConvert
is not in the range oflegal values for NewType, an exception is generated at nm
time.

For the radio button example. declare a variable as RadioButton data type.
cast the sender argument to a RadioButton object type, and assign it to the
new variable:

Dim SelectedRadioButton As RadioButton
SelectedRadioButton = CType(sender, RadioButton)

After these statements. you can refer to SelectedRadioButton.Name to deter
mine which radio button was selected:

Select case SelectedRadioButton .Name
case "BlueRadioButton "

' Code for blue button .

You can declare a module-level variable as a Color data type, assign the cho
sen color in the shared event procedure. and then apply the color in the OK
button's click event.

' Declare a module- level variable .
Private SelectedColor As Color

When you shore on event proce

dure, rename the procedure to more

clearly reflect the purpose of the

procedure, such as RodioButtons_

CheckedChonged instead of Blue

RodioButton_Ch<><:kedChong..d . •

Private Sub RadioButtons_CheckedChanged(ByVal sender As System .Object,
ByVal e As System . EventArgs) Handles BlueRadioButton.CheckedChanged,
BlackRadioButton . CheckedChanged, RedRadioButton . CheckedChanged,
WhiteRadioButton.CheckedChanged, YellowRadioButton . CheckedChanged

' save the name of the selected button .

Dim SelectedRadioButton As RadioButton

SelectedRadioButton = CType(sender, RadioButton)

C II A 1• 'I' " ll

Select case SelectedRadioButton .Name
case "BlueRadioButton "

SelectedColor = Color .Blue
case "BlackRadioButton "

SelectedColor = Color.Black
case "RedRadioButton "

SelectedColor = Color .Red
case "WhiteRadioButton "

SelectedColor = Color.White
case "YellowRadioButton"

SelectedColor = Color.Yellow
End Select

End Sub

Private Sub OkButton=Click(ByVal sender As System.Object,
ByVal e As System . EventArgs) Handles OkButton . Click

' Change the color based on the selected radio button.

Me . BackColor = SelectedColor
End Sub

Calling Event Procedures

If you wish to perfonn a set of instructions in more than one location, you
should never duplicate the code. Write the instructions once, in an event
procedure. and "call" the procedure from another procedure. When you call an
event procedure. the entire procedure is executed and then execution returns
to the statement following the call.

The CaU Statemeut-Ceueml Fol'ln

0 ¢51 s[(Call] ProcedureName()

Notice that the keyword Call is optional and rarely used. You must include
the parentheses: if the procedure that you are calling requires arguments. then
place the arguments within the parentheses; othenrise leave them empty. Note
that all procedure calls in this chapter do require arguments.

Tbe Call Statement- E.-xamples

~ call ClearButton_Click(sender, e) a
~ ClearButton_Click(sender, e) Equivalent to the previous statement .

181

•

m~------------------------------~ Notice the arguments for both of the example Call statements. You are passing
the same two arguments that were passed to the calling procedure. If you ex
amine any of the editor-generated event procedure headers. you can see that
every event procedure requires these two arguments, which can be used to
track the object that generated the event.

182 v S l l ,\ I. C Decisions and Conditions

Private Sub SummaryButton_Click(
ByVal sendrr As System. Object, ByVal e As System .EventArgs) Handles SummaryButton .Click . . . , :r---'
NewOrderButton_Click(sender, e) ' Call the NewOrderButton_Click event procedure .

ln the programming example that follows, you will accumulate individual

items for one customer. "\'\'hen that customer's order is complete. you need to
clear the entire order and begin ru1 order for the next customer. Refer to the inter
face in Figure 4.13; notice the two buttons: Clear for Next Item and New Order.

The button for next item clears the text boxes on the screen. The button for a new
order must clear the screen text boxes and clear the subtotal fields. Rather than
repeat the instmctions to clear the individual screen text boxes, we CaJl call
the event procedure for ClearButton_Click from the NewOrderButton_Click
procedure.

Private Sub NeWOrderButton_Click(ByVal sender As System .Object,
ByVal e As System.EventArgs) Handles NewOrderButton.Click

' Cl ear the current order and add to totals.

ClearButton_Click(sender, e) ' Call the Cl earButton_Cli ck event procedure.
' Continue with statements to clear subtotals.

In the NewOrde rButton_ Click procedure. all the instructions in
ClearButton_Click are executed. Then execution returns to the next statement
following the call.

a..J R 'n R -- for Reading ' n Refreshment

Order lnfonnation

Quantiy

:J Ta!seout?

~em Amounl

Sl.b'To!al

Tax (flakeout)

Total Due

Coffee Selections

·~ ~puccino

_ Espress~

P l.atte
,- jced latte

Iced Car:!Puccino

liew Order II ~ummill)' II &.it

Fi g ure 4.13

A fomt with buttons t!wt
perfomt overlapping functions.
The New Order button must
include the same tasks as
Clear for Next Item.

(' II ;\ 1• 1' t: R

our Hands-On Programming Ex ample

Create a project for R 'n R- for Reading 'n Refreshment that calculates the
amount due for individual orders and maintain~ accumulated totals for a sum
mary. Have a check box for takeout items, which are taxable at 8 percent: all
other orders are nontaxable. Include radio buttons for the five coffee selections:
Cappuccino. Espresso. Latte.. Iced Cappuccino. and Iced Latte. The prices for
each will be assigned using these constants:

Cappuccino 2.00

Esp1·esso 2.25

Latte 1.75

Iced (either) 2.50

Use a button for Calculato Soloction. which will calculate and display the
amount due for each item. Display appropriate error messages for missing or
nonnumeric data.

A button for Clear for Next Item will clear the selections and the amount for
the current item and set the focus back to the quantity. The Cloar button should
be disabled when the program begins and be enabled after the user begins an
order.

Acldit ional text boxes in a separate group box 1~i!J display the swmnary in
fonnation for the current order. i11cluding subtotal. tax. and total.

Bullons at the bottom of the form will be used for New 0/Wr, Summary. and
Exit. TI1e New Order button will confinn that the user wants to clear the current
order. lf the user agrees. clear the current order and add to the summary totals.
The Summary button should display a message box with the number of orders,
the total dollar amount, and the average sale amount per order.

Pla nning tlw Proj('<'l

Sketch a form (Figure 4.14). which your users s ign as meeting their needs.

Plan the Objects and Properties Plan the property settings for the form and
each of the controls.

Object

BLllingFonn

GroupBoxl

GroupBox2

GroupBox3

CappuccinoRadioButton

EspressoRadioButton

Name

Text
Accept.Button
CancelButton

Text

Text

Text

Name

Text
Checked

Name

Text

Setting

BillingForm
R 'n R--for Reading 'n Refreshment

CalcutateButton
ClearButton

Order I nfonnatian

Coffee Selections

(blank)

CappuccinoRadioButton
C&appuccino
True

EspressoRadioButton

Espre..&o

183

184 \ S l \ I.
n ' "

C Decisicn• and Conditicn.

The plan11i11g sketch of the f orm f or the hand<-on programming exercise example.

Bliii11{1FOrm

CalculateButton

Cle.arButton
(dlsal;>le.::l)

ltemAmountTextBox

Obj~el

Latte RadioBullon

lc..:ILalte Radio Button

,_

,...-

'---

I--

I QusntltyTextBox

Order lnform.atlon I
Cow...e SelectiOns -

1

+-~ Qu.arttlty I "' I

,.-)0 Ts~utf' @ C,t~ppucclno

'-+l (;alculste 1 1C!earfor
1
1

0 Espre55Q
0 LaJ;te Selection Next Item

~ Olced Latte
Item Amount ~ I 0 Iced CaJ2pucclno

Sui;>Tot.al I I
Tax (If Takeout) I I
Total Due I I

I N~Orderl I Summary I I Exlt I
t t t
I I I

Nei'.OrderButton Summ.aryBut ton ExttBut ton
(dls.al;>led)

Property Se tting

Name I.atte RodioButton

Text La &tte

Name k edLatteRadioButton
Text &Iced Latte

lce(ICappuccino RadioButton Name lcedCappuccinoR.adioButton
Text l·:ed Ca&ppuccino

Labell Text &Quantity

QuantilyTextBox Name QuantityTextBox
Text (hlan~)

Tax CheckBox Name TaxCheckBox
Text Ta&keout ?

Lahel2 Text l!emAmo w1l

Lahel3 Text ~ubTotal

Label4 Text Tox (ii Ta keout)

LabelS Text Total Due

lte mAmountTextBox Na me hemAmountTextBo.•
Read Only True
TabStop False

1-
r-

-

GroupBox1
GroupBox2
CappucclnoRadloButton

EspresooRadloButton
L.atteR.adloButton

Iced LatteR.adloButton

lce.::ICappucclnoRadloButton

GroupBox3

Sui;>TotaiTextBox

TaxTextBox

Totarrext Box

c II i\ •• T t: R

Object Property Setti_n~

SubTotaiTextBox Name SubTotaiTextllox
Read Only True
TabStop False

TaxTextBox Name TaxTe.,tBox
Read Only True
TabStop false

TotalTextBox Name TotaiTextBox
Read Only True
TabSiop False

CalculateBullon Name CalculateButlon
Text &CalcuJate Selection

ClearBulloo Name ClearBuuoo
Text C&lear fur Next Item
Enabled false

Ne,.,OrderBuuon Name NewOrderButton
Text &New Order
Enabled f alse

Swnmary Button Name Summary Button

Text &Summary

E..itBullou Name ExitButton
Text E&xit

Pion the Event Procedures You need to plan the actions for five event proce
dures for the buttons.

Objecl Pr·ocedure

CalculaleButton Click

CJearButlon Click

Nm••OrderButtou Click

Summary Button Click

Exit Button Click

Aetio n

Vnlid_ate for blank or nonnume ric amount.

Find price of drink selection.
Multiply price by quanlily.
Add amount to subtotal.
Calculate lox if needed.
Calculate tctal =subtotal+ tax.
Forn1at and display the values.
Disable the Takeout check box.
Enable the Clear bullon and Ne~o• Order button.

Clear the coffee selections.
Clear the quantity and the item price.
Set I he foe,.. to tl1e quantity.

Confinn clearing current orde r.
Clear the current order.
If subtotal > 0

Accumulate total sales and count.

Set subtotal and total due to 0.
Enable Takeout check box.
Disable the Clear button and New Order button.

If curTCul 01der not added to totals
Call NewOrderBullon_Click.

Culculale the a\·erage.
Dioplay the summary totals iu a me .. age box.

Tenninate the project.

ISS

186 \ S L \ I, ll \ s

Write the Project Follow the sketch in Figure 4.14 to create the form. Figure
4.15 shows the completed f01m.

• Set the properties of each object as you have planned.

Write the code. Working from the pseudocode. write each event procedure.

When you complete the code. use a variety of data to thoroughly test the
project. Make sure the tab order is set correctly so tl1at Lhe insertion point
begins in QuantityTextBox.

•~ R n R -· for Reading 'n R.freshment

l(a1Wate
Seleai:ln

SubTotal

Cdfee Seieebans

o CsP~>occno

e-Q
~e

!cedl.atte

Iced Caili)UC:dno

Tax (I Takecu)

Total Due

~ I[

Th(' Pa·ojrct Codin:,: Solmio n

'Program Name:
'Programmer:
'Date:
'Description:

'Folder:

Ch04HandsOn
Bradley/Millspaugh
June 2010
This project calculates the aBount due
based on the customer selection
and accumulates summary data for the day.
Ch04HandsOn

Public Class BillingForm
' Declare module-level constants.
const TAX_RATE_Decimal As Decimal = O.OBD
Const CAPPUCCINO_PRICE_Decimal As Decimal = 2D
Const ESPRESSO_PRICE_Decimal As Decimal = 2.25D
Const LATTE_PRICE_Decimal As Decimal= 1.750
Const ICED_PRICE_Decimal As Decimal = 2.50

F l g ur P -L J 5

The form for the hands-on
programming exercise.

C II A I' T E R

' Declare module-level variables for summary information.
Private SubtotalDecimal, TotalDecimal, GrandTotalDecimal As Decimal
Private CustomerCountinteger As Integer

Private Sub CalculateButton_Click(ByVal sender As system.Object,
ByVal e As System.EventArgs) Handles CalculateButton.Click

' Calculate and display the current amounts and add to totals .

Dim PriceDecimal, TaxDecimal, ItemAmountDecimal As Decimal
Dim auantitylnteger As Integer

• Find the price.
If CappuccinoRadioButton.Checked Than

PriceDecimal = CAPPUCCINO_PRICE_Decimal
Elsalf EspressoRadioButton.Checked Then

PriceDecimal = ESPRESSO_PRICE_Oecimal
Elself LatteRadioButton.Checked Then

PriceDecimal = LATTE_PRICE_Decimal
Elself IcedCappuccinoRadioButton.Checked or

IcedLatteRadioButton.Checked Then
PriceDecimal = ICED_PRICE_Oecimal

End If

' Calculate extended price and add to order total .
Try

auantitylnteger = Integer.Parse(OuantityTextBox .Text)
ItemAmountDecimal = PrioeDeoimel • auantitylnteger
SubtotalDecimal += ItemAmountDecimal
If TaxCheckBox.Checked Then

TaxOecimal SubtotalDecimal • TAX_RATE_Decimal
Else

Taxoecimal o
End If
TotalDecimal = SubtotalDecima1 + Taxoecimal
ItemAmountTextBox.Text = ItemArnountDecimal.ToString('C')
SubTotalTextBox.Text = SubtotalDecimal.ToString("N")
TaxTextBox. Text = TaxOecimal. TcString ("N")
TotalTextBox. Text = TotalOecimel. ToString("C")
• Allow a change only for new order.
TaxCheckBox.Enabled = False
• Allow Clear after an order is begun.
ClearButton .Enabled = True
NewOrderButton.Enabled = True

catch auantityException As FormatException
MessageBox. Show(' Quantity must be numeric.",

"Data Entry Error", MessageBoxButtons.OK,
MessageBoxlcon.Information)

With auantityTextBox
.Focus()
.SelectAll()

End With
End Try

End Sub

187

188 S l \ L R \ S (" Ckc;..imu anti Corul i Mill

Private Sub ClearButton_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles ClearButton.Click

' Clear the appropriate controls.

cappuccinoRadioButton.Checked = True ' All others are false .
ItemAmountTextBox.Clear()
With auantityTextBox

.Clear()

. Focus()
End With

End Sub

Private Sub NewOrderButton_Click(ByVal sender As system.Object,
ByVal e As System.EventArgs) Handles Ne~OrderButton.Click

' Clear the current order and add to the totals .

Dim ReturnDialogResult As DialogResult
Dim MessageString As String

' Confirm clear of current order.
MessageString = 'Clear the current order figures?"
ReturnDialogResult = MessageBox. Show(IAessageString, "Clear Order ' ,

MessageBoxButtons.YesNo, MessageBoxicon.auestion,
MessageBoxDefaultButton .Button2)

If ReturnDialogResult = DialogResult.Yes Then
Clearsutton_Click(sender, e) ' Clear the
SubTotalTextBox.Clear()
TaxTextBox.Clear()
TotalTextBox .Clear()

' Add to Totals.
' Add only if not a new order/ customer .
If SubtotalDecimal <> 0 Then

GrandTotalDecimal += TotalDecimal
CustomerCountinteger += 1
' Reset totals for next customer.
SubtotalDecimal = 0
TotalDecimal = 0

End If

' user said Yes.
screen fields.

' Clear appropriate display items and enable check box.
With TaxCheckBox

.Enabled True

.Checked = False
End With
Clearsutton.Enabled = False
NeworderButton.Enabled = False

End If
End Sub

C II i\ I' 1' 1\ H

Private Sub summaryButton_Click(ByVal sender As System.Object ,
ByVal e As System.EventArgs) Handles SummaryButton.Click

• Calculate the average and display the totals.

Dim AverageDecimal As Decimal
Dim MessageString As String

If TotalDecimal <> o Then
• Make sure last order is counted.
NewOrderButton_Click (sender , e)

End If

If customercountinteger > o Then
· Calculate the average .
AverageDecimal = GrandTotalDecimal 1 customercountinteger

' Concatenate the message string.
MessageString = "Number of Orders: ' &

CustomerCountinteger.ToString() &
Environment.NewLine & Environment.NewLine &
"Total Sales: " & GrandTotalDecimal. ToString("C") &
Environment .NewLine & Environment.NewLine &
'Average Sale: ' & AVerageOecimal. ToString ("C")

MessageBox.Show(MessageString, "Coffee Sales Summary" ,
MessageBoxButtons . OK, MessageBoxicon.Information)

Else
Messagestring = "No sales data to summarize.'
MessageBox. Show(MessageString, "Coffee Sales summary" ,

MessageBoxButtons.OK, MessaQeBoxicon.Information)
End If

End Sub

Private Sub ExitButton_Click (ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles ExitButton.Click

· Terminate the project.

Me. Cl ose()
End Sub

End Class

Debugging Visual Basic Projects

One of the advantages of programming in the Visual Studio environment is the
avaHability of debugging tools. You can use these tools to help find and elimi
nate logic and run-time en'Ors. The debugging tools also can help you to follow
the logic of existing projects to better understand how they work

Sometimes it's helpful to know the result of a Boolean expression.the value
of a variable or property. or the sequence of execution of your program. You can
follow program logic in Debugging mode by single-stepping through code: you
also can get information about execution without breaking the program run.
us ing the Writeline method of the Debug class.

189

190 v S l l ,\ I. C Decisions and Conditions

In the following sections, you will learn to use many of the debugging tools
on the VB standard toolbar (Figure 4.16) and the Debug menu (Figure 4.17).

~~g L---------------~
Windows

Start Debogging

:;~ Step into

c.:. Step OVer

Exceptions. ..

Q.ggl6\lt(.')lep.o•l\i

Ne\V Breakpoint

;:J DeJctt: AU Bre.Jk~oiou

Cleor A8 D•tanps

&:port Oef.4.1ips. ...

Import DDtoTif» ...

Option:s . .,ndSd"tings ...

W l'i tiug Dc>bug O utpul

f5

F8

Shifi•F8

Q rl-t Ait+E

<9

You can place a Debug. Wri teline me thod in yom· code. which sends output
to the Immediate 1~indow during program execution. l.n t11e argument for the
Writeline method, you can specify a message to IITite or an object that you
want tracked.

The Debng.WI'iteUue Method-Ccueml Fonu

Debug .WriteLine(TextString)
Debug .Writeline(Object)

The Debug . Wri teline method is overloaded. so you can pass it a string argu
ment or the name of an object.

The Debug. w,·itel.iue Method- Exmnples

~ Debug .Wri teLine("CalculateButton procedure entered .")

Fi g n••e 4 . 16

The debugging buttons on the
VB standard wolbar.

l<' i g ur e 4.1 7

The debugging options on the
Professional Edition Debug
menrt showi11g the keyboard
shortcut keys.

~ Debug .WriteLine(QuantityTextBox)
i' Debug .Writeline("Quantitylnteger = " & Quantitylnteger. ToString())

When the Debug . Wri teL ine method executes, its output appears in the Im
mediate window. Figure 4.18 shows the output of the three example statements
above. Notice the second line of output. for QuantityTextBox- the class of the
object displays along with its current contents.

C II ,\1°Tt: R

l1nmtdiilte Vllndo;.,

Calculate:ISul ton Pt"'t:e<lure cnt~l"'e.tl .

Sy~tem.Nindow~.fDrms . T~xtBox, T.:xt. 25
Quentity integer - 25
I

"' fD lmmedlilte Vllndcr~

You may find it useful to place Writeline method~ in If s tatements. so
that you can see which branch the logic followed.

If countlnteger > 10 Then

Else

Debug. Writeline("Count is greater than 10. •)
' Other processing.

Debug. Writeline ("Count is not greater than 10. ")
' Other processing.

End If

An advantage of using Wri teline. rather than the other debugging tech
ni<Jues that follow. is that you do not have to break program execution. Also.
Debug.WriteLine statements do not execute in Release compiles. so the state
ments can be left in the code for post-release debugg.ing.

Clcaril~ t..he Immediate Window

You can clear the Immediate "'indo~t·: Right-click in the 10·indow and choose
Clear AI/.

Pau!!!ing Exet'uliun wilh lilt' B.-.... ak AU Bullon

You can click on the Break All toolbar button to pause execution. Titis s tep
places the project into debug time at whatever line the program is executing.
However. you 11ill generally prefer to break in the middle of a procedure. To
choose the location of the break. you can force a break with a breakpoint.

Forcing a B1·eak

During the debugging process. often you want to stop at a particular location in
code and watch what happens (e.g .. which branch of an If I Then I Else:
which procedures were executed: the value of a variable just before or just after a
calculation). You can force the project to break by inserting a brealqJoilll in code.

To set a breakpoint. place the mouse pointer in the gray margin indicator
area at the left edge of the Editor window and click; the line will be highlighted
in red and a large red dot 1~ill display in the margin indicator (Figure 4.19).

After setting a breakpoint. start execution. When the project reaches the
breakpoint. it will halt. display the line. and go into debug time.

191

The lmrm!dinte window showJ
the output of the
Debug . Writeline mellwd.

l~llil#l
Place the insertion point in the code

line you wan! as a breakpoint and

press F9. Press F9 again to toggle

the breakpoint off. •

192 v S l l :\ L G ,\ S (' Decisions and Conditions

A program staU3ment with a breakpoint set appears highlighu,d, and a dot appears in the gray margin indicator area.

Try
' Convert quont. to nunc:ric Vi!trioblc:.

t Mi§MiiMfl·W*'ri®*h+£$1'
Try

' Convc:rc price if qu~ntity w.:as -successfuL

You can remove a breakpoint by clicking again in the gray margin area. or
clear all breakpoints from the Debug menu.

Checking the CutTent Values of Expressions

You can quickly check the cutTent value of an expression sucl1 as a variable. a con
troL a Boolean expression. or an ruithmetic expression. During debug time. display
the Editor window and point to the expression that you want to view; a small labeL
called a DataTip. pops up and displays tl1e current contents of the expression.

The steps for viewing the contents of a variable during nm time are as
follows:

l. Break ilie execution using a breakpoint.
2. If ilie code does not appear in the Editor. click on the Editor's tab in the

Documeni window.
3. Point to the variable or expression you wish to view.

The current contents of ilie expression will pop up in a Data Tip (Figure 4.20).

S te pping tlwough Code

The best way to debug a project is to thoroughly understand what the project is
doing every step of the way. In early programming days, this task was performed
by following each line of code manually to understand its effect. But you can
now use tl1e Visual Studio deb ugging tools to trace program execution line by
I ine and see the progression of the program as it executes through your code.

You step through code at debug time. You can use one of the techniques al
ready mentioned to break execution or choose one of ilie stepping commands at
design time: the program will begin running and immediately transfer to debug
time.

F i g n•• e 4.2 0

Point to a. variable IUime in
code and its current value
displays in a DataTip.

C II A 1• 'I ' II ll -1

Two of the stepping commands on the Debug menu in Debugging mode are
Step Into and Step Over. You also can use the toolbar buttons for stepping or the
keyboard shortcuts shown on the menu (refer to Figure 4.17).

These debugging commands force the project to execute a single line at a
time and to display the Editor window with the cwTent statement highlighted. As
you execute the program. by pressing a button. for example. the Click event
occurs. Execution transfers to the Click event procedure. the Editor window for
that procedure appears on the screen. and you can follow line-by-line execution.

Ste[• IJilo

Most likely you will use the Step Into command more than the Step Over

command. When you choose Step Into (from the menu. the toolbar button. or
F8). the next line of code executes and the progt-am pauses again in debug time.
If the line of code is a call to another procedure. the first line of code of the
other procedure displays.

To continue stepping through your program execution. continue choosing
the Step Into command. When a procedure is completed. your form will display
again. awaiting an event. You can click on one of the form's buttons to continue
stepping through code in an event procedure. If you want to continue rapid ex
ecution without stepping, choose the Continue command (from the menu, the
toolbar button. or F5).

Note: The keyboard shortcuts may differ. depending on the keyboard
mapping selected in the Options dialog box. The shortcuts sh01m here are for
Visual Basic development settings; if you are using General development
settings. perhaps in a shared enviromnent with other language development.
the keyboru·d shortcut for Step Into is Fll and Step Over is Fl 0.

S tep Over

The Step Over command also executes one line of code at a time. The differ
ence between Step Over and Step Into occms when your code has calls to other
procedures. Step Over displays only the lines of code in the current procedure
being analyzed; it does not display lines of code in the called procedures.

You can choose Step Over from the menu. from the toolbar button. or by
pressing Shift + F8. Each time you choose the command. one more program
statement executes.

Continuing l·•t·og t'am Ex<> cution

When you have seen what you want to see. continue rapid execution by press
ing FS or choosing Continue from the toolbar or the Debug menu.

S tor•ping Execution

Once you have located a problem in the program's code. usually you want to
stop execution. correct the error. and run again. Stop execution by selecting
Stop Debugging from the Debug menu or the toolbar button. or press the key
board shortcut: Ctrl + Alt + Break.

Note: The keyboard shortcuts differ depending on the keyboard mapping
scheme selected in Tools I Options I Show All Options.

E<Ut and Continue

Another helpful feature for debugging programs is Edit-and-Continue. When
your program goes into Debugging mode and you make minor modifications to
the code in the Editor. you may be able to continue execution without stopping
to recompile. Press F5 or choose Debug I Continue. If the changes to the code
are too major to continue, the debugger does not allow the changes. Stop pro
grmn P.XH~uliure, rr1ak ... 11•~ d1a11ge~, i-trul ret~urupil ... ll•~ prugnun.

193

194 v s l l " .. C Decisions and Conditions

T he Locals \Vimluw

Sometimes you may find that the Locals window displays just the informa
tion that you want (Figure 4.21). The Locals 11~ndow displays all objects and
variaulell that are witltiu :scope at uelJu~ L.illle. Tltal meau:s tltat if you break
execution in the CalculateButton_Click event procedure. all variables local

to that procedure display. You also can expand the Me entry to see the state of
the form's controls and the values of module-level variables. Display the
Locals window from the toolbar button or the Debug I Windows I Locals menu
item. which appears only when a program is running. either in run time or
debug mode.

locals • 'I X

J Name _j Valuce I Type ~

IE ~Me lCh03HandsOn.8oo<:\ • Ch03HandsOn.BootSaleFO<m

~ ~ Average01scountDedmal 00 Decimal
Q Oi~countOecimal l 7.51!t Decimal

() Oi~counted.PriceOecimal 212.50 Decimaf
!II Q c: iSys~m~~vO'ltAr_g~} j Systcn:-£vc~9~:;
~ EdendcdPriceDecimdl 2500 Dec.iln(ll -. -. - --- -

.:;l locali

T he Autos Window

Another helpful debugging window is the Autos window. TI1e Autos window
"automatically" displays the variables and control contents that are referenced
in the cun·ent statement and the previous statement (Figure 4.22). Note that the
highlighted line is about to execute next; the "current" statement is the one just
before the highlighted one.

You can view the Autos window when your program stops at a breakpoint.
Click on the Autos window tab if it appears. or open it using the Debug I
Windows I Autos menu item. Again. you must be in either run time or debug
mode to see the menu item.

Note: The Autos window is not available in VB Express.

Autos •qx

J Nome I Value Type

OiscountSumOeomal 00 Oeomal

10 Integer
10

ill Autos "'

l~liii:J
To use any of the debugging wh

dows, you must be in debug mode

or run time. •

l<' ign••e 4 . 21

The Locals window shows the
values of the local variables
that are within scope of the
current statement.

The Autos window
automatically adjusts to show
the variables and propertks
that appear in the previous line
nn.d. thP. r.nrr~>.nt linP..

C II A 1• 'I' " ll

Debugging Step-by-Step Tutorial i,
In tlris exercise you will learn to set a breakpoint; pause program execution;
single step through program instructions; display the current values in proper
ties. variables, and expressions; and debug a Visual Basic project.

Tes t the Project

STEf' 1: Open the debugging project on your student CD. The project is found
in the Ch04Debug folder.

STEI' 2: Run the program.
STEP 3: Enter color Blue. quantity "100". and press Enter or click on the Cal

culate button.
STEP 'k Enter another color Blue, quantity "50", and press Enter. Are the to-

tals correct?
STEP 5: Enter color Red, quantity "30". and press Enter.
STEI' 6: Enter color Red. quantity "10". and press Enter. Are the totals correct?
STEI' ; , Enter color White. quantity "50". and press Enter.
STEI' 8: Enter color White, quantity "100". and press Enter. Are t11e totals

conect?
STEP 9: Exit the project. You are going to locate and correct the errors in the

Red and White totals.

Break and Step Prognuu •=xeculion

STEI' 1: Display the program code. Scroll to locate iliis line. which is the first
calculation line in the CalculateButton_Ciick event procedure:

auantityDecimal = Decimal .Parse(OuantityTextBox.Text)
.STEP 2: Click in the gray margin indicator area to set a breakpoint on the

selected Hne. Your screen should look like Figure 4.23.
Notice that every occunence of QuantityDecimal is highlighted.

This feature. new to VB 2010. can be a very helpful debugging tool.
Note: This feature is not available in VB Express.

Privt~tc Sub CDlcuhteButton_Click(ByVt~L sender As Sy :;t cm.Object ,
6yVal e A~ Sys tem. fvcntArgs) licndlc::; Co lculate6ut t o1 , Click

' Colculc-tc: the SUI.Ud ry.

Dim Quont i tyOecinol, TotdDccirr-.al A~ Occ::irnol

T1•y
· convert Loput t o nuneric .

4 =- Dec!nol.Pcw·sc(QvontltyTexO<l.X. Text)

' Add t o the col'rect total.
rf 6lueRadi o8utton. checked Then

tllueTotalDecimal +=- QuantityDec in:al
Elself RedRad ioEiutton. checked rhen

RedTota loec irr..al =- Q.uantityt>ecimal

STEP 3: Run the project, enter Red. quantity "30". and press Enter.
The project ,~;11 transfer control to the CalculateButton_ Click proce
dure. stop when it reaches the breakpoint, highlight the cunent line.
and enter debug mode (Figure 4.24).

Note: The highlighted line has not yet executed.

195

Fi ~ ur e 4.2 3

A program statement with

a breakpoint set appears
highlighted and a dot appears
in the gray margin indicator
area ..

196 S l l ,\ L C Decisions and Conditions

DebugForm ,vb X

l~ C11lcul~ttButton ·I, CWk

- Privotc: Sub CalculoteOutton~Click (GyVal sender~ Systc:m.ObiectJ 1:
6yVol o: A~ Sy~t~:ID .. fvcntArg!~>) tldndlc:; c~lculab::B•Jtton .Click

• Col.cul.::te the surnar y.

OLn QudntityDeci..nolJ Tot.e~ lDcc:lmol A'!. l>cdt~al

~
Tr·y

• con\ler l lnpul to nulllt:"ri(.
0 §uantityoecl.ltal "' Dec i llal .Pal"se(QuantityTe:<t6ox . Text)l

' Add to the corr-ect totaL
If DluoRodioDunon.chocked ·rhen

~lueTotalUecin:ol • · Quantleyil'ecimol
elseJf RedRadioButton .Checked 1 he n

RedTotaloec ilnal = Quantityoec iDal

ST EP 1: Press the F8 key. which causes VB to execute the current program
statement (the assignment statement). (F8 is the keyboard shmtcut for
Debug/ Step Into.) The sta tement is executed and the highlight moves
to the next s tatement (the If statement).

Note: Lf the F8 key is not the conect shortcut key. the keyboard de
faults likely have been modified. Select Tools I Options I Environment I

Keyboard. Click the Reset button ·to reset tl1e keyboa:rd mappings to
the ir default values.

~TEP 5• Press F8 again: the expression (BlueRadioButton . Checked) is
tested and found to be False.

STEP(., Continue press ing F8 a few more I irnes and watch the order in which
program statements execute.

View Lbe Contents of Pt'O):M' I'Iies, Variables, and Boole~m Expn~ssions

~TEP 1: Scroll up if necessary a nd point to auantityTextBox . Text in the
breakpoint line: the contents of the Text property pop up (Figure 4.25).

Try
Convert input To nuner:ic.

id"3tA1 €1M• Eta; 6''#rti@ft!tii§M*ftMMI'
l~!jlj'QuanhtyTed!loxJ{T.rt~ "31l' } a-1

' A<fd to the correct total.
I f BlueRad i o Button .Ch e c:ked Then

Bl ueTot:al Decin:a l ~:: Quantityi)ecimal
Eh elf Red~adioButton . Checked Then

STEP 2: Point to Quanti tyDecimal and view the contents of that variable. No
tice that the Text property is enclosed in quotes and tbe numeric vari
able is not. The 300 means 30 Decimal.

lqj!III"C.' 4.24

When a breakpoint is reached

during program e.-recution,
V1.Sual l1asic ent-er.! deb ttg time.
displays the Editor window. and
highlights the breakpoint line.

Fi~t•••• e 4.25

Point to a property reference in
code and the current contents

pop "P·

<" u ·' •• ·r •: n

HEt• !J: Point to BlueRadioButton. Checked in the If statement: then point
to RedRadioButton. Checked. You can see the Boolean value for
each of the radio buttons.

STEt• I: Point to RedTotalDecimal to see the current value of that total vari
able. This value looks correct. since you just entered 30. which was
added to the total.

f.omirme Pr·o;:ram Exe•·ution

STEP 11 Press FS. the keyboard shortcut for the Continue command. The
Continue command continues rapid execution.

"TEl' 2: Ente r color Red and quantity "10". When you press Enter. program
execution will again break at the breakpoint. (lf the VS IDE window
does not appear on lop of your fonn. click its Taskbar button.)

The 10 you just entered should be added to the 30 previously en
tered for Red. producing 40 in the Red total.

'ITEI' 3: Use the Step Into button on the tooU)ar to step through execution. Keep
pressing Step Into until tl1e 10 is added to Red'l'ota!Decimal. Display
the current contents of the total. Can you see what the problem is?

Hint: RedTotalDecimal has only the current amount. not the sum of
the two amounts. The answer will appear a little later: try to find it
yourself first.

You wiU fu this error soon. after testing the White total.

TP;;t the Whill' Total

STEP 1: Press FS to continue execution. If the form does not reappear. c lick
the project's Task bar but1on.

.,,'EI' 2: Enter color \l'hite. quantity "100". und press Enter.
STEP 3: When execution halts at the breakpoint. make sure that the IDE

llindow is on top and press FS to continue. This returns to rapid
execution until the next breakpoint is reached.

STEP -L: Enter color White, quantity "50". and press Enter.
"TEl' 5: Press F'8 several times when execution halts at the breakpoint until

you execute the line for the \l' llite total. Remember that the high
lighted line has not yet executed: press Step Into {F8) one more time.
if necessary. to execute lhe addition statement.

STEP 6: Point to each variable name to see the current values (Figure 4.26).
Can you see the problem?

' Add to the coc-r ec-t total.
If Bhc:R(IdioBu'=l:on .<hecked - J;en

!3lueTo tolDeciluJ l +- Qu~ntityDc:cin~ l

~If Red Rodio3utt<en.Ch ech-d "Then
~::dTotolO.:cia41 = QJ~ntityOt::cind

flseif VhiteRadLooonon .checked Then
W'l! teTota l.Dec t..a"'-1. !+:=.• _.1,---,.,--,---,,..,.,.--,

fnd If 1±9 WhiteTotaiDffim•ll lO <>-I

197

Switch between the IDE window
and your running application using

the Taskhar buttons. •

Fi~ure 4.26

Point tc the vari<Lble name in
codi! and iu current val~re
di~plays as 2 DecimaL

198 v S l l ,\ I. C Decisions and Conditions

sn :r 7 : Display the Autos window by clicking on its tab. H the tab does not
appear. select Debug/Windows / Autos. The Autos window displays the
current value of all properties and variables referred to by a few state
ments before and after the current statement (Figure 4.27).

ST EP 8: Identify all the errors. When you are ready to make the corrections,
continue to the next step.

The Autos window displays the current content-s of variables and properties in the statements before and after the current
statement

F> l

lOJ% • • I ~

' Format t otals: for output .
~lueTotal1extBox. Text =- Bl ueTotalOeciJI'Ial. ToString()
R.edTota lTextBox. Text =- RedTotalDec i.nal . ToString()
YhiteTota l lext Box . Text = Whi teTota l Dec in:al. ToStr ing()

"'
II Name Value I Type

~ BlueT ota!Oecimal 00 Decimal

1±1 ~ 91u•Totall«<i9o" {TEl<! = ''0 ')
~ BlueTotalle«tBox.Te>t "0'
~erl ---'-'"V-"is=u11l Bosic O~bugging Excrci~c"

liD Autos ;:

Conect the Red Total Erro l'

STEP 1: Stop program execution by clicking on the Stop Debugging tool bar
button (Figure 4.28).

I ~ =ti<;:: ~ ... I ~ :3' ll!ll '-t' :!> Cl ·I
!Stop Ocbugg1ng ((tfl-t-.Ak~Br~k)l

STF:P 2: Locate this line:

RedTotalDecimal = auantityDecimal

This statement replaces the value of RedTotalDecimal with Quantity
Decimal rather than adding to the total.

STEP 3: Change the line to read:

RedTotalDecimal += auantityDecimal

Figur e 4. 2 8

Click on the S top Debugging
button on the Debug toolbar to
halt program execution.

C II A 1• 'I' I' ll

Col'rcct the White Total .Error·

STEP 1: Locate this line:

Whit eTotalDecimal += 1

Do you see the problem with this line? It adds 1 to the total. rather
than adding the quantity.

STEP 2 : Change the statement to read:

WhiteTotalDecimal += QuantityDecimal

STEP 3: Press FS to start program execution. Enter color White and "100" and
press Enter.

STEP L: Press FS to continue when the project halts at the breakpoint.
STEP 5 : Enter White, "50". and press Enter.
STEP 6 : At the breakpoint, clear the breakpoint by clicking on the red margin

dot for the line.
STEP 7 : Press FS to continue and check the total on the form. It should be cor

rect now.
STEP 8: Test the totals for all three colors carefully and then click Exit.

Test the Exception ElandJi:ug

STEP 1: Set a breakpoint again on the first calculation line in the Calculate
Button_ Click event procednre.

STEP 2: Run the program, this time entering nonnumeric characters for the
amount. Click on Calculate: when the program stops at the break
point. press F8 repeatedly and watch program execution. The message
box should appear.

Force a Rtm-Timc El'l·or

For this step. you will use a technique called commenting out code. Program
mers often add apostrophes to the beginning of code lines to test the code with
out those lines. Sometimes it works well to copy a section of code. comment out
the original to keep it unchanged. and modify only the copy. You'll find it easy
to uncomment the code later~ after you finish testing.

STEP 1: Select Delete All Breakpoints from the Debug menu if the menu item is
available. The item is available only when there are breakpoints set in
the program.

STEI' 2: At the left end of the line with the Try statement, add an apostrophe,
turning the line into a conunent.

STEP 3: Scroll down and locate the exception-handling code. Highlight the
lines beginning with Catch and ending with End Try (Figure 4.29).

STEP <L: Click on the Comment out the selected lines button on the Editing tool
bar (Figure 1 .. 30). The Editor adds an apostrophe to the start of each
of the selected lines.

STEP 5: Run the project. This time click the Calculate button without entering
a quantity. A run-time etTor 11ill occur (Figure 4.31).

You can click on the Close button for the exception error message
or click the Stop Debugging button on the toolbar. Either will cancel
execution.

199

l~ljjl#l
You can change the current line of

execution in Debugging mode by

dragging the current line indicator

arrow on the left side of the Editor

window. •

200 \ .' S U A I, C Decisio1u and ConJitions

STEP 6: After you are finished testing the program. select the commented lines
and click on Uncomment the selected lines button (Figure 4.32).

Note: You can just click an insenion point in a line or select the en
tire line when you comment and uncomment lines.

catch
tle5~<!8<.>x . Shcw("E,ot~t r Uf~rtc da ta."_, "DdlG Error" J

Mess,.;l6e6o.J.EUtttrb .OK .. f>b-,dje6oxi co-1 . Inionr.atlo n)
With Q.JantityTextBOX

.focus ()

.selectAll()
End With

End 1•)1
End SUb

j Comment out the sele!'\ed ltnes. !Ctrl+K. Ctri•C)

The n~issing data cause an exception and nm-time error.

_b. Forma1Exception was unhandled

Jnput string was not in a correct format.

Troubleshooting t ips;

Figu••e 4.29

Select the lines to convert to
comments for debugging.

Fif!n••e 4.30

Click the Comment out the
selected lines toolbar button

to temporarily make program
lines into comments.

Figu••e 4.31

Mcke sure your method arguments are in the right format. ,~.

When c.onV".:riing <1 :.l1ing lo Ooto:Timc-, pone the :.t1ing to toke lhc: dulc bdorc pvttin9 cuot.hvori.ublc. il"'to the Dole Time objec-t-. 8
Get general help for this exception.

Search for more Help Online ...

Actions:

View Detail ...
Copy exception detail to the clipboard

[uncommentthe !elected l.nes. (Ctri+ K, Ctri-U)j

Fign••e 4.3~

Click the Uncomment the
selected lines toolbar button

after testing the program.

C ll i\ l• l ' E IC

1. Visual Basic uses the If I Then I Else statement to make decisions. An
Else clause is optional and specifies the action to be taken if the expres
sion evaluates as False. An If I Then I Else statement must conclude
with an End If.

2. UML activity diagrams can help visualize the logic of an If I Then I
Else statement.

::!. The Boolean expressions for an If s tatement are evaluated for True or False.
4. Boolean expressions can be composed of the comparison operators. which

compare items for equality. greater than. or less than. The comparison of
nwneric values is based on the quantity of the number. ~t·hile string com
parisons are based on the ANSI code table.

5. The ToUpper and Tolower methods of the String class can convert a text
value lo upper- or lowercase.

6. The And. Or. AndAlso. and OrElse logical operators may be used to com
bine multiple Boolean expressions. With the And operator. both expres
s iom; must be tme for the entire expressions to evaluate True. For the Or
operator. if eithe r or both conditions are true. the entire expression evalu
ates as True. \\'hen both And and or are used in a Boolean expression. the
And expression is evaluated before the Or expression. AndAlso and
OrElse short circuit the expression so thai the second part of a compound
expression may not have to be tested.

7. A nested If s tatement contains an If statement within eitber the true or
false actions of a previous If statement. An Else clause always applies to
the last unmatched If regardless of indentation.

8 . The state of radio buttons and check boxes is better tested with If state
ments in the event procedure for 11 bull on rather than coding event proce
dures for the radio bullon or check box. Use individual If statements for
check boxes and nested If statements for radio buttons.

9. The MessageBox. Show method can display a multiple-line message if you
concatenate a NewLine character lo specify a line break.

10. You can choose to display multiple buttons in a message box. The
MessageBox. Show method returns an object of the DialogResult class.
which you can check using the DialogResult constants.

11. Data validation checks the reasonableness or appropriateness of the value
in a variable or pi'Operty.

12. A single event procedure can be assigned to multiple controls, so that the
controls share the procedure.

13. You can use the sender argument in an event procedure to determine
which control caused the procedure to execute.

14. One procedure can call another procedure. To call an event procedure. you
must supply the sender and e arguments.

I 5. A variety of debugging tools are available in Visual Studio. These include
writing to the Immediate 1+indow. breaking program execution. displaying
the current contents of variables. and stepping through code.

201

202

ANSl code 160
Autos window 194
breakpoint 191
Boolean Expression 159
call 181
Case struc ture 177

\

comparison operator 159
compow1d Boolean Expression 163
condition 159
CType function 180
Debug.Writeline method 190
DialogResult object 173
End If 157

S l \ L IC \ S

If I Then I Else 157
late binding 180
Locals 1~i ndow 194
logical operator 163
nested If 166
rei a tional operator 159
Select case 178
short circuit 165
Step Into 193
Step Over 193
ToLower method 162
ToUpper method 162
validation 175

t • Decisiom and Cond i h<>ns

l. What is the general fom1at of the statement used to code decisions in an
application?

2. What is a Boolean expression?
3 . Explain the purpose of comparison operators and logical operators.
4. How does a comparison pedormed on numeric data differ from a compari-

son performed on string data?
5. How does Visual Basic compare the Text property of a text box?
6 . Why would it be useful to include the ToUpper method in a comparison?
7 . Name the types of items that can be used in a comparison.
8. Explain a Boolean variable test for True and False. Give an example.
9 . Give an example of a situation where nested Ifs would be appropriate.

10 . Define the term validation. \'(' he n is it appropriate to do validation?
l l. Define U1e term checking a range.

12. When would it be appropriate to use a Case structure? Give an example.
13. Explain the difference between Step Into a nd Step Over.

14. What steps are necessary to view tJ1e curre nt contents of a va1iable during
program execution?

4.1 Lynette R ifle owns an image consulting shop. Her clients can select from
the following services at the specified regular prices: Makeover $125. Hair
Styling $60. Manicure $35. and Permanent Makeup $200. She has distrib
uted discount coupons that advertise discounts of 10 percent and 20 per
cent off U1e regular price. Create a project that will allow the receptionist to
selec t a discount rate of 10 percent. 20 percent. or none. and then select a
service. Display the total plice for the currently selected service and the to
tal due for all services. A visit may include several services. Include but
tons for Calculate. Clear. Print. and Exit.

4.2 Modify Programming Exercise 4.1 to allow for sales to additional patrons.
Include buttons for Next Patron and Summary. "\l'ben the receptionist clicks

C II 1\ I' 'I' t: R

the Summary button. display in a summary message box the number of
clients and the total dollar value for aU services rendered. For NBXt Patron.
confirm that the user "·ants to clear the totals for the current customer.

4.3 Create a project to compute your checking accow1t balance.
Form: Include radio buttons to indicate the type of transaction: deposit.
check. or service charge. A text box Mill allow the user to enter the amount
of the transaction. Dis play the new balance in a Read Only text box or a
label. Calculate the balw•ce by adding deposits and subtracting service
charges and checks. Include buttons for Calaiate. Clear. Print. ru1d Exit.

4.4 Add validation to Programming Exercise 4.3. Display a message box if
the new balance M·ould be a negative number. lf there is not enough
money to cover a check. do not deduct the check amow1t. Instead. display
a message box 11ith the message ''Insufficient Funds'' ru1d deduct a ser
\ice charge of $10.

4.5 Modify Programming Ext.>rcise 4.3 or 4.4 by adding a Summary button that
Mill display the total number of deposits. the total dollar amoWlt of de
posits. the number of checks. and the dollar amount of the checks. Do not
include checks that were retumed for insufficient funds. but do include the
service charges. Use a message box to display the summary infom1ation.

4.6 (Select Case) Piecework workers ore paid by the piece. Workers who
produce a greater quantity of output are oOen paid at a higher rate.
Form: Use text boxes to obtain the person's name and the number of
pieces completed. Include a Calculate button to display the dollBI amount
earned. You will need a Summary button to display the total number of
pieces. the total pay. and the average pay per person. A Clear button
should clear the name and the number of pieces for the current employee
Wld a Oear All button should cleUI the summary totals after confirming the
operation with tJ1e user.

include validation to check for missing data. If the user clicks on the
Ca/ru/ale button M'ithoul first entering a name Wld the number of pieces.
display a message box. Also. you need to make sure to not display a sum
mary before any data 8IE' enlrred: you cannot calculate Wl average when
no items have been calculated. You can check the nwnber of employees
in the Summary event procedure or disable the Summary button until the
first order has been calculated.

J>e·ice P aMI lte•• f'iece for AU Pieces

1-199 .50

200-399 .55

400-599 .60

600or more .65

4.7 Modify Programming Exercise 2.3 (the weather report) to treat radio but
Ions the proper way. Do not change the image w1d message in W1 event
procedure for each radio button: instead use Wl OK buuon to display the
correct image and message.

Note: For help in basing a new project on an existing project. see
~copy Wid Move a Project- in Appendix C.

203

204 S l r \ L 11 \ s C Decisiom and Conditions

4.8 Modify Programming Exercise 2.2 (the flag viewer) to treat radio buttons
and check boxes in the proper way. Lnclude a Display button and c heck
the sett ings of the radio buttons and check boxes in the button's event
procedure. rather than making the c hanges in event procedures for each
radio button and check box.

Note: For help in basing a new project on an existing project, see

"Copy and Move a Project'" in Append ix C.
4.9 Create an application to calculate sales for Catherine:S Catering. The pro

gram must determine the amount due for an event ba~ed on the number of
guests. the menu selected . and the bar options. Additiona lly, the program
maintains summary figures for multiple events.
Form: Use a text box to input the number of guests and radio buttons to
allow a selection of Prime Rib. Chicken. or Pasta . Check boxes allow the
user to select an Open Bar and/or Wine with Dinne r. Include buttons for
Calculate. Qear. Summary. and Exit. Display the amount d ue for the event
in a label or a ReadOnly text box.

Rail>~ per P erson

P rime Rib 25.95

Chicl:en 18.95

Pasta 12.95

O~Jt<u Dar 25.00

Wine •·ith dinner 8.00

Sumrmuy: Display the number of events and the total dollar an1ount in a
message box. Prompt the user to detem1ine if he or she would like to clear
the summary information. l f the response is Yes. set the number of events
and the total dollar amount to zero. Do not display the summary message
box if there is no summary infom1ation. (Either disable the Summary but

ton until a calculation has been made or test the total for a value.)

VB ltlull Ord@r I
Calculate the amount due for an order. For each order.
the user should e nter the following information into
text boxes: customer name. address, c ity. state (two
letter al>breviation). and ZIP code . An order may con
sist of multiple items. For each item. the user will
enter the product description. quantity. ~·eight. and
price into text boxes.

You will need buttons for Add This Item. Update
Summary. Qear. Print. and Exit.

For the Add This Item button. validate the quantity.
,.·eight. and price. Each mus t be present and numeric.
F'or any bad data. display a message box. Calculate the
charge for the current item and add the c harge and
,.·eight into the appropriate toLals. but do not display the
summary until the user clicks the Update Summary but
ton. Do not calculate shipping and handling on individ
ual items: rather. calculate shipping and handling on
the e ntire order.

C II A 1•1'" R

·when the user clicks Add This Item for a new order.
the customer infotmalion should be disabled so that
the state crumot be changed until the next customer.

'll'hen the Update Summary button is clicked. cal
culate tl1e sales tax. shipping and handling. and the
total amount due for the order. Sales tax is 8 percent of
the total charge ru1d is charged only for shipments to a
Califomia address. Do not charge sales tall on the
shipping and handling charges. The shipping and han
dling should be calculated only for a complete order.

Optional: Disable the Add This Item button when
the Summary button is pressed.

The Clear button clears the data and totals for tl1e
current customer.

TI1e shipping and handling charges depend on the
~t·eight of the products. Calculate the shipping charge
as $.25 per pound and add that amount to the han
d! ing charge (taken from the following table).

Weight

Les• thnn 10 pound• $1.00

10 to 100 pound• $3.00

Over 100 pound• $5.00

Display the entire amount of tl1e bill in controls
titled Dollar amount due. Sales tax. Shipping and han
dling. and Total amount due.

Teol Onto

Deecri1>tiou Quantity Weight

Planter 2 3

~1ailbox 2

Planter 2 3

T~ol Ontn Output for Taxohte
(if .lripj>ed l o • Colifornio oddr-.,...,)

Dollar A mount Due $104.75

Sales Tax 8.38

Shipping and Handling 6.50

Total Amount Due $119.63

Tesl Data Output for NonhL'\:Able

(if ..!Iipt>e<l o u tside of Cnliforrna)

Dollar Amount Due $104.75

Sa].,. T•x 0.00

Shipping and li•ndling 6.50

Total Amount Due $111.25

205

P rice

19.95

24..95

19.95

VB Auto Cent•r I
Create a projec t tl1at determines the total amount dut'
for tl1e purchase of a vehicle. Include text boxes for
the base price and tl1e trade-in allowance. Check
boxes will indicate if the buyer wants additiona l ac
cessories: stereo sys tem. leather interior. and/or com
pute r navigation. A group box for the exterior finish
will contain radio buttons for Standard. Pearlized. or
Customized detail ing.

Have the trade-in amount default to zero; that is.
if the use r does not enter a trade-in amount. use zero
in your calculation. Validate the values from the text
boxes. displaying a mess8£e box if necessary.

To calculate. add the price of selected accessories
and exterior finish to the base price and display the
result in a control called Subtotal. Calculate tl1e sales
tax on the s ubtotal and display the result in a Total
control. Then s ubtract any trade-in amount from the
total and display the result in an Amount Due control.

Lnclude buttons for Calculate. C/ear. and Exit. The
Calculate bullon must display the total amount due af
ter trade-in.

Hint: Recall that you can make an ampersand ap
pear in the Text property of a control by including two
ampersands. See the tip on page 78 (Chapter 2).

lt cru P ricc>

Stereo System 425.76

Leather Interior 987.4-1

Computer Navigation 1.741.23

Standard No additional charge

Pearliz.ed 345.72

Cu!!lomized Detailing 599.99

Tax furte 8%

206 ,. S L \ L 8 ,\ s {' Decision.. and Comliri.o1as

au VB Auto Center I= ® l..a;..i

Accessone~

0 ~terea Systen CAr S.les Pr!oe:

EJ Leather)nteror kcesscries&fWoh:

S.btotol

Soles Tl!X(B%):
Elderor Frlilh

Total:

Trade.fl PJloYI'ance:

Custonzed Q.etllilirt;l Amouflt Due.

(!;olet.iate I(Qoar] [Elgt

VIdeo Bonanza

Design and code a project to calculate the amount due
for rentals. Movies may be in VHS (videotape) formal
or DVD fo rmat. Videotapes rent for Sl.BO each and
DVDs rent for $2.50. New releases are $3 for DVD
and $2 for VHS.

On the fonn include a text box to input the movie
title and radio buttons to indicate whetl1er the movie is
in DVD or VHS fonnat. Usc one check box to indicate
whether tlle person is a member. members receive a
10 percent discount. Another check box indicates a
new release.

Use buttons for Calculate, aear for Next Item. Order

Complete. SUmmary, Print. and Exit. The Calculate button
should display the item amount and add to the subtotal.

Very Very Boards does a big business in shirts. espe
cially for groups and teams. TI1ey need a project that
will calculate the price for individual orders. as well
as a summary for all orders.

The store employee wW enter the orders in an
order form tl1at has text boxes for customer name and

The Clear for Next Item button clears the check box for
new releases. the movie title, and the radio buttons: the
member check box cannot be changed until the current
order is complete . Include validation to check for miss
ing data.lf the user clicks on the Calculate button)\ith
oul first entering lhe movie title and selecting the
movie fonnal. display a message box.

For the Order Complete bullon. first confirm the
operation with tlle user and clear the controls on the
form for a new customer.

The Summary button displays tlle number of cus
tomers and the sum of the rental amounts in a message
box. Make sure to add to the customer count and
rental sum for each customer order.

order number. To specify tlle shirts . use a text box for
the quantity. radio buuons to select the size (small.
medium. large. extra large. and XXL). and c heck
boxes to specify a monogram and/or a pocket. Display
tlle shirt price for the current order and the order total
in Reacl0n1y text boxes or labels .

C II A I• 'rER -1

Include buttons to add a shirt to an order, clear the
current item. complete the order. and display the sum
mary of all orders. Do not allow the summary to display
if the current order is not complete. Also. disable the
text boxes for customer name and order number after
an order is started; enable them again when the user
clicks on the button to begin a new order. Confim1 the
operation before clearing the current order.

When the user adds shirts to an order. validate the
quantity. which must be greater than 7.ero. If the entry
does not pass the validation. do not perform any cal
culations but display a message box and allow the user
to correct the value. Determine the price of the shirts
from the radio buttons and check boxes for the mono
gram and pockets. Multiply the quantity by the price
to determine the extended price. and add to the order
total and sunm1ary total.

207

Use constants for the shirt prices.

Price.o foo· the Shirt•

Small. medium. and large $10

Extra large ll

XXL 12

Monogram Add$2

Add $1

Display the order summary in a message box. Include
the number of shirts. the number of orders. and the
dollar total of the orders.

This page intentionally left blank

C H A P T E R

Menus, Common Dialog

Boxes, Sub Procedures,

and Function Procedures

I . Create menus and submenus for program control.

2. Display and use the Windows common dialog boxes.

3. Create context menus for controls and the form.

4. Write reusable code in sub procedures and function procedures and

call the procedures from other locations.

210 v S l l ,\ I. C Menus, Common. Dialog Bou.s, Sub Procedures,

Menus

You have undoubtedly used menus quite extensively while working with the
computer. Memts consist of n menu bnr that contains menus, cnch of which

drops down to display a list of menu items. You can use menu items in place of
or in addition to buttons to execute a procedure. Generally commercial appli
cations use menus rather than buttons.

Menu items are actually controls; they have properties and events. Each
menu item has a Name property. a Te.xt property, and a Click event. similar to
a button. When the user selects a menu item. witl1 either the mouse or the key
board, the menu item's Click event procedtue executes.

It is easy to create menus for a Windows form using the Visual Studio en
vironment's Menu OesignN'. Your menus will look and behave like standard
Windows menus.

Defining 1\lenus

To create menus for your application. you add a l\1euuSu·ip component to a
form. The MenuStrip is a container to which you can add ToolStripMenultems.
You also can add ToolStripComhoBoxes. Too!StripSeparalors. and Too!Strip
TextBoxes, making the menus considerably more powerful thru1 those in
versions of VB prior to VB 2005.

The Visual Studio Menu Designer allows you to add menus ru1d menu items
to your forms. You must add a MenuStrip component from the Menus & Too/bars

tab of the toolbox (Figure 5.1), which appears in the component tray below the
fonn. Once you have added the MenuStrip component, it is extremely easy to
create U1e menu items for your menu. The words Type Here appear at the top of
the form. so that you CaJl enter tlle text for your flrst menu (Figure 5.2). After
you type the text for the first menu name ru1d press Enter. tl1e words Type Here
appear both below tlle menu name and to the right of the menu name. You CaJl

choose next to enter menu items for the first menu or to type the words for the
second menu (Figure 5.3). Each time you type the text for a new menu. you are
automatically adding a ToolStripMenultem to the MenuStrip's Items collection.

Toolbox
" All WiuJvvn Fvnn:.

I> Common Control>
0" Contlliners

t> Componer.u
p Printi~g
f> Oiatogs

I>_ WPF-fnteroper.,bility
1> Reporting

!> Visu.,l &sic Powe!Pacb-

1:$ General

• ~ X

and Function Procedure•

F i g u re 5. 1

Add a MenuStrip component to
the fomt using the MenuStrip
tool from the toolbox.

C II A I• 'I' I' R

Note: If you click elsewhere on the form, you deactivate the Menu De
signer. You can click on the menu at the top of tbe form or on the MenuStrip
component to activate the Menu Designer again.

SuildMenus.v~ [Design]' X

BuildMenus.vb (OesignJ• X

r:J;t Budchng Menus ~~

I&R~ - 10¥:::«•
. I 'YP"H~

~ MenuStripl

The Text l'l'operty

When you type the words for a menu or menu item. you are entering the Text
property for an item. The Text property holds the words that you want to appear
on the screen (just like the Text property of a button or label). To conform to
Windows standards. your first menu's Text property should be f ile, with a key
board access key. Use the ampersand (&)in the text to s pecify the key to use
for keyboard access, as you learned to do in Chapter 2. For example, for .Eile.
the Text property should be &File.

211

The MenuStrip compone!!t

appears in the component .tray
belCJW the form and the Menu
Designer allows you to begin
typing the text for the mem t
items.

After typing the text for the
first menu. yor~ can add a
second memt or add menu

items below the menu name.

Do not use the some access key on
o top-level menu as you use on a

form control. However, access keys
on menu items a nd submenu:; do not
conAict with menu or control access

keys. •

212 v S l l ,\ L (' Muws, Common Dialog Bow, Sub Proctdu"~

You can enter and change the Text property for each of your menus and
menu items using the Menu Designer. You also can change the Text property
using the Properties window (Figure 5.4). Click on a menu or menu item to
make its properties appear in the Properties window.

Propenies. ~ '/ X

Fl eTooiStripMerudtetn System.V\ •

~;ffilJfiiil > I _1
ShortcutJ<eyO .
ShortcutKey5 None

ShO'NShortcu True
~ St:ce 31.20

Tog

II~$ & File

TextAiign MiddleCEnter ~
T c:xiOirc:clion HOfiiont~l

_l_Fxtlm,:tnf'.EELI.rn}lnef:lefo.r..e..l eL
r.xt
The tod to displcy on the item.

The Name l'rope 11:y

The Menu Designer is smart enough to give good names to the menu items. The
File menu item that you add is automatically named FileToolStripMennltem.
Since the new items are named so well, you won't have to change the Name
property of any menu component. However. if you change the Text property of
any menu item. the item is not automatically renamed: you'll have to rename it
yourself in the Properties win~o*··

The MeuuStrip h ems Collection

As you create new menus using the Menu Designer. each menu is added to
the Items collection that belongs to the MenuStrip. You can display the
ToolStlipMenuitems in the collection. set other properties of the items. as well
as reorder. add. and delete items, us ing the Items Collection Editor (Figure
5.5). To display the ltems Collection Editor, first select the MenuStrip (be
sure you've selected the MenuStrip and not one of the Too!StJ·ipMenultems)
and then use one of these three techniques: (1) in the Items property in the
Properties window. click on the ellipses button: (2) right-click on the
MenuStrip in the Menu Designer and select Edit /tams from the context menu;
or (3) click on the MenuStrip's smart-tag atTow (at the right end of the strip) to
display the sma1t tag and select Edit /tams.

A Menu's OrO!lDo"llllems ColJectiou

The MenuStlip's Items collection holds the top-level menus; each of the menus
has its own collection of the menu items that appear in that menu. TI1e Tool
StripMenuitems that appear below a menu name belong to the menu's Drop
Downi tems collection. Therefore. if the File menu contains menu items for Print.
Save. and Exit, the menu's DropDownitems collection will contain three Tool
StripMenultems. Notice the title bar in Figure 5.6, which shows the Drop
Downltems collection for the File menu (FileToolStlipMenuitern).

You can use the Items Collection Editor to rearrange or delete menu items.
You also can accomplish the same tasks using the Menu Designer; just drag a
menu item to a new location or light-click a menu item and select Delete.

ami Functirm Procedures

Modify the Text property of a
menzt item in the Properties
winduw or the Menu. Designer.

C ll 1\l1 'l ' li R 213

Fig•••·e 5.5

Use the Menu$trip's Items Collect.ion Editor to display and modify properties of the menus. Yon also can add new menzts to

the collection or modify the order of the memts.

Iterm Col!ection Editor

Select item and add to list be!C~~N:

~ Menultem

Memba-s:

Menu':>tnpl , ,
FileT ooiStripMenultem

~ ._l _ Ad_d_...J

MenuStripl

True
Conte:ctMenuStrip (none}

£Mblcd True

lmeMode NoControl
MdiWindoMi~ten (none)

Showltem 1 ool1ip~ F.:~ lse

Toblndex 0
T abStop False

Visibte True
A Data

~ (Applic~tionSetting.

fOati!Bindings)
Tag

.. Do.ign

(Name) MenU:Stripl

GenerateMembet True

OK Jl Concel

Fig••••e 5.6

The Items Collection Editor for the DropDownftems collection. a property of the File menu's ToolStripMenultem,

Jtems Collectton Editor (AielcdStripMenultem.OrqlDownttems)

Select ~em and add to hst below:

§I Menultem

Members:

lliJ
~ PrintlooiStripMen uftem

~ Slvc T oot9:ript..lcnuften1
~ ExitlooiStlipMellultem

OK JJ Cancel

214 s C Menus, Comnwn Dialog 8o.vtJ. Sub Proc<duro~

S ubmenus

The drop-down lis t of items below a menu name is called a menu item. When
an item on the menu has another List of items that pops up. the new list is called
a sttbmenn. A filled triangle to the right of the item indicates that a menu item
has a submenu (Figure 5.7). You create a submenu in the Menu Designer by
moving to the right of a menu item and typing the next items text (Figure 5.8).

>} Buoldng l.lo<>oo

f.il• Edt I
:.tyte

SetJ~u·atoJ· Bat·s

~(AI

:::::::J.. -r---..._----,
font.. I
@C# I
I -

- ,pc-1-kre

When you have many items in a menu. you should group the items according to
their purpose. You can c reate a scpm·ato•· bm· in a menu. which draws a bar

across the entire menu.
To crt:ult: 1.1 St:(JUrl.llur uur. uJ J 1.1 lit: .. lllt:llll iltolll u!IJ click UJI its Jrup-Juwu

arrow (Figure 5.9). Drop down the lis t and select Separator (F igure 5.10).

OdiN' Featm·c.s of TouiStriJ• Cunu·ols

You also can select Combo Box and Text Box for the type of menu item from the
drop-down list. Using these features you can create very powerful and profes

sional menus and toolbars.
Another nice feature of the Menu trip component is that you can add a

menu to other components on the form. For example. you could add a menu to
a group box if it was appropriate .

u.nd F1111t'i.on PrU<Wdure•

Fi • ur .- 5 . 7

Afilkd triangle on a m~nu
iU!m indicates that a submenu
will appear.

Create a •«bmenu by typing to
the right of the parent menu
item.

C II ,\I> 'I' I' R

abJ Building Menus Gj?£J~I
~;;;!;dit UY~-tm I

e.unt

£ave

i -VP< He<< I.J

I Type T ~forT ooiStlipr-..lenultem

a~ Build ing ~IE:nu'! ~[§JQ;U
li]!U Edit I T~eHe~e]

Erint

~ave

I -vr::e I ltrc: I
"'§' MenuJtem

~ ComboBox
Seporotor (J
l e:<tBox

Note: The underscores for keyboard shortcuts may display or not. depend
ing on a Windows setting. See the note at the bottom of Page 78 for instructions
for turning on the display.

C1·eating a Menu-Ste p-by-Ste p

You are going to create a project with one form and a menu bar that contains
these menu items:

f ile
EKit

Jielp
About

C1·Nue the .Menu Items

STEP 1: Begin a new Windows Forms project (or open an existing one to which
you want to add a menu).

STEP 2: Add a MenuStrip component to the form. You can double-click or drag
the tool to the form; the component will appear in the component tray
at the bottom of the form (Figure 5.11).

STEI' 3: With the words Type Here selected. type "&File" over the words.
STEP 'b: Move down to the Type Here words below the File menu and type

"E&xit".

215

Firtur e ;'L9

To create a menu item
separator bar. click on the
drop-dawn arraw for an item.

Figttr e 5.10

Select Separator from the
drop-down li~t.

216 v S l l :\ L G ,\ S (' Menus, Common Dialog Boxe$, Sub Procedures,

Bui ldM~nus.vb [Oesignl')(

STEP 5: Move up and to the right and add the Help menu ("&Help").
STEP 6 : Below the Help menu. add the About menu item ("&About").

Co<1ing fm· 1\l enu h ems

After you create your form's menu bar. it appears on the form in design time.
Double-click any menu item and the Editor window opens in the item's Click
event procedure where you can write the code. For example. in design time.
open your form's File menu and double-click on Exit. The Editor window will
open with the ExitToolStripMenuJtem_Click procedure displayed.

Wl'ilc the Code

STEP 1: Code the procedure for the Exit by pulling down the menu and double
clicking on the word Exit. Type a remark and a Me . Close () statement.

STEP 2 : Open the AboutToolSnipMenul tem_Click event procedure. Use a
MessageBox . Show statement to display the About box. The message
string should say "Programmer:" followed by your name (Figure 5.12).

STEP 3: Run the program and test your menu items.

Aboot My l>roje.:t

Programmer. Your Name

[OK

and FunctUm Procedure•

Figure 5.11

Add a MenuStrip component to
tlu~ form. lt will appear in the
component tra.y at the bottom
ofthefonn.

Figure 5.12

Display a message box for an
About box.

C II 1\ 1• 'I' I' ll

Tht' Eunbled l)r·opt'r·ty

By default. all new menu items have their .Enabled pr·o]Jtll'ty set to True. An
enabled menu item appears in black text and is available for selection, whereas
the grayed out or <Jjsnbled (Enabled = False) items are not available (Figure
5.13). You can set the Enabled property at design time or run time. in code.

InstructionsToo1StripMenuitem.Enabled = False

a] Menus =IIID~

f ile iclit QisployJ Help

8 £u'rifmary I Ju~tructiom

Tbt' Cbt'cked P r·operty

A menu item may contain a check mark beside it (indicating that the item is
checked). Usually a check mark next to a menu item indicates that the option
is curr-ently selected (refer to Figure 5.13). By default, the 01ecked pr·oper·ty
is set to False: you can change it at design time or in code.

summaryToolStripMenultem.Checked = True

Toggling Check Mnrks Ou ami Off

If you create a menu item that can be turned on and off. you should include a
check mark to indicate its curr-ent state. Set the initial state of the Checked
property in the Properties window (Figure 5.14).

Properties -~x

SumlnaryTooiStrlpMe:oultem S)'~ •

Baclcgroonctlr lile

P:t!$MTruc EJ
CheckOnCiicl F~se bl
CheckS-tate Checked EJ
Di~piDYStyle Image.AndTo:t

Doub!eC!ickf Fatse
DropOown (none)

DropD<rnnlto (Cvl<di<>n)
Enabled 1rue

Do Font

Checked

lndSc.otes whether the component is
in the checked state.

Set the Checked
property

Set the Enabled
property

217

F i g u re 5.13

Menu items can be disabled
(grayed) or checked. A check
mark usually indicates that the
item is currently selected.

You can set the Enabled and
Checked properties of a. menu

item in the Properti.es window.

218 l ' C Menus, Common Dialog Boxes, Sub Proctdures,

To change a menu item's state in code, set its Checked property to True or
False. For example. for a menu item that displays or hides a summary. called
SummaryTooiStripMenultem. a check mark indicates that the summary is cur
rently selected. Choosing the menu item a second time should remove the
check mark and hide the summary.

and Function Procedures

Private Sub SummaryToolStripMenultem_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles summaryToolStripMenultem.Click

' Hide or display the summary .

If summaryToolStripMenuitem.Checked Then
' Hide the summary information .
SummaryToolStripMenultem.Checked = False

Else
' Show the summary information .
SummaryToolStripMenultem.Checked True

End If
End Sub

Setting Keybo:ll'd Shortcuts

Many computer users prefer to use keyboard shortcuts for selecting menu
items. For example. most applications from Microsoft use Ctrl + P for the Print
menu item and Ctrl + S for Save. You can create keyboard shortcuts for your
menu items and choose whether or not to display the shortcuts on the menu.
(For example. you can exit most Windows applications using Alt + F4. but the
keyboard shortcut rarely appears on the menu.)

To set a keyboard shortcut for a menu item. first select the menu item in the
designer. Then in the Properties window. select the ShortcutKeys property.
Drop down the Jist to see the available choices and make your selection. You
can use many combinations offunction keys, the Alt key. the Shift key. and the
Ctrl key. By default. the ShowShortcutKeys property is set to True: you can
change it to False if you don't want the shortcut to show up on the menu.

S tamla•·<ls fo1· Windows l\ie nus

When you write applications that run under Windows. your programs should
follow the Windows standards. You should always include keyboard access
keys; if you include keyboard shortcuts. such as Ctrl + key. stick with the stan
dard keys, such as Ctrl + P for printing. Also follow the Windows standards for
placing the File menu on the left end of the menu bar and ending the menu with
an Exit command. If you have a Help menu. it belongs at the right end of the
menu bar.

Any menu item that will display a dialog box asking for more information
from the user should have" ... " appended to its Text property. Following Win
dows standards. the" ... " indicates that a dialog box with further choices will
appear if the user selects the menu item. You do not use the " ... " for menu
items that display dialog boxes that are informational only. such as an About
box or a Summary form.

Plan your menus so that they look like other Windows programs. Your users
will thank you.

l~ljjl#l
You con toggl.e a Boolean value on

and off using the Not operator:

SummaryToolS.tripMenuitem.
Checked = Not SummaryTool
StripMenuit em. Checked. •

C II A 1• 'I ' " ll

Common Dialog Boxes

You can use a set of predefined standard dialog boxes in your projects for such
tasks as specifying colors and fonts. printing. opening. and saving. Use the
common dialog components in the Dialogs tab of the toolbox to display the di
alog boxes that are provided as part of the Windows environment. The common
dialog components provided with Visual Studio are ColorDialog. Folder
BrowserDialog. Font Dialog. OpenFileDialog. and SaveFileDialog (Figure 5.15).

To use a common dialog component. add the component to the form , plac
ing it in the component tray. You can keep the default names for the compo
nents. such as ColorDialogl and FontDialogl. since you will have only one
component of each type.

Toolbox • fl. X
~ All Windows Forms
t> Common C,ontrols

~ Containers

~ M~us & Toolbars
~ Data

~ Components

~ Printin9
A Dialogs

~ Pointer

~ ColorOialog

SJ FolderBrow.erDialog

l:i3 FontOialog

r!J OpenriieDialog

~ Savd'ileDialog

~ WPF Jnteroperabofrty

~ Reporting

~ Vis-uol Basic Pow~Pecks

~ General

Dislllaying a Windows Common Dialog Box

After you place a conunon dialog component on your fo1m. you can display the
dialog box at run time using the ShowOialog met bod.

Show Dialog .Me thod-General Form

~~I 8 t DialogObject .ShowDialog()

Tite DialogObject is the name of the common dialog component that you
placed on the fonn. The name will be the default name. such as ColorDialogl
or FontDialogl.

Show Dialog .Me thod-Examples

219

The common dialog tools in
the Dialogs tab of the toolbox.

~ .--. "' "' e
'1:1 r

ColorDialog1 .ShowDialog()
FontDialog1.ShowDialog()

~-----------------------------------

220 l ' C Menus, Common Dialog Boxes, Sub Proctdures,

Place the code to show the dialog in the event procedure for a menu item or
button.

Modal ve t·sus l\Jodelcss Windows

You probably have noticed that when you display a Windows dialog box. it re
mains on top w1til you respond. But in many applications. you can display ad
ditional windows and switch back and forth between the windows. A dialog box
is said to be modal. which means that it stays on top of the application and
must be responded to. You use the ShowDialog method to display a dialog box.
which is just a window displayed modally. In Chapter 6 you will leam to display
additional windows that are mode less. which do not demand that you respond.
You will use the Show method to display a modeless window.

Us ing the Infonnation f1·om the Dia log Box

Displaying the Color dialog box (Figure 5.16) doesn't make the color of any
tiling change. You must take care of that in your program code. When the user
clicks on OK, the selected color is stored in a property that you can access. You
can assign the value to the properties of controls in your project.

Colo r

Rasic colors:

rr•r•
• ro c• • •••••••• •••••••• •••••••• llll••••o • r

(;ustom C(IIO<S:

rrrrrrrr
rrrrrrrr
I Qeflne Custom Colors »

I OK I I Canoe!

Using the Colot· Oialog Box

The color selected by tl1e user is stored in tile Color propetty. You can assign
this property to another object. such as a control.

TitleLabel .BackColor = ColorDialog1 .Color

Because Basic executes the statements in sequence, you would first dis
play the dialog box with the ShowDialog method. (Execution then halts w1til
the user responds to the dialog box.) Then you can use the Color property:

and Functilm Procedure•

Fi g n••e 5. 16

The Color common dialog box.

C II A 1• 'I' " ll 221

Public Sub ColorToolStripMenuitem_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles ColorToolStripMenuitem. Click

' Change the color of the total labels .

With ColorDialog1
.ShowDialog()
SubTotalLabel.F~reColor = .Color
TaxLabel .ForeColor = .Color
TotalLabel .ForeColor = .Color

End With
End Sub

Using tbe Font Dialog Box

\Vhen you display the Font common dialog box (Figure 5.17), the available
fonts for the system display. After the user makes a selection. you can use the
Font property of the dialog box object. You may want to assign the Font prop
erty to the Font property of other objects on your fonn.

~t ~

fort: Fcn1 stYle: Size·

~~~~--.. ... fR.;Jula' !.....-- 00 . mJ!II:J-• P-A~ 
~ Oblique 10 13 
)lodemXo.<!O D Bokt 11 

!Mono!J'f"'Cimiw Bold ObliqU< 12 
14 

MSOutlook ~ y JL....:. 

Bfeas Samole 

IEJ S011<eou 
AaEbYyZz 

iE] Lhde~ne 

Script: 

Vies: em ~ 

Fi g u.re 5. 17 

The Font common dialog box. 
The fonts that display are 
those installed on the users 

system. 

Public Sub FontToolStripMenultem_Click(ByVal sender As System.Object, 
ByVal e As System.EventArgs) Handles FontToolStripMenuitem.Click 

' Change the font name for the labels. 

With FontDialog1 
. ShowDialog () 
SubTotalLabel .Font = .Font 
TaxLabel .Font = .Font 
Totallabel .Font = .Font 

End With 
End Sub 

·when the user clicks on the Font menu item. the Font dialog box appears 
on the screen. Execution halts w1til the user responds to the dialog box. either 
by clicking OK or Cancel. 



222 l ' C Menus, Common Dialog Boxes, Sub Proctclures, 

Setting Initial Values 

Wlten a common dialog box for colors or fonts appears. what color or font do you 
want to display? It's best to assign initial values before showing the dialog box. 
rather than allow the default initial values to display. Before executing the 
ShoWOialog method. you should a~sign the existing values of the object's prop
erties that will be altered. This step makes the current values selected when the 
dialog box appears. Tt also means that if the user selects the Cancel button. the 
property settings for the objects will remain unchanged. 

FontDialog1.Font = SubTotallabel .Font 

or 

ColorDialog1.Color Me .BackColor 

Creating Context Menus 

You also can add context mcuus to your applications. Context menus are the 
slwt'tcu t utcuus that pop up when you right-click. Generally. the items in a 
context menu are specific to the component to which you are pointing, reflect
ing the options available for that component or that situation. 

Creating a context menu is similar to creating a menu. You add a 
Context.\l enuSu·ip component. which appears in the component tray below the 
fonn. At the top of the form. in the Menu Designer, the words say Conle:ttMenuStrip 
(Figure 5.18). A context menu does not have a top-level menu. only the menu 
items. Click on the words Type Here to type the text of your first menu item. 

Your application can have more than one context menu. You assign the 
context menu to the form or control by setting its ContextMenuStrip property. 
For example. a fonn has a ContextMenuStrip property. a button has a 
ContextMenuStrip property. and all visible controls have ContextMenuStrip 

and Function Procedures 

Figure 5.18 

Add a ContextMenuStrip component to the component tray and create the contex t menu using the Menn Designer. 

ContexlMenuStrip 

Toolbox • '1- X SuildConte><!Menu•.vb IOes•gnl' X 
t> All Windcwt Forms 

t1 Comm:-~ ~ont:tol.s 

Pointer 

Conte<tMenuStrip 
Menu Strip 

StatusStrip 

TooiSUip 

f> Dialog:: 

t> WPF lnte1opercbtlity 

t> Reporting 

~ Visuol&·sic PowcrPod:::; 

1> GenEr.;l 

(Type Te).tfor TooiStripMenultem ~ 

. UI 

.~~.~~~!7.1.~~.~~:~~~ ... l 



C II A 1• 'I' " ll 

properties. You can assign the same ContextMenuStrip to the form and each of 
the controls, or a different context menu to each.lf you have only one context 
menu, attach it to the form- it will pop up if the user right-clicks anywhere on 
the fonn, including on a control. However. some controls have an "automatic" 
context menu. For example. a text box has an automatic context menu that al
lows the user to cut. copy. and paste text. If you set the ContextMenuStrip prop
erty of a text box to yow· own context menu, your context menu will appear 
instead of the original (automatic) context menu. 

Ct·ealing a Context Menu-Ste p-by-Ste p 

You are going to create a context menu that contains these menu items: 

Qolor .. . 
f ont . . . 
~it 

Add tbe Contextl\leuuStrip to a Form 

STEP 1: Begin a new Windows project (or open an existing one to which you 
want to add a context menu). For a new project, name the form 
ContextMenuForm. 

STEt> 2: Add a ContextMenuStrip component from the Menus & Too/bars tab of 
the toolbox; the component will appear in the component tray at the 
bottom of the form (refer to Figure 5.18). 

STEP 3: Click on the words ContextMenuStrip in the Menu Designer to make a 
Type Here menu item appear. 

STEP 4·: Click on the words Type Here and type the text for the firs t menu item: 
"&Color ... " . 

STEP 5 : Type the text for the second and third menu items: "&Font..." and 
"E&xit". 

STEP 6 : Add a label named MessageLabel to your fonn and set the Text prop
ei1y to "Right-click for the Context Menu" . 

STEI' 7 : Set the fonn's ContextMenuStrip prope11y to ContextMenuStripl. No
tice that the property box has a drop-down list. lf you have more than 
one context menu defined. you can choose from the list. 

STEP 8: Add a Color Dialog component from the Dialogs tab of the toolbox. 
STEI' 9 : Add a Font Dialog component. 

fn this example. right-clicking anywhere on the fonn allows you to change the 
foreground color or the font of the fonn. As you know, if you haven't set those prop
Cities for individual controls. the form's properties apply to all controls on the form. 

STEP 10: Code the form as follows: 

' Program: 
' Programmer : 
'Date : 
'Description : 

Ch05ContextMenus 
Your Name 
Today•s Date 
Create and apply a context menu . 

Public Class contextMenuForm 

223 

It's a good ideo to set a Con

textMenu property for a ll controls 

and for the form to allow users the 

option of using context menus. • 

Private Sub ColorToolStripMenultem_Click(ByVal sender As System. Object, 
ByVal e As System.EventArgs) Handles ColorToolStripMenultem. Click 

' Change the form's ForeColor. 
' Applies to all controls on the form that haven't had their 

ForeColor explicitly modified. 



224 l ' C Menus, Common Dialog Boxes, Sub Proctdures, 

With ColorOialog1 
' Initialize the dialog box . 
. Color = Me .ForeColor 
. ShowDialog () 
' Assign the new color . 
Me.ForeColor = .Color 

End With 
End Sub 

Private Sub FontToolStripMenuitem_Click(ByVal sender As System.Object, 
ByVal e As System.EventArgs) Handles FontToolStripMenuitem.Click 

' Change the label's font . 

With FontDialog1 
' Initialize the dialog box . 
. Font = Messagelabel. Font 
.ShowOialog() 
' Assign the new font. 
Messagelabel .Font - . Font 

End With 
End Sub 

Private Sub ExitToolStripMenuitem_Click(ByVal sender As System.Object, 
ByVal e As system.EvantArgs) Handles ExitToolStripMenuitem.Click 

' Terminate the project . 

Me . Close() 
End Sub 

End Class 

1~st the Progn m1 

STEP 1: Experiment with right-clicking on the fonn and on the label. Test each 
of the options. 

After you have the program working. experiment with adding more con
trols, adding more ContextMenuStrip components, and setting the Con
tex1MenuStrip prope1ty of controls. 

Sha t·ing Procedures 

Most frequently a context menu is added as an additional way to access a fea
ture that is also availa!Jle from another menu or a button. Recall from Chapter 4 
that you can use one procedure to handle several events by adding to the Han
dles clause. 

Private Sub FontToolStripMenuitem_Click (ByVal sender As System.Object, 
ByVal e As System. EventArgs) _ 
Handles FontToolStripMenuitem.Click, FontButton.Cl ick 

' Change the label's font. 

With FontDialog1 
' Initialize the dialog box . 
. Font = Messagelabel .Font 
.SilOWOialog() 
' Assign the new font. 
Messagelabel.Font = .Font 

End With 
End Sub 

and Function Procedures 



C II ,\I> 'I' I' R 

Writing General Procedures 

Often you will encounter programming situations in which multiple procedures 
perfonn the same operation. This condition can occur when the user can select 
either a button or a menu item to do the same thing. Rather than retyping the 

code. you can write reusable code in a geuet•al proeedm·e and call it from 
both event procedures. 

General procedures are also useful in breaking down large sections of code 
into smaller units that pertonn a specific task. By breaking down your calcula
tions into smaller tasks. you simplify any maintenance that needs to be done in 
a program in the future. For example. bowling statis tics for a league may re
quire calculations for handicap and series total. If the fonnula for calculating 
handicaps changes. wouldn' t it be nice to have a procedure that calculates 
handicaps only instead of one that performs all the calculations? 

You can choose from two types of general procedures: sub pr o cedm·es 
and flmctiou procedm·es: 

• A sub procedure performs actions. 

• A function procedure performs actions and retums a value (the t•etm·n 
value). 

You willlikP.Iy n~P. a !>.llh pmr.P.rlnrP. if yon nP.P.rl to ;;P.t propP.rty val uP.;; for a 

series of objects. However. if you need to calculate a result. then a function pro
cedure is the appropriate choice. Both sub procedures and function procedures 
are cons idered the me thods of object-oriented programming. 

C1·eating a New Sub P l'ocedul'e 

You can create a sub procedure in the Editor window by enclosing the desired 
lines of code within a set of Sub and End Sub statements. 

Sub . .. Ell(\ Suh Stat~mcuts--Geueral Form 

Private Sub ProcedureName() 
Stat ements in the procedure . 

End Sub 

When you type the line 

Private Sub ProcedureName 

and press Enter, the editor automatically adds the parentheses to the Sub state
ment, adds the End Sub statement, and places the insertion point on the line 
between the two new lines. 

Sub ... End Suh Stat~uwuts-Exmuple 

225 

~ P-------------------------------------------------------------.. "' e 
~ 
iS" 

Private Sub SelectColor() 
' Display the color dialog box . 

ColorDialog1 .ShowDialog() 
End Sub 



226 v S l l ,\ I. C Menus, Common Dialog Boxe$, Sub Procedures, 

Note that VB has choices other than Private for the access. such as Public. 
Friend. and Protected. In a later chapter. you willleam about the other types 
of access specifiers: for now use Private for all general procedures. 

The coding for the new procedure is similar to the other procedures we 
have been coding hut is not yet attached to any event. Therefore. this code can
not he executed unless we specifically call the procedure from another proce
dure. To call a sub procedure. just give the procedure name, which in this case 
is SelectColor. 

Private Sub ChangeMessageButton_Click(ByVal sender As System .Object, 
ByVal e As System.EventArgs) Handles ChangeMessageButton .Click 

' Change the color of the message. 

SelectColor() 
MessageLabel . ForeColor = ColorDialog1 .Color 

En<! SUI> 

Private Sub ChangeTitleButton_Click(ByVal sender As System .Object, 
ByVal e As System.EventArgs) Handles ChangeTitleButton . Click 

' Change the color of the title . 

SelectColor() 
Titlelabel.ForeColor ColorDialog1 .Color 

End Sub 

P assing A•·g tuncnts to P1·ocedures 

At times you may need to use the value of a variable in one procedure and then 
ll£ain in a second procedure that is called from the first. In this situation. you 
could declare the variable as module level. but that approach makes the vari
able visible to all other procedures. To keep the scope of a variable as nan-ow 
as possible. consider declaring the variable as local and passing it to any called 
procedures. 

A;; au example. we will exp<mtltlte capauillti..-; uf lite previous SelecLCulur 
sub procedure to display the original color when the dialog box appears. Be
cause the Select Color procedure can he called from various locations. the orig
inal color must be passed to the procedure. 

Private Sub SelectColor(IncomingCol or As Col or) 
' Allow the user to select a color. 

With ColorDialog1 
' Set the initial color . 
. Color = IncomingColor 
. ShowDialog () 

End With 
End Sub 

Private Sub ChangeMessageButton_Click(ByVal sender As System .Object, 
ByVal e As System . EventArgs) Handles ChangeMessageButton .Click 

' Change the color of the message . 
Dim OriginalColor As Color 

OriginalColor = MessageLabel. ForeColor 
Se l ectCol or(Orig i na l Col orJ 
MessageLabel . ForeColor = ColorDialog1 .Color 

End Sub 

and Fwu:tilm Procedure• 



C II A 1• 'I' " ll 

Private Sub ChangeTitleButton_Click(ByVal sender As System.Object, 
ByVal e As System.EventArgs) Handles ChangeTitleButton .Click 

' Change the color of the title . 
Dim OriginalColor As Color 

OriginalColor = Titlelabel.ForeColor 
Se l ectCol or(Origina l Col or) 
Titlelabel .ForeColor = ColorDialog1.Color 

End Sub 

Notice that in this example the Select Color procedme now has a parameter 
inside the parentheses. This syntax specifies that when called. an argument 
must he supplied. 

When a sub procedure definition names a parameter. any call to that proce
dme must supply a value. called an argument. In addition, the data type of the 
parameter and supplied argument must be the same. Notice that in the two call
ing procedures (ChangeMessageButton_Click and ChangeTitleButton_ Click), 
the vaJiable Original Color is declared as a Color data type. 

Another important point is that the names of the parameter and of the sup
plied argument do not have to be the saJne. The SelectColor sub procedure '~ill 
take whatever Color value it is passed and refer to it as IncomingColor inside 

the procedure. 
You may specify multiple paJ'llmeters in the sub procedme header and sup

ply multiple arguments in the call to the procedure. The numher of arguments, 
their sequence, and their data types must match the parameter list. You will see 
some examples of multiple parameters in the sections that follow. 

l•assiug Argmuems ByVal ot· ByRef 

When you pass an argument to a procedure. you may pass it ByVal or ByRef 
(for by value or by reference). ByVal sends a copy of the argument's value to the 
procedure so that the procedure cannot alter the original value. ByRef sends a 
reference indicating where the value is stored in memory. allowing the called 
procedure to actually change the argument's original value. You can specify 
how you want to pass the argument by using the ByVal or By Ref keyword be
fore the panuneter in the procedure header. If you don't specify ByVal or 
ByRef. arguments are passed by value. 

Although passing an argument By Ref is more efficient, especially for pass
ing a large object. it is much safer to pass By Val. 

' Argument passed by reference. 
Private Sub SelectColor(ByRef IncomingColor As Color) 

' Argument passed by value . 
Private Sub SelectColor(ByVal IncomingColor As Color) 

· Argument passed by value (the default) . 
Private Sub SelectColor(IncomingColor As Color) 

Ws·iling Function Ps·ocedm·es 

As a programmer. you may need to calculate a value that will be needed in sev
eral different procedw·es or programs. You can write your 01111 function that ,~;n 
calculate a value and call the function from the locations where it is needed. As 

an example. we nill create a function procedme called Commission that cal
culates and returns a salesperson's commission. 

227 



228 l ' C Menus, Common Dialog Boxes, Sub Proctdures, 

Typing in a block of code using the Function . . . End Function state
ments creates a function procedure. Since the procedure returns a value. you 
must specify a data type for the value. 

Fmwtion . . . Rntl Fmwtion Stlll<'lllNlts-Ct>nPt'nl Fm·m 

and Function Procedures 

~~~.--------------------------------------------------------------------. ~ ~ Private Function ProcedureName() As Datatype 
8~
~ End Function

Functions also can be declared as Public, Protected. or Friend, which you
willleam about later. Private is appropriate for all functions for now.

Function ... Eud Function Stalemellls-Example

~.---.. ~ Private Function Commission() As Decimal
~ ' Statements in function.
~ End Function

Notice that this procedure looks just like a sub procedure except that the word
Function replaces the word Sub on both the first line and the last line. The
procedure header also includes a data type. which is the type of the value re
turned by the function.

Remember that functions also have parameters. You supply arguments for
the function parameters when you call the function by placing a value or values
inside the parentheses. Arguments are passed ByVal or By Ref.

When you write a function. you declare the parameter(s) that the function
needs. You give each parameter an identifier and a data type. The name that you
give a parameter in the function procedure header is the identifier that you will
use inside the function to refer to the value passed as an argument (Figure 5.19).

A procedure header for a function procedure.

Fig n••e !L1 9

Access modifier Function name Parameter Parameter data type Re turn data type

1 1 ~ ~ l
Private Function Commission(ByVal SalesAmountDecimal As Decimal) As Decimal

Examples

Private Function Commission(ByVal SalesAmountDecimal As Decimal) As Decimal
Private Function Payment(RateDecimal As Decimal, TimeDecimal As Decimal,

AmountDecimal As Decimal) As Decimal

In the function procedure, the parameter list you enter establishes the
number of parameters, their type, and their sequence. When using multiple pa
rameters. the sequence of the supplied arguments is critical. just as when you
use the predefined Visual Basic functions.

Retul'niug the Result o[a Function

The main difference between coding a function procedure and coding a sub
procedure is that in a fw1ction procedure you must set up the retum value. This
retum value is placed in a variable that Visual Basic names with the same

C II ,\I>'I' I' R

name as the function name. In the example in Figure 5.19. the variable name
is Commission.

You can choose from two techniques for returning the result of the function:

• Somewhere inside the Commission function, set the function name to a
value. Example: Commission = 0.15D • SalesAmountDecimal

• Use the Return statement. If you use the Return statement, you do not use
the function's name as a variable name.
Example: Return 0 . 15D • SalesAmountDecimal

Writing a Conuuission Function

Here is the Commission function procedure coded using the first technique for
returning a value.

Private Function Commission(ByVal SalesAmountDecimal As Decimal) As Decimal
' Calculate the sales commission .

If SalesAmountDecimal < 1000D Then
Commiss.ion = OD

Elself SalesAmountDecimal <= 2000D Then
Commission 0.150 * SalesAmountOecimal

Else
Commission

End If
End Function

0.2D • SalesAmountDecimal

And here is the same Commission function procedme using the Return
statement.

Private Function Commission(ByVal SalesAmountDecimal As Decimal) As Decimal
' Calculate the sales commission .

If SalesAmountOecimal < 1000D Then
Return oo

Elself SalesAmountDecimal <= 2000D Then
Return 0.15D * SalesAmountDecimal

Else
Return 0.2D • SalesAmountDecimal

End If
End Function

Ca!Jing tht' Commission fun ctio n

In another procedure in the form. you can call your fm1ction by using it in an
expression.

Private Sub CalculateButton_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles CalculateButton.Click

' Calculate the commission .
Dim Salesoecimal As Decimal

Salesoecimal = Decimal.Parse(SalesTextBox.Text)
Commission label. Text = Commi ssi on(Sa 1 esDeci ma l). ToStri ng ("C")

End With
End Sub

229

230 l ' C Menus, Common Dialog Boxes, Sub Proctdures,

Notice in the preceding example that the argument passed in the function
call does not have the same name as the parameter specified in the function
definition. When the function is called. a copy of the value of Sales Decimal is
passed to the function and is assigned to the named parameter. in this case
SalesAmow1tOecimal. As the calculations are done (inside the function). for
every reference to SalesAmountDecimal, the value that was passed in for Sales
Decimal is actually used.

You can combine the functions. if you wish:

Commissionlabel .Text =
Commission (Decimal . Parse (SalesTextBox. Text)). ToString("C")

To read this statement, begin with the inner parentheses: SalesTextBox.Text
is passed to Decimal . Parse for conversion to Decimal: the result of that con
version is passed as an argument to the Commission function; the value Te
tumed by the COmmission function is formatted as it is converted to a string and
then assigned to CommissionLabel.Text.

CouH rLing SclectColor to a Function J>roc<>dure

TI1e SelectColor procedure that we wrote earlier is a good candidate for a func·
lion procedure. since we need to retum one value: the color.

Private Function SelectColor(ByVal IncomingColor As Color) As Co l or
' Allow the user to select a color.

With ColorDialog1
' Set the initial color .
. Color = IncomingColor
.ShowDialog()
Return .Co lor

End With
End Function

Private Sub ChangeMessageButton_Click(ByVal sender As System. Object,
ByVal e As System. EventArgs) Handles ChangeMessageButton .Click

· call the new selectColor function (With a single line of coae) .

Messagelabel . ForeCol or = SelectColor(Message l abel.ForeCo l or)
End Sub

Functions witb l\iuh.iple Panune le rs

A function can have multiple parameters. TI1e sequence and data type of the
arguments in the call must exactly match the parameters in the function proce
dure header.

·w•·iting a Function witb Multiple Para me te rs

When you create a function with multiple parameters such as a Payment func
tion, you enclose the list of parameters in the parentheses. The following ex
ample indicates that three arguments are needed in the call: The first argument
is the annual interest rate. the second is the time in years, and the third is the

and Function Procedures

C II A 1• 'I' " ll

loan amount. All three argument values must have a data type of decimal. and
the return value will be decimal. Look carefully at the following formula and
notice how the identifiers in the parentheses are used.

Private Function Payment(ByVal RateDecimal As Decimal, ByVal TimeDecimal As Decimal,
ByVal AmountDecimal As Decimal) As Decimal

' Calculate the monthly payment on an amortized loan.
Dim RatePerMonthDecimal As Decimal

RatePerMonthDecimal = RateDecimal I 12D

' Calculate and set the return value of the function .
Payment = Convert .ToDecimal((AmountDecimal * RatePerMonthDecimal)

((1 - (1 1 (1 + RatePerMonthDecimal) ' (TimeDecimal * 12D)))))
End Function

Calling a Function with l\'lulti[>le l'aramNe t·s

To call this function from another procedure. use these statements:

RateDecimal = Decimal .Parse(RateTextBox.Text)
YearsDecimal = Decimal.Parse(YearsTextBox.Text)
PrincipalDecimal = Decimal.Parse(PrincipalTextBox.Text)
PaymentDecimal = Payment(RateDecimal, YearsDecimal, PrincipalDecimal)

You can pass the value of the text boxes as well as format the result by
combining functions:

Paymentlabel.Text = Payment(Decimal.Parse(RateTextBox.Text),
Decimal.Parse(YearsTextBox .Text),
Decimal.Parse(PrincipalTextBox.Text)).ToString("C")

When you call the ftmction, the smart editor shows you the parameters of
your function (Figure 5.20). just as it does for built-in functions (assuming that
yon haw~ alrPAny P.ntP.rP.n thP. fnnr.tion pt·o~P.rhm~)-

Fig RI" e 5.2 0

The Visual Studio lntelliSense feature pops up with the parameter list for your own newly written procedure.

Frincipa lDecimal = Decimal . Parae (Princica l1e.xt8ox. Text)
Rc:.t:Deci.rnc.l - Dec.i.m!:.l .Pc.r~e (Rc:.t.eTex cOox.rext)

Yea rsDeci mal = Dec imal . Par se (YearsTextBox. Text I

PaY!fl.en u:>oc!mal = r.:Pa::,'flJSc:::::nc:.:L:,:(L-::--:--:,...,..-,::--:--::-:::--=-:--:-:---=--:--:-:---::-:--:-:-:::--:---:-:-::-,--,-,

Bs·ea ld ng Calcula tions into Smalles· U nits

A project with many calculations can be easier to understand and to mite if you
break the calculations into small units. Each unit should pertonn one program
function or block oflogic. In the following example that calculates bowling sta
tistics. separate function procedures calculate the average. handicap, and se
ries total. and find the high game.

231

232 l ' C Menus, Common Dialog Boxes, Sub Proctdures,

'Project :
' Programmer :
' Date :
'Folder :
' Description:

Chapter 5 Bowling Example
Bradley/Millspaugh
June 2010
Ch05Bowling
This project calculates bowling statistics using
multiple function procedures.

Public Class BowlingForm

and Function Procedures

Private Sub CalculateToolStripMenultem_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles CalculateToolStripMenultem.Click

' Calculate individual and summary info .
Dim AverageDecimal, HandicapDecimal As Decimal
Dim Serieslnteger, Game1Integer, Game2Integer, Game3Integer As Integer
Dim HighGameString As String

Try
Game1Integer
Game2Integer
Game3Integer

Integer.Parse(Score1TextBox .Text)
Integer.Parse(Score2TextBox .Text)
Integer.Parse(Score3TextBox.Text)

· Perform all calculations .
AverageDecimal = FindAverage(Game1Integer, Game2Integer, Game3Integer)
Serieslnteger = FindSeries(Game1Integer, Game2Integer, Game3Integer)
HighGameString = FindHighGame(Game1Integer, Game2Integer, Game3Integer)
HandicapDecimal = FindHandicap(AverageDecimal)
' Format the output .
AverageTextBox .Text = AverageDecimal .ToString("N1 ")
HighGameTextBox.Text = HighGameString
SeriesTextBox.Text = Serieslnteger .ToString()
HandicapTextBox. Text = HandicapDecimal. ToString ("N1 ")

Catch
MessageBox. Show(" Please Enter three numeric scores" , "Missing Data",

MessageBoxButtons .OK)
End Try

End Sub

Private Sub ClearToolStripMenultem_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles ClearToolStripMenuitem.Click

' Clear the data entry fields .

With NamoToxtBox
. Clear()
.Focus()

End With
MaleRadioButton.Checked False
FemaleRadioButton.Checked = False
Score1TextBox .Clear()
Score2TextBox .Clear()
score3TextBox .Clear()
SeriesTextBox.Clear()
AverageTextBox .Clear()
HighGameTextBox .Clear()
HandicapTextBox .Clear()

End Sub
Private Sub ExitToolStripMenultem_Click(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles ExitToolStripMenuitem.Click
' Terminate the project .

Me.Close()
End Sub

C II A 1• 'I' " ll

Private Function FindAverage(ByVal Score11nteger As Integer,
ByVal Score2Integer As Integer, ByVal Score3Integer As Integer) As Decimal

' Return the average of three games .
Return (Score1Integer + Score2Integer + Score3Integer) I 3D

End Function
Private Function FindHandicap(ByVal AverageDecimal As Decimal) As Decimal

' Calculate the handicap .
Return (2000 - AverageDecirnal) * O. BD

End Function
Private Function FindSeries(ByVal Game1Integer As Integer,

ByVal Game2Integer As Integer, ByVal Game3Integer As Integer) As Integer
' Calculate the series total .

Return Game1lnteger + Game2Integer + Game3lnteger
End Function
Private Function FindHighGame(ByVal Game1Integer As Integer,

ByVal Game2Integer As Integer , ByVal Game3Integer As Integer) As String
' Find the highest game in the series .
If Game1Integer > Game2Integer And Game1Integer > Game3Integer Then

Return "1"
Elseif Game2Integer > Game1Integer And Game2Integer > Game3Integer Then

Return "2"
Elseif Game3Integer > Game1Integer And Game3Integer > Game2Integer Then

Return "3"
Else

Return "Tie"
End If

End Function
End Class

Ft•t•dhal'k 5.1

You need to write a procedure to calculate and return the averll£e of three inte
ger values.

l. Should you write a sub procedure or a function procedure?
2. Write the header line of the procedure.
3. Write the calculation.
4. How is the calculated average passed back to the calling procedure?

Basing a New Project on an Existing Project

In this chapter you will base a new project on an existing project but keep the
previous project unchanged. To create a new project based on a previous one.
you should copy the solution folder. 1ben you can move it as necessary.

You can copy an entire Windows solution folder from one location to an
other using Windows Explorer. Make sure that the project is not open in Visual
Studio and copy the entire folder.

• Make sme the project is not open (very important).

• Copy the outer solution folder to a new location using Windows Explorer.

• Rename the new folder for the new name. still using Windows Explorer.

233

234 s t \ •. (' Menw, c..nm... Dialog &x. .. S..o Proctd<"''

Open the new solution (the copy) in the Visual Studio lDE.

• In the IDE's Solution Explorer. rename the solution and project. Tire best way
to do this is to right-click on the nan1e and choose the Rename conunand from
the shortcut menu. To rename the solution. you must set tJ1e option to display
the solution: Tools I Options I Projects and Solutions I Grmeral I Always show

solution.

Rename the fonn~. if desired. (If VS can't find tJ1e startup form. you must open
the Project Designer and set the Startup Object. Select Project I ProjectName

Properties or double-click on the My Project entry in the Solution Explorer.)

Open the Project Designer and change the Assembly Name entry to match
your new project name.

Warning: Do not t1y to copy a project that is open using the Save As com
mand. attempting to place a copy in a new location. It is difficul t to actually
copy all of the needed files: in some earlier vers ions of Visual Studio. doing so
made the project unusable.

ud FUMIIM Prtlfttlmtt

Hands-On Programming Example --------

Modify the hands-on programming example from Chapter 4 by replacing some
of the buttons with menus. Write a function procedure to calculate the sales la11:

and allow the user to select the font and color of the surnrnruy text boxes.
The project for R 'n R-for Reading 'n Refreshment cMculates the an1ount

due for individual orders and maintains accumulated totals for a summary. Use
a check box for takeout items. which are taxable (8 percent): all other orders
are nontaxable. Include radio buttons for the five coffee selections: Cappuc
cino. Espresso. Laue. iced Latte. and Iced Cappuccino. The prices for each ~ill
be assigned using these constants:

Cappuccino 2.00

Espresso 2.25

L<ttte 1.75

Iced (either) 2.50

Use a button for Cslculste Selection, which will calculate and display the
amount due for each item. A button for Clear for Next Item will clear the selec
tions and amount for the s ingle item. Additionalt.ext boxes in a separate group
box will maintain the summary infonnation for the current order to include sub
total. tax. and totaL

The New Order menu item will clear the bill for tJ1e current customer and
add to the totals for the summary. The menu item for Summary should display
the total of all orders. the average sale amount per customer. and the number of
customers in a message box.

TI1e Edit menu contains options tJ1at duplicate the Calculate artd Clear but
Ions. The Font and Co/or options change the properties of the subtotal. tax. and
total text boxes.

TI1e About selection on the Help menu will display a message box with in
fomJation about the programmer.

C II A I' T E R

£ile
Hew Order
~ummary

EXit

.Edit
~alculate Selection
Clear I tem

r ant .. .
C.ll.lOr .. .

l'lmmin~ t lw Pt·ojert

Help
About

Sketch a fonn (Figure 5 .21) that your users sign as meeting their needs.

A 5keu:h of the formfor the hanru-oll programming e,mmple.

BllllngForm
~

uan

TaxCheckBo X

Ca lculateButton

ClearButto
(dl$311led

ltemAmountTextBo

n
)
X

file I;dlt !:!elp I Order Information
guanUty 1 "' I

-+O Tatwutf'

-. walculate 11Clesrfor ,I
Selection. Next Item

-:--
Item Amount ~

~

Sui1Total I
Tax (If Takeout) I
Total Due I

I

I
I
I

X

,..coffee Selections - ..-

@ C~ppucclno
0 EsprtJs5Q

0Lat,te
0 j_c;ed Uitte

0 Iced Caepucclno

Pion the Objects and Propetties Plan the property settings for the form and
each of the controls.

O Lj.-ct

Bill ingF onn Name

Selling

BillingForm

I~

'

235

GroupBox1
GroupBox2
CappucclnoRadloButton

Espres50RadloButton
LatteRadloButton

lcedLatteRadloButton

lcedCappucclnoRadloButton

GroupBOK.3

Sui1Tota1TextBox

TaxTextBox

TotaiTextBox

Text
AcceptButton
CanceiBullon

R 'n R--for Reading 'n Refreshme nt
CalculateButton

Group Box!

Group Box2

GroupBox3

CappuccinoRadioBuUon

Esp.ressoRodioBuuon

LatteRadioButton

Text

Text

Name

Text
Checked

Name
Text

Name

Text

ClearButton

Order Information

Coffee Seleclions

(blank)

CappuccinoRadioButton

C&appuccino
True

Espre•110RaclioButton
E•pres.&o

LatteRadioButton
La&-tte

236

O hjec•l

lcedLatteRadioButton

lcedCappuccinoRadioBullou

Labell

QuantityTextBox

Tax CheckBox

Lahel2

Label3

Label4

LabeLS

ltemAmooniTextBox

SuhTotatfextBox

TnxTextBox

TotalTextBox

Calculate Button

Cle.urButton

Fi leTooiStripMe nul te rn

NewOrder'fooJStripMenultem

SummaryTooiStripMenul tem

EDtTooiStripMe nultem

EditTooiStripMe.>ultem

CalculateSelectionTooiStripMenultem

ClearltemToolStripMe nultem

FontTooiStripMenultem

ColorToo!StripMenuhem

HelpToo!StripMenultem

About'rooiStripMenultem

ColorDialogl

FontDiale>gl

s l \ L

Po'Operly

Name

Text

Nwne
Text

Text

Name

're.~t

Name
Text

Text

Text

Text

'I'ext

Name
T..bStop
ReadOnly

Name

T..bStop
ReadOnly

Name
TahStop
Read Only

Name

TahStop
Read Only

Name

Text

Name
Text
Enabled

Tn t

Text

Text

Text

Text

Text

Text

Text

Text

Text

Te.~t

Name

Name

R \ S

Setting

lcedLatteRadioButton
& Iced Latte

JII#IWI, C..."""" Dialog 8o>u, S_. Prr><..Wrn.
0114 F~aeti.on i"rtKtdurN

JcedCappuccinoRadioButton
Iced Ca&ppuccino

&Quantity

Q uantityTextBox

(blank)

Tax CheckBox
Ta&keout?

h em Amount

SuhTotnl

Tax (if Takeout)

Total Due

ltemAmountTextBox
F alse
True

SubTotaiTextBox
False
True

TuxTextBox
False
True

TotaiTextBox

F ulse
True

CalculateButton
&Calculate Selection

ClearButton
C&lear for Next Item
False

& File

&Ne1v Order

Property: Enabled: Settin!< False

&Summary

E&rxit

&Edit

&Calculate Selection

Clear&hem

& Font . . .

C&olor ...

& Help

&About

ColorDialog l

FontDialog l

C ll i\ I' Tt: H

Plan the Event Procedures You need to plan the actions for the buttons and the
ac tions of the menu items. as well as the function for the sales lax.

O bject

Colculote Button

ClearButton

NewOrderTooiStripMenultem

SwnmaryTooiStripMenultem

ExitTooiStrip~tenullem

CalculateSelectionTooiSilipMenultem

ClearllemTooiStripMenultem

AboutTooiStripMenuhem

FontToo!StripMenultem

ColorT oo!Stri pMenu hem

(Function proce<lurc)

P1·ocedurc

Click

Click

Click

Click

Click

Click

Click

Click

Click

Click

FindTIU

A c lio n

Validate for blank- or- nonnumeric amount.
Find price of d rink oelection.
Multiply price by quantity.
Add umounl lo subtotaL
Call tax function if needed.
Calculate total =subtotal + lax.
Format and di•play the valueo.
Enable the Clear buuon and menu item.
Disable the Takeout check box.

Clear the coffee oelections.
Clear the quantity and the item price.
Set the focu• to the qurmtity.

Confirm clearing th e current order.

Clear the current order.
U subtotal <> 0

Accu mu late total sales and count.

Set subtotal and total due to 0.
Enable Takeout check box.
Disable the Clear button and menu item.
Disable Ne~· Order menu item.

U current order not added to totals
Call Ne~·OrderToolStripMenultem_Click.

U the customer cou nt > 0

Calculate the average.
Display the summary totals in a message box.

TernUnatc the project.

Share the event procedure for CalculateBulloo.

Share the event procedure for ClearBuuon.

Display t he About meo~~:.~ge box.

Allow user to change fonts.

Allow user to change colors.

Calculate the soles tax.

\\ri te the Project Follow the ske tch in Figure 5.21 to create the form. Figure
5.22 shows the completed form.

• If you are bas ing your project on the project from Chapter 4. first copy the
project folder. as desc1ibed in the section " Bas ill£ a NeM' Project on an Ex
isting Project."

Set the properties of each object according to your plan. If you are modify
ing the project from Chapter 4. add the menus and the common d ia log
components and remove the extra buttons .

• Write the code. Working from the pseudocode. write each event procedure.

• When you complete the code , use a variety of data to thoroughly test the
project.

237

238 \ S l \ L ll ' .. (' lll.nU&, Commo n l);a log &n>, Sub Proo..W"~
tuul Ji'uadion. Pmt<l'tlmd

t' l~are 5 . 22

oJ R n R feY Reading 'n Refreshment l= l§t.a.l'
The form for the hantb-on
programming example.

[II~ l:d•t l:l~lp

Order lrlotmii!Jon

lem/'mrut

Subtotlll

Tax (I takeol.t)

Total

'nw Pt·ojcct CotUng- Solutio n

Ch05HandsOn
Bradley/Millspaugh
June 2010

Coffee Seledlons

OC§PPUCCno

- Eapreuq
~e

jced l..alte

- leed Caj!:ltJCCm

'Program Name
'Programmer:
'Date :
'Description: This project calculates the amount due

based on the customer selection

'Folder:

and accumulates summary data f or the day.
Incorporates menus and common dialog boxes,
which allow the user to change the font and
color of text boxes .
Ch05Hands0n

Public Class BillingForm

' Declare module-level variables for summary information .
Private Subtotal Decirnal, TotalDecimal, GrandTotalDecirnal As Decimal
Private customercountinteger As Integer

' Declare constants.
Const TAX_RATE_Decimal As Decimal = O.OBD
Const CAPPUCCINO_PRICE_Decimal As Decimal = 2D
Const ESPRESSO PRICE Decimal As Decimal = 2.25D
Const LATTE_PRICE_Decimal As Decimal = 1. 75D
Const ICED_PRICE_Decimal As Decimal = 2.5D

C II 1\ 1•1'E R ·•

Private Sub CalculateButton_Click(ByVal sender As system.Object,
ByVal e As system.EventArgs) Handles CalculateButton.Click,
CalculateSelectionToolStripMenuitem.Click

' Calculate and display the current amounts and add to totals.
Dim PriceDecimal, TaxDecimal, ItemAmountDecimal As Decimal
Dim auantitylnteger As Integer

' Find the price .
If CappuccinoRadioButton.Checked Then

PriceDecimal = CAPPUCCINO_PRICE_Decimal
Elself EspressoRadioButton .Checked Then

PriceDecimal = ESPRESSO PRICE Decimal
Elself LatteRadioButton.Checked Then

PriceDecimal = LATTE_PRICE_Decimal
Elself IcedCappuccinoRadioButton.Checked or

IcedLatteRadioButton.Checked Then
PriceDecimal ICED_PRICE_Decimal

End If

' Calculate the extended price and add to order total.
Try

auantityinteger = Integer.Parse(OuantityTextBox.Text)
ItemAmountDecimal = PriceDecimal * auantityinteger
SubtotalDecimal += ItemAmountDecimal
If TaxCheckBox.Checked Then

' Call a function procedure.
TaxDecimal FindTax(SubtotalDecimal)

Else
TaxDecimal 0

End If
TotalDecimal = SubtotalDecimal + TaxDecimal
ItemAmountTextBox.Text = ItemAmountDecimal.ToString("C")
SubTotalTextBox.Text = SubtotalDecimal.ToString("N")
TaxTextBox . Text = TaxDecimal . ToString("N")
Total TextBox. Text = TotalOecimal . ToString("C")
' Allow change for new order only.
TaxCheckBox.Enabled = False
' Allow Clear after an order is begun.
ClearButton.Enabled = True
ClearitemToolStripMenuitem.Enabled = True
NewOrderToolStripMenuitem.Enabled = True

Catch auantityException As FormatException
MessageBox . Show("Quantity must be numeric. • , ' Data entry error •,

MessageBoxButtons.OK, MessageBoxrcon.Information)
With auantityTextBox

.Focus()

.SelectAll()
End With

End Try
End Sub

Private Function FindTax(ByVal AmountDecirnal As Decimal) As Decimal
· Calculate the sales tax.

Return AmountDecimal * TAX RATE_Decimal
End Function

239

240 ,. S l \ L It \ s t: oll•mu, Co mmon llioU.g &•es, Sub Pn><..W...,
and FUN.tion I'Toctdurn

Private Sub ClearButton_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles ClearButton.Click,
Clearlt emToolSt ripMenultem.Click

' Clear the appropriate controls.

CappuccinoRadioButton.Checked = True
ItemAmountTextBox.Clear()
With auantityTextBox

.Clear()

. Focus()
End With

End Sub

Private Sub NewOrderToolStripMenultem_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles NeWOrderToolStripMenultem.Click

' Clear the current order and add to the totals.
Dim ResponseDialogResult As DialogResult
Dim MessageString As String

' Confirm clear of the current order.
MessageString = ' Clear the current order figures?"
ResponseDialogResult = MessageBox. Show(lllessageString, "Clear Order",

MessageBoxButtons.YesNo, MessageBoxlcon .auestion,
MessageBoxDefaultButton.Button2)

If ResponseDialogResult = System.Windows.Forms.DialogResult .Yes Then
' User said Yes; clear the screen fields.
ClearButton_Click(sender, e)
SubTotalTextBox.Text =
TaxTextBox.Text =
TotalTextBox.Text =

' Add to the totals only if not a new order/customer.
If SubtotalDecimal <> o Then

GrandTotalDecimal += TotalDecimal
customercountinteger += 1
' Reset totals for the next customer.
SubtotalDecimal = o
TotalDecimal = o

End If

· Clear t he appropriate display items and enable the checK box.
With TaxChecKBox

.Enabled True

.ChecKed = False
End With
ClearButton.Enabled = False
ClearitemToolStripMenuitem.Enabled = False
NewOrderToolStripMenuitem.Enabled = False

End If
End Sub

Private Sub SummaryToolStripMenuitem_ClicK(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles summaryToolStripMenuitem.Click

' Calculate the average and display the totals.
Dim AverageDecimal As Decimal
Dim MessageString As String

C ll i\ 1°T t: R

If TotalDecimal <> o Then
o Make sure the last order is counted.
NewOrderToolStripMenuitem_Click(sender, e)
o Pass incoming arguments to the called procedure.

End If

If customercountinteger > o Then
o Calculate the average.
AverageDecimal = GrandTotalDecimal 1 CustomerCountinteger

o concatenate the message string .
MessageString = "Number of Orders: " &

customercountinteger.ToString() &
Environment .NewLine & Environment.NewLine &
"Total Sales: • & GrandTotalDecimal. ToString("C") &
Environment .NewLine & Environment.NewLine &
"Average Sale: • & AverageDeci~al . ToString("C ")

MessageBox.Show(MessageString , "COffee Sales summary•,
MessageBoxButtons.OK, MessageBoxicon.Information)

Else
MessageString = "No sales data to summarize. •
MessageBox.Show(MessageString , "COffee Sales summary · ,

MessageBoxButtons.OK, MessageBoxicon.Information)
End If

End Sub

Private Sub ExitToolStripMenuitem_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles ExitToolStripMenuitem.Click

0 Terminate the project.

Me.Close()
End Sub

Private Sub AboutToolStripMenuitem_ClicK(ByVal sender As System.Object ,
ByVal e As System.EventArgs) Handles AboutToolStripMenuitem.Click

o Display the About message box.
Dim MessageString As String

MessageString = "R on R Billing• & Environment.Newline &
Environment.NewLine & "Programmed by Bradley and Millspaugh"

MessageBox.Show(MessageString , 'About R on R Billing•, MessageBoxButtons.OK,
MessageBoxicon.Information)

End Sub

Private Sub FontToolStripMenuitem_Click(ByVal sender As system.Object ,
ByVal e As System.EventArgs) Handles FontToolStripMenuitem.Click

o Allow the user to select a new font for the summary totals.

With FontDialog1
.Font = SubTotalTextBox. Font
. ShoWOialog ()
SubTotalTextBox.Font = .Font
TaxTextBox.Font = .Font
TotalTextBox.Font = .Font

End With
End Sub

241

242 ' S l \ L It \ s t: ,1/,mu, Common llioU.g &•es, Sub Pn><..W...,
and FUN.tion I'Toctdurn

Private Sub ColorToolStripMenuitem_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles ColorToolStripMenuitem.Click

' Allow the user to select a new color for the summary totals .

With ColorDialog1
.Color = SubTotalTextBox . ForeColor
.ShowDialog()
SubTotalTextBox.ForeColor = .Color
TaxTextBox.ForeColor = .Color
TotalTextBox.ForeColor = .Color

End With
End Sub

End Class

I. The Visual Studio Menu Designer enables you to create menus by using
MenuStrips. wnich contain Tool Strip menu items that can have keyboard
access keys.

2. In the Menu Designer you can set and modify the order and level of menu
items.

3. You can modify menu items in the MenuStrip's Items Collection Editor.
4 . A menu item can have a second list of choices. which is called a submenu.
5. Menu items can be disabled by setting the Enabled property = False

and can be made to appear with a check mark by setting the Checked
property = True.

6. MemLS should follow Windows standards. use standard keyboard shortcuts.
and include ellipsis if further choices will be offered.

7. Each menu item has a Click event. The code to handle the actions of a
menu item belongs in the item's Click event procedure.

8 . Common dialog boxes allow Vis ua l Basic programs to display the prede
fined Windows dialog boxes for Color. Font. Open File. Sal/9 Rio and Folder

Browser. These dialog boxes are part of the operating environment:
therefore. it is an wmecessary duplication of effort to have each program
mer create them again.

9 . Context menus. or shortcut menus. are created using a ContextMenuStrip
component and the Menu Designer. Context menus pop up when the user
right-clicks.

10. The programmer can write reusal)le code in general procedures. These pro
cedures may be sub procedures or function procedures and may be called
from any other procedure in the fom1 module.

ll. Both sub procedures and function procedures can perform an action. Ho~+·

ever. function procedures return a value and sub procedures do not. The
value returned by a func tion procedure has a data type.

12. Arguments can be passed ByRef or ByVal (the default). ByRef passes a
reference to the actual data item; ByVal passes a copy of the data.

13. A function procedure must return a value, which can be accomplished using
the Return statement or by selling the name of the function to the result.

C II 1\ I1 TE il

ByRef 227
ByVal 227
Call (procedure call) 226
checked 277
Checked property 217
common dialog 219

menu 210
Menu Designer 210
MenuStrip component 210
me thod 225
modal 220
modeless 220

context menu 222
ContextMenuStrip component 222
disabled 217

return value 225
separator bar 214
shortcutmenu 222
ShowDialog me thod 219
sub procedure 243
submenu 214

Enabled property 217
fw1ction procedure 225
general procedure 225

l. Explain the difference between a menu and a submenu.
2. How can the user know if a menu item contains a s ubmenu?
3. ''\That is a separator bar and how is it created?
4. Name at least three types of common dialog boxes.
5. \Vhat is a context menu? How would you attach a context menu lo a

control?
6. 'Vhy would you need procedw'e.'! that are not attached to an event?
7. Code the necessary statements to produce a color dialog box and use it to

c hange the background color of a label.
8. Explain the difference between a sub procedure and a function procedure.
9. Wl1at is a return value? How can it be used?

10 . Explain the differences between ByRef and ByVal. 'l' hen •muld each be

used?

5.1 Modify Programming Exercise 4.6 (piecework pay) to replace buttons
Kith menus and add a fw1etion procedure.

This project wiU input the number of pieces and calculate the pay for
multiple employees. 11 also must display a summary of the total number
ofpieces. the numbe r of workers. the total pay. and the average pay for all
employees.
Menu: The menu bar mus t have these items:

file
~alculate Pay
.§ummary
!:,lit

.fdit
Clear

Eont .. .
J:;,olor .. .

!:!alp
About

Piecework workers are paid by the piece. Worke rs who produce a
greater quantity of output may be paid at a higher rate.

243

244 S l r \ L n ' s C M•n,., Con....,. Dialog Bo..._ Sub l'ro<..S.trn.

Use text boxes to obtain the name and the number of pieces completed.
The Calculate Pay menu item calculates and displays the dollar amount
earned. The Summary menu ite m dis plays the total number of pieces. the
total pay. and the average pay per person in a message box. The Clear

menu choice clears the llllme nnd the number of pieces for the current
employee and resets the focus.

The Color and Font items s hould c hange the color and font of t11e infor
mation displayed in the Amount Earned control.

Use a message box to display the program name and your name for the
About option on the Help menu.

Write a function procedure to find the pay ra te and return a value to
the proper event procedure.

Pieces Com.,leted P ric e Paid per Piece fo r All Piecet!l

Ito 199 .50

200 to399

400 to599 .60

600 or more

Note: For he lp in basing a new project on a n existing project. see
"Basing a New Project on an Exis ting Project" in this chapter.

5.2 Redo the checking accowll programming exercises from Chapter 4 (4.3.
4.4. and 4.5) using menus and sub procedures.

M enu:

E.:ile
rransaction
~unvnary

.frint

.Edit
Clear

.Eont .. .
.C.olor .. .

lielp
About

Form: Use radio buttons to indicate the type of transaction--deposit.
check. or service charge. Use a text box to allow the user to enter the
amount of the transaction. Display the balance in a ReadOnly text box or
a label.

lnclude validation that displays a message box if the amount of the
transaction is a n~ative number. If there is not enough money to cover a
check. dis play a message box with the message "'nsufficient Funds.'' Do
not pay the check. but deduct a service charge of $10.

Write function procedures for processing deposits. c hecks. and service
charges. The deposit function adds the deposit to the balance; the check
func tion s ubtracts the transaction amount from the balance: the service
charge fWJclion subtracts the transaction 8Jllount from the balance. Each
of the func tions must return the updated balance.

'lne Summary menu item displays the total number of deposits and the
dollar amoWJI of deposits. the number of c hecks. and the dollar amount of
the checks in a message box.

and FU~~C-Iion ~durn

C ll i\ 11 1' t: H

The aear menu item clears the radio buttons and the amount and re
sets the focus.

The Color and Font menu items change the color and font of the balance.
Use a message box to display the program name and your name as the

programmer for the About option on the Help menu.
Note: For help in basing a new project on an existing project, see " Bas

ing a Ne\\· Project on an Existing Project" in this chapter.
5.3 A salesperson earns a weekly base salary plus a commission when sales

are a t or above quota. Create a project that allows the user to input the
ll"eekly sales and the salesperson name. calculates the commission. and
displays s ummary information.
Form: The form should have text boxes for the sale;;person s name and his
or her weekly sales.
Menu:

file
fay
~ummary

~it

_Edit
C.! ear

Eont . . .
!;_olor .. .

Jielp
~bout

Use constants to establish the base pay, the quota, and the commission
rate.

The Pay menu item calculates and displays the commiss ion and the to
tal pay for that person. However. if there is no commission. do not display
the commission amount (do not display a zero-commission amount).

Write a func tion procedure to calculate the commission. The fw1ction
must compare sales to the quota. When the sales a re equal to or greater
than the quota, calculate the commission by multiplying sales by the
commission rate.

Each s alesperson receives the base pay plus the commission (if one
has been earned). Formal the dollar amounts to h.-o dec imal places; do
not display a dollar sign.

The Summary menu item displays a message box that holds total sales,
total commissions. and total pay for all salespersons. Display the numbers
11ith t11·o decimal places and dollar signs.

The Clear menu item clears lhe name . sales. and pay for the current
employee and then resels the focus.

The Color and Font menu ite ms should change the color a nd font of the
information djs played in the total pay text box.

Use a message box to display the program name and your name as pro
grammer for the About oplion on the Help menu.
Test Data: Quota = 1000: Commission rate = .15: and Base pay = $250.

Nnme Sule•

Sandy Smug 1.000.00

San1 Sadness 999.99

Joe Whiz 2.000.00

24S

246 \ '

Totals should be

S l \ L ll \ s £ Mt na¥, Um1111011 malog &.1:~ Sub Proctrlurn,
arul Flllt(tion Prot::fllurn

Sale• 83.999.99

Commisaions 4.50.00

Pay 1.200.00

5.4 The local library has a summer reading program to encourage reading.
TI1e staff keeps a ch&Jt with readers' names and bonus points earned. Cre
ate a project using a menu and a function procedure that d etermines and
retums the bonus points.
Menu:

EHe
f.oints
~ummary
Ex_it

sdit
C,!ear

Eont . . .
~olor . . .

Help
hbOUt

Form: Use text boxes to obtain the reader's name and the number of books
read. Use a Read Only text box or a label to display the number of bonus
points.

The Points menu item s hould call a function procedure to calculate the
points using this schedule : The first three books are worth 10 points each.
TI1e next three books are \l'orth 15 points each. All books over six are
worth 20 points each.

'n1e Summary menu item displays the average number of books read
for all readers that session.

The Clear menu item clears the name . the number of books read. and
the bonus points and then resets the focus.

'~e Color and Font menu items change the color and font of the bonus
po ints.

Use a message box to display the program name and your name as pro
grammer for the About option on t.he Help menu.

5.5 Modify Programming Exercise 2.2 (the flag viewer) to use a menu instead
of radio buttons. c heck boxes. and buttons. Include check marks next to
the name of the currently selected country and next to the selected dis
play options.
Memt:

file
EX,it

,!Lountry
United States
~anada
~apan
Mexico

llisplay ~elp

I itle About
~ountry Name
f.rogranvner

Note: F'or help in basing a new project on an existing project. see
" Basing a New Project on an Existing Project" in this chapter.

C ll i\1'1'E H 247

VB lUall Order

Modify the case s tudy project from Chapter 4 to use
menus and a function procedure. Refer to Chapter 4
for project specifications.

Write a function procedure to calculate and return
the shipping and handling based on the weight for an
entire order. (Do not calculate shipping and handling
on individual items- wait until the o rder is complete.)

Apply the user's font and color changes to the To
tal Due. or another control of your choice.

Menu:

file
Update §.ummary
.frint
~it

.Edit
~dd ThiS Item
.Qlear
font .. .
~olor .. .

J:ielp
AbOUt

Note: For help in basing a new project on an exist
ing project. see "Basing a New Project on an E xisting
Project" in this chapter.

VB Auto Cent.r I
Modify the case s tudy project from Chapter 4 to use
menus and a function procedure. Refer to Chapter 4
for project specifications.

Write a function procedure to calculate and return
the sales tax.

Apply the user's font and color changes to the
Amount Due. or other control of your choice.
Menu:

£ile
~it

f;dit
kalculate
C,lear
[ont .. .
C.Qlor . . .

Jjelp
About

Consider adding keyboard shortc uts to the menu com
mands.

Note: For help in basing a new project on an exist
ing project. see ''Basing a New Project on an Existing
Project" in this chapter.

248 \ s l .\ ..

Modify the case study project from Chapter 4 to use
menus and a function procedure. Refe r to Chapter 4
for project specifications.

Use a function procedure to calcula te the rental
fee based on the type of video.

The Help menu ,4bout option should display a mes
sage box "ith information about the program and the
programmer. The Color option should change the
background color of the fonn; the font changes can
change the control of your choice.

Morlify your c11.~P. ~turly projP.r.l from r.hapiP.r 4 lo nrlrl
a menu and a function procedure. Refer to Chapter 4
for the project specifications .

Write a function procedure to calculate and return
the price of shirts: display the About box in a message
box.

Allow the user to change the font size and font
color of the label that displays the company slogan.

L1clude keyboard shortcuts for the menu com
mands.
MemL:

.Eile .S.ale Jlisplay Hel p
_summary Add to Order Eont . . . About

Clear This Item ,!;_olor . . .
Exit O.r.der Co11plete

.S.logan
J..ogo

u .\ s

Menu:

f ile
~ummary

f.rint

~it

(' "''""'• Common IMiog Box.., Sub Proc.Jmn.
arul FutU.Uon Pro~

f dit
CAl culate
Cl ear f or Next I t em
.Qrder Complete

Qolor •••
f ont . . .

Help
,About

Optional extra: et keyboard shortcuts for the menu
commands.

Note: For help in basing a new project on an exist
ing project. see "Basing a New Projec t on an Existing
Project" in this chapter.

The S/>()gan and Logo: Make up a slogan for the com
pany. such as "We're Number One" or "The Best in
Boards.'" The logo should be a graphic; you can use an
icon. any graphic you have available. or a graphic you
create yourself with a draw or paint program.

The Slogan and Logo menu choices must toggle
and display a check mark when selected. For exam
ple. when the slogan is displayed. the Slogan menu
command is checked. If the user selects the Slogan

command again. hide the slogan and uncheck the
menu command. The Slogan and Logo commands op
erate independently: that is. the user may select ei
ther. both. or neither item.

When the project he£ins. the slogan and logo must
both be displayed and their menu commands appear
checked .

Not.e: For help in basing a new project on an exist
ing project. see " Basing a New P roject on an E:dsting
Project" in this chapter.

D A p T E R

Multiform
Projects

I . Include multiple fonns in an application.

2. Use templates to create splash screens and About boxes.

:l. Use the Show. ShowDialog. and Hide methods to display and

hide fom1s.

-t. Understand the various form events and select tbe best procedl!re for

your r.nnP.

5. Declare variables with the correct scope and access level for mulliform

projects.

250 v S l l ,\ I. C Multiform Projects

Using Multiple Forms

All the projects that you have created up to now have operated from a single
form. It has probably occurred to you that the project could appear more pro
fessional if you could use different windows for different types of infonnation.
Consider the example in Chapter 5 in which summary inf.lrmation is displayed
in a message box when the user presses the Summary button. You have very lit
tle control over the appearance of the message box. The ;ummary infonnation
could be displayed in a much nicer format in a new window with identifying la
bels. Another ~tindow in Visual Basic is actually anotherform.

The first form a project displays is called the stclrtllp form. You can add
more forms to the project and display them as needed. A project can have as
many forms as you wish. And you can select a different fonn to be the project
startup form in the Project Des igner. Select Project I Properlies I Application tab
and drop down the list for Startup Form.

C1·eating New Fo1·ms

To add a new form to a project, select Add Windows Form from the Project

menu. The Add New Item dialog box appears (Figure 6.1). in which you can
select from many installed templates. You will learn about some of the other
fonn types later in the chapter. For now. choose Windows Form to add a regular
new form.

Figure 6.1

Select the Windows Foml ten~plate to add a new form to a projea. Your dialog box may ha·ve more or fewer item templates,

depending on the versi.on of VB you are using .

Add Nevv Item · Ch06MultifotmProject

lnst.alled l em plates

J Com mon ltsr.o;

Code

Data
GenEral

W<b
Window !: Forn"l!>

Reporting
World'lov.•

WPF

Sort by. ! D•fault

~ S1)1te Sheet Common 1tems
A blank 'Windo•A'S Fo1m

i) JScript File Con"'mon ltem s

~ Closs. Commonlterm

~ Module Common ltenu

~ fnterface Common ttems

~ =
WindoVJt ~orM Col'f",mon }t""''H

il User Control Common lten1s

~ Component C14~~ Common Jtems

User Control (VJPF) Common 1terns

C II A I•'I' I'R G

Adding a New Fo1111 10 a Pl'ojecl

You can add a new form to a project by following these steps:

STEP 1: Select Add Windows Form from the Project menu.
STEP 2: ln the Add New Item dialog box select Windows Form from the template

list.
STEP 3: Enter a name for the new form and click on Add.

The new form '~ill display on the screen and be added to the Solution Ex
plorer window (Figure 6.2).

View Code View Designer

W Ch06Multiformfroject
~ My Project

~ Mcinform.vb

I~ Summa<yform.vb I

~Sclu ...

While in design time, you can switch between forms in several ways .ln the
Solution Explorer window. you can select a form name and click the View

Designer button or the View Code button. Double-clicking a form name opens
the form in the designer. But the easiest way to switch between forms is to use
the tabs at the top of the Document 1~indow that appear after the form has been
displayed (Figure 6.3). If there isn't room to display tabs for all open docu
ments. you can click the Active Files button to drop down a list and make a se
lection (Figure 6.4).

Active Files button

Ma1nForm.v b [Design] x

~ Forml ---=~=~~

After adding a new form. the

Solution Explorer shows the
fdenam.e of the new form.

251

Click on the tabs a.t the top of
the Document window to
switch among the Fornt
Designer and Editor windows.

252 v S l l A I, G .\ S C M11lti{orm Projects

You can drop down the list of available windows and select a fonn to which to switch.

1\lainform.vb (Oesignl X

11_, Forml

Mainf orm.vb

Mt:infcmn.vb jOcsignJ

Summ/JryFoml.vb

- --- leJCt

The text associated with the contfol.

Each form is a separate file and a separate class. Later in this chapter you
will learn to display and hide each of the fonns in a project.

Adding and Re moving Fot·ms

The Solutiou Explorer wiudow shows the files that are included in a project.
You can add new ftles and remove files from a project.

Adding Erutiug Form Fil~s to a Pr·oject

Forms may be used in more than one project. You might want to use a fonn that
you created for one project in a new project.

Each form is saved as three separate files. All of the information for the
fnnn n~siriP$ in thP filP.~. whir.h inr.lnriP.~ thP mriP pror.Prllll'P$ anrl thP. 11isnal in
terface as ~-ell as all property settings for the controls.

To add an existing fonn to a project. use the Add Existing Item command on
the Project menu and navigate to the form file to be added. You select only one
filename: FormName.vb; all three files are automatically copied into the proj
ect folder.

You can add an existing fonu to a project by follo~ing these steps:

STEP 1: Select Add Existing Item from the Project menu.
STEP :2: In the Add Existing Item dialog box, locate the folder and file desired.
STEP 3 : Click on Add.

Note: You can run into problems adding a form that contains nonvisual compo
nents. such as a PrintForm, or images that have not been added to the project
resources.

Removing For·ms ft·om a Pr·oject

lf you want to remove a file from a project. select its name in the Solution Ex
plorer window. You can then either click the Delete key or right-click on the
filename to display the context menu and choose Delete. You also can choose

Use Ctrl + Tab to cycle through a ll

o pen files: while ho lding Ctrl, press
Tab multiple times; when you reach

the item you wont, re lease the Ctrl
key. •

C II A 1• 'I' " ll G

Exclude from project to remove the form from the project but not delete the files.
Note that the Exclude from project command is not available in VB Express.

An About Box

One popular type of form in a project is an About box. such as the one you
find in most Windows programs under Help / About. Usually an About box gives
the name and version of the program as well as information about the program
mer or company.

You can create yom 01m About box by creating a new form and entering
the in.f01mation in labels. Of course. you may use any of the Windows controls
on this new f01m. but About boxes typically hold labels and perhaps a picture
box for a logo. Figtue 6.5 shows a typical About box.

au About R 'n R Billing

Coffee Sales Billing

Ands tax and total for
individual onler.o. Naircains a
=-->' ol al sales.

Progammed by A. Millspaugh and J. Bra<Sey

Using the Aboul Box Template

You also can use Visual Studio's About Box template to create a new About box.
Choose Add Windows Form from the Project menu and select About Box (Figure
6.6). A new form named AboutBoxl is added to your project (Figure 6.7) with
controls you can modify. You can change the captions and image by setting the
properties as you would on any other form. Once you create the form in your
project. it is yours and may be modified a~ you please.

Seuiug Asst.•mhly lufonnaliu n

Notice in Figure 6.7 that the About Box template form includes the product
name. version. copyright. company name. and description. You can manually
set the Text properties of the controls, but there's a better way that provides this
inf01mation for the entire project. Open the Project Designer (Figure 6.8) from
Project I ProjectName Properties or double-click My Project in the Solution

253

Fi g ar e 6. 5

A typical About box tha.t
contains labels, a group box. a
picture box. and a butwn.

254 l .' S l l A L \ s

Select the Abou.t Box template to add a preformal/.edllbont Boxfonn w a project.

Add Nc2w Item - Ch06Multlfof0'1Pro;cd

r nst.alledTemplates

A Comrnon Iltn1$
Codt

0GtCI

General

Web

Windows Forms
Rc.pcrting

Workflow
WPF

AboutBoxl

Sort by: I Dciouh

~ Window) fou,.,

lj User Contrcl

~ Component Clii~S

lti U"' C onlrol (WPF}

~ About BD•I

ADO.NH Eot;ty Dot• Mocl• l

~ AOO.NET EntityObjcd Gencrotor

4 ADO.NETSelf· Traclung Entity Genenttorr

~ C:IH~ Oilgnrn

t) Code Fil~

0

~ COM Clm

Version

Copy:ight

Desaiption .

(At nJltime . the labels• text 'li"ill be replaced r .. ith
the :application's assembly irformaticn.
Customize the application·s assembtt inforrr.ation
in the Application pane of Project Designer.)

Cornmon Jl~m~

Ccmmcnltem~

Common ft:etm

Con"'n\ort ltc.1ns

Common: ltem~

Common h:t ml

Cornmon Item~

Cornrnon llenu

Common lttmt

Common ltem~

Comm on IL~t:rm

(' Multiform Projects

f

FIJ!u•·e 6.6

Type: Common ltcm1

About Doxformfor Window' Form1
.lpplications

FIJ!u•·~· 6.7

A new form created with the

About Box template. YotH'all
cuJtomize the form. by setting
properties of the controls.
adding controls. or renwvillg
controls.

C II A 1• 'I' " ll 6

Open the Project Designer and click on the Assembly Information button to display the project's assembly information.

ChC6MultiformProject~ X Aboi.Jt8oxlvb [Ots~gnl~ Summal)FormVO Matnform.vb !Oes1g.11 Summaryform.\lb (Design] ~

Application

Compile

Oebug

References

Resources

Services

s~ttings

Signing

My Extensions

Security

Publisb

A:~:~~mb!y r.~CJme:

tHij•jW!ftM@D!
Root n~n1c:spoce;

Ch06MultiformProjeci

Applicatior~ type: Icon:

Ll Wi.::' .::"d:..:ow=s F.::o.::•m.::s:..:A.c:P..cP:::Iic.::'':::io.::n ______ ___J•I I (Oefcultlcon)

Startup form:

(Maiiif"-orm -----:)

Assembly fnfo!TYI~ I View Windows Settings

[?1 Enable appflcatioo framework

VJindowi applic;~tion fram ework properties

~ EnablE: XP visual styles

E: Make $ingle 1nstanc.e application

~ Save My.~ettings on Shutdown

Authc:nti cction mode,

!windows

Shutdown mode:

I When stortup foiTtl d oses-

Splash screen:

~ I

~j

I<~Jon•) ======·e.!JI Vtew-Appliubon Even«

Explorer. Click on the Assembly Information button and fill in the desired infor
mation in the Assembly Information dialog box (Figure 6.9).

Once the information is entered into the Assembly lnformation, you can
retrieve it by using the My.Application object. The following code is automati
cally included in the AboutBox fonu's code:

Me .LabelProductName.Text = My.Application . Info.ProductName
Me.LabelVersion.Text = String.Format("Version {0} ",

My .Application.Info.Version .ToString)
Me .LabelCopyright .Text = My .Application .Info.Copyright
Me.LabelCompanyName .Text = My .Application . Info . CompanyName
Me.TextBoxoescription.Text = My .Application . Info .Oescription

Typically you find much of this same information on the application's
splash screen.

2SS

2S6 v s u \ •. C Multiform Projects

rA-~--~-y-r-.r-.,-~-,-~-. ----~~~~~----~L~~~

!!tiel R 'n P. fe~Ruding and Rt1tuhmtnt

f.omparry:

f rodli<C

Cgpyngnt:

CatcuiO!Ite: sai@.S fc.r ~ 'n R For Reading 4nd Refruh

R 'n R for Reading af'td Refreshment

P?semblyver!:lon: l

flit VlniOnt 0

18 b01l..6· 2• 70-41~, ·989<1 ·9 d dGOa~ c .34 r

H~utnlllongu"ge.. (NDnc:)

[] Make as.sembly COM·Vitibfe

A Splash Screen

Perhaps you have noticed the logo or window that often appears while a pro
gram is loading. such as the one in Figure 6.10. This initial form is called a
s plash screen. Professional applications use splash screens to tell the user
Lhat Lhe program is loading and s tarting. It can make a large application ap pear
to load and run faster. since something appeam on the screen while the rest of
Lhe application loads.

R •n R
For Reading 'n Refreshment

Version 2.0
Copyr1!Tf .. 2010

F I ~ n •· l ' (i • 9

Enter or modify the project's
information on the Assembly
Information dialog box.

F I f,(n •• t.• n. I 0

A cr£Storn splash screen created
.from a standard Windows
form.

C II 1\ 1• 'I' I' ll 6

Using the Splash Sct'e{'n Te mpl ate

You can create your own splash .screen or use the splash screen template in

cluded with Visual Studio (Figure 6.11). Select Project I Add New Item to display
the Add New Item dialog box (refer to Figure 6.6). Choose Splash Screen to add
the new form; then modify the form to fit your needs. You may want to make
modifications to the labels and to the code.

The predefined code in the splash screen template may be more compli
cated than you need. l t includes code to fill in the application title, version, and
copyright information from the project's assembly information (refer to "Setting
Assembly Information" in the preceding section for the About box). You can ei
ther set the assembly infonnation or modify the labels to display the text that
you want.

lication Title

Making the Splash Fonn Display Fi1·st

Whether you create your own splash screen or use the VB template. you must
take one more step to make the splash screen appear before the startup form.
Display the Project Designer either by selecting ProjectName Properties from
t11e Project menu or by double-clicking the My Project item in t11e Solution Ex
plorer. Set the Splash scl'een drop-clown list to your splash screen (Figw·e 6.12).
Do not change the setting for Shutdown mode. which would require coding tech
niques that go beyond the scope of this chapter.

When you run the project. the splash screen should display while the
startup fom1 is loading and then disappear. By default. the splash form remains
011 the :>t.:rt:cll fur aLuul lwu l:itlt.:uHW:i.

2S7

A splash form created using
the Splash Screen template.
Yott can customize the form as

much as you wiJh.

2S8 v S l l ,\ I. C Multiform Projects

Figur e 6 . 12

Set the Splash screen drop-down list to your new form in the Project Designer.

Ch06MukiformProje<t~ X

Application•
ConfioL,lior. ~N_r_A ______ __,·J ~,. fo" ILN.:./ _A ______ _,•j

Compi1e

Reit:rence:s

Re~ources

services

Sett1ngs

Si_gr,lng

Security

Pub! ish

Root namespace:

Ch06MultiformProJect Ch06Multtfo•mProJEct

Appl1c~ion type: rcon:

Ll W.:.i.:.nd::cov.:.'c:.' .:.Fo::cr.:.mc:.s::cA!:.!pp.:.·lic:.".:.'ic:.o::.n _______ •...JI I (Default Icon)

SUutup fom1:

IMainForm

Assernbf'y. Jofomtation... II ViewWiodowsSettings-

R.1 Enable application trameAJork

Windows opplication f!cmcwork propcrtic:.

~ En:1ble XP'1isuol styles

Ll Mike ~ngle instante apptita:ion
~ Save My,S.tt1ngsonShutdown

At.~'thentic.otion n;odc::

I w indows

Shutd01Nn mo de:

~hen start:upiorm doses

Splcsh scrcc:n;

-I

·J

IeNon e) VifiN Application Event>
!(None)
AbouiBoxl

ISummart l=orm

Othm· Template Fm·ms

Take a look at the other templates in the Add N~w lt~m dialog. Some others that

you might find of interest are the Login Form and the Explorer Form. Note
that the templates vary depending on the version of Visual Studio. VB Express
has the fewest templates.

Using the Methods and Events of Form$

In code, you can use several methods to show. hide, and close fonns.

Sh owing a Fo1·m

You generally display a new fonn in response to a user clicking a button or a
menu item. In the event procedure for the button or menu item. you can use
either the Show method or the ShowDialog method to display the new form .

C II ,\I> 'I' I' R 6

Modal , ·c •·sus 1\'lodcless Fo11us

The Show me thod displays a fonn as mo de less, which means that both fonns
are open and the user can navigate from one form to the other. When you use
the ShowDialog me tl10d, the new form di~plays as modal: the user must re
spond to the form in some ~·ay. usually by clicking a button. No other program
code can execute until the user responds to and hides or closes the modal form.
However. if you display a modeless form. the user may switch to another form
in the project without responding to the form.

Note: Even with a modal form. the user can switch to another application
within Windows.

The Show Mc thod-Genet·al Form

! [I FormName . Show()

The Show method displays the named form modelessly.

The Suow ~lctbod-Exmuple

Tile SuowDialog Mctuod-Gen e•·al Form

f[l FormName. ShowDialog ()

Use the ShowDialog method when you want the user to notice. respond to. and
close the form before proceeding with the application.

Tbc Show Dialog Me tuo d- Exmnple

~ I il somm''''''m.ShoWOi•log()

You generally place this code in a menu item or a button's click event procedure:

Private Sub summaryButton_Click(ByVal sender As System .Object,
ByVal e As System.EventArgs) Handles SummaryButton . Click

· Show the summary form.

SummaryForm . ShowDialog()
End Sub

259

260 \ S l \ L If \ s (' Multiform Project•

VB automatically creates a form object for each of the form classes that
you create. You can show. hide. and close forms without explicitly declaring
a new object. This default form object is not actually instantiated until you
access one of the form's objects (such as a text box) or a form method (such
as the Show method). You also can declare and instantiate a new form object
like this:

Dim NewsummaryFonm as New summaryForm
NewsummaryForm.ShowDialog()

H.idin~ or Clo~iu~ a Fo1·m

You already know how to close the current form: Me. Close ().You also can use
tl1e Close method to close any other form: SummaryForm. Close () .

The Close method behaves differently for a modeless form (using the Show
method) compared to a modal fom1 (using the Showoialog method). For a mod
eless form. Close destroys the fom1 instance and removes it from memory: for
a modal form. the form is only hidden. A second ShowDialog method displays
tl1e same form instance. which can have data left from the previous time the
fonn was displayed. ln contrast. a second Show method creates a new instance,
so no leftover data can appear.

You also can choose to use a form's Hide mN uod. which sets the form's
Visible property to False and keeps the form in~tance in memory.

Tbl' IUdl' .\INJIOd-Ceuet·a l Form

~[I FormName. Hide ()

Hiding conceals a form but keeps it in memory. ready to be redisplayed. Use
the Hide method rather than Close when the user is likely to display the fom1
again. A good example might be a form ~t·ith instructions or He lp text. which
the user may display multiple limes.

The llidP .UNhud-Ex:uuplt'

ll '"'"'"''"'·""'()
"'

R espo ndinJ! to Form En~nls

The two primary events for which you may need to lt'Tite code are the Form

Name.Load and FormName.Activated. The first time a form is shown in an
application. the form generates both the Load and Activated events. The
Load event occms when the fonn is loaded into memory: the Activated event
occurs after the Load event. just as control is passed to the fonn. Each sub
sequent time the form is shown. the Activated event occurs. but the Load
event does not. Therefore. if a form may be displayed multiple times. you
may want to place initializing steps into the Activated event procedure

•

C II A 1• 'I' " ll G

rather than into the Load. Also. if you wish to set the focus in a particular
place on the new form. place the Focus method in the FormName_Activated
procedure.

T he Seque nce o f Fot·m Eve nts

Although you don't need to write event procedures for all of these form events.
it's helpful to know the order in which they occur:

Load

Activated

Paint

Deactivate

FormClosing
FormClosed

Occurs before the form is displayed for the first time.
Happens only once for any one form unless the form is
closed rather than hidden.
Occurs each time the fonn is sho~11. 1lus event procedure
is the conect location for initialization or Focus.
Occurs each time any portion of the form is redrawn.
which happens each time a change is made or the fonn is
moved or uncovered.
Occurs when the form is no longer the active fonn, such
as when the user clicks on another window or the form is
about to be hidden or closed.
Occurs as the torm is about to close.
Occurs after the fonn is closed.

Wt·iting Event Pt·ocedut·es fot· Selected Eveuts

You are accustomed to double-clicking a conh·oi or form to open an event pro
cedure for its default event. If you double-click a f01m, the default event is
FormName.Load. To open an event procedure for the other events. you can use
either of two easy techniques.

From tbc Code Editor·

In the Editor, drop down the Class Name list and choose the entry that shows
the events for the selected form (Figure 6.13). Then in the Method Name
list (Figure 6.14), select the event for which you want to write a procedure.
Any events that already have an event procedure written appear in bold in
the list.

Notice in Figure 6.14 that there are many more events for forms than those
covered in this chapter.

Fig••••e 6 . 13

Select the (Form Name Events) entry to see the list of possible events for which to write a procedure.

-Summaryform.vb X ... ;, '
~Summ•ryForm • C coedaratN>nsl

fj;1(GeR<roll ~
"1$Summ.aryform

r -i ~ma2fo~~nb) ·-~

261

262 v S l l ,\ L (' Multiform Projects

Fi g u•· e 6 . 1 4

Select the event from the Method Name list to create an empty event procedure.

SummaryForm.\lb X • ;

~-7~(-Su~m~m-•~ry~·F_o•_m_E~v-•n_tt~)--~---------------·Jii~~~(D_e_cl_a•_•t_~_n~~~----------------------- N
S Publ ic Class Sut•to ryfona m (Oeclaratlons} ~~~'-"I

l # k~-
End Class

..J AuioSizeCiunged

F1·om the P1·opm·ties Window in the Designer

f AutoVa!idateC~anged

I B4ckColorCh.onged

;I B.ackgroundlmagE:Ch.anged

~ Backgrouf)dlmage-LayoutChanged

I BindingContextCt>anged
f C4usesValld~tionCh.!ng.ed

~ Ol.an-geU[Cue~

? a ick

-F O ier)tSizeCbonged

-1 Contectf\'1E-nuChang~d
~ contextMe-nuscnpchangeo

I ControiAdded

-} ControiRemoved

You can select an event using the P rope11ies window in the Fonn Designer.
Click on the form to sh01r its properties in the Properties window and click on
the Events button (Figure 6.15) to display the available events (Figure 6 .16).
The default event appears selected. but you can double-click any other
event to create its event procedure. You also can select a previously written
procedure from the drop-down list for any event. When you want to switch
the Properties Moindow back to viewing properties. click on the Properties

button.

Properties button Events button

.q. x

(ApplicationSett
(DataBindings)
~~~~§@!-•••• Summaryform 

Accc:ptButton (none:) 

AccessibleDescr 

AccessibleNamt 
AccessibleRole Default 
AllowOro p False 

AutoScaleMode Foot 

AutoScroll False 
_L!ultoScroiiMar i 0 0 
(N.ame) 

Jndicotes the nome used in code t o 
identify the object. 

Fign•· e 6 . 15 

Click on the Events button in 
the Properties window to ue 
the list of possible events for 
which to write a procedure. 



C II A 1• 'I' " ll G 

Properties • /I. X 

Summaryform System.Windows.Forms .. 

I ~;" It DJ liD 7il 
HelpRequested . 
l01e\1odeCh•ng 
lnputlanguage( 

Inputl~nguogc:( 

KeyDown §: KeyPress 
KeyUp 
l ayout 

Leave 

IM B 
LocationChanot T 

load 
Occurs whenever the: user ~oods the form. 

FiJtttr e G . IG 

Double-clid· on the euent to 

create an empl.y event 
procedure. 

Variables and Constants in Multiform Pr~jects 

\Vhen you have multiple fonns in a project. the scope. access level. and life
time of the vruiables and constants become a little more complicated. If you 
wru1t module-level variables to be available in more than one form in a project. 
you must declare them as Friend or Public. not as Pri vate. 

Example 

Fr iend GrandTotalDecimal As Decimal 

Scope 

Chapter 3 defined scope as the area of the program that can "see" and "use" 
the variable or constaJlt. To expaJld the defmition of scope for multiform proj
ects: Scope is the set of statements that can access a variable or constant with
out qu.alifying its name. For example. if a variable is declared as Friend or 
Public in one form, another fonn can refer to that variable only by adding the 
form name (qualifying the name). 

Example 
In BillingForm: 

Friend GrandTotal Decima l As Decimal 

In SununruyForm: 

GrandTotalTextBox. Text Billi ngForm. GrandTota l Dec ima l .ToString( "C") 

263 



264 v S l l ,\ I. C Multiform Projects 

Access Level 

Access level specifies the pennission required to make use of the variable or 
constant. For example, the hands-on project for Chapter 5 used module-level 
variables for the grand total and number of customers. Those variables were de
clared as Privat e. so they were available only to the one form. If you want to 
display the summaq infonnation on another form. which would look more pro· 
fessional, you must allow the summary fonn permission to use the variables. To 
make a variable available to other fonns, you must use either Public or 
Friend in place of Private. Use Frie nd to allow other forms in your project 
to access the variable: use Public to allow all other programs to access the 
va1iables (generally considered a poor practice). 

Note: The true access level of Friend is the entire assembly. rather than 
the entire project. An assembly can consist of multiple projects. In this text. all 
applications consist of a single project. so it makes sense to think of Friend ac
cess as projectwide. 

By default, variables and constants are Private. You can use the following 
keywords to set the access level of module-level variables: 

Privat e Available only in the class (fonn) in which it is declared. 
Friend Available to all classes (forms) in the assembly (project). 
Public Available to all code in this project or any other. 

Examples 

Private Runni ngcountinteger As Integer ' Accessible only by this form . 
Friend Total Oecimal As Decimal ' Accessible by all forms in this project . 
Publi c DailyCountinteger As Integer ' Accessible by any code in any project . 

You can use the access-level keywords only for module-level variables. Local 
and block-level variables are declared inside a procedure and are always private. 

Lifetime 

Lifetime is the period of time that a variable or constant remains in existence. 
Recall from Chapter 3 that local and block variables exist only as long as that 
procedure executes and are re-created for each execution of the procedure. 
Module and namespace variables exist as long as the application runs. 

Static Varinbles 

Another statement you can use to declare local and block-level variables is the 
Static statement. Static variables retain their value for the Hfe of the project. 
rather than being reinitialized for each call to the procedure. If you need tore
tain the value in a variable for multiple calls to a procedure. such as a running 
count. declare it as St atic. However. if you need to use the variable in multi
ple procedures. declare it at the module level. (Using a static local variable is 
better thru1 using a module-level variable because it is always best to keep the 
scope of a variable as narrow as possible.) 

The Stntic State me n t- Cencral Fo rm 

~rl a ~ . Static Identifier As Data Type • 



~ 
~ .g 
f 

C II A 1• 'I' 1•: R 6 

The format of the Static statement is the same as the format of the Dim state
ment. However. Static statements can appear only inside procedures: Static 
statements never appear at the module level. 

Tb(' Static Stat('metlt-ExamplN> 

Static Personcountlnteger As Integer 
Static ReportTotalDecimal As Decimal 

26S 

~--------------------------------_. You never use access-level qualifiers on static variables s ince all static vari
ables are local. 

Namespaces 

A V.B project is automatically assigned to a namespace. which defaults to the 
name of the project. You can view and modify the project's namespace. called 
the root narnespace. in the Project Designer (Figure 6.17). 

F i g n1• e 6 . 17 

Change the project 's root namespace in the Project Designer. 

Ch06Hands0 n x 

~--------~~=-------~---=~====~=---~==~~~~~~~-=~=---~ 
Appticcbon 

Compile 

Debug 

Referenc.es 

Re>ource;: 

SeMce; 

stgning 

Secur(ty 

Publish 

I 

Ccr:ftgJtrliol'\ fLNI.:_A ______ __ ,,.,~.,., L[NI..:._A _______ , 

Assemblynamec: Root namespace: 

CI'06Hands0n 

Applicdion type; 

\t..:W.:..i.:..nd::a<.:.."".:..'.:..Fo::r.:..m.:..•:..:A!::.!pp:..:li.:..c•.:..~i.:..o.:..n _______ -...Jj I (Ddaul": koo) 

Startup form: 

[BOOngfarm 

Assembly Tnformabon.M II View Windowt Settings 

~ Enable application framewonc 

Windows application frametVOrk properties 

[lJ Enoblc. XP visool sty{c.s 

F1 Mate >ingle instance applicatio.1 

0 Save i'1y.Settings on Shutdown 

Authenti<ct:ion mo.de: 

!windows 

Shutdow n mcde: 

I When startup fo1m doses 

Splash screen: 

Ll S.!.p_l,_sh_Sc_r_ee_n_l _______________ -.JII YiewApplic11tion Events 

I 

-



266 v S U 1\ L If ,, s ( ' Mr.ltiform Projects 

D eclaration Suunna•·y fot· Val"iables and Constants 

Keyw01..:l 

Dim 

Dim 

Dim 

Private 

Friend 

Public 

Const 

Const 

Const 

Friend Const 

Static 

Locat.iou o f D echu'fttio u Statement 

Module leve l (outside of any 
procedure). 
Note: The default for Dim is the same 
as for Privat e. The Pri vat e 
keyword is preferred over Di m. 

Inside a procedure but not inside a 
block s uch as If I End If or 
Try I End Try. 

Inside a block of code s uch as 
If I En d If or Try I End Try. 

Module level. 

Module leve L 

Module leveL 

Module leve l (outside of any procedure). 

L1side a procedure. 

Inside a block. 

Module level. 

Inside a procedure 

Lifetime 

As long as the form is 
loaded. 

One execution of the 
procedlU'e. 

One execution of the 
procedure. 

As long as the form is 
loaded. 

As long as any form in 
the project is loaded. 

As long as any fom1 in 
the project is loaded. 

As long as the form is 
loaded. 

As long as the form is 
loaded. 

As long as the form is 
loaded. 

As long as the form is 
loaded. 

As long"" the form is 
loaded. 

Guidelines fo 1· D echwing Va1·iables and Constants 

When you declare variables and constants. select the location of the declara
tion carefully. These general guidelines will help you decide where to place 
declarations: 

l. Place all local declarations (Dim. Static) at the top of a procedure. Al
though VB will accept declarations placed further down in the code. 
such placement is considered a poor practice. Your code will be easier 
to read. debug. modify. and maintain if you follow d1is guideline. 

2. Use named constants for any value that doesn't change during program 
execution. It is far more clear to use named constants such as 
MAXIMUM_RATE_Decimal and COMPANY_NAME_String than to 

Accesoibility 

All procedures in the class 
(form). 

Local to that procedure. 

Only the code ";thin the block. 

All procedures in the cla8S 

(form). 

Any code in the project. To 
refer to it in MY other form, 
must qualify ..-ith form name: 
FormName. Variabl eName. 

Any code in any progam. 
HoM·ever. any references from 

outside U1e form must be 
qualified. 

Any code in the fonn. (Const 
is Pr ivat e by default.) 

Any code in the procedure. 
(Behaves Bke a read-only static 
variable.) 

Any code in the block. 
(Be haves like a read-only s tatic 
variable.) 

Any code in the project. but 
any references fron1 outside the 
form must be qualjfjed. 

Local to that procedure. 



C II ,\I> 'I' I' R 6 

place the values into your code; and if in the future the values must be 
modified. having a constant name (at ti1e top of your code) makes the task 
much easier. 

:i. Keep the scope of variables as narrow as possible. Don't declare them 
all to be module level for convenience. There are books full of hon·or 
stories about strange program bugs popping up because the value of a 
variable was changed in an unknown location. 

4. Consider making variables local if possible. 
5. If you need to keep the value of a variable for multiple executions of a 

procedure. but don't need the variable in any other procedure. make it 
Static. 

6. If you need to use a variable both in a procedure and also in a second 
procedure called by the first procedure, declare the variable as local 
and pass it as an argument. (Refer to " Passing Arguments to Proce
dures" in Chapter 5.) 

7. If you need to use a variable in multiple procedures, such as to add to 
the variable in one procedure and to display it in another. use Private 
module-level variables. 

8. Finally. if you need to use ti1e value of a variable in more than one form. 
declare it as Friend. 

For each of these situations. write the declaration statement and tell where it 
should appear. Assume the project will have multiple forms. 

l. The number of calories in a gram of fat (nine) to use in the calculations 
of a procedure. 

2. The name of the person with the highest score, which will be deter
mined in one procedure and displayed in a label on a different form. 
(fhe value must be retained for multiple executions of the procedure.) 

3. The name of the company ("Bah's Bowling Service"). whiclJ will appear 
in several forms. 

4. A total dollar amount to be calculated in one procedure of a form. added 
to a grand total in a procedure of a second form. and formatted and dis
played in a third form. 

5. A count of the number of persons entered using a single form. The 
count will be used to help calculate an average in a second fonn. 

6. The formatted version of a dollar total, which will be displayed in a text 
box in the next statement. 

Running Your Program Outside the ID~ 

Every time tllat you create and nm an application, the executable file is placed 
in the project's bin\Debug folder. You can move that .exe file to another com
puter. place the file on the system desktop. or use it as a shortcut just like any 
other application on your system. lf you copy the executable file to another 
system. you must make sure that the computer has the correct version of the 
Microsoft .NET Framework. It is possible to download the framework for free 
from the Microsoft Web site. 

267 



268 ,. S L \ I, B .\ S ( ' Multifonn ProjeciJ 

You also may want to change the icon for yom program. The default icon is 
a standard window image. To change the icon to something more interesting. 
open the Project Designer. On the Application tab. drop down the List for Icon 
(Figure 6.18) and browse to find another file with an .ico extension. Many icon 
files are in the Professional version of Visual Studio and in various folders in 
Windows; a few are in the text StudenlData. You must recompile (build) the 
project again after setting the icon. 

Sel.e~t a different icon for your projed in tlze Project Designer. 

ChOtikandsOn X 

Lcr:fiQ.J ruon; N/A 

An.emblynatre: 

CI'05Hands0n 

,tu.r ~ 

Root n.~mupac~ 

Chil6H•nds0n 

J<' irtnre 6.13 

ApplicGt.cm type: [con. 

:~w-~_~_·_M_~ __ ,m_•_A~pp~i-cr._.~ __ n ____________ ~·~l ~~~~~:~~~~h.lr~:'~n~;----------------~·J i[j 
Stertup fOI'"m' .. 

Setting; 

S.<Unty 

P!.sbllsh 

~iltng;;;-

~ EMb.le .,ppru:m:ion. fr,mt"Wotfc 

W'1n~ows application fr.ame:NOJk prop-ert~) 

0 [noble XP viluel ,tyta 

fF] Matt single insunce app~<ctioo 

Rl s-My.S.ttsngs on Sh"tdown 

Authenti<~~XI mode: 

lwinctows 

Shutdown rrode: 

I When st.artuo form closes 

I Spl.,hxsoc:lll 

. : 

Your Hands-On Programming Example 

Modify the hands-on project from Chapter 5 to include multiple forms. This 
version of the project requires four fonns: BillingF'orm, AboutFonn. Splash
Form. and SummaryFonn. 

Note: Follow the instructions in Chapter 5. " Basing a New Project on an 
Existing Project," or Appendix C. ·'Copy and Move a Project." to begin this 
l1ands-on example. 

• BillingFonn: Use the BillingFOim form from Chapter 5 with a few modifi
cations to clisplay output on new forms rather than in message boxes. 



C II 1\ I'TE R 

• Summary Form: Create a form Kith tJ1e appropriate labels and text boxes for 
the summary information. 

• AboutForm: Replace the MessageBox for the Help I About menu item from 
Chapter 5 with a new form using the About Box template. 

SplashF'om1: Create a splash screen using tlle plruh Screen te mplate. 

Rt'vie"ing the P roject Requirements from Chnpte r 5 For the l3illingForm. the 
user enters the number of items. selects the coffee type from mclio buttons. and 
selects tlle check box for taxable items. The price for each coffee is calc ulated 
according to these prices: 

Cappuccino 2.00 

2.25 

Latte 1.75 

lee<! (either) 2.50 

The Calculate Selection button calc ulates and displays the amount due for 
each ite m. adds t11e curre nt ite m to the order. and calculates and displays the 
order infonnation in text boxes. The Clear for Next Item button clears the selec
tions and amow1t for the s ingle item. 

The New Order menu item clears the bill for the current customer and adds 
to the totals for the summary. The Summary menu item s hows the summary form 
that displays the total of all orders. the average sale amount per cus tomer, and 
the number of customers. 

The Edit menu contains options that duplicate tlle Calculate and Clear but
tons. The Font and Color options change the contents of the s ubtota l. tax, and 
total text boxes. 

The About selection on tlle Help menu displays the About box. which con
tains informa tion about the program. 

f ile ~dit 
.t:tew Order 
,Summary 
EKit 

lllanuiu~ tlw Projt••·t 

~alculate Selection 
Clear l tem 

font .. . 
C.Q.lor .. . 

Help 
About 

Sketch the four forms (Figure 6.19). The users approve and si£n off the forms 
as meeting their needs. 

Plan the Objects and Properties for t11e Billing Fonn See the hands~onexercise 
for Chapter 5 for tlle objects and properties of BillingForrn. which are un~ 
changed for this project. 

Plan the Procedures for the Billing Form Most of Lhe procedures for Billing
Form are unchanged from the project in Chapter 5. You must change tlle ac
cessibili ty of the variables that mu.st be displayed on tlle s ummary form: you 

269 



270 S l \ L It \ .. C Multifom• Proj<c~ 

The planning sketches oftheformsfar the hands-on programming example. a the billing form: b. the summary form: c. the 
splash form; and d. tl1e About box. 

Bllllngform ............. 
Quan'UtyT~Box 

I 

TaxCheckBox 

Cll lcu i~Button 

ClearButton 
(dlsatned) 

ltemAmountTextBox 

.. 

.Elle Edtt t!elp I Order Information 
Quantity 1 .. I 

+ -~0 Ta~ut? 

-r-r l falculaU 
SelectiQ!l 

. l ~learfor 
1

1 
Next Item 

- I-~ Item Amount ...1--l 

~ -
Sui1Totsl I 
Tax (If Takeout) I 
Total I 

Summaryform 

Coffee Selections 

® C<!ppucclno 

0 Espres~ 
OL~U 
0 lced Latte 

I 0 Iced Caj?pucclno .._ 

I 
I 
I 

i+-1-

r-

1.-f-

GroupBox1 
GroupBox2 
CappucclnoRadloButton 

EspressoRadiOButton 
LatURadloButton 
Iced LatURadloButton 

lcedCappucclnoRadloButton 

GroupBox3 

Sui1TotaiTextBox 

TaxTextBox 

TotaiTextBox 

R 'n R. for R.eadl~ and Refreshment 

b. 

Total Sales 

Average Sales 

Numl:>er of Customer& 

~--~~t-----f- TotaiSalesTextBox 

~~~~::====t AverngeSalesTextBox ~ Numl:>erCustomersTextBox 

I QO&e 1~----+- CloseBut ton

also must change the variable used for the average (AverageDecimal) to a
module-level Frie nd variable.

O hje c l Procedu1·e

SummaryTooiStripMen ullem Click

AbouiTooiSirip Me nullem Click

AcHons

If curren l order not added lo totals

Call NewOrclerToolStripMenultem_ Ciic k.

Calculate the average (in a Friend variable).

Display the summary form.

Dis play the About Box form.

C ll i\ 1°T t: R

c.

d.

Title

VerGion

Cop:yrlght

DeGCrlptlon

R 'n R for Reading and
RefrtGhment

VerGion

Copyright

Plan the Objects and Properties for the SummaJ) Form

O bject Pro JJerty Selling

Summary Form Name SummaryFonn
Text R 'n R Billing Summary

AcceptBullon CloseButton

Labell N•me Wbell
Text Total Sales

TotaiSalesTextBo.' Name 1'otalSalesTe.,tBox
Read Only True
TabStop F..Jse

LnLel2 Na.me Wbel2
Text Average Sale!!

AverageSalesTe.,tBox Name AverageSalesTextBox

Read Only True
TabSiop F•lse

l.abel3 Name Wbel3
Text Number of Cu.tomers

271

t' ij!are 6 . 19

(continued)

QK

272 ,. S l \ L It \ s

O bject

N umlx:rCuslomersTextBox

Close Button

P ropcr·l y

Nome
Read Only
TohS top

Name

Text

Plan the Procedul't'" for the Summary Form

O bject P1·oce d m·e AcUons

Setting

Numlx:rCus tomell!Text Box
True

Faloe

CloseButton
&Cicse

t: Multifoml Project.

Summary Form Ac tivated A•sign values from billing form to text boxes

Close 8utton Clic k Close this fom1

Plan the Objects and Prop>'rtie' for the "plash Screen Use the Splash Screen
template and consider changing the graphic. Fill in the Assembly Information in
the Project Designer so that the screen fields are filled when the form displays.

Plan the Procedures for the Splash Screen If you use the Splash Screen tem
plate. you don't need to write any code for the fonn.

Plan the Objects and Propertie' for the About Box Use the About Box template
and consider changing the graphic. Fill in the Assembly Information in the
Project Designer so that the screen fields are filled when the form displays.

Plan I he Procedures for the About Box lf you use the About Box template. you
don' t need to write any code for the form.

Plan the Project Properties Changes
Splash Screen Set to the name of your splash screen form in the Project
Designer.
A"sembly b1fonnatio n Fill in fields to display in the splash screen and the
About box.

\':rite the Project Follow the instructions in Chapter 5. "Basing a New Project
on an Exis ting Project." or Appendix C. "Copy and Move a Project." to base
this project on Ch05Hands0n. lf you have not written Ch05Hands0n. do so
first before beginning this project.

Follow the sketches in Figure 6.19 to create the forms. Use the Splash
Screen and About Box templates. Figure 6.20 shows the completed forms.

Set the properties of each of the objects according to your plan.

Write the code. Working from the pseudocode. write each procedure.

Make sure to change the module-level variables needed for the summary
form to Friend access level. Move the declaration of AverageDecimal from
the local level to the module level.

When you complete the code. use a variety of data to thoroughly lest the
project.

C ll i\ 11 T E R

~ R 'n R for Re.oding 1n Ref:eshment

~ { clit l::!clp

..

Ordellrtonnaliotl
Quarnly -, -

LJ Ta~eot.t?

!;_alculale
Selection

len !~mount

SubTotal

Tax (!TaiGotJ)

Total

•} R 'n R 8Jiiog Sunmo.y

4>

R 'n R for Reading and Refreshment

b.

TQ(cl Sol~

Alerar;,e Sales

JUnber ai Custon>efS

Coffee SeleaJora

0 Catloua:ino

! E!P<eS!Q

U(te

) !ced Ui:te

.) Iced C.:ep..ctino

c .

Ven;sot"~ l 000

COf¥1!1'11 s 2010

R'nRfa< RA<i'9ondAI!f"""""'

Cdcu1* ~obs fw R 'h R For fbd'rg end
Aef<e:hrcnt

Fl!;!are 6 . 20

The completed fonm for the
han<h-on programming
example. a. the billing form:

213

b. the .1ummary form: c. the
3plmh screen: and d. the About
box.

R 'n R for Reading
and Refreshment

\l@fSI!cn 100

CoDYnohl02010

274 S l \ L n ' "
C Multiform Proj<ctJ

The Project Cotliug Solutlo u

llillingFonn

' Program Name :
'Programmer :
' Date:
' Description:

Ch06Hands0n
Bradl ey/Millspaugh
June 2010
This project calculates the amount due
based on the customer selection I

and accumulates summary data for the day.
Incorporates menus and common dialog boxes,
which allow the user to change the font and
color of controls.
This version of the project includes a splash form,
a summary form, and an About box form.

' Folder:
' Form:

Ch06Hands0n
BillingForm

Public Class BillingForm
' Declare projectwide variables.
Friend GrandTotalDecimal, AverageDecimal As Decimal
Friend CustomerCountlnteger As Integer

' Declare module- level variables.
Private SubTotalDecimal, TotalDecimal As Decimal

' Declare constants.
Const TAX_RATE_Decimal As Decimal = O.OBD
Const CAPPUCCINO_PRICE_Decimal As Decimal = 2D
Const ESPRESSO_PRICE_Decimal As Decimal = 2.25D
Const LATTE_PRICE_Decimal As Decimal= 1.75D
Const ICED_PRICE_Decimal As Decimal = 2.5D

Private Sub CalculateButton_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles CalculateButton.Click,
CalculateSelectionToolStripMenuitem.Click

' Calculate and display the current amounts and add t o totals.
Dim PriceDecimal, TaxDecimal, ItemAmountDecimal As Decimal
Dim Ouantityinteger As Integer

' Find the price.
If CappuccinoRadioButton.Checked Then

PriceDecimal = CAPPUCCINO_PRICE_Decimal
Elseif EspressoRadioButton.Checked Then

PriceDecimal = ESPRESSO_PRICE_Decimal
Elseif LatteRadioButton.Ohecked Then

PriceDecimal = LATTE_PRICE_Decimal
Elseif IcedCappuccinoRadioButton .Checked Or

IcedlatteRadioButton.Checked Then
PriceDecimal ICED_PRICE_Decimal

End If

' Calculate the extended price and add to order total.
Try

Ouantityinteger = Integer . Parse(OuantityTextBox.Text)
ltemAmountDecimal = PriceDecimal * Ouantityinteger
SubTotalDecimal += ItemAmountDecimal
If TaxCheckBox .Checked Then

' Call a function procedure .
TaxDecimal = FindTax(SubTotalDecimal)

C U A P T ~ R 6

Else
TaxDecimal = 0

End If
TotalDecimal = SubTotalDecimal + TaxDecimal
ItemAmountTextBox.Text = ItemArnountDecimal.ToString ('C')
SubTotalTextBox.Text = SubTotalDecimal.ToString('N")
TaxTextBox.Text = TaxDecimal.ToString("N")
TotalTextBox.Text = TotalOecimal. ToString("C')
' Allow change for new order only.
TaxCheckBox.Enabled = False
' Allow Clear after an order is begun.
ClearButton.Enabled = True
ClearltemToolStripMenultem.Enabled = True
NewOrderToolStripMenultem.Enabled = True

Catch OuantityException As FormatException
MessageBox.Show(' Ouantity must be numeric. ' , "Data entry error',

UessageBoxButtons.OK, MessageBoxlcon.lnformation)
With OuantityTextBox

.Focus()

.SelectAll()
End With

End Try
End Sub

Private Function FindTax(ByVal AmountDecimal As Decimal) As Decimal
' Calculate the sales tax.

Return AmountDecimal * TAX_RATE_Decimal
End Function

Private Sub ClearButton_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles ClearButton.Click,
ClearltemToolStripMenultem.Click

' Clear the appropriate controls .

CappuccinoRadioButton.Checked = True
ItemAmountTextBox.Clear()
With OuantityTextBox

.Clear()

.Focus()
End With

End Sub

Private Sub NewOrderToolStripMenultem_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles NewOrderToolStripMenultem.Click

' Clear the current order and add to t he totals.
Dim ResponseDialogResult As DialogResult
Dim MessageString As String

' Confirm clear of the current order .
MessageString = ' Clear the current order figures?'
ResponseDialogResult = MessageBox.Show(MessageString, "Clear Order' ,

MessageBoxButtons.YesNo, MessageBoxicon .Ouestion,
MessageBoxOefaultButton .Button2)

If ResponseDialogResult = DialogResult .Yes Then
' User said Yes; clear the screen fields.
ClearButton_Click(sender, e)
SubTotalTextBox .Text =
TaxTextBox.Text =
TotalTextBox.Text = ••

275

276 \ S l \ L It .\ .. £ Multifom l Project.

' Add to the totals only if not a new order/ customer .
If SubTotalDecimal <> 0 Then

GrandTotalDecimal += TotalDecimal
CustomerCountinteger += 1
' Reset totals for the next customer .
SubTotalDecimal = 0
TotalDecimal 0

End If

' Clear the appropriate display items and enable the check box.
With TaxCheckBox

.Enabled True

. Checked = False
End With
Cl earButton.Enabl ed = False
ClearitemToolStripMenu!tem.Enabled = False
NewOrderToolStripMenuitem.Enabled = False

End If
End Sub

Private Sub SummaryTool StripMenuitem_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles SummaryToolStripMenultem.Click

' Calculate the average and display the totals .
Dim MessageString As String

If TotalDecimal <> 0 Then
' Make sure the last order is counted .
NewOrderToolStripMenultem_Cli~k(sender, e)
' Pass incoming arguments to the called procedure.

End If

If CustomerCountinteger > 0 Then
' Calculate the average.
AverageDecimal = GrandTotalDecimal I CustomerCountinteger
SummaryForm. ShowD1al og()

Else
MessageString = "No sales data to summarize . "
MessageBox.Show(MessageString, 'Coffee Sales Summary' , MessageBoxButtons .OK,

MessageBox!con.Information)
End If

End Sub

Private Sub ExitToolStripMenuitem_Click(ByVal sender As System .Object,
ByVal e As System.EventArgs) Handles ExitToolStripMenultem.Click

' Terminate the project .

Me.Close()
End Sub

Private Sub AboutToolStripMenultem_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles AboutToolStripMenultem.Click

' Display the About Box f orm.

AboutBox1.ShowDialog()
End Sub

Private Sub FontToolStripMenultem_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles FontToolStripMenultem.Click

' Allow the user to select a new font for the summary totals.

With FontDialog1
.Font = Me.SubTotalTextBox.Font
.ShowDialog()

G

SubTotalTextBox .Font = .Font
TaxTextBox.Font = .Font
TotalTextBox.Font = .Font

End With
End Sub

Private Sub ColorToolStripMenuitem_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles ColorToolStripMenuitem.Click

' Allow the user to select a new color for the summary totals.

With Color0ialog1
.Color = SubTotalTextBox.ForeColor
. ShowDialog ()
SubTotalTextBox.ForeColor = .Color
TaxTextBox.ForeColor = .Color
TotalTextBox.ForeColor = .Color

End With
End Sub

End Class

Summary Form

' Program Name:
'Programmer:
'Date:
'Oeser iption:

' Folder:
'Form:

Ch06HandsOn
Bradley/Millspaugh
June 2010
This project calculates the amount due
based on the customer selection
and accumulates summary data for the day.
Incorporates menus and common dialog boxes,
which allow the user to change the font and
color of controls.
This form displays the sumrrary totals.
Ch06HandsOn
sunrnaryForm

Public Class SummaryForm

Private Sub summaryForm_Activated(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles MyBase.Activated

' Get the data.

TotalSalesTextBox.Text = BillingForm.GrandTotalOecimal.ToString(' C')
AverageSalesTextBox.Text = BillingForm.AverageOecimal.ToString(' C')
NumbercustomersTextBox.Text = BillingForm.customercountinteger .ToString()

End Sub

Private Sub CloseButton_Click(ByVal sender As System.Object,
ByVal e As System .EventArgs) Handles CloseButton .Click

' Close this summary form .

Me. Hide()
End Sub

End Class

SplashScreen
Note: All of the code is generated by the template.

About Box
Note: All of U1e About Box code is generated by the template.

277

278 \ s l .\ I. u ,\ s t ' Muilifom• Project.

l. Projecl.s may need more tlum one form: there is virtually no limit to the
number of fonns that can be used within a single project.

2. Forms used for one project can be added to another project. Forms also can
be removed from a project.

3. An About box. which typically contains infonnation about the version of an
application and the programmer and copyrights. may be created by adding
a new form. VB has an About Box template fonn that you can use to create
an About box.

4. A s plash screen may be displayed while a program loads. VB provides a
Splash Screen template that you can use to create a new s plash screen fonn.

5 . Both the Splash Screen and About Box templates automatically insert in

fonnation that you can enter in the Assembly Information dialog box.
6. The Show (modeless) and ShowOialog (modal) methods are used to display

a form on tl1e screen.

7. A fonn displayed as modal requires a response from the user: it must be
closed or unloaded before any execution continues. \'\Then a form is displayed
as modeless. tl1e user can switch to another fom1 witl1out closing the fom1.

8. The Form . Hide me thod hides the fonn but keeps it loaded in memory: the
Form. Close meiliod removes a modeless fonn from memory: the Form. Close
method for a modal fom1 actually hides the form rather than closing it.

9. The Form. Load event occurs once for each loaded form; the Form.
Activated event can occur multiple times-each time the form is shown.

10. You can write event procedures for any of the form's events.
11. Variables that are visible to all forms in a project are declared using the keyword

Friend. The Private keyword sets ilie aocess level to tile current f01m. and the
Public keyword makes the variable available to all classes in aU programs.

l2 . To refer to a Friend variable in a different form. use the form name. a pe-

riod. and ilie variable name.
13. Variables declared with the keyword Static retain their values for multi

ple calls to the procedure in which tl1ey are decla red. Static variables are
local or block-level.

14 . Each project has a default namespace. called the root rwmespace. You can
c hange the root namespace for a VB project in the Project Designer. which
you display ei ther by double-clic king My Proj9ct in the Solution Explorer or
selecting Project I Proj9ctNsme Properties.

15. You can run a project outside the VS IDE by moving and nmning the .exe file.

TI1e target machine must have the correct version of the .NET Framework
installed.

C ll i\ I' TE I&

accesslevel 264
About box 253
assembly infom1ation 255
Friend 264
Hide method 260
modal 259
rnodeless 259
namespace 265

6

Private 264
PUbliC 264
scope 263
Show method 259
ShowDialog method 259
splash screen 256
startup form 250
Static 264

l. List some of the items generally found in an About box.
2. What is the purpose of a splash screen?
3. II'!Jat is the term used for the first form to display in a project?
4. How can you choose a diiTerent form as the startup form after the project

bas been created?
5. Explain how to include an existing form in a new project.
6. II'!Jat is the assembly information? How can you change the information?

How can you use the information?
7. Explain the difference between modal and nwdelesJ.
8. How does the snow method differ [rom the SllowDHlog method?
9. Explain when the form's w ad event and Activated event occur. ln which

event procedure should you place code to initialize screen fields? Is the
answer always the same?

10. Explain the differences between Public. Private. and Friend access
levels.

ll. \\'lull is a static variable? When would it be useful!
12. How can you run a compiled VB program outside the Visual Studio JOE?

Note: For help in basing a new project on an existing project. see "Copy and
Move a Project" in Appendix C.

6.1 Modify Programming Exercise 5.5 (the flag viewer) to include a splash
screen and an About box.
Menw

file
E~it

Qountry
J.!.nited States
~an ada
J.apan
.MeXiCO

Q.isplay
!itle
~ountry Name
f.rogranuner

Help
AIJOUt

6.2 Create a project that will produce a summary of the amounts due for Pat's
Auto Repair Shop. D isplay a splash screen first; then display the main fonn.
~·hich has only the menus.lf you 1~ish. you can add a graphic to the form.

279

280

Main. Form Menw

f.rocess
J.ob Information

Job Information

s l ' \ •.

!felp
About

n \ s

TI1e Job Information menu item will display the Job Information form.

C Multiform Projecu

Job Information Form The Job Lnfonnation form must have text boxes
for the user to enter the job number, customer name. amount charged for
pa1ts . and the hours of labor. Include labels and text boxes for Parts.
Labor. Subtotal. Sales Tax. and Total.

Include buttons for Calculate, Clear. and OK.

The Calculate button finds the charges and displays tl1em in controls.
The tax rate and the hourly labor charge should be set up as named con
stants so tllat they can be easily modified if either changes. Current
charges are $50 per hour for labor and 8 percent (.08) for the sales lax
rate. Sales lax is charged only on parts. not on labor.

The Clear button clears the text boxes and re~ets the focus in the first
text box.

The OK button closes tlle Job Information form and displays the main
form.

6.3 Modify Programming Exercise 6.2 so that summary infonnal"ion is main
tained for the total doUar amount for parts. labor. sales tax. and total for
all customers.

Add a Summary menu item under the Process menu with a separator
bar between the two menu items. When the user selects the Summary

menu item. display the summary infom1ation in a ummary form. The
Summary form should have an OK button that closes the Summary form
and returns the user to tlle main fonn.

6.4 A battle is raging over the comparative taste of Prune Punch and Apple
Ade. Each taste tester rates the t11•o drinks on a scale of I to 10 (10 being
best). The proof of the superiority of one over the other will be tl1e aver
age score for the two drinks.

Display a splash screen and then the main fom1. The main fonn has
only the menus: you can add a graphic if you wish.
Main Form Men.UJ

file
!few Test er
,S.ummary

New Tester Menrt Item

!felp
About

The New Tester menu item displays a form that inputs the test results for
each drink. The form contains an OK button and a Close button.

When the user c licks the OK button. add the score for each type of
drink to tl1e drink's total. clear the text boxes. and reset the focus. Leave
the fom1 on the screen in case the next teste.r is ready to enter scores . If
eitl1er score is blank when tl!e OK button is pressed. display a message in
a message box and reset the focus to tile box for the missing data.

C ll t\1' 1'E II

'lne Close button retums to the main form without performing any cal
culation.

Summary Menu ft£m.

'lne Summary item displays a form that contains the current results of the
ta~te lest. Tt should display the winner. the total number of taste testers .
and the average rating for each drink. The f01m contains an OK bullon
that returns to the main form. (TI1e user will be able to display the sum
mary at any time and as often as desired.)

Abom Bo:r
The About box should display information about the program and the pro
grammer. Include an OK button that returns the use r to the main form.

6.5 Modify Programming Exercise 5.1 (piecework pay) to add a Splash form.
an About box. and a Summary form. Add a s logan and a logo that the user
can hide or display from menu choices on the main fonn.

Splash Form
The Splash form mus t appear when the project begins execution. Jt
should display the project name. programmer name. and at least one
graphic.

Abom Bo:r
The About box should have the program name. version number. and pro
grammer name, as weU as a graphic and an OK button. It must be dis-
1-'layoo as Jltuual.

Summary Form
'n1e Summary fonn should display the summary information. Note that in
Chapter 5 the s ummary information was dis played in a message box. You
must remove the message box and display the summary information only
on the Summary form.

Slogan. and Logo
Make up a slogan for the company. such as "We're Number One" or "We
Do Chicken Right.'' ror the logo. you can use an icon or any graphic you
have available. or create one yourself with a draw or paint program.

TI1e Slogan and Logo menu choices mus t toggle and display a check
mark when selected. For example. when the s logan is displayed. the
Slogan menu item is checked. If the user selects the Slogan command
again. hide the slogan and uncheck the menu item. The Slogan and Logo
conunands operate independently: that is. the user may select either.
both. or neither item.

When the project begins. the slogan and logo must both be displayed
on the main form and their menu items appear checked.

281

282 \ S l \ L IC \ S t ' Multiform Project.

VB ~lall Ortler

Modify the VB Mail Order project from Chapter 5 to
include a splash screen. an About box. and a summary
form. Include an image on both the Splash fom1 and
the About box.

VB Auto l;erater

Create a project tha t uses four fonns . Add the form
from the Chapter 5 VB Auto case study and create a
main fonn. a splash screen. and an About box.
Main. Form: The main form should display a large la
bel with the 1\'ords: "Valley Boulevard Auto Center -
Meeting aU your vehicle's needs" and appropriate
image(s).

Main Form Menus

Eile
Input .S.ale
E~it

.Edit
.C.olor .. .
font .. .

Help
About

The Color and Font items should a llo11· the user to
change the large label on the form.

111e Input Sale item should display the form from
Chapter S.

VIdeo Bonanza

Modify the Video Bonanza project from Chapter 5 to
separate t11e project into multiple forms. Jnclude a
swnmary form. a s plash screen. and an About box.

Very Very BoarciH

Modify the Very Very Boards project from Chapter 5 to
separate t11e project into multiple forms. include a
summary form. a s plash screen, and an About box.

Lists, Loops, and
Printing

I . Create and use list boxes and combo boxes.

2. Differentiate among the available types of combo boxes.

3 . Enter items into lis t boxes using the Items collection in the Properties

window.

4. Add and remove items in a list at run time.

5. Determine which item in a lis t is selected.

G. Use the ltems.Count property to determine the number of items in a

list.

7 . Dis play a selected item from a list.

8. Use Dot Loops and For /Next statements to iterate thro~ a loop.

9 . Tenninate a loop with the Exit statement.

Skip to the next ite ration of a loop by using the Continue statement.

Send information to the printer or the Print Preview window using the

284 v S l l ,\ I. C Li.rs. Loops. ami Pru1ting

Often you will want to offer the user a list of items from which to choose, which
can both simplify data entry and eliminate eJTors. You can use the Windows
ListBox and ComboBox controls to display lists on a fonn. You may choose to
add items to a list during design time. during run time. or perhaps a combina
tion of the two. Several styles of I ist boxes are available: the style you use is de
termined by design and space considerations as well as by whether you will
allow users to add items to the list.

List Boxes and Combo Boxes

Both list boxes and combo boxes allow you to have a list of items fn>m which the
user can make a selection. Figure 7.1 shows the toolbox tools for creating the
conb·ols; Figme 7.2 shows several types of list boxes and combo boxes, includ
ing simple list boxes . simple combo boxes. drop-down combo boxes.
and drop-down lists. The list boxes on the left of the fotm in Figure 7.2 are all
created witJ1 the list box tool; the boxes on the right of the form are created with
the combo box tool. Notice the three distinct styles of combo boxes.

Lisi.Box controls and Combo Box couu·ols have most of the same prop
erties and operate in a similarfashion. One exception is that a combo box con
trol has a DropOownStyle property. which determines whether or not the list
box also has a text box for user entry and whetl1er or not the list will drop down
(refer to Figure 7.2).

List boxes and combo boxes have a great feature. If the box is too small to
display all the items in the list. a scroll bar automatically appears. You do not
have to be concerned with the location of the scroll box in the scroll bar: the
~<r.rolling j,. hancilP.ci mJt.omatirally.

\Vhen you add a list control to a form. choose the style according to the
space you have available and how you want the box to operate. Do you want the
user to select from an existing list? If so, use a simple list box or a drop-down
list (ComboBox DropDownStyle = DropOownList). Do you want the user to be
able to type a new entry if necessary? In this case. use one of the two styles with

Toolbox • ~ X

~ All Windows forms
4 Common Controls

1:

~ Pointer

@ Button

0 CheckBox

lrn CheckedlistSox

ComhoBox~~ Combo3ox

'&I Date TimePicker

A L;:~bcl

A Linklabel

·~"~1~
ListBox

l!':!~ ListView ~!!

[!::] Ma;kedT extBox

m MonthCalendar

:;;;1 Notifylcon

F i g u re 7. 1

Use the listBox tool and
Combo Box tool to create list
boxes and combo boxes on your
forms.

C II A 1• 'I' " ll 7

Figure 7.2

Various styles of list boxes and combo boxes.

a.SJ List Boxes and Combo Boxes l' c::~ H21I...G-l

List boxes

b~OOdoo I 3
Turkey

v : Bananas -
Cookies .

p Orange Juioe . Craef-ers

rE
·1 Soda '\" Cheese

Plltato chips ~Cantaloupe [}ip
Cherries Cake '\"

Kiwi
Peaches
Plums I _:j
Strawberr~s

an added text box: the drop-down combo box (DropDownStyle =Drop Down) or
the simple combo box (DropDownStyle = Simple).

At design time, the behavior of list boxes and combo boxes differs. For list
boxes. the designer displays the Name propetty in the control: for combo boxes.
the Text property displays. which is blank by default. Don't spend any time try
ing to make a list box appear empty during design time; the box will appear
empty at run time. Combo boxes have a Text property. which you can set at de
sign time if you wish. List boxes also have a Text property, but you can access
it only at run time.

T he Items CoUccl:ion

The list of items that displays in a list box or combo box is a coUectiou.
Collections are objects that have properties and methods to allow you to add
items, remove items. refer to individual elements. count the items, and clear
the collection. In the sections that follow. you 11illleam to maintain and refer to
the Items collection.

You can refer to the items in a collection by an index, which is zero based.
For example. if a collection holds 10 items. the indexes to refer to the items
range from 0 to 9. To refer to the first item in the Items collection. use Items(O).

FiUing a List

You can use several methods to fill the Items collection of a list box and combo

box. If you know the I ist contents at design time and the list never changes. you
can define the Items collection in the Properties window. If you must add
items to the list during program execution, you will use the Items .Add or
I terns . Insert method in an event procedure. In Chapter 11 you will learn to

Drop-down combo

box (User can type i n
text box at the top.)

Simple combo box
(User can type in
text box at the top.)

Drop-down list

(No text box at top~
user cannot type new

text at mn time.)

285

286 v S l l ,\ L (" Lists. Loops, and Printing

fil I a list from a data file on disk. This technique allows the list contents to vary
from one run to the next.

Using the P1·operties Window

The Ite ms prope1·t y. which is a collection, holds the list of items for a list box
or combo box. To define the ftems collection at design time. select the control
and scroll the Properties aindow to the Items prope1ty (Figure 7.3). Click on
the ellipses button to open the String Collection Editor (Figure 7 .4) and type
your list items. ending each line with the Enter key. Click OK when finished.
You can open the editor again to modify the list. if you wish.

Properties • !I X
FruitUstBox System.\.Vindows.Forms.Li •

~: [~ j I ii!~ I;/ 1,;1
lntegraiHeight True

Item Height 14

l!l!nf (Collection)
~ location 57, 1 .42

LockEd f alse

~ Margin 3, 3, 3, 3
~ Ma:(imu m Sh:e 0, 0

~ MioimumSize 0, 0

Modifiers Public
MultiColumn False

RightToldt No

_.Sc.mUAiw.a~~isi Eals
Items
The items in the li;t box

String CoiiKtion £ditor

Ento;rthe itring~ in the co!li'::t1on (one Fer; line):

Cmtaloupe
Chc:nies
Kiw1
Pe<tche!:
Plums
Strowb:n ie;l

Using the ltems.Ad£L 1\'letbod

A

~~

E
-

- Open the String
Collection Editor
by clicking here

0~ II Cancel

To add an item to a list at nm time. use the Items .Add m et-bod. You can
choose to add a variable. a constant, the contents of the lext box at the top of a
combo box. or the Text property of another control.

Select the Items property of a
list box to enter the list items.

Fi g n••e- 7 . 4

In the String Collection Editor
that opens. type each list item
and press Enter to go to the

next line.

C II A 1• 'I' " ll 7

The h ems.Atld l\1etltod-General Form

Q'~l 5 ~ Object.Items .Add(ItemValue)

:r
~

Item Value is the string value to add to the list. If the value is a string literal, en
close it in quotation marks.

TI1e new item generally goes at the end of the list. However. you can alter
the placement by setting the control's So !'led pt·opel·ty to True. Then the new
item will be placed alphabetically in the list.

' l11e ltems.Add 1\'lethod-Ex:uuples

SchoolslistBox . Items.Add("Harvard ")
SchoolslistBox . Items .Add ("Stanford")
SchoolsListBox . Items .Add(SchoolsTextBox .Text)
MajorsComboBox.Items .Add(MajorsComboBox .Text)
MajorsComboBox . Items .Add(MajorString)

When the user types a new value in the text box p01tion of a combo box, that
item is not automatically added to the list. If you want to add the newly entered
text to the list. use the Items .Add method:

CoffeecomboBox.Items .Add(CoffeeComboBox.Text)

or the preferable form:

With CoffeecomboBox
.Items .Add(.Text)

End With

You also can add the contents of a text box to a list box.

SchoolsListBox . Items .Add(SchoolTextBox .Text)

Using the ltems.J nsert Metbotl

You can choose the location for a new item added to the list. In the
Items. Insert metho d. you specify the index position for the new item.

The ltems.l usel'l l\fetbod-Ceneral Fo1·m

Object . Items . Insert(IndexPosition, ItemValue)

The index position is zero based. To insert a new item in the first posit ion. use
index position = 0.

The ltems.l nsert Method-Examples

SchoolslistBox. Items . Insert (0, "Harvard ")
MajorscomboBox . Items.Insert(1, MajorscomboBox . Text)

287

f

~-----------------------------------

288 v S l l ,\ I. C Lists. Loops. and Printing

liyou choose the index position of an item using the Insert method. do not set
the list control's Sorted property to True. A sorted list is always sorted into al
phabetic order. regardless of any other order that you request.

T he Selec tedlndex P•·ope1·ty

When a project is numing and the user selects (highlights) an item from the
list. the index number of that item is stored in d1e Selected fm lex pt·opet·ty
of the list box. Recall that the index of the first item iJ1 the list is 0. If no list
item is selected. the Selectedi ndex propet1y is set to negative 1 (- 1).

You can use d1e Selectedindex propet1y to select an item iJ1 the list or de
select all items in code.

Examples

' Select the fourth item in l i st.
CoffeeTypesListBox.Selectedindex 3

' Deselect all items in list .
CoffeeTypesListBox .Selectedindex = - 1

T he Ite ms.Count Prope11.y

You can use the Count property of the Items collection to determine the num
ber of items in the list. We will use the h e ms.Co mll pt·opet·ty later in this
chapter to process each element in the list. Items. Count is also handy when you
need to display the count at some point in your project.

Remember: Items. Count is always one more than the highest possible Se
lectedlndex. since the mdexes begm '~ith 0. For example. if there are five items
in a list. Items. Count is 5 and the highest iJ1dex is 4 (Figure 7.5).

I tenu;.Selecletlluclex ltems.Cotwt • 5

(0) Harvard
(1) Stanford

(2) University of California

(3) Miami University

(4) University of New York

Examples

Totalltemslnteger = ItemsListBox . Items .count
MessageBox .Show("The number of items in the list is " &

ItemsListBox . Items .Count .ToString())

Re fe 1·encing the h ems Collection

If you need to display one item from a list. you can refer to one element of the
Items collection. The Items collection of a list box or combo box holds the text
of aU list elements. You specify which element you want by incluclmg an index.

Figur t> 7.5

For a list offwe items. the
indexes range from 0 to 4.

C II A 1• 'I' " ll 7

This technique can be useful if you need to display a list item in a label or on
another form. Later in this chapter we will use the Items property to send the
contents of the list box to the printer.

Using tbe h ems Co!Jectiou- Ceneral Form

Object . Items(IndexPosition) (= Value)

The index of the first list element is 0, so the highest index is Items.Cotmt - l.
Note: If you use an lnde:tPosition less than 0 or greater than l tems.Count

- L an exception will be thrown.
You can retrieve the value of a list element or set an element to a new value.

Using tbe h ems Co!Jection-Examples

SchoolslistBox . Items(5) = "Uni ver sity of Califor ni a "
Major label .Text = MajorsComboBox . Items(Indexinteger)
Sel ectedMajorlabel. Text = MajorsComboBox .Items(MajorsComboBox .Sel ectedl ndex) .ToStri ng()
SelectedMajorlabel . Text = MajorsComboBox .Text

To refer to the cunently selected element of a list. you can combine tl1e Items
property and the Selected Index property:

SelectedFlavorString = FlavorlistBox . Items(FlavorlistBox .Selectedlndex) .ToString()

Notice the use of ToString in the previous example. When you refer to the
Text property of a list box or combo box, the Text of the cunently selected list
item displays. But tJ1e elements in a list are actually objects. so when you refer
to one element in the Items collection. you must convert to string.

You can retrieve the selected list item by refening to the Text prope1ty of
the control:

SelectedMajorLabel .Text = MajorscomboBox .Text

Note: If you assign a value to a pa1ticular item, you replace the previous
contents of that position. For example.

SchoolsListBox.Items(O) - "My School "

places "My School" into the first position, replacing whatever was there already.
It does not inse11 the item into the list or increase the value in Iterns.Cow1t.

R<'mov ing an IL<'m f1·om a List

You can remove individual items from a list either by specifYing the index of the
item or the text of the item. Use the I t erns . RemoveA t method to remove an item
by index and the Items . Re11ove method to remove by specifYing the text.

Tbc Items. Remo,·cAt Method-General Form

~rl 2 ~ Object . Items . RemoveAt(IndexPosition) - .,
"'

289

I

290 v S l l ,\ I. C Lists. Loops. and Printing

The index is required; it specifies which element to remove. The index of the first
list element is 0, and the index of the last element is Items. Count - l. If you
specify an invalid index. the system throws an lndexOutOfRange exception.

The Items. Remove At 1\'letltod-Examples

~ P---~ x ' Remove the first name from the list .
§ NamesListBox.Items .RemoveAt(O)

'"0 i ' Remove the item in position Indexlnteger .
SchoolsComboBox. Items.RemoveAt(Indexlnteger)
' Remove the currently selected item.
CoffeecomboBox . Items .RemoveAt(CoffeecomboBox .Selectedlndex)

The Ltcms. l{emovc MctJJOd- Gcncml Form

7~1 5 ~ Object . Items .Remove(TextString)

The Items . Remove method looks for the specified string in the Items collec
tion. If the string is found. it is removed: however. if it is not found. no excep
tion is generated.

•
~ P---. X ..
,g ..
"'

' Remove the specified item .
NamesListBox.Items.Remove("My School")
' Remove the matching item .
SchoolsComboBox.Items.Remove(SchoolTextBox .Text)
' Remove the currently selected item.
CoffeeCOmboBox . Items .Remove(CoffeeComboBox .Text)

When you remove the currently selected item using either the RemoveAt or Re
move method. make your code more efficient and easier to read by using the
With statement.

With CoffeecomboBox
If .Selectedlndex <> - 1 Then

. Items .RemoveAt(.Selectedindex)
'. Items.Remove(.Text)

Else

' Remove by Index .
' Alternate - remove by Text .

MessageBox . Show(" First select the coffee to remove. ", "No Selection Made " ,
MessageBoxButtons .OK, MessageBoxicon .Exclamation)

End If
End With

Cleal'ing a List

In addition to removing individual items at run time. you also can clear all items
from a list. Use the Items. Clear method to empty a combo box or list box.

The Items. CLear Alethod- Ceueml Form

.. ~1 ~ L Object . Items .Clear()

r.
a

·"0

C II A 1• 'I' " ll 7

Tu<' CLNu' MNbod- E.-.:am ples

SchoolslistBox. Items .Clear()
MajorscomboBox . Items .Clear()

291

f~

' confirm clearing the majors list .
Dim ResponseOialogResult As OialogResult

ResponseOialogResult = MessageBox .Show("Clear the majors list?" , "Clear Majors List ",
MessageBoxButtons.YesNo, MessageBoxicon.ouestion)

If ResponseOialogResult = OialogResult . Yes Then
MajorsComboBox.Items .Clear()

End If

List Box and Combo Box Events

Later in the chapter we will pe1fonn actions in event procedures for events of
List boxes and combo boxes. Some useful events are the Selectedi ndexChanged.
Text Changed. Enter. and Leave.

Note: Although we haven' t used these events up until this point. many
other controls have similar even is. For example, you can cocle event procedures
for the .Enter. Leave, and Text Changed events of text boxes.

Tbe TexLChauged Event

As the user types text into the text box portion of a combo box, the TextChanged
event occurs. Each keystroke generates another TextChanged event.

The Emer Evelll

When a control receives the focus. an Enter event occurs. As the user tabs from
control to control, an Enter event fires for each conb·ol. Later you willleam to
make any existing text appear selected when the user tabs to a text box or the
text portion of a combo box.

Tb<' Leav<' EvNII
You can also write code for the Leave event of a control. When the user tabs
from one control to another, the Leave event is triggere:.l as the control loses fo
cus. before the Enter event of the next control. Programmers often use Leave
event procedures to validate input data.

Describe the purpose of each of the following methods or properties for a list
box or combo box control.

l. Sorted
2. Selectedfndex
3. Items
4. DropDownStyle
5. ftems.Count
6. Items.Add
7. Items. Insert
8. Items .Clear
9. Items . RemoveAt

10. Items . Remove

To write o procedure for on event

that isn't the default event, you con

not just doubla.click the control. In

stead, in the Properties window,

click the Events button, and then

doubla.click the event nome. The

Editor will create the procedure

header for you . •

~

292 v S l l ,\ I. C Li.rs. Loops. ami Pru1ting

Do/ Loops

Until now. there has been no way to repeat the same steps in a procedure 1~ith
out calling them a second time. The computer is capable of repeating a group
of instructions many times without calling the procedure for each new set of
data. The process of repeating a series of instructions is called looping. The
group of repeated insttuctions is called a loop. An ite t·ation is a single execu
tion of the statement(s) in the loop. In th.is section. you will learn about the
Do/Loop. Later in this chapter. you will learn about another type of loop-a
For/Next loop.

A Do/ Loop terminates based on a condition that you specify. Execution of
a Do/Loop continues while the condition is True or nntil Lhe condition is True.
You can choose to place the condition at the top or the bottom of the loop.

Align the Do and Loop sta te ments with each other and indent the lines of
code to be repeated in between.

The Do and LoorJ S tatemems-General Fonn

g Do {While J Until} condition i ' St atements in l oop.

~ Loop .,
e

or

Do
' Statements in l oop .

Loop {While 1 Until} Condit ion

The first form of the Do/Loop tests for completion at the top of the loop. With
dtis type of loop. also called a pretest or e/l.l.ry test. the statements inside the
loop may never be executed if the tenninating condition is True the first time it
is tested.

Example

Totallnteger = o
Do Until Totallnteger = o

' These statements in loop will never execute .
Loop

Because Totallnteger is 0 the first time the condition is tested. the condi
tion is True and the statements inside the loop will not execute. Control will
pass to the statement following the Loop statement.

The second form of the Do/Loop tests for completion at the bottom of the
loop. which means that the statements inside the loop will always be executed
at least once. This form of loop is sometimes called a posttest. or e:dt test.

Changing the example to a posttest. you can see the difference.

(; II A I' 'I' 1·: R

Totalinteger = o
Do

7

' Statements in Loop will execute at least once.

Loop Until Totalinteger = o

In this case the s tatements ins ide the loop will be executed Ill least
once. Assuming the value for Totallnteger does not change inside the loop.
the condition (Totallnteger = 0) will be True the first time it is tested and
control will pass to the [irsl s tatement [ollowing the Loop s tatement. Figure 7.6
shows UM L action diagrams or pretes t and post lest loops. using both While
and Until.

UML action diagrams of pretest (entry) and posttest (exit) loops.

Pretesl
Do While

(Entry test)

Pretest
Do Until

(Entryle!t)

(Loop condition F'aloe]

l..oop Complete

Postt.esl
J..oopWhile
(Ellit te•t)

Statements in Loop

[Loop condition T me]

l..oop Complete

[l..oop condition True] [l..oop eondition Folse]

l..oop Complcto

Posttesl
LJ>OP Until
(Exit te•t)

[l..oop condition True] [Loop condition False]

Loop Complete

293

294 l '

The Do aml Loo(l Statemems- Exam]>lt>s

Do Until Itemlndexlnteger = ItemsListBox . Items .Count
' Statements in loop.

Loop

Do While AmountDecimal >= 10D And AmountDecimal <= 20D
' Statements in loop.

Loop

Do
' Statements in loop.

Loop Until Totallnteger < 0

The Boolean Data Type Revisile(l

C Usts. Loops, wtd Printing

In Chapter 2 you learned to set and test True and False Boolean values.
You will find Boolean vru·iables very useful when setting and testing condi
tions for a loop. You can set a Boolean variable to True when a specific
circumstance occms and then write a loop condition to continue until the
variable is True.

An example of using a Boolean variable is when you want to search through
a list for a specific value. The item may or may not be found. and you want to
quit looking when a match is fotmd.

Using a Boolean variable is usually a three-step process. First you must di
mension a variable and set its initial value (or use the default VB setting of
False). Then, when a particular situation occurs, you set the variable to True. A
loop condition can then check for True.

Dim ItemFoundBoolean as Boolean = False

Do Until ItemFoundBoolean ' Checks for True .

A Boolean variable is always in one of two states: True or False. Many pro
grammers refer to Boolean variables as switches or flags. Most switches have
two states--on or off; flags are considered either up or down.

Using a Do/Loop with a Lis t Box

This small example combines a Boolean variable with a Do/Loop. Inside the
loop. each element of the list is compared to NewhemTextBox.Text for a match.
~~~~~~a~~~oc~ill~~~~ 
tested. Follow through the logic to see what happens when there is a match, 
when there isn't a match, when the match occurs on the first list element, and 
when the match occurs on the last list element. 

Private Sub FindButton_Click(ByVal sender As System . Object, 
ByVal e As system.EventArgs) Handles FindButton.Click 

' Look for a match between text box and list items . 
Dim ItemFoundBoolean As Boolean = False 
Dim Itemlndexlnte.ger As Integer = o 



C II A 1• 'I' " ll 7 

Do Until ItemFoundBoolean or Itemindexlnteger = ItemsListBox . Items .count 
If NewitemTextBox .Text = ItemsListBox . Items(Itemindexinteger).ToString() Then 

ItemFoundBoolean = True ' A match was found . 
Else 

Itemindexinteger += 1 
End If 

Loop 

If ItemFoundBoolean Then 
MessageBox .Show( "Item is in the list ." , "Item match " , 

MessageBoxButtons.OK, MessageBoxicon . Information) 
Else 

MessageBox .Show("Item is not in the list. ", "No item match ", 
MessageBoxButtons . OK, MessageBoxicon . Information) 

End If 
End Sub 

Explain the purpose of each line of the following code: 

ItemFoundBoolean = False 
Itemindexinteger = o 
Do Until ItemFoundBoolean Or Itemlndexinteger = ItemsListBox . Items .Count 

If NewitemTextBox .Text = ItemsListBox. Items(Itemindexlnteger) .ToString() Then 
ItemFoundBoolean = True 

Else 
Itemlndexlnteger += 1 

End If 
Loop 

For/ Next Loops 

When you want to repeat the statements in a loop a specific number of times, the 
For/ Next loop is ideal. The For/Next loop uses the For and Next statements 
and a cotmter variable. called the loop inclex. The loop index is tested to deter
mine the number of times the statements inside the loop will execute. 

Dim Looplndexlnteger as Integer 
Dim Maximuminteger as Integer 
Maximumlnteger = SchoolslistBox.Items.count - 1 

For Loopindexinteger = o To Maximuminteger 
' The statements inside of the loop are indented 
' and referred to as the body of the loop . 

Next Loopindexinteger 

When the For statement is reached dUiing program execution. several 
things occur. The loop index. Looplndexlnteger. is established as the loop 
counter and is initialized to 0 (the initial value). The final value for the loop in
dex is set to the value of Maximumlnteger. which was assigned the value of 
SchoolsListBox.Items.Count - 1 in the previous statement. 

295 



296 s u " I. C Lists. Loops. wul Pri11ting 

Execution is now "controlled by" the For statement. After the value of 
Loopindexlnteger is set. it is tested to see whether LooplndexJnteger is greater 
than Maximuminteger. If not. the statements in the body of the loop are exe
cuted. The Next statement causes the Looplndexlnteger to be incremented by 
l. Then control passes back to the For statement. Is the value of Looplndexin
teger greater than Maximum[nteger? If not. the loop is again executed. When 
the test is made and the loop index is greater than the final value. conb·ol 
passes to the statement immediately following the Next. 

A counter-controlled loop generally has three elements (see Figure 7.7 for 
a UML action diagram ofloop logic). 

l. Initialize the counter. 
2. Increment the counter. 
3. Test the counter to determine when it is time to terminate the loop. 

A For /Next loop handles all tlHee steps for you. 

Loop Complete 

The For aud Next Statcments-GcrLer·al Form 

l~ljil#l 
When you read the •to" in a 

loop, think "through", as the •to• is 

inclusive. • 

l!' igure 7.7 

A UMLaction diagram of the 
logic of a For I Next /,()()p. 

For Loopindex (As Datatype] = Ini tialValue To TestValue (Step Increment] 

• Statements in loop. 

Next (Loopindex] 

Looplndex must be a numeric variable; Initial Value and Test Value may be con
slants. variables. numeric property values. or numeric expressions. TI1e op
tional word Step may be included, along with the value to be added to the loop 
index for each iteration of the loop. \Vhen the Step is omitted, the increment is 
asswned to be l. 

TI1e optional As Data type entry allows you to declare the index variable 
as part of the For statement. This technique creates a block-level variable that 
is available only inside the For /Next loop. Declaring and using a block-level 
variable for the loop index is the prefened approach. 



t"'l 
>< : 
{ 
~ 

"' 

C II ,\I> 'I' I' R 7 297 

Tb<' For and Next Stal<'meuts- Examples 

For Indexlnteger As Integer = 2 To 100 Step 2 
For 
For 

countinteger As Integer = Startinteger To Endlnteger Step Incrementinteger 
Countinteger = 0 To CoffeeCOmboBoxType.Items . Count - 1 

For 
For 

Numberinteger = (Numbercorrectinteger - 5) To TotalPossibleinteger 
RateDecimal As Decimal = 0 . 05D To 0.25D Step 0 . 05D 

For countDowninteger As Integer = 10 To o Step - 1 

Each For statement has a corresponding Next statement. which must follow the 
For. AIJ statements between the For and Next statements are considered to be 
the body of the loop and will be executed the specified number of times. 

The first For statement example will count from 2 to 100 by 2. The state
ments in the body of the loop will be executed 50 times: first with lndexlnteger 
= 2. next with lndexlnteger = 4, next with lndexlnteger = 6. and so forth. 

When the comparison is done. the program checks for greater than the test 
valtu~not equal to. When Index Integer = 100 in the preceding example, the 
body of the loop will execute one more time. Then, at the Next statement, ln
dexlnteger will be incremented to 102. the test will be made. and control will 
pass to the statement following the Next. 

Negative lne~·ement o r Counting Bacl{wm·d 

You can use a negative number for the Step increment to decrease the loop in
dex rather than increase it. When the Step is negative. VB tests for less than 
the test value instead of greater than. 

' count Backwards . 
For countinteger As Integer = 10 To 1 Step - 1 

' Statements in body of loop. 
Next countinteger 

Conditions Satisfied before Enta-y 

At times the final value will be reached before entry into the loop. In that case. 
the statements in the body of the loop will not be executed at all. 

' An unexecutable loop . 
Finalinteger = 5 
For Indexinteger As Integer = 6 to Finalinteger 

' The execution will never reach here . 
Next Indexinteger 

Alte l'iug the Values of the Loop Cont1·ol Val'iables 

Once a For loop has been entered. the values for Initial Value, TestValue, and 
Increment have already been set. Changing the value of these control variables 
within the loop will have no effect on the number of iterations of the loop. Many 
texts admonish against changing the values within the loop. However, Visual 
Basic just ignores you if you try. 

Use a For/ Next loop when you 

know the number of iterations 

needed for the loop. Use o 

DO/Loop when the loop should 

end based on a condition. • 



298 v S l l ,\ I. 

' Bad Example - Changing the Control Variable. 
Finallnteger = 10 
Increaselnteger = 2 

C Lists. Loops. and Printing 

For Indexlnteger As Integer 1 to Finallnteger Step Increaseinteger 
Finallnteger = 25 
Increaseinteger = 5 

Next Indexlnteger 

If you tried this example and displayed the values of Indexlnteger. you would 
find that the final value remains 10 and the increment value is 2. 

The value that you can change within the loop is the loop index. However. 
this practice is considered poor programming. 

' Poor Programming . 
For Indexlnteger = 1 To 1 o Step 1 

Indexlnteger += 5 
Next Indexlnteger 

End less Loops 

Changing the value of a loop index variable is not only considered a poor prac
tice but also may lead to an endless loop. Your code could get into a loop that 
is impossible to exit. Consider the following example; when will the loop end? 

' More Poor Programming . 
For Indexlnteger = 1 To 10 Step 1 

lndexlnteger = 1 
Next Indexlnteger 

Exiting Loo1Js 

Jn the previous example of an endless loop. you will have to break the program 
execution manually. You can click on your fom1's close box or use the Visual 
Basic menu bar or toolbar to stop the program. If you can't see the menu bar or 
toolbar. you can usually move or resize your application's fonn to bring it into 
view.lf you prefer, press Ctrl + .Break to enter break time; you may want to step 
program execution to see what is causing the problem. 

Usually loops should proceed to nonnal completion. However, on occasion 
you may need to terminate a loop before the loop index reaches its final value. 
Visual Basic provides Exit For and Exit Do statements for ihis situation. 
Generally, the Exit statement is part of an If statement. 

~ ~ Exit For ~~I 
Ei ~ Exit Do 

Ill 

The Exit For and Exit Do transfer control to the statement following the loop 
tennination- the Next or Loop statement at the bottom of the loop structure. 



C II 1\ 1• 'I' 1•: R 7 299 

The J<: x.it Statemeut-Exarnples 

~ .-------------------------------------------------------------.. ~ 
'E. 
m 

For Indexlnteger As Integer = 1 To Maxlnteger 
If Indexinteger > 1000 Then 

Exit For 
End If 
' Statements in loop. 

Next Indexinteger 

Do Until Itemindexlnteger = ItemsListBox.Items .count 

Loop 

If NewitemTextBox.Text = 
ItemsListBox.Items(Itemindexlnteger) .ToString() Then 

ItemFoundBoolean = True 
Exit Do 

Else 
Itemindexinteger += 1 

End If 

Skipping to the Next lte1·ation of a Loot> 

At times you may be finished in the cun·ent iteration of a loop and want to skip 
to the next. The Continue statement transfers control to the last statement in 
the loop and retests the loop exit condition. This effectively skips to the 
next iteration of the loop. Generally, the Continue statement is part of an If 
statement. 

The Continue Statemeut-General l<' onn 

Continue For 
Continue Do 

Tbe Continue Statement-Examples 
• 

~ P---------------------------------------------------------. ;.', ., 
e 
"' ;-
"' 

For Loopinteger As Integer = 0 To NameListBox.Items.Count- 1 
If NameListBox.Items( Looplnteger) .ToString() = String . Empty Then 

Continue For 
End If 
' Code to do something with the name found . 
Debug .WriteLine( "Name = " & NamelistBox.Items(Loopinteger).ToString()) 

Next 

Loopinteger = - 1 
Do Until Loopinteger = NameListBox.Items.count- 1 

Loopinteger += 1 
If NameListBox.Items(Loopinteger) .ToString() String . Empty Then 

Continue Do 
End If 
' Code to do something with the name found. 
Debug .Writeline( "Name = " & NameListBox.Items(Loopinteger).ToString()) 

Loop 

Note: The two examples above do the same thing. but you'll notice that t11e 
For loop has less code. Because the number of iterations is known 
(ltems.Cow1t). the For statement is the preferred solution. 



300 l ' C Lists, Loops. aml Pru1ting 

l. Identify the statements that are correctly fonned and those that have er
rors. For those with errors. state what is wrong and how to correct it. 
(a) For Indexoecimal = 3.50 To 6 .00, Step 0 . 50 

Next Indexoecimal 
(b) For Indexlnteger = Beginlnteger To Endlnteger Step Incrementlnteger 

Next Endlnteger 
(c) For 4 = 1 To 10 Step 2 

Next For 
(d) For Indexlnteger = 100 To o Step - 25 

Next Indexlnteger 
(e) For Indexinteger = 0 To -1 0 Step - 1 

Next Indexlnteger 
(Q For Indexlnteger = 10 To 1 

Next Indexinteger 
2. How many times will the bocly of the loop be executed for each of these 

examples? What will be t11e value of the loop index after nom1al com
pletion of the loop? 
(a) For Countlnteger 1 To 3 
(b) For countlnteger 2 To 11 Step 3 
(c) For Countlnteger 10 To 1 Step - 1 
(d) For counteroecimal 3 . 00 To 6 . 00 Step 0.50 
(e) For Countlnteger = 5 To 1 

Making Entries Appear Selected 

You can use several techniques to make the text in a text box or list appear 
selected. 

Selecting the Ent•·y in a Tex t Box 

Wl1en the user tabs into a text box t11at already has an entry. how do you want tlle 
text to appear? Should the insertion point appear at eitJ1er the left or right end of 
the text? Or should the entire entry appear selected? You also can apply this 
question to a text box that fails validation: Shouldn't the entire entry be selected? 
The most user-friendly approach is to select the text. which you can do with the 
SelectAll method of the text box. A good location to do this is in the text box's 
Enter event procedure, which occurs when the control receives the focus. 

Private Sub NameTextBox_ Enter(ByVal sender As Object, 
ByVal e As System.EventArgs) Handles NamoTextBox.Enter 

· Select any existing text . 

NameTextBox .SelectAll() 
End Sub 

Selecting an Ent•·y in a List Box 

You can make a single item in a list box appear selected by setting the Se
lectedlndex property. 

CoffeeListBox.Selectedindex Indexinteger 



C II A 1• 'I' " ll 7 

When a list box has a very large number of entries. you can help users by 
selecting the match.ing entry as they type in a text box. This method is similar 
to the way the Help Topics list in Visual Basic works. For example. when you 
type p. the list quickly scrolls and displays words beginning with p. Then if you 
next type r. the list scrolls down to the words that begin with pr and the first 
such word is selected. If you type i next. the first word beginning with pri is se
lected. The following example implements this feature. See if you can tell what 
each statement does. 

Notice that this is coded in the TextChanged event procedure for the control 
into which the user is typing; the event occurs once for every keystroke entered. 

Private Sub CoffeeTextBox_TextChanged(ByVal sender As System.Object, 
ByVal e As System.EventArgs) Handles CoffeeTextBox .TextChanged 

' Locate first matching occurrence in the list. 

Dim Indexlnteger As Integer = o 
Dim FoundBoolean As Boolean = False 
Dim ListCompareString As String 
Dim TextcompareString As String 

Do While Not FoundBoolean And Indexlnteger < CoffeeListBox .Items .count 
ListCompareString = CoffeeListBox.Items(Indexlnteger) .ToString() .ToUpper() 
TextcompareString = CoffeeTextBox.Text .ToUpper() 
If ListCompareString.StartsWith(TextCompareString) Then 

CoffeeListBox.Selectedlndex = Indexlnteger 
FoundBoolean = True 

Else 
Indexlnteger += 1 

End If 
Loop 

End Sub 

Sending Information to the Printer 

So far, your program output has been on the screen or a print of a form. You can 
use the VB PrintOocument and PrintPreviewDialog components to produce 
more customized output for the printer and also to preview the output on the 
screen. These components appear in the Printing tab of the toolbox. 

Visual Basic was designed to run under Windows. which is a highly inter
active environment. It is extremely easy to create fonns for interactive pro
grams, but it is not easy at all to print formatted output on the printer. Most 
professional programmers using Visual Basic use a separate utility program to 
format printer repo11s. Several companies sell utilities that do a nice job of 
designing and printing reports. A free version of Crystal Reports that works 
with Visual Studio 2010 is available to download from SAP Business Software. 

The PrintDocmnenl Coan1>oncnt 

You set up output for the printer using the methods and events of the Pr·int
Oocmueut component. \'(Then you add a PriutDocument component to a fonn. 

the component appears in the component tray below the fonn (Figure 7.8). 

301 



302 l ' C Li•ts. Loops, wtd Printing 

0 ·· ····· ·· · .. ·· ·• 

~ .. ,;!.~~.i~:.~.~~~.~=~ .. .J 

Luitiatiug n Print Opm·atiou 

To initiate printing output. you execute the Print method of the Print Docu
ment component. This code belongs in the Click event procedure for the Print 
button or menu item that the user selects to begin printing. 

Private Sub PrintButton_Click(ByVal sender As System . Object, 
ByVal e As System.EventArgs) Handles PrintButton . Click 

' Print output on the printer . 

PrintDocument1 .Print() 
End Sub 

' Start the print process . 

Coding the Print button's Click event is the easy pait. Before it will work 
you must write code to indicate how the output will print. You set up the print 
output in the PrintPage event procedure. 

Setting Up the Pl'iut Output 

The code that you write to set up the printed page belongs in the PrintDocmnent's 
Print Page evem pt•ocedm·e. The PrintPage event is fired once for each page 
to be printed. This technique is referred to as a callback and is different from 
any1hing we have done so far. In a callJ:>ack. the object notifies the program that 
it needs to do something or that a situation exists that the program needs to han
dle. The object notifies the program of the situation by firing an event. 

As you saw in the previous code block, when the user clicks a Print button 
or menu item. the program executes the Print method of the PrintDocument ob
ject. This causes the PrintDocument's PrintPage event to fire. The PrintPage 
event procedure holds the code that describes exactly how pages should print. 
The PrintDoctunent object also fires events for BeginPtint and EndPrint. for 
which you can write code if you wish. 

Fi~ur e 7.3 

Add a PrintDo.cument 
component to your application. 
The component appears in the 
form~ component tray. 



C ll i\I'Tt: R 7 

Pri vate Sub PrintDocument1_PrintPage(ByVal sender As System .Object, 
ByVal e As System.Orawing.Printing.PrintPageEventArgs 
) Handles PrintDocument1 .PrintPage 

• Set up actual output to print. 

End Sub 

Notice the argument: e As System. Drawing. Printing. PrintPage
EventArgs. We ~·ill use some of the properties and methods of the PrintPage
EventArgs argument for such things as determining the page margins and 
sending a string of text to the page. 

CNtln;! St:wt••,J -.it It l'l"intin;.:-Stt>p-hy-St<'p 

Tl1is simple project introduces you to printing by creating a document that 
sends your name to the printer. The sections that follow describe how to set up 
the printed page. 

Create the Project 
:-TEl' 11 Create a project called Ch07Printing. 
STEI' 2: Add a button and a PrintDocument component to the form. 
STEI' ::1: Name the button PrinLButton with appropriate text. 

Set Up the Page to Print 
STE:I' 1: Double-click on Prin/Documentt in the component tray. The Print Page 

event handler appears. 
STEI' 2: Write the code. 

' Information to print. 

e.Graphics .Orawstring('Your Name •, New Font( "Arial', 36), 
Brushes.Black, 100, 100) 

Write CodE' for the Print Button 
STEI' 1: Go to the Click event procedure for the Print Button and add the code 

to call the Print method of the print document. 
Not,e: You also can print to the Print Preview K·indow: see the code 

in the step-by-step that follows this one. 

Private Sub PrintButton_Click(ByVal sender As Object, 
ByVal e As System. EventArgs) Handles PrintButton.Click 

' Call the Print method of the PrintDocument component . 

PrintDocument1 .Print() 
End Sub 

Run the Program 
STEI' 1 : Run the program and click on the Print button. A page should print on 

the printer. 
STEI' 2: Stop execution and change the font and location for the text. If you 

have a color printer. try changing the color for the brushes. 
STEP 3: Run the program again. 

303 



304 l ' C Usts. Loops, wtd Printing 

Addiu,!!; a PlintPr·e,;ew Dialog to tbc l'rilll Project-Step-by-Ste ll 

This exercise adds a Print Preview dialog box to the step-by-step example 
created earlier in this chapter. 

Open the Project 
STEP I! Open Ch07Printing. 
STEP 2: Add a PrintPreviewDialog component to the form. 
STEP 3: Add a new button labeled "Print Preview". 

Wri te the Code 
STEP 1: Write the code for the Print Preview button. 

Private Sub PrintPreviewButton_Click(ByVal sender As Object, 
ByVal e As System.EventArgs) Handles PrintPreviewButton.Click 

' Assign the PrintDialog1 document to the preview. 

PrintPreviewDialog1 .Document = PrintDocument1 
· Show the dialog . 
PrintPreviewDialog1 .ShowDialog() 

End Sub 

Test the Program 
STEP 1: Run the program. This time your output should appear in a Print 

Preview dialog box rather than on the printer. 

The Graphics Page 

You set up a graphics page in memory, and then the page is sent to the printer. 
The graphics page can contain strings of text as well as graphic elements. 

You must specify the exact location on the graphics page for each element 
that you want to print. You can specify the upper-left comer of any element by 
giving its X andY coordinates. or by using a Point structure or a Rectangle struc
ture. We will stick with the X and Y coordinates in these examples (Figw·e 7. 9). 

I -·-.. ··-·t···-·-·-·-·-·-·-·-·-·-·-·-·-.. -·-·-·-·-·-·-·-·-·-· 

y 

l 

Fi~ n r e 7.9 

The X coordinate is the 
horizontal distance across a 
line from the left edge of the 
page; the Y coordinate is the 
vertical distance from the top 
of the page. The measurem.ent..s 
are in pixels. 



C II A 1• 'I' " ll 7 

You can use multiple Print Document objects if you have more than one 
type of output or report. Each PrintDocument has its own PrintPage event. 
Code the graphics co11l1Uands to precisely print the page in each document's 
PrintPage event procedure. 

Using tue O•·:.nrStriug l\'letuod 

You use the DrawString meiuod to send a line of text to the graphics page. 
The DrawString method belongs to the Graphics object of the PrintPage
EventArgs argument. Refer back to the procedure header for the PrintPage 
event in "Setting Up the Print Output." 

Tile OmwStriug J\1etuod-Ge ueral •' orm 

The DrawString method is overloaded, which means that there are several 
forms for calling the method. The foru1 presented here is the least complicated 
and requires that page coordinates be given in X and Y format. 

305 

~~l.---------------------------------------------------------~ e ~ DrawString(StringToPrint, Font, Brush, Xcoordinate, Ycoordinate) 

You supply the arguments of the DrawString method: what to print. what font 
and color to print it in, and where to print it. 

Tbc l)rawSu·iug Metuod-Examples 

~ .---------------------------------------------------------------... .-. e 
'E.. 
~ 

e . Graphics .DrawString(PrintlineString, PrintFont, Brushes .BlacK, 
HorizontalPrintlocationSingle, VerticalPrintlocationSingle) 

e . Graphics . DrawString( "My text string" , MyFont, Brushes .BlacK, 100 .0, 100 .0) 
e .Graphics .OrawString(NameTextBox. Text, New Font ( "Aria! " , 1 0), Brushes . Red, 

LeftMarginSingle, CurrentlineSingle) 

Before you execute the DrawString method. you should set up the font that 
you want to use and the X and Y coordinates. 

Setting the X and Y Coordinates 

For each line that you want to print, you must specify the X andY coordinates. 
It is helpful to set up some variables for setting these values. which should be 
declared as Single data type. 

Dim HorizontalPrintLocationSingle As Single 
Dim VerticalPrintLocationSingle As Single 

The PrintPageEventArgs argument has several useful properties (Figure 7.10). 
such as MarginBounds, PageBounds. and PageSeuings. You can use these 

Figu1• e 7.10 

Use the properties of the 
PrintPageEventArgs argument 
to deternLine the current 
margin settings. 



306 ' !- l \ L ll \ s 

properties to determine the present settings. For example. you may want to 
set the X coordinate to the current left margin and the Y coordinate to the 
top margin. 

HorizontalPrintLocationSingle = e.MarginBounds . Left 
VerticalPrintLocationSingle e.MarginBounds.Top 

P1'iutin:: 'lnlt iplt' Lint>~< 

To send multiple lines to the print page. you must increment the Y coordinate. You 
can add the height of a line to the previous Y coordinate to calculate tl1e next line's 
Y coordinate. Use PrintFont. GetHeight () to retrieve the height of the line. 

• Declarations at the top of the procedure. 
Dim PrintFont As New Font ( "Arial', 12) 
Dim LineHeightSingle As Single = PrintFont.GetHeight + 2 • Add two pixels for spacing . 
Dim HorizontalPrintLocationSingle As Single = e.MarginBounds.Left 
Dim VerticalPrintlocationSingle As Single = e.MarginBounds.Top 
Dim Printlinestring As String= 'This is a test line to print. " 

• Print a line. 
e.Graphics.DrawString(PrintlineString, PrintFont, Brushes.Black, 

HorizontalPrintLocationSingle, VerticalPrintLocationSingle) 

• Increment the Y position for the next line. 
VerticalPrintLocationSingle += LineHeightSingle 

P1·inting Summa r y 

Although the steps for printing may sound confusing at first. you can foUow 
tl1ese easy steps for nearly all printing tasks. Place the code for these actions in 
the PrinlPage event procedure for the Print Document component: 

1. At the top of the procedure, define the font(s). line height. and X and Y 
coordinates. 

2. Set up the line to print. 
3. Print the line. 
4 . Increment the Y coordinate if another line wiU be printed. 
5. Place 2. 3. and 4 inside a loop if there are multiple lines to print. 

P1·jnting the Conte nts o f a List B ox 

You can combine the techniques for print ing, a loop. and the list box properties 
to send the contents of a list box to the printer. You know how many iterations 
to make. using the ltems.Count property. TI1e Items collection allows you to 
print out the actual values from the list. 

· Print out all items in the CoffeecomboBox list. 

For Listlndexlnteger As Integer = o To CoffeecomboBox . Items.Count 

· Set up a line. 
PrintlineString = CoffeeComboBox.Items(Listlndexlnteger) .ToString () 



C II 1\ I' 'I' 1•: II 7 

' send the line to the graphics page object. 
e.Graphics.OrawString(PrintLineString, PrintFont, Brushes.Black, 

HorizontalPrintLocationSingle, verticalPrintLocationSingle) 

' Increment the Y position for the next line . 
VerticalPrintLocationSingle += LineHeightSingle 

Next Listindexinteger 

When an item is selectetl in a list Lux ur a cumLu Lux, the Text prupe1ty lwlu~ 
the selected item. You can use the Text property to print the selected item. 

' Set up the line to print the selected list item. 
PrintLineString = "Coffee: ' & CoffeeComboBox.Text & 

syrup: " & SyrupListBox . Text 

' Send the line to the graphics page object. 
e.Graphics.OrawString(PrintLineString, PrintFont, Brushes.Black, 

HorizontalPrintLocationSingle, VerticalPrintLocationSi ngle) 

Alig-ninl!: De'cima l Columns 

When the output to the printer includes numeric data. the alignment of the deci
mal points is impottant. Alignment can be tricky "ith proportional fonts. where the 
width of each character varies. The best approach is to format each number as you 
want it to ptint and then measure the length of the formatted string. This technique 
requires a couple more elements: You need an object declared as a SizeF struc
ture, which has a Width property, and you need to use the MeasureString 
method of tl1e Graphics class. Both the SizeF structure and the MeasureString 
method work with pixeL~. which is what you wanl.. It's the same unit of measure as 
used for the X andY coordinates of the DrawString method. 

The following example prints a left-aligned litem! at position 200 on the 
line and right-aligns a formatted number at position 500. (Assume that all vari
ables are properly declared.) 

' SizeF structure for font size info. 
Dim FontSizeF As New SizeF() 

' Set X for left -aligned column. 
HorizontalPrintLocationSingle = 200 .0 
' Set ending position for right-aligned column . 
ColumnEndSingle = 500 .0 

' Format the number . 
Forma ttedOutputSt ring = AmountDecimal. To String ( "c " ) 

' Calculate the X position of the amount . 

' Measure string in this font . 
FontSizeF = e .Graphics .MeasureString(FormattedOutputString, PrintFont) 
' Subtract width of string from the column position . 
ColumnXSingle = ColumnEndSingle - FontSizeF .Width 

307 



308 l ' C Usts. Loops, wtd Printing 

' Set up the line - each element separately . 
e .Graphics.Drawstring( "The Amount =" , PrintFont , Brushes .Black, 

HorizontalPrintLocationSingle, VerticalPrintLocationSingle) 
e .Graphics .DrawString(FormattedOutputString, PrintFont , Brushes .Black, 

ColumnXSingle , VerticalPrintLocationSingle) 
' Increment Y coordinate for next line . 
VerticalPrintLocationSingle += LineHeightSingle 

Dis playing a P1-int P1·evjew 

A really great feature of the .NET printing model is print pt·eview. You can 
view the printer's output on the screen and then choose to print or cancel. l l1is 
is especially helpful for testing and debugging a program, so that you don' t have 
to keep sending pages to the printer and wasting paper. 

The Pl'imPrevjewDialog compoueut is the key to print preview. You 
add the control to your fonn's component tray; the default name is PrintPre
viewDialogl (Figure 7.11). Since you can us e the same dialog for all print pre
views. you do not need to rename the component. 

You write two lines of code in the event procedure for the button or menu 
item where the user selects the print preview option. The PrintPreviewDialog 
component uses the same PrintDocument component that you declared for 
printer output. You assign the Print Document to the Document property of the 
PrintPrev"iewDialog and execute the ShowDialog method. TI1e same PrintPage 
event procedure executes as for the Print Document. 

Private Sub PreviewAllToolStripMenultem_Click(ByVal sender As Object, 
ByVal e As System.EventArgs) Handles PreviewAllToolStripMenultem.Click 

' Begin the process for print preview of all items. 

PrintPreviewDialog1.Document = PrintAllPrintDocument 
PrintPreviewOialog1.ShowDialog() 

End Sub 

oorbox • II X Printing.vb IOesigni"' x 
I'> All \Vtndowo: ~otm$ 

1> Comn1on Con1rols 

1> Containers 
flo Menus & T oolbar.: 

tJ- Oat,_ 

1> Componenls 
~ Printing 

~ Pointer 
ifll PogeldupOiolog 

(i PrintOialog 

~ PdntOocument 

~ Prin!PreviewControl 

--fl:l PrintPreviewOial~ 
1> Oi~alogs -=..-

~ WPF Jmeroperobility 
p. Reporting 

~'9 Printing Stfp·by-S-n::p 

[Jr PrintCocum: ntl 

l<' i g n••e 7 . 1 1 

Add a PrintPreviewDialog 
component to your form~ 
component tray. 



C II A 1• 'I' " ll 7 

T he Using Block 

When you are using system resources such as fonts. you can access the re
sources inside of a Using block. Any variables that are declared in a Using 
block are only accessible within that block. as with any other block-level vari
able. The advantage of declaring a variable inside a Using block is that system 
resources are released as soon as the block te1minates. 

Using HeadingFont as New Font("Arial" , 14, FontStyle .Bol d) 
e .Graphics .OrawString( "Flavors " , HeadingFont, Brushes .Black, HorizontalPrintLocationSingle , 

VerticalPrintLocationSingle) 
End Using 

Pl"inting Multiple Pages 

You can easily print multiple pages. both to the printer and to the Print Preview 

dialog box. Recall that the PrintDocument's PrintPage event fires once for each 
page. You indicate that you have more pages to print by setting the Has
MorePages property of the PrintPageEventArgs argument to True. 

TI1e following example prints four pages full of the same Hne. just to illus
trate multiple-page ou~)UI. Nonnally you will have a certain amount of data to 
print and stop when you run out. 

Private Sub ReportPrintDocument_PrintPage (ByVal sender As Object, 
ByVal e As System.Drawing .Printing .PrintPageEventArgs 
) Handles ReportPrintDocument .PrintPage 

' Print multipage output. 
Dim PrintFont As New Font( "Arial ", 12) 
Dim LineHeightSingle As Single = PrintFont .GetHeight + 2 
Dim VerticalPrintLocationSingle As Single = e.MarginBounds.Top 
Dim Printlinestring As String = "This is a test. " 

' Set the left margin. 
HorizontalPrintLocationSingle 100 

' Count pages for multiple-page output . 
' Initialize the page number at 1. 
Stati c PageCountlnteger As Integer = 1 

' Print the page number . 
e.Graphics.Drawstring("Page " & Pagecountlnteger.ToString() , PrintFont, 

Brushes .Black , 600, VerticalPrintLocationSingle) 
VerticalPrintLocationSingle += LineHeightSingle * 2 

' Print a page full of the same line. 
Do 

' Print a line. 
e .Graphics . OrawString(PrintLineString, PrintFont, Brushes . Black , 

HorizontalPrintLocationSingle, VerticalPrintLocationSingle) 
' Double space . 
VerticalPrintLocationSingle += LineHeightSingle * 2 

' Stop at the bottom margin. 
Loop Until VerticalPrintLocationSingle >= e.MarginBounds.Bottom 

' Increment the page number. 
PageCount ln teger += 1 

309 



310 s l \ • • I I \ S 

' Indicate whether there are more 
If Pagecountlnteger <~ 4 Then 

e.HasMorePages True 
Else 

e.HasMorePages False 

pages to print. 
' Print only 4 pages . 

' Reset the page counter for the next report. 
Pagecountlnteger ~ 1 

End If 
End Sub 

Uedm·in~ the 1'11ge Counte•· as S ta tic 

(' Li•ts. Loops. and Printing 

As you learned in Chapter 6. static local variables keep tlteir values from one 
execulion of the procedure to the next. When you ptint multiple pages, you 
must keep track of the current page number. but you don't need that value in 
any procedure but the Print Page procedure. This is the perfect time to use a 
static local vatiable. 

' Count pages for multiple-page output. 
' Initialize the page number at 1 . 
Static Pagecountlnteger As Integer ~ 1 

What is the pmpose of each of these elements? Where and how is each used? 

1. The PrintOocument component. 
2. The Print method. 
3. The PrintPage event. 
4. The Drawstring method. 
5. system.Drawing . Printing.PrintPageEventArgs. 
6. MarginBounds. Left. 
7. The PrintPreviewDialog component. 

our Hands-On Programming Example 

Create a project for R 'n R--for Reading 'n Refreshment that contains a drop· 
down combo box of the coffee flavors and a list box of the syrup flavors. Adjust 
the size of the boxes liS needed when you test t11e project. The coniJ·ols should 
have labels above them with the 1mrds Coffee and Syrup. Enter the initial val
ues for the syrup flavors and coffee flavors in the Properties window. Set ilie 
Sorted property of both lists to True. The user will be able to add more coffee 
fl avors to the lis t at run time by typing in the top portion oi the combo box and 
selecting a menu item. 

Cofl"ce Flavor• 

Espresso Roast 

Jamaica Blue Mountain 

Kona Blend 

Chocolate Almond 

Vanilla Nut 

Syrur• Flnvo,.. 

{None) 

Chocolate 

linzelnul 

Lrish Cream 

Orange 



C ll i\ 1°Tt: R 7 

Include one menu item to print aU the coffee Oavors and another to print 
only a selected item from each list. Then include submenus for each of the 
print option.s to allow the user to send the output to the printer or the Print Pre
view window. These print commands belong on the File menu. along with the 
Exit command. Use a separator ba r between the Prints and the Exit. 

Inc lude an Edit menu wi th items to Add coffee flav«. Remove coffee flavor. 

Clear coffee list. and Display coffee count. 
Add an About fom1 to your project. and add a Help menu with an About 

command. 
After you have comp leted the project. try us ing different styles for the 

combo box and re run the project. As an added challenge. modify t11e Add cof
fee flavor rout ine so tha t no duplicates are allowed. 

l1 lanning the Proj<'c l 

Sketch a fonn (Figure 7.12), which your users sign off a3 meeting their needs. 

A sketch ofthef ormfor the handJ-on project. 

FlavorGFonn -............._ 

~~-------------------------
file Edit l::lelp 

Group80XI - f-+ 
Select Coffee and Syrup - - - - - --, 

!:;offee Flao,()r 

CoffeeComboBox - f-~~ 1-.1 

Plan the Objects and Propertie:; 

Obje c t 

FlavorsForm 

GroupBoxl 

Lnbcll 

Label2 

CoffeeComboBox 

Proper1 y 

Name 

Text 

Text 

Text 

Text 

Name 
OropDo .. cnStr le 
Items 

Sorted 

~yrup Flao,()r 0 +-r-r-- Syrupl~'""" 

Se llin;::-

Fla\"'rs..Foml 

R "n R for Reading "n Refreshment 

Select Coffee and Syrup 

&Coffee Flavor 

&Syrup f lavor 

CoffeeComboBox 
Drop Down 
Chocolate Almond 
Espresso Roast 
Jama ica Blue Mountain 
Kona Blend 
Vanilla Nut 
True 

311 



312 ,. 

Ohjeel 

SyrupListBox 

FileTooiStripMenul tern 

PrintSe lectedFlavorsToolStripMenulte m 

PrintAllFiavCI!'STooiStripMenu hem 

PrintAUToolStripMenul tem 

Preview AIIToolStri pMenul tem 

PrintSelecte<IToolStripMenultem 

PreviewSelectedToolStripMenultem 

ExitTooiStripMenultem 

EditTooiStripMe nultem 

AddCoffeeFiamrTooiStripMenultem 

RemoveColl"eeFlavorTooiStripMenulte m 

ClearCoffeeListTooiStripMenultem 

DisplayCoffeeCountToolStripMe nultem 

HelpToolSIIipMenultem 

AboutToolStripMenultem 

PrintAUPrintDocume nl 

PrintSe lectedPrintDocume nt 

PrintPreviewDialog l 

Plan the Event Procedures 

~bin Form 

Pro cedu1·e 

PreviewSelectedTooiStripMenulte rn_Ciick 

s l \ L It \ s t: Li.ts. Loops. and Printing 

Properly Sellin,<: 

Name 
hems 

Sorted 

Text 

Text 

Text 

Text 

Text 

Text 

Text 

Text 

Text 

Text 

Text 

Text 

Text 

Text 

Text 

Name 

Name 

Name 

Actions 

SyrupListBox 
(None) 
Chocolate 
Hazelnut 

Irish Creme 
Orange 
Tru~ 

&File 

Prinl &Selecled Flavors 

Print &All Flavoro 

&Print All 

Prc&view All 

&Print Selecled 

Pre&•iew Selected 

E&xil 

&Ed it 

&Add Coffee Flamr 

&Remove Coffee Flavor 

&Clear Coffee Lis t 

Count Coffee &List 

&Help 

&About 

PrintAilPrintDocument 

PrintSelcctedPrinlDocument 

PrintPrevie wDiulogl 

If both coffee and S}TUP selected 
Set Boolean variable for selected item. 
Set the print preview document. 
Show the print preview dialog. 

Eloe 
Disploy error mes•Bf!•· 



C ll i\ 11 T E K 7 

Main For·m 

Proccdw-e 

PrintSe lecte<ITooiStripMenulte m_ Ciick 

PreviewAllTooiStripM~nultem_Clic~ 

PrintAIITooiStripMenulte m_Ciick 

PrinlAIIPrintDocwne nt_PrinlPage 

PrintSele<:teclPrintDocumcnt_ PrintP age 

ExitTooiStripMc nultem_Ci ic k 

AddCoffeeFlavorTooiStripMenu Item_ Clic k 

Re moveCoffeeFia vorTooiStripMenulte m_ Click 

ClearCoCfeeListTooiStripMe nulte m_Ciick 

Di~playCoffeeCOWltTooiStrip~lenultem_Ciick 

AboutTooiStripMe nultem_Click 

About Form 

Proce<lur-e A c lious 

OkButton_Click Close the About box. 

Actio~ 

If both coffee a nd syrup se lceted 

Set Boolean variaLie for selected ite m. 
Start the priut opemtion. 

Else 
Display error messa~re. 

Set the print preview document. 
Show the print preview tlialog. 

Stru1 the print operation. 

Use a loop to send all novor names to the printer. 

If ite m is selected 
Sead selected ite m to the printe r. 

Else 
Display e rror me8sage. 

Te rminote tl1e project. 

If a selection is made 
If duplicate item 

Disp loy ''Duplicate~ rnesoage. 

Else 
Add ite m to the list. 
Clear the list's Text Property. 

If ~'Offee Uavor selected then 

Remove selected ite m. 
Else 

Disp lay error meosage . 

Display n meuage box to C<lnfirm the clear. 
If uoer c licks Yeo 

Clear the coffee list. 

Disp lay list COWl! in message box. 

Displll)' the About box. 

\rrite thP Project Follow the sketch .in Figure 7.1.2 to create the form. Figure 
7.13 shows the completed form. 

• Set the properties of each object as you have planned. 

Write the code. Working from the pseudocode. write each event procedure. 

• When you complete the code. use a variety of da ta to thoroughly testlhe 
project. 

313 



314 S l \ L 
n ' " 

C Li4111. Loop•. and Printing 

The main form for the hands-on project. 

fil.. _Edit t! .. lp 

Select Cdfee lind s~ 

!;o!iee Aavor 

@f.J .. . i;tl 
liYn.P Flavor 
Chocol<lle 
Hazetu 
lnsh Cieme 
Clrange 

T ill' I>I'Oj('<'l (~udiug- Solution 

Main Fonn 

'Project: 
'Programmer: 
'Date: 
'Description: 

' Folder: 

Ch07Hands0n 
Bradley/Millspaugn 
June 2010 
Maintain a list of coffee flavors ; print the selected flavor 
of coffee and syrup or print a list of all of the coffee flavors. 
Ch07Hands0n 

Public Class FlavorsForm 
Private Sub ExitToolStripMenuitem Click(ByVal sender As System.Object, 

ByVal e As System.EventArgs) Handles ExitToolStripMenuitem.Click 
' End the program. 
Me. Close() 

End SUb 
Private Sub AddCoffeeFlavorToolStripMenuitem_Click(ByVal sender As System.Object , 

ByVal e As System.EventArgs) Handles AddCOffeeFlavorToolStripMenuitem.Click 
• Add a new coffee flavor to the coffee list. 
With CoffeecomboBox 

· Test for blank input. 
If .Text <> "" Then 

· Make sure item is not already on the lis t. 
Dim ItemFoundBoolean As Boolean 
Dim Itemindexlnteger As Integer 
Do Until ItemFoundBoolean or Itemindexinteger = .Items.count 

If .Text = . Items(Itemin~exinteger).ToString( ) Then 
ItemFoundBoolean = True 

Loop 

Exit Do 
Else 

Itemlndexinteger += 1 
End If 

If ItemFoundBoolean Then 
MessageBox.Show( "Duplicate item . • , "Add Failed" , 

MessageBoxButtons .OK, MessageBoxicon .Exclamation) 



C IIAI•Tt: R 7 

Else 

Else 
If it's not in t he list, add it . 

. Items.Add( .Text) 

.Text 
End If 

MessageBox.Show("Enter a coffee flavor to add ' , 
' Missing Data", MessageBoxButtons.OK, 
MessageBoxlcon.Exclamation) 

End If 
.Focus() 

End With 
End Sub 
Private Sub PrintAllToolStripMenuitem_Click(ByVal sender As System .Object, 

ByVal e As System.EventArgs) Handles PrintAllToolStripMenultem.Click 
' Begin the print process to print all items. 
PrintAllPrintDocument.Print() 

End Sub 
Private Sub PreviewAllToolStripMenultem_Click(ByVal sender As Object, 

ByVal e As System .EventArgs) Handles PreviewAllloolStripMenultem.Click 
' Begin the process for print preview of all items. 
PrintPreviewOialog1.Document = PrintAllPrintDocument 
PrintPreviewOialog1.ShowOialog() 

End Sub 
Private Sub PrintSelectedToolStripMenultem1_Click(ByVal sender As System.Object, 

ByVal e As System .EventArgs) Handles PrintSelectedToolStripMenuitem1 .Click 
' Begin the print process to print the selected item. 
If SyrupListBox.Selectedlndex = -1 Then 

' Select (None) if nothing selected. 
SyrupListBox.Selectedlndex = 0 

End If 
If CoffeecomboBox .Selectedindex <> -1 Then 

' Items selected. 
PrintSelectedPrintOocument.Print() 

Else 
' No ite~ selected . 
MessageBox.Show( "Select a flavor from the coffee list• , 

"Print Selection", MessageBoxButtons.OK, MessageBoxlcon.Exclamation) 
End If 

End Sub 

Private Sub PreviewSelectedToolStripMenuitem1_Click(ByVa1 sender As Object, 
ByVal e As System .EventArgs) Handles PreviewSelectedToolStripMenultem1.Click 
· Begin the process for print preview of the selected item. 

If SyrupListBox .Selectedlndex = -1 Then 
· Select (None) i f nothing selected. 
SyrupListBox .Selectedlndex = 0 

End If 
If CoffeeComboBox.Selectedlndex <> - 1 Then 

· Item selected. 

Else 

PrintPreviewOialog1.Document = PrintSelectedPrintOocument 
PrintPreviewDialog1.ShoWOialog() 

· No item selected. 

liS 

MessageBox. Show( •select a flavor from the coffee list.", "Print Selection", 
MessageBoxButtons.OK, MessageBoxlcon.Exclamation) 

End If 
End Sub 



316 \ S l \ L It .\ .. £ Li.ts. Wop!. and Printing 

Private Sub PrintAllPrintDocument_PrintPage(ByVal sender As Object, 
ByVal e As System.Drawing.Printing.PrintPageEventArgs 
) Handles PrintAllPrintDocument . PrintPage 

' Handle printing and print previews when printing all . 
Dim PrintFont As New Font ("Aria!", 12) 
Dim LineHeightSingle As Single ; PrintFont.GetHeight + 2 
Dim HorizontalPrintLocationSingle As Single = e.MarginBounds.Left 
Dim VerticalPrintlocationSingle As Single = e.UarginBounds.Top 
Dim PrintLineString As String 
1 Print the heading. 
Using Headingfont As New Font("Arial", 14 , FontStyle.Bold) 

e .Graphics .DrawString ("flavors • , Heading Font, 
Brushes.Black, HorizontalPrintLocationSingle, 
VerticalPrintLocationSingle) 

End Using 

' Loop through the entire list. 
For Listindexinteger As Integer = o To CoffgeComboBox.Items.Count-

1 Incre~ent the Y position for the next l ine. 
VerticalPrintLocationSingle += LineHeight Single 

' Set up a line . 
PrintLineString; CoffeeComboBox.Items(Listlndexlnteger).ToString() 
· send the line to the graphics page object . 
e.Graphics.DrawString(PrintlineStringl PrintFont , _ 

Brushes.Black, HorizontalPrintLocationSingle, verticalPrintLocationSingle} 
Next Listindexinteger 

End Sub 
Private Sub PrintSelectedPrintDocument_PrintPage(ByVal sender As system.Object, 

ByVal e As System.Drawing.Printing.PrintPageEventArgs 
) Handles PrintSelectedPrintDocument.PrintPage 

' Handle printing and print previews when printing selected items. 
Dim PrintFont As New Font( "Arial", 12) 
Dim HeadingFont As New Font ( "Arial • , 14, FontStyle. Bold) 
Dim LineHeightSingle As Single = PrintFont.GetHeight + 2 
Dim HorizontalPrintlocationSingle As Single= e .MarginBounds.Left 
Dim VerticalPrintlocationSingle As Single= e .MarginBounds .Top 
Dim PrintlineString As String 
' Set up and display heading lines. 
PrintLineString = "Print Selected Item' 
e.Graphics.Drawstring(PrintLinestring, HeadingFont, 

Brushes.Black, HorizontalPrintLocationSingle, verticalPrintLocationSingle} 
Printlinestring = "by Programmer Name • 
VerticalPrintLocationSingle += LineHeightSingle 
e.Graphics.Drawstring(PrintLineString, HeadingFont, 

Brushes.Black, HorizontalPrintLocationSingle, VerticalPrintLocationSingle} 
' Leave a blank line between the heading and detail line. 
VerticalPrintLocationSingle += LineHeightSingle * 2 
' Set up the selected line. 
PrintLineString = 'Coffee: • & CoffeeconboBox.Text & 

Syrup: • & SyrupListBox.Text 
' Send the line to the graphics page object. 
e.Graphics.orawString(PrintLineString, PrintFont , 

Brushes.Black, HorizontalPrintLocationSingle, VerticalPrintLocationSingle) 
End Sub 
Private Sub ClearCoffeeListToolStripMenuitem_Click(ByVal sender As Object, 

ByVal e As system.EventArgs) Handles ClearCoffeeListToolStripMenuitem.Click 
' Clear the coffee list. 
Dim ResponseDialogResult As DialogResult 



i 

ResponseDialogResult = MessageBox.Show('Clear the coffee flavor list?" , 
"Clear coffee list", MessageBoxButtons.YesNo, MessageBoxicon.Ouestion) 

If ResponseDialogResult = DialogResult.Yes Then 
CoffeecomboBox.Items.Clear() 

End If 
End Sub 
Private Sub RemoveCoffeeFlavorToolStripMenuitem_Click(ByVal sender As Object, 

ByVal e As System.EventArgs) Handles RernoveCoffeeFlavorToolStripMenuitem.Click 
' Remove the selected coffee from list. 
With CoffeecomboBox 

If .Selectedlndex <> - 1 Then 
.Items.RemoveAt(.Selectedlndex) 

Else 
MessageBox.Show("First select the coffee to remove • , 

"No selection made', MessageBoxButtons.OK, 
MessageBoxicon.Exclamation) 

End If 
End With 

End Sub 
Private Sub DisplayCoffeecountToolStripMenultem_Click(ByVal sender As Object , 

ByVal e As system.EventArgs 
) Handles DisplayCoffeecountToolStripMenuitem.Click 

· Display a count of the coffee list. 
Dim Messagestring As String 
MessageString = "The number of coffee types is " & 

CoffeecomboBox.Items.Count & ·. · 
MessageBox.Show(MessageString , 'R 'n R Coffee Type Count", 

MessageBoxButtons.OK, MessageBoxlcon.Information ) 
End Sub 
Private Sub AboutToolStripMenuitem Click(ByVal sender As Object, 

ByVal e As System.EventArgs) Handles AboutToolStripMenuitem.Click 
' Display the About form. 

AboutForm.ShowDialog() 
End Sub 

End Class 

About Fonn 

'Class: 
'Programmer: 
'Date: 
'Description : 
' 
'Folder: 

AboutForm 
Bradley/Millspaugh 
June 2010 
Display information about the program 
and the programmer. 
Ch07Hands0n 

Public Class AboutForm 
Private Sub OkButton_Click(ByVal sender As System.Object, 

ByVal e As System.EventArgs) Handles Ok8utton .Click 
' Close the form . 
Me.Close() 

End Sub 
End Class 

317 



318 \ s l .\ I. u .\ s l ' Li.ts. Loop•. atwl Printing 

l. List boxes and combo boxes hold lists of values. 'l11e three styles of combo 
boxes are s imple combo boxes. drop-down combo boxes. and drop-d own 
lists. 

2. The size of a list box or combo box is determined at design time. If all of 
the ite ms ~ill not fit into the box. VB automatically adds scroll bars. 

3 . The values for tl1e items in a list are s tored in the hems property. which is 
a collection. The items can be ente red in the Items prc-perty in the Proper
ties window. At run time . items are added to l ists using the Items.Add or 
Items . Insert method . 

.1-. The Selectedlndex property can be used to select an item in the list or to 
detem1ine which item is selected. 

S. The Ttems.Count property holds the number of elements in tl1e lis1. 
6. The Items collec tion holds all elements of the lis t The individual elements 

can be referenced by using an index. 
7. The Items. Remove and Items . RemoveAt methods remove one element 

from a lis t. 
8. The I terns. Clear me tllod may be used to clear all of tbe contents of a list 

box's Items collection at once. 
9 . Code can be \Hillen for several events of list boxes and combo boxes. 

Combo boxes have a Text Changed event; both combo boxes and list boxes 
have Ente r and Leave events. 

LO. A loop allows n s tatement or series of statements to be repeated. Do/Loops 
continue to execute the statements in the loop until a c ondition is mel. 
Eac h pass through a loop is called an iteration.. 

l l. Do/ Loops can have tl1e condi tion test at tl1e top or the botlom of the loop 
and can use a While or Until to test the condition. 

12 . A Do/ Loop can be used to locate a selected item in a combo box. 
13. A loop index controls For/ Next loops; the index is initialized to an init ial 

value. Afte r each iteration. the loop index is incre mented by the Step 
value (tl1e increment). ll'hic h defaults to l. The loop is terminated when the 
loop index is greate r than the ending value. 

14 . The PrintDocument and PrintPreviewOialog components can be used to 
send progmm output to the printer or the screen. 

I S. The Print me t bod of tlle Print Dialog control begins a ptint opemtion. The 
control's Print Page event fires once for each page to prii1L. All printing 
logic belongs in the Print Page event procedure. The Print Page event con
tinues to fire as long as the HasMorePages property of the PrintDocument 
compone nt has a value of True. 

16 . The page to print or display is a graphics object. Use the DrawString 
method to send a siting of text to Llle page. specifying X and Y coordinates 
for the string. 

l 7. AJ ignir1g columns of numbers is diffic uh using proportional fonts. Numbers 
can be right-aligned by formatting the number. measuring the lengtll of the 
formatled string in pixels, and subtracting ilie length lrom the right end of 
the column for the X coordinate. 



C ll i\ I'T E I& 

callback 302 
collection 285 
Combo Box control 284 
Do and Loop statements 292 
DO/Loop 292 
DrawString method 305 
drop-down combo box 284 
drop-d01m list 284 
entry test 292 
exit test 292 
For nnd Next s tatements 295 
For/ Next loop 295 
Items property 286 
I tems. Add method 286 
Items.Clear method 290 
Jtems.Cow1t property 288 
Items. I nsert method 287 
Items. Remove method 289 

7 

l. What is a list box? a combo box? 

Items. RemoveAt method 289 
iteration 292 
List Box control 284 
loop 292 
loop index 295 
posttest 292 
pretest 292 
Print method 302 
print preview 308 
Print Document component 301 
PrintPage event procedure 302 
PrintPre viewDialog component 308 
Selected Index property 288 
simple combo box 284 
simple list box 284 
Sorted property 287 
Using block 309 

2. Name and describe the three styles of combo boxes. 
3. How can you make scroll bar.; appear on a list box or combo box? 
4. Explain the purpose of the Selected Index property and the ltems.Count 

property. 
5. When and how is information placed inside a Ust box or a combo box? 
6. In what situation would a loop be used in a procedure'? 
7. Explain the difference between a pretest and a posttest in a Do/ Loop. 
8. Explain the differences between a Do/Loop and a For/ Next loop. 
9. What are the steps in processing a For/ Next loop? 

10. Discuss how and when the values of the loop index change throughout the 
processing of the loop. 

ll. What is the purpose of the PrintDocument component? the Print Preview
Dialog component? 

12. In what procedure do you write the logic for sending output to the printer? 
13. What is the purpose of the X and Y coordinates on a print page? 

319 



320 S l ' \ I. ll \ s C /,i.t.<. Loop>. and Printing 

Create a project for obtaining s tudent information. 
Startup form controls are as follows: 

• Text boxes for entering the name and units completed. 

• Radio buttons for Freshman. Sophomore. Junior. and Senior. 

• Check box for Dean's List. 

• A lis t box for the following majors: Accounting. Business. Computer 
Information Systems. and Marketing. 

• A simple combo box for t11e name oft11e high school-initially loaded 
with Franklin. H ighland. West Highland. and Midt01m. If the user 
types in a new school name. it should be added to t11e list. 

• Print button iliat prints the data from the form. Use ilie Print Preview 

dialog box. 

• An OK button that clears the entries from the form and resets the focus. 
The button s hould be the Accept button for ilie form. 

M enus 

The File menu should have an item for Print Schools and Exit. The Edit 

menu s hould have an item for Add High School: the H9lp menu should have 
an item for t11e About box. 

Note: Print your name at the top of the printer output for the schools. 
Display the printer output in the Print Preview dialog box. 

7.2 R 'n R--for Reading 'n Refreshment needs a project that contains a form 
for entering book infom1ation. 

Form Controls 

• Text boxes for auilior and title. 

• Radio buttons for type: fiction or nonfiction. 

• Drop-down list for Subject that will include Best-...'eller. Fantasy. Reli
gion. Romance. Humor. Science Fiction. Business. Philosophy. Edu
cation. Self-Help. and Mystery. 

• List box for Shelf Number containing RC-1111. RC-1112. RC-1113. 
and RC-1114. 

• Print button that prints the data from the form. Use the Print Preview 

dialog box. 

• An OK button that clears the entries from the form and resets the focus. 
Make this the Accept button. 

Menrts 

The File menu will have items for Print Subjects and Exit. TI1e Help menu 
will have an item for About iliat displays the About box. 

Note: Print your name at the top of the printer output for the subjects. 
Display ilie printer output in the Print Preview dialog box. 



C ll i\ I•Tt; ll 7 

i.3 Create a project to input chartering information about yachts and print a 
summary report s howing the total revenue. number of charters. and aver
age hours per charter. 

Jlfenus 
The FikJ menu will contain items for Print Sumtnal)'. Print Yacht Types. and 
Exit. Place a separator before Exit. The Edt menu should have items for 
Clear for Next Charter. Add Yacht Type. Remove Yacht Type. and Display 

COunt of Yacht Typ9s. Include a separator after the CkJar item. The Hep 
menu ~ill contain oo About item that displays an About fom1. 

The Form 

• The form should contain text boxes for responsible party. hours char
tered. and the calcu lated price of the charter. 

• A drop-do'l'!'11 combo box will contain the type of yacht: Ranger. 
Wavelength. Catalina. Coronado. Hobie. C & C. Hans Christian. and 
Excaliliur. Any items that are added to the text box during processing 
must be added to the Jisl. 

• A drop-down list will contain the sizes: 22. 24. 30. 32. 36. 38. 45. 
(No new sizes can be entered at run tjme.) 

• An OK bulton will calculate unci display the price and add to t11e totals. 
The calculations 11ill require price per hour. Use the foUm,ing chart: 

Size Houo-ly Role 

22 

2-1 

30 

32 

36 

38 

45 

95.00 

137.00 

160.00 

19"2.00 

250.00 

400.00 

550.00 

• A G98rbullon will cleur the contents of the screen controls. The func
tions of the CkJar button are t11e same as for the Clear for Next Charter 

menu item. 

• Make the OK button the Accept button and t11e Clear bulton t11e form·s 
Cancel button. 

Sunullllty Report 
The summary report will print the s ummary information and send the re
port to a Pmt Prewew dialog box. The summary information "ill include 
Number of Charters. Total Revenue. and Average Hours Chartered. In
clude your nan1e on the output and identifying labels for the summary 
infonnal ion. 

321 



322 \ ~ l \ I, H \ S C.' U..r.s. Loops. and Prinling 

Yac/u 'Pypes Report 
Display the yacht types in the combo box in the Print Preview dialog box. 
Include your name and a title at the top of the report. 

i .4 Create a project that contains a list box 11ith the names of all U. . slates 
and territories. \l' hen the user types the first letters of the s tate into a text 
box. set the Selected Index property of the list box to display the appro
priate nan1e. Include an Exit menu item. 

Alahama Kentucky Oklahoma 

Ala•ka Louismms Oregon 

Amcric•n Snmou Maine PeiUl!lylvllllia 

Ariwnu Maryland Puerto Rico 

Arkw1••~ MW!oachusetts Rhode lolw1d 

California Michig<m South Carolina 

Colorndo Minneoota South Dakota 

Connect icul Miosi .. ippi TennesJ~~ee 

Delaware Mi•souri Texas 

District or Colwnbm Montana Trust Territories 

Flor..la Nebraska Utah 

Geor~a N"'•a.da Vermont 

Cunm New l lan1pshire \irgin t.land. 

llawa.ii New Jenoey \"upnia 

Idaho New Mexico Wa~on 

llli11oi• N<'W York Weot Virginia 

lodiona North Carolina 'Wisconsin 

Iowa North Dakota Wyominl! 

Kan$1l!S Ohio 

7.5 Muinta in o lis t of bagel types for Bradley's Bagels. Use a drop-do1111 
combo box to hold the bagel types and use buttons or menu choices to 
Add Bagel Type. R6move Bagel Type. Clear Bagel List. Print Bagel List. Dis

play Bagel Type Count. and Exit. Keep the list sorted in alphabetic orde r. 
Do not allow a blank type to be added to the list. Display an error mes

sage if the user selects RemoV9 without first selecti11g a bagel type. 
Before clearing the list. display a me,gage box to confirm tbe opemtion. 
Here are some su~ested bagel types. You can make up your oKll list. 



C II 1\ I1 T E il 7 323 

Pl:lln Poppy seed 

Egg Sesame seed 

Rye Banana nut 

Salt Blueberry 

7.6 Modify Programming Exerc ise 7.5 to not allow duplicate bagel types to be 
added to the list. 

VB !Uall Order I 
Create a project for VB Mail Order to mainta in a list of 
catalogs. Use a drop-down combo box for the catalog 
names. and allow the user to enter new catalog names. 
delete catalog names. display a count of the number of 
catalogs. clear the catalog I ist. or print the catalog list. 

Do not allow a blank catalog name to be added to 
the lisl. Display an error message if the user selects 
Remove without first selec ting a catalog name. Before 

clearing the lis t. display a message box to confinn the 
operation. 

To begin. the catalog list should hold these catalog 
names: Odds and Ends. Solutions. Camping Needs . 
TooiTime. Spiegel. The Outlet. and The Large Size. 

Display the printed output in tlte Print Preview di
alog box. include your name and a heading at the top 
of the report. 

VB Auto Cenwr 

Create an application for the car wash located at VB 
Auto Center. 

The form will contain three list box or combo box 
controls that do not permit the user to type in items at 
rwt time. The fi rst list will conta in the names of the 
packages available for de ta iling a vehicle: Standard. 
Deluxe, Executive, or Luxury. 

The contents of the other two lists will vary de
pending upon the package selected. Display one list 
for the interior work and one list for the exte rior work. 
Store tlte descriptions of the items in string const.ants. 
You must clear the I ists for the interior and exterior for 
each orde r and add ne~· items to the Lists each time 
the user makes a selection from the package list. 

Use a clrop-down list lo allow the user to select the 
fragrance. Tite choices are Hawaiian Mis t. Baby Pow
der, Pine. Country floral, Pina Colada. and Vanilla. 

Include menu items for Print Order. Clear. and Exft 
with appropriate access keys. The print option should 
send its output to the Print Preview window. Include 
your name and a heading at the top of the report. 

The Order printout will contain the package name 
(Standard. Deluxe. Executive. or Luxury). the interior 
and exterior items included. and the fragrance se
lected. Use a For/ Next loop when printing the inte
rior and exterior lists. 



324 ,. s l ' \ •• R \ s ( ' U.ts. Loop•. ancl Prinling 

Ite m D~er-iption s D E L 

Exterior Hand w..,h ./ ./ ./ ./ 

Hand Wax ./ ./ ./ 

Check Engine Fluids ./ ./ 

Detail Engine Compartment ./ 

Detail Undercarriage ./ 

Interior Fragrance .I ./ ./ ./ 

Shampoo Carpets ./ ./ ./ 

Shampoo Upholstery ./ 

Interior Protection Coat 
(dashboard and console) ./ 

Scotchgar<(fll ./ 
No~<: ~ D-Delue: E----Execulive; L---Lwtury 

VIdeo Ronaaza 

Maintain a Ust of mol'ie categories. Use a drop-down 
combo box to hold the movie types. keeping the list in 
alphabetic order. Use buttons or menu choices to Add 

a Category. Remove a Category. Clear All Categories. 

Print the Category List. Display the Movie Category Count. 

and Exit. Include appropriate access keys on your form 
and/or menu items. 

Do not allow a blank type to be added to the list. 
Display an e rror message if the user selects Remove 

without first selecting a movie category. Before clearing 
the list. display a message box to confinn the operation. 

The starting categories are 

• Comedy 

• Drama 

• Action 

• Sci-Fi 

• H orror 

Display the printed output in the Print Preview di
alog box. l nclude yotu name and a heading at t11e lop 
of the report. 

Very Very Boards I 
Write a project to maintain a list of shirt styles. Keep 
the styles in a drop-down combo box. with styles such 
as crew. turtleneck. or crop top. 

Add a Style menu •~ith options to Add Style, Re

move Style. Gear Style Ust. and Count Styfes. Add a 

Print Style Ust option to the File menu. and include ac
cess keys and keyboard shortcuts for the menu items. 

Display the printed output in the Print Preview di
alog box. Jnclude your name and a heading al the lop 
of the report. 



c D A p T E 

Arrays and 
Collections 

R 

I . Establish an array and refer to individual elements in the array with 

subscripts. 

2 . Use the For Each/Next to traverse the elements of an array. 

3 . Create a structure for multiple fields of related data . 

..f. Accwnulate totals using arrays. 

5. Distinguish between direct access and indirect access of a table. 

6~ Write a table lookup for matching an array element. 

7 . Combine the advantages of list box controls with arrays. 

8 . Store and look up data in multidimensional arrays. 

9 . Create a collection and use it to manage a group of elements. 



326 v S l l ,\ I. C AlTay• and Collection.• 

Single-Dimension Arrays 

An at-ray is a list or series of values, similar to the Items collection in a list box 
or a combo box. You can think of an array as a list box without the box- without 
the visual representation. Any time you need to keep a series of variables for later 
processing. such as reordering. calculating, or printing, you can set up an array. 

Consider an example that has a form for entering pruduct information one 
product at a time. After the user has entered many products. you will need to 
calculate some statistics, perhaps use the informatiou in different ways, or priut 
it. Of course. each time the user enters the data for the next product. the previ
ous contents of the text boxes are replaced. You could assign the previous 
values to variables. but they also would be replaced for each new product. An
other approach might be to create multiple variables. such as ProductlString. 
Product2String, Product3String. and so on. TI1is approach might be reasonable 
for a few entries. but what happens when you need to store 50 or 500 products? 

\ifhen you need to store multiple values, use an array. An array is a series 
of individual vatiables. all referenced by the same name. Sometimes arrays are 
referred to as /.nbles or subscripted ·variables. For an an-ay for storing names, 
you may have NameString(O). NameString(l). NameSiling(2). and so on. 

Each individual variable is called an element of the anay. TI1e indh~dual 
elements are treated the same as any other variable and may be used in any 
statement. such as an assignment statement. TI1e subse~ipt (which also may be 
called an ittdex) iuside the pru·entheses is the position of the element 11ithin the 
array. Figure 8.1 illustrates an array of l 0 elements with subscripts from 0 to 9. 

SuJlsc l"ipls 

(0) 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

NameString array 

Janet Baker 

George Lee 

SueLi 

Samuel Hoosier 

Sandra Weeks 

William Macy 

Andy Harrison 

Ken Ford 

Denny Franks 

Shawn James 

The real advantage of using an array is not realized until you use variables for 
subscripts in place of the constants. 

NameString(Indexlnteger) = "" 

Debug .WriteLine(NameString(Indexlnteger)) 

F i g ut•e 8.1 

An array of string variables 
with 10 elements. Subscripts 
are 0 through 9. 



C II ,\I> 'I' I' R u 

Subscripts may be constants. variables, or numeric expressions. Although 
the subscripts must be integers, Visual Basic rounds any noninteger subscript. 

A question has probably occurred to you by now: How many elements are 
there in the NameString array? The answer is that you must declare the array 
name and the number of elements. 

Tbe lleclm·ntion Statements fot· Al•t•nys-Ceuet•al Fot'lliS 
You can declare arrays by using the Dim. Public. Private. or Friend key
word. Just as with any other variable. the location of the declaration determines 
the scope and lifetime of the aiTay variables. 

327 

~.--------------------------------------------------------------------------. ~ Private ArrayName(UpperSubscript) As Datatype 
;: ~ Dim ArrayName() As Data type = {Initial ValueList} 

!!!... Dim ArrayName As Datatype() = {Initial ValueList} 

The first declaration above creates storage for the specified number of ele
ments and initializes each numeric variable to 0. In the case of string arrays. 
each element is set to an empty string (no characters). 

In the second and third fonns of the declaration statements . you specify 

initial values for the an"lly elements. which detennines the number of elements. 
You cannot declare the upper subscript arui initial values. 

TI1c Declaration Statemeuts for· Anays-Examples 

Dim NameString(25) As String 
Dim BalanceDecimal(10) As Decimal 
Dim ProductString(99) As String 
Dim Indexinteger() As Integer = {1, 5, 12, 18, 20} 
Dim Indexinteger As Integer() = {1, 5, 12, 18, 20} 
Dim DepartmentsString() As String = {"Accounting " , "Marketing " , "Human Relations"} 
Private CategoryString(10) As String 
Friend IdNumbersString(5) As String 

Array subscripts are zero based. so the first element is always element zero. 
The upper subscript is the highest subscript-one less than the number of ele
ments. For example. the statement 

Dim CategoryString(10) As String 

creates an array of ll elements with subscripts 0 through 10. 
Notice that you declare a data type for the array. All of the aJTay elements 

must be the same data type. 

Valid Snbse.-ipts 

A subscript must reference a valid element of the array. lf a list contains 10 
names. it wouldn' t make sense to ask: What is the 15th name on the list? or 

What is the 2Y2th name on the list? Visual Basic rounds ft"llctional subscripts 
and throws an exception for a subscript that is out of range. 

Note: Arrays are based on System.Anay. which is a collection. You will 
learn more about collections later in this chapter. 



328 l ' C ATTays and CollectioiiS 

Dim Namestring(20) As String 
Const INDEX_Integer As Integer = 10 

After execution of the preceding statements, which of the following are valid 
subscripts? 

l. NameString(20) 
2. NameString(INOEX_Integer) 
3. NameString(INOEX_lnteger * 2) 
4. NameString(INOEX_lnteger * 3) 
5. NameString(O) 
6. NameStringQNDEX_lnteger - 20) 
7. NameString(lNUEX_b1teger /3) 
8. NameString(INOEX_Integer I 5 - 2) 

For Each/Next Statements 

When you use an array. you need a way to reference each element in the an'lly. 
For /Next loops. which you learned to use in Chapter 7. work well to traverse 
the elements in an array. Another handy loop construct is the For Each and 
Next. The significant advantages of using the For Each and Next are that you 
don't have to manipulate the subscripts of the array or know how many ele
ments there are in the array. 

Note; Array elements are read-only in the body of a For Each loop. You can
not modify the contents of an array element inside the body of a For Each loop. 

The For E<wh <md Next Statemcnts--Cenet·al Fonn 

rr For Each ElementName (As Datatype) In ArrayName 
3 ~ · Statement(s) in loop. 
~ Next [ElementName] 

Visual Basic automatically references each element of the array. assigns its 
value to ElementName. and makes one pass through the loop. If the array has 
12 elements, for example, the loop will execute 12 times. The variable used for 
E.lementName must be the same data type as the array elements or an Object 
data type. It's best to declare the variable for Element Name as part of the For 
Each statement. which creates a block-level variable. 

lu the following example. assume that the array NameString has already 
been declared and holds data. and the variable OneNameString will hold the 
individual va]ues of NameString. one element at a time. 

11Je For Each and Next Statements--Example 

~ r----------------------------------------------------------------------. e For Each OneNameString As String In NameString 
= · write one element or tne array . 
~ Debug .Writeline(OneNameString) 

Next OneNameString 



C II A 1• 'I' " ll 

The For Each loop will execute if the array has at least one element. All the 
statements within the loop are executed for the first element. lf the array has 
more elements, the loop continues to execute until all the elements are 
processed. When the loop finishes, execution of code continues witJ1 the line 
following the Next statement. 

Note: You may use an Exit For statement witJ1in the loop to exit early. 

Structures 

You have been using the VB data types, such as Integer, String. and Decimal, 
since Chapter 3. Now you willleam to combine multiple fields of related data 
to create a new su·uctm·e. In many ways. a structure is similar to defining a 
new data type. For example, an Employee structure may contain last name. first 
name. social security number. street. city. state, ZIP code. date of hire. and pay 
code. A Product structure might contain a description. product number, quan
tity, and price. You can combine the fields into a structure using the Structure 
and End Structure statements. 

Tbe Su·ucuu·e a ud End Structure Statcments-Ceneral Form 

(Public 1 Private 1 Friend! Structure NameOfStructure 
Dim FirstField As DataType 
Dim SecondField As DataType 

End Structure 

The Structure declaration cam1ot go inside a procedure. You generally place 
the Structure statement at the top of a file wiili the module-level declarations. 
You also can place a Structure in a separate file in your project. 

329 

The Su·uctm·e and End Su·ucture S ta tements-Examples 

~ .--------------------------------------------------------------. .... 
~ e 
~ 
~ 

Structure Employee 
Dim LastNameString As String 
Dim FirstNameString As String 
Dim SocialSecurityNumberString As String 
Dim StreetString As String 
Dim CityString As String 
Dim StateString As String 
Dim ZipCodeString As String 
Dim HireDate As Date 
Dim PayCodeinteger As Integer 

End Structure 

Friend Structure Product 
Dim Descriptionstring As String 
Dim ProductNumberString As String 
Dim Quantityinteger As Integer 
Dim PriceDecimal As Decimal 

End Structure 

Structure SalesDetail 
Dim SaleDecimal() As Decimal 

End Structure 



330 v S l l ,\ I. C Arrays and Collections 

By default. a structure is Public. You can declare the structure to be Friend 
or Private if you wish. 

If you include an array inside a structure, you carmot specify the number 
of elements. You must use a ReDim statement in your code to declare the num
ber of elements. 

Declal'ing Val'iables Base<l on a S tr.·uctur·e 

Once you have created a structure. you can declare variables of the structure. 
just as if it were another data type. 

Dim OfficeEmployee As Employee 
Dim warehouseEmployee As Employee 
Dim WidgetProduct As Product 
Dim InventoryProduct(100) As Product 
Dim HousewaresSalesDetail As SalesDetail 
Dim HomeFurnishingsSalesDetail As SalesDetail 

Accessing the E le ments in a S tr·uc tm·e Variable 

Each field of data in a variable declared as a stJ·ucture is referred to as an ele
ment of the structure. To access elements. use the dot notation similar to that 
used for objects: Specify Variable.Elemenl. 

OfficeEmployee.LastNameString 
OfficeEmployee .HireDate 
warehouseEmployee . LastNameString 
WidgetProduct .DescriptionString 
WidgetProctuct .auantityinteger 
WidgetProduct.PriceDecimal 
InventoryProduct(Indexlnteger).DescriptionString 
InventoryProduct(Indexlnteger) .auantitylnteger 
InventoryProduct(Indexlnteger) .PriceDecirnal 

Notice the use of indexes in the preceding examples. Each example was 
taken from the preceding Structure and Dim statements. A variable that is 
not an array, such as WidgetProduct, does not need an index. Howeve1: for 
InventoryProduct, which was dimensioned as an array of 101 elements (0 
through 100). you must specify not only the Inventory Product item but also the 
element within the structure. 

Including <UJ Art·ay in a S tr·uc tm·e 

The Sales Detail structure is a little more complicated than the other structures 
described above. In this structure, we want to include an array of seven vari
ables, one for each day of the week. However. VB does not allow you to declare 
the number of elements in the Structure declaration. You must use the ReDim 
statement inside a procedure to give the array a size. 

' Module -level deolarations. 
Structure SalesDetail 

Dim SaleDecimal() As Decimal 
End Structure 

Private HousewaresSalesDetail As SalesDetail 



C II A 1• 'I' " ll 

' Inside a procedure : 
' Establish the number of elements in the array . 
ReDim HouseWaresSa l es Detai l .Sal eDecimal (6) 

' In processing . 
HousewaresSalesDetail .SaleDecimal(Dayindexinteger) = currentDaySalesDecimal 

Because the SaleDecimal element of the SalesDetail structure is declared 
as an array. you must use a subscript to refer to each individual element within 
the structure. 

Ft•ctlhack H.2 

l. Write a Structure statement to hold student data containing last name. 
first name. student number. number of units CQmpleted. and GPA. The 
new structure should be called "Student". 

2. Declare an array of 100 students that will use the structure for student 
infonnation. 

3. Write the Structure statement for a structure called "Project" con
taining a project name. form name. and folder name. 

4. Declare a variable called " My Project" based on the Project structure. 
5. Declare an array of 100 elements called "OurProjects". based on the 

Project structure. 

Using Array Elements for Accumulators 

Array elements are regular vaiiables and pe1form in the same ways as all vari
ables used so far. You may use the subscripted variables in any way you choose. 
such as for counters or total accumulators. 

To demonstrate the use of array elements as total accumulators, eight totals 
will be accumulated. For this example. eight scout troops are selling raffle tick
ets. A separate total must be accumulated for each of the eight groups. Each 
time a sale is made. the number of tickets must be added to the correct total. 
The statement 

Dim Totallnteger(7) As Integer 

declares the eight accumulators with subscripts 0 to 7. 

Adding to the Cor1·ect Total 

Assume tlmt your user inputs a group number into GrQupTextBox.Text and the 
number of tickets sold into SaleTextBox.Text. The sales may be input in any or
der witl1 multiple sales for each group. Your problem is to add each ticket sale 
to the correct total. numbered 0 to 7, for groups numbered 1 to 8. 

You can subtract one from the group number to use as the subscript to add 
to the correct total. For example, if the first sale of 10 tickets is for group 4. the 
10 must be added to Totallnteger(3). (Figure 8.2 shows the form and the vari
ables used for this example.) 

331 



332 l ' C Arrays and Collection.• 

The group nwnber enu,red in GroupTextBox is u.sed as a subscript to determine the correct Total/nu,ger a rray element 
to which to a.dd. 

(3) 

(4) 

(5) 

(6) 

(7) 

GroupN umberlnteger 

(GroupTextBox.Text - 1) 

3 

I0 ~-1---~-----~~~ale~s ___ lO 
1-----1 

0 
1-----1 

0 
1-----1 

0 
1-----1 

0 
L----1 

= 1 @1~ 

-<---++-- GroupTextBox 

-<---++-- SaleTextBox 

<---++-- TotalButton 

' Convert input group number to subscript . 
GroupNumberinteger = Integer.Parse(GroupTextBox.Text) - 1 
' Add sale to the correct total. 
Salelnteger = Integer .Parse(SaleTextBox.Text) 
Tota l lnteger(GroupNumberl nteger) += Sal e lnteger 

Of course. the user might enter an incorrect group number. Because you 
don't want the program to cancel with an exception, you must validate the 
group number. 

Try 
· Convert input group number to a subscript. 
GroupNumberinteger = Integer .Parse(GroupTextBox.Text)- 1 
If GroupNumberinteger >= o And GroupNumberinteger <= 7 Then 

Else 

' Add sale to correct total . 
Salelnteger = Integer .Parse(SaleTextBox.Text) 
Totalinteger(GroupNumberinteger) += Salelnteger 

MessageBox .Show( "Enter a valid group number (1 - 8) " , "Data Entry Error ", 
MessageBoxButtons . OK, MessageBoxicon .Exclamation) 

End If 
Catch 

MessageBox .Show( "Numeric entries required for both group number and sales ." , 
"Data Entry Error ", MessageBoxButtons . OK, MessageBoxicon.Exclamation) 

End Try 

Using the group number as an index to the array is a technique called 
direct reference. TI1e groups are assigned numbers from 1 to 8. You can sub
tract l from the group number to create the subscripts . which are 0 to 7. 



C II A 1• 'I' " ll 

Debugging AlTay P1·og•·ams 

You can view the contents of array elements when your program is in debugging 
time. Set a breakpoint and view the Autos window (Figure 8.3). You will need 
to click on the plus sign to the left of the anay name to view the individual 
array elements. 

Note: The Autos 11indow is not available in the Express Edition of Visual 
Basic. 

Autos • 'I X 

_l!l_.,. I .Va~~ Trr• . 
-

Y Groupl'lumberlnteger 0 Integer 
Q S.lelnt eger ill Integer 

lor.-E I •. .,. 
Q (0) 20 Integer 
~ (lj 0 !nte-gcr 
Q (l) 0 integer 
.., (3) 10 Integer 
Q l"J 0 integer 
Q (5) 0 Integer 
Q (&) 0 l"teg<r 
.., (I) 0 int~qtr -

m ~.l~OS ., 

Table Lookup 

Things don't always work out so neatly as having sequential group numbers that 
can be used to access the table directly. Sometimes you will have to do a little 
work to fu1d Qook up) the conect value and reference the array elements indi
rectly. Reconsider the eight scout troops and their ticket sales. Now the groups 
are not numbered 1 to 8. hut 101, 103. llO. ll5. 121. 123. 130, and 145. The 
group number and the number of tickets sold are still input. and the number of 
tickets must he added to the conect total. .But now you must do one more step: 
determine to which array element to add the ticket sales. using a table lookup. 

The first step is to establish a stmcture with the group numbers and totals 
and then dimension an anay of the structure. Before any processing is done. 
you must load the group numbers into the table; the best place to do this is in 
the Fom1_Load event procedure. which is executed once as the fonn is loaded 
into memory. 

Place the following statements at the top of a form class: 

' Declare structure and module-level variables . 
Structure Group 

Dim GroupNumberString As String 
Dim Totallnteger As Integer 

End Structure 

' Hold group number and total for 8 groups . 
Private ArrayGroup(7) As Group 

333 

Fi~ua• e 8.3 

View the contents of an array 

in the Autos window at 
debugging time. 



334 \ s l l \ I. It \ s ( ' Arra,·• 01od Collection.• 

ll1en initialize the values of the array elements by placing these statements into 
the Form_ Load event procedure: 

Private Sub SalesForm_Load(ByVal sender As System.Object, 
ByVal e As System.EventArgs) Handles MyBase.Load 

' Initialize group numbers. 

ArrayGroup(O).GroupNumberString = 
ArrayGroup(1).GroupNumberstring = 
ArrayGroup(2).GroupNumberString 
ArrayGroup(3).GroupNumberString 
ArrayGroup(4) .GroupNumberstring 
ArrayGroup(5).GroupNumberString 
ArrayGroup(6).GroupNumberString 
ArrayGroup(7).GroupNumberString 

End Sub 

'101' 
'103' 
'110' 
'115' 
'121' 
'123" 
'130" 
'145" 

During program execution. the user still enters the group number and the num
ber of ticket~ sold into text boxes. 

The technique used to find the subscript is called a table lookup. In this ex
ample. the object is to find the element number (0 to 7) of the group number 
and add to tJ1e corresponding group total. If the user enters the third group 
number ("ll 0"). the subscript is 2 and the sale is added to the total for sub
script 2. If the seventh group numbe r ("130") is entered. the sale is added to 
the total with the subscript 6. and so on. Hence. you need a way. given the 
group number in GroupTextBox.Text. to lind the corresponding subscript of the 
A rrnyGroup array. 

When Visual Basic executes tJ1e s tatement 

ArrayGroup(Indexinteger).Totalinteger += Salelnteger 

the value of Index Integer must be a number in the range 0 to 7. The task for the 
lookup operation is to fmd the number to place in Index Integer. based on the 
value of GroupTextBox.Text. Figure 8.4 shows the variables used for the 
lookup. Figure 8.5 shows the UM L action diagram of the lookup logic. 

Cw l ing u Tabl.- Lool..n11 

For a table lookup. you wiU find that a Do/Loop works better than For Each. 
As you compare to each element in the anay and eventually find a match. you 
need lo know the subscript of the matching element. 



C ll 1\ l1 'l' li R 335 

A lookup operation: The group number is look-ed up in the Array Group a:rray; the correct subscript is found and used to add 
the sale to the correct Total/ nteger. 

Index integer 

.---------------------+------ 2 

ArrayGroup array 

GroupNumberString Totallnteger 
•9 Scout Raffle Tid<et Sales 

(0) 101 0 

(1) 0 

(2) 10 ~ales 10 

(3) llS 0 

(4) 121 0 

(5) 123 0 

(6) 130 0 

(7) 145 0 

lndexlnteger = 0 

[Neither condition True] 
[FoundBoolean = True 

or lndexlnteger > 7] 

Add 1 to lndexlnteger 

Set F otmdBoolean 

Loop Complete. 
Continue with program. 

~---+t-- SaleTextBox 

4-----+1--- TotalButton 

OkButton 

Fif,f u1•e 8 . 5 

A UML action diagram of the 
logic of a lookup operation. 



336 v S l l ,\ I. 

' Accumulate the sales by group number . 
Dim Saleinteger As Integer 
Dim Inaexinteger As Integer = o 
Dim FoundBoolean As Boolean = False 

' Look up input group number to find subscript. 
Do Until FoundBoolean or Indexinteger > 7 

C AlTay• and Collection.• 

If GroupTextBox .Text = ArrayGroup(Indexinteger) .GroupNumberString Then 
' Add sale to correct total. 

Loop 

Else 

Saleinteger = Integer.Parse(SaleTextBox.Text) 
ArrayGroup(Indexinteger).Totalinteger += Saleinteger 
FoundBoolean = True 

Indexinteger += 1 
End If 

Once again. you should do some fonn of validation. If the user enters an in
valid group number. you should display a message box. You can check the 
value of the Boolean variable FoundBoolean after completion of the loop to de
tennine whether the loop tenninated because of a match or without a match. 

If Not FoundBoolean Then 
MessageBox .Show("Enter a valid group number", "Data Entry Error " , 

MessageBoxButtons.OK, MessageBoxicon.Exclamation) 
With GroupTextBox 

. Focus() 

. SelectAll () 
End With 

End If 

The table-lookup technique will work for any table. numeric or string. It 
isn't necessary to arrange the fields being searched in any particular sequence. 
The comparison is made to one item in the Ust, then the next, and the next
until a match is found. ln fact. you can save processing time in a large table by 
arranging the elements with the most-often-used entries at the top so that fewer 
comparisons must be made. 

Using List Boxes with Arrays 

In the previous example of a lookup. the user had to type some information into 
a text box. which was used to look up the information in an array. A more effi
cient and friendly solution might be to substitute a list box for the text box. You 
can store the eight group numbers in a list box and allow the user to select from 
the I ist (Figure 8.6). 

The initial Items collection can contain the values 101. 103. llO. ll5. 
121. 123. 130. and 145. 

You have probably already realized that you can use the Selectedlndex 
property to detennine the array subscript. Remember that the Selectedlndex 
property holds the position or index of the selected item from the list. 



C II 1\ 1• 'I' I' ll u 

In place of the lookup operation. we can use this code: 

Declare module-level variables. 
Private Tota1Integer(7) As Integer ' Hold totals for 8 groups . 

Private Sub OkButton_Click(ByVal sender As System.Object, 
ByVal e As system.EventArgs) Handles OkButton .Click 

' Accumulate the sales by group number . 
Dim Saleinteger As Integer 
Dim Indexinteger As Integer 
Try 

Indexinteger = Group li stBox.Se l ected index 
If Indexinteger <> - 1 Then ' Selection made . 

Else 

' Add to correct total. 
Saleinteger = Integer .Parse(SaleTextBox .Text) 
Totalinteger(Indexinteger) += Saleinteger 

' Clear the screen fields. 
GroupListBox.Selectedindex = - 1 
SaleTextBox.Text = "" 

337 

MessageBox.Show( "Select a group number from the list. ", 
"Data Entry Error ", MessageBoxButtons .OK, 
MessageBoxicon.Exclamation) 

End If 
Catch 

MessageBox .Show( "Sales must be numeric. ") 
End Try 

End Sub 

•'i Scout Raffle Ticket Sales 

§.roup Number ~a!es 

'101 10 
103 
mJI 
115 I I 121 QK 
123 
1JO 

I Dspl<'/ I 145 
Total* 

Multidimensional Arrays 

You generally need to use two subscripts to identify tabular data, where data 
are arranged in t·ows and colunms. 

Many applications of two-dimensional tables quickly come to mind: insur
ance rate tables. tax tables, addition and multiplication tables. postage rates. 
foods and their nutJ·itive value, population by region. rainfall by state. 

F i~ttr e 8 . 6 

AllQW the user to select from a 
list and yo~< can use the list's 
Selectedfndex property as the 
subscript of the total array. 



338 v S l l ,\ I. C Arrays and Collections 

To define a two-dimensional array or table, the Dim statement specifies the 
number of rows and columns in the array. The row is horizontal and the column 
is vertical. The following table has three rows and four columns: 

The Declal'atiou Statements fot· Two-Dimensional Arl'ays
Geneml Fot·ms 

Dim ArrayName(HighestRowSubscript, HighestColumnSubscript) As Datatype 
Dim ArrayName(,) As Datatype = {ListOfValues} 

The Dcclm·atiou Statements fot· Two-Dimensional Army:>--Exruuples 

~ ~ Dim NameString(2, 3) As String 
8 Dim NameString (,) As String = {{"James " , "Mary" , "Sammie " , "Sean "}, 

I 

'5!... {"Tom" , "Lee " , "Leon", "Larry "} , { "Maria " , "Margaret " , "Jill " , "John "} 
~ ~ ...................................... .. 

Both of these statements establish an array of 12 elements, with three rows and 
four columns. Just as with single-dimension arrays. you cannot specify the 
number of elements within parentheses and specify initial values. 

Notice the comma inside the parentheses in the second example: You must 
use a comma to specify that there are two dimensions to tl1e array. Specify the 
initial values with the first dimension (the row) first and the second dimension 
(the column) second. The compiler determines the number of elements from the 
initial values that you supply. The second example above fills the table in this 
sequence: 

(0,0) (0. 1) (0, 2) (0,3) 
James Mary Sammie Sean 

(1 ,0) (I , 1) (1, 2) (1 ,3) 
Tom Lee Loon Larry 

(2,0) (2, 1) (2, 2) (2,3) 
M&'ia Margaret Jill John 

You must always use two subscripts when referring to individual elements of 
the table. Specify the row with the first subscript and the column with the sec
ond subscript. 

The elements of the array may be used in tl1e same ways as any other 
variabl-in accumulators, counts. and reference fields for lookup; in state
ments Like assignment and printing; and as conditions. Some valid references 

to the table include 

NameString(1, 2) = "New Name" 
NameString(Rowinteger , Columninteger) = "New Name " 
DisplayLabel .Text = NameString(1, 2) 
DrawString(NameString(Rowinteger, Columnlnteger), PrintFont, Brushes .Black, 100.0, 100.0) 



C II A 1• 'I' " ll 

Invalid references for the NameString table would include any value greater 
than 2 for the first subscript, greater than 3 for the second suh~cript. or less 
than 0 for either subscript. 

Initia lizing Two-Dime nsional A1·rays 

Numeric array elements are initially set to 0, and string elements are set to 
empty strings. And. of course, you can assign initial values when you declare 
the array. But many situations require that you reinitialize arrays to 0 or some 
other value. You can use nested For /Next loops to set each array element to an 
initial value. 

Nested F01·/Next Example 

The assigmuent statement in the im1er loop will be executed 12 times. once for 
each element of NameString. 

For Rowinteger As Integer = o To 2 
For Columninteger As Integer = o To 3 

' Initialize each element. 
NameString(Rowinteger , COlumninteger} 

Next Columnlnteger 
Next Rowinteger 

P1~inting a Two-Dime nsional Tahle 

When you want to print the contents of a two-dimensional table. you can use a 
For Each/Next loop. Tius example prints one array element per line. 

' Print one name per line . 
For Each ElementString As String In Namestring 

' Set up a line . 
e .Graphics .DrawString(ElementString, PrintFont, 

Brushes.Black, HorizontalPrintlocationSingle, VerticalPrintlocationSingle) 

' Increment the Y position for the next line . 
VerticalPrintlocationSingle += LineHeightSingle 

Next ElementString 

ffyou '~ish to print an entire row in one line, use a For/Next loop and set 
up the X and Y coordinates to print multiple elements per line. 

' Print one line per row . 
For Rowinteger As Integer = o To 2 

For Columnlnteger As Integer = o To 3 
e .Graphics .DrawString(NameString(Rowinteger, Columnlnteger), PrintFont, 

Brushes.Black, HorizontalPrintlocationSingle, VerticalPrintlocationSingle} 
' Move across the line . 
HorizontalPrintlocationSingle += 200 

Next Columnlnteger 

' Start next line; Reset to left margin. 
HorizontalPrintlocationSingle = e.MarginBounds . Left 
' Move down to next line . 
VerticalPrintlocationSingle += LineHeightSingle 

Next Rowinteger 

339 



340 v S l l ,\ I. C Arrays and Collections 

Sununing a Two-Dimensional Table 

You can find the sum of a table in various ways. You may sum either the 
columns or the rows of the table: or. as in a cross-foot, you can sum the figures 
in both directions and double-check the totals. 

To sum the array in both directions. each colunm needs one total variable 
and each row needs one total variable. Two one-dimensional anays n,ill work 
well for the totals. Figure 8.7 illustrates the variables used in this example. 

' Crossfoot total a 2D table . 

' Give the 4 x 6 array values for testing. 
(Normally you would total values that are accumulated in a program.) 

Dim AmountDecimal(,) As Decimal 
{{2.5D, 3D, 1.2D, 2.2D, 4.5D, 3 . 5D} , 
{2D, 2D, 2D, 2D, 2D, 2D}, 
{3D, 3. 1D, 3 . 2D, 3 .3D, 3.4D, 3 .5D}, 
{4.4D, 4.5D, 4. 6D, 4.7D, 4.8D, 4.9D}} 

Dim RowTotalDecimal(3) As Decimal 
Dim COlumnTotalDecimal(5) As Decimal 

For Rowlnteger As Integer = o To 3 
For Columnlnteger As Integer = o To s 

RowTotalDecimal(Rowlnteger) += AmountDecimal(Rowlnteger, Columnlnteger) 
ColumnTotalDecimal(Columnlnteger) += AmountDecimal(Rowlnteger, Columnlnteger) 

Next Columnlnteger 
Next Rowlnteger 

Amow1tDecimal array 
(0) (1) (2) (3) (4) (5) RowTotalDecirual array 

(0) Total for row o- (o) ~ 
(1) Total for row 1- (1) 

1--+-+-+-1--+-4 
(2) Total for row 2- (2) 

(3) Total for row 3- (3) 

o' o' o' o' o' o' 
e:. E. E. E. E. E. 
~ ~ ~ ~ ~ if 
() () () () () () 

e.. ~ e.. e.. e.. e.. 
c 

~ 
c " c 

3 g § 8 3 
" ::1 ::1 
0 "" "' "" "' 4 4 ~ 

ColumuTotaiDecimal I 
an·ay I 

(0) (1) (2) (3) (4) (5) 

Write VB statements to do the following: 

l. Dimension a table called TemperatureDecimal with five columns and 
three rows. 

FiJ,flll'@ 8.7 

Two one-dimensional arrays 
hold totals for the two
dimensional array. 



(.; II 1\ I' 'I' 1•: II 1.1 

2. Set each element in the first row to 0. 
3 . Set each element in the second row to 75. 
4. For each column of the table. add together the elements in the first and 

second rows. placing the sum in the third row. 
5. Print the enti re table. (Write only the logic for printing inside the Print

Document_ PrinlPage event procedure.) 

Lookup Op<'ralion fot· Two-Dinwns ional Tahlf''l 

When you look up items in a two-dimensional table. you cnn use the same 
techniques discussed with single-dimensional arrays: direct reference and 
table lookup. The limitations are the same. 

1. To use a direct reference. rolf and columrt subscripts must be readily 
available. For example. you can tally the hours used for each of five 
machines (identified by machine numbers 1 to 5) and each of four 
departments (identified by department numbers l to 4). 

Rowinteger = Integer.Parse(Machin&TextBox.Text) - 1 
Columnlnteger = Integer.Parse(OepartmentTextBox.Text) - 1 
Hoursoecimal = Oecimal.Parse(HoursTextBox.Text) 
MachineTotalDecimal(Rowinteger, Columninteger) += Hoursoecimal 

2. A table lookup is the most common lookup technique. 

Many two-dimensional tables used for lookup require uclditiorral one
dimensional arrays or ]jsts to aiel in the lookup process. For an example. use a 
shipping rate table (Figure 8.8) to look up the rate to ship a package. The ship
ping rate depends on the weight of the package and the zone to which it is be
ing shipped. You could design the projec t: with the weight and zones in list 
boxes. or you could use a text box and let the user input the data. 

341 

Fiaure 8.8 

This ~hipping mte f,able in a two-dimemional array can be used to look up the correct sltippi11g charge. 

Weightlndexlnteger al] Shipping R.ate lookup '·=l§l~ 

I 

' ~eight ~on a: 

Weightlndexlnteger uses~ (No! to exceed) 

WeightListBox.SelectedJ nde.' ~ ---:;-ib A Weight(not Zone Zone Zone Zone 

~ 8 to e xceed) A B c D 
c 

10 lb . lib 1.00 1.50 1.65 1.85 
>10 11:: 

~ 3th 1.58 2.00 2.40 r3.o5) 
Zonelndexlnteger 

-----3 ..... Charges: 
---

5th 1.71 2.52 3.10 4.00 3.05 

~~ 
lOib 2.04 3.12 4.00 5.01 

Zone! ndexl nteger uses 
ZoneListBox.Selectedlndex >lOth 2.52 3.75 5.10 7.25 



342 l ' C Arrays and Collection.• 

Using List Boxes 

In the example illustrated in Figure 8.8. a list box holds the weight limits. and 
another list holds the zones. The values for the two lists are set in the Items 
properties at design time. The five-by-four rate table is two-dimensionaL and 
the values are set when the table is declared. 

Look up values from list boxes. 

' Declare module-level variables. 
Dim RateDecimal(,) As Decimal 

{{10, 1.50, 1.650, 1 .850}, 
{1.580 , 20, 2 .40, 3 .050}, 
{1.710, 2.520, 3.10, 40}, 
{2 .040, 3 . 120, 40, 5.010}, 
{2.520, 3 . 750, 5 . 10, 7 .250}} 

Private Sub LookupButton_Click(ByVal sender As System . Object, 
ByVal e As System .EventArgs) Handles LookupButton.Click 

' Look up the shipping rate . 

Dim Weightindexinteger As Integer 
Dim Zoneindexinteger As Integer 

Weightindexinteger = WeightLi stBox.Sel ectedindex 
Zoneindexinteger = Zone l istBox.Selectedindex 
If Weightindexinteger <> -1 And Zoneindexlnteger <> - 1 Then 

CharoesTextBox. Text = 
RateDeci ma l (Weight indexi nteger. Zoneindexinteger). ToString( "N"l 

Else 
MessageBox .Show( "Select the weight and zone ." , "Information Missing " , 

MessageBoxButtons.OK, MessageBoxicon.Exclamation) 
End If 

End Sub 

Using Text Boxes 

If you are using text boxes rather than list boxes for data entYy, the input requires 
more validation. You must look up both the weight and zone enllies before you 
can determine the correct rate. The valid zones and weight ranges will be stored 
in two separate one-dimensional arrays. The first step is to establish and fill the 
arrays. The five-by-four rate table is two-dimensional, and the values should be 
preloaded. as in the previous example. 

Note that the Try /Catch blocks were omitted to clarify the logic. You 
,<;houl.-1 alway" II"'P. P.rror trapping whP.n r.onvP.rting input to mnnP.rir. vnluP.,.. 

' Look up values from text boxes . 

' Declare module-level variables . 
Dim RateDecimal(,) As Decimal 

{ { 1 D, 1. 50, 1 . 650, 1 . 850}, 
{1 . 580, 20, 2 .40, 3.050}, 
{1.710, 2.520, 3 . 10, 40}, 
{2 .040, 3. 120, 40, 5. 010}, 
{2 . 520, 3 . 750, 5 . 10, 7.250}} 

Dim Weightinteger() As Integer = {1, 3, 5, 10} 
Dim ZoneString() As String = {"A", "B" , "C" , "D"} 



C II ,\I> 'I' I' R u 

Private Sub LookupButton_Click(ByVal sender As System.Object, 
ByVal e As System.EventArgs) Handles LookupButton.Click 

' Look up the shipping rate. 

Dim Weightindexinteger As Integer 
Dim Zoneindexinteger As Integer 
Dim Indexinteger As Integer = o 
Dim Weightlnputlnteger As Integer 
Dim WeightFoundBoolean As Boolean = False 
Dim ZoneFoundBoolean As Boolean = False 

Try 
' Look up t he wei ght to find the Wei ght lndexl nteger . 
Weightinputinteger = Integer .Parse(WeightTextBox .Text) 
Do Until WeightFoundBoolean or Indexinteger > 3 

Loop 

If Weightinputinteger <= Weightinteger(Indexinteger) Then 
Weightlndexinteger = Inde:<Integer 
Wei ghtFoundBoolean = True 

Else 
Indexinteger += 1 

End If 

If Not WeightFoundBoolean Then 
' Weight above 10 pounds . 
Weightindexinteger 4 
WeightFoundBoolean = True 

End If 
' Look up the zone t o f i nd the Zonel ndexlnt eger. 
Indexinteger = 0 
Do Until ZoneFoundBoolean or Indexlnteger > 3 

If ZoneTextBox.Text .ToUpper() = Zonestring(Indexlnteger) Then 
zonelndexlnteger = Indexlnteger 
ZoneFoundBoolean = True 

Else 
Indexinteger += 1 

End If 
Loop 
' Di spl ay t he appropriate rate. 
If ZoneFoundBoolean Then 

ChargesLabel .Text = 
RateDecimal (Weightlndexinteger, Zoneindexinteger) . ToString( "N") 

Else 
MessageBox .Show( " Invalid zone. ", "Information Missing or Invalid ", 

MessageBoxButtons.OK, MessageBoxicon .Exclamation) 
End If 

Catch 
MessageBox .Show(" Invalid weight ." , "Information Missing or Invalid ", 

MessageBoxButtons . OK, MessageBoxicon .Exclamation) 
End Try 

End Sub 

Collections 

As a programmer, you will need to know how to work with both arrays and more 
sophisticated collection types. A collection is an object designed to handle a 
group of related data and is more flexible than an array. A very large percentage 

343 



344 v S l l :\ L G ,\ S (' A1rays and Collections 

of existing program code uses array logic in some capacity. But newer program 
development will rely more on the object-oriented collection classes. 

You have already worked with collections for the list boxes in Chapter 7. 
You learned to use properties and methods of the Items collection of a list box 
or combo box. Now you will see how those concepts can be used in a collection 
that you create. 

The System.Collections namespace provides classes for several types of 
collections. All of the collection classes have properties and methods. such as 
the Count property that you used with a list box. Examples of collection types 
are ArrayList. SortedList. Queue. Stack, Hash table. and Dictionary. 

A SortedLis t Collection 

One handy type of collection is called a Sot·tedList. As the name implies, the 
elements in the collection are automatically sorted as items are entered. A Sort
edList provides some useful methods. such as Add, Contains. and Remove. 
The collection dynamically increases in size as new elements are added. 

A SortedList is a collection of items. Each of those iletns is made of two 
fields: a key and a l'alue. called a key/value pair. The key field cannot have du
plicates. You can reference the individual elements by the key field or an in
dex, which is zero based. 

In many respects a Sorted List is similar to an array. But the collection 
provides more properties and methods to make programming much easier. 
Table 8.1 shows a list of some of the most useful properties and methods of 
SortedUst collection. 

So me o f the :Most Useful P roperties aud 
Methods o f a Sot·te<lList Collection 

P•·opel'ties and 

Methods 

Capacity 

Cow1t 

Add 

Clear 

Contains 

Cont a insValue 

Item(Key) 

Remove (Key) 

RemoveAt (Index) 

Pm-pose 

Holds tl>e number of elements that the collection can contain. 

Holds tiJe actual number of elements in the collection. 

Add an element to the collection. 

Remove all elements from the collection. 

Searches for a specific key in the collection. 

Scarc hca for o apccific vuluc in the collection. 

Retriev-e the value associated 14'ith a specific key. 

Remove an element by key. 

Remove an element by index. 

To give a collection initial values. you can use the new From keyword. 
which was added to Visual Basic 2010. For earlier versions of VB, you must 
use the Add method to set initial values into the collection. 

Tabl e IL l 



C II ,\I> 'I' I' R u 

A SoJ·tedLisL Sample Prog•·am 

The following program (Figure 8.9) sets up a collection of names and phone 
numbers. The name works as a key to relate to the associated phone number. 
Although each name and phone number is a string. the combined element is 
considered an object of the Dictionary Entry data type. You can use the Key and 
Value properties of a Dictionary Entry to retrieve the individual fields. which you 
must convert back to strings when Option Strict is on. (You can see an example 
of this in the ListBut:ton_Click event procedure in the following program). 

345 

F i g ur e 8 .9 

'a6' Using a Collection 

The user interface for the 

Sortedlist collection program. 

1. 

1. 

Phone Nurber 

You will see both some new and some familiar techniques in this program. 
The Contains method determines whether a specific key exists in the collec
tion. freeing us from writing comparison code. And you can use the ForEach 
loop to iterate through the collection. just as with an array. 

The SortedList f'rogram 

' Program : ChOSCollection 
' Programmer: Bradley/Millspaugh 
' Date : June 2010 

Description : Store names and phone numbers in a collection . 

Option Strict on 

Public Class CollectionForm 
Private PhoneBookSortedList As Sortedlist 

Private Sub CollectionForm_Load(ByVal sender As System.Object, 
ByVal e As System.EventArgs) Handles MyBase.Load 

' Create the collection and initialize beginning values . 

PhoneBookSortedList = New Sortedlist From {{ "Ann " , "555- 0000"}, 
{"Bill " , '' 555-1111 "}, 
{"Carol " , "555-3333"}} 

End Sub 



346 \ ' S l l \ L II \ S (' A"ay• tmd Coll<!clion.! 

Private Sub AddButton_Click{ByVal sender As System.Object, 
ByVal e As System.EventArgs) Handles AddButton .Click 

· Add a new element. 

If PhoneBooKSortedlist.Contains{NameTextBox.Text) Then 
MessageBox.Show{"That name is already in the list. ", 'Duplicate" ) 

Else 
If NameTextBox.Text = String.Empty Then 

MessageBox. Show{ "Please enter the new data. •, "Add Error") 
Else 

PhoneBookSortedlist.Add{NameTextBox.Text, 
PhoneMaskedTextBox.Text ) 

End If 
End If 

End Sub 

Private Sub RemoveButton_Click{ByVal sender As Object, 
ByVal e As System.EventArgs) Handles RemoveButton.Click 

• Remove an existing element. 

If NameTextBox.Text = String .Empty Then 
MessageBox .Show("Please enter name to delete.•, ' Delete Error" ) 

Else 
If PhoneBookSortedlist.Contains(NameTextBox.Text) Then 

PhoneBookSortedlist.Remove(NameTextBox.Text) 
MessageBox.Show{NameTextBox.Text & • removed from the list. ") 
NameTextBox.Clear{) 

Else 
PhoneMaskedTextBox.Clear{) 

MessageBox.Show{ "That name was not found.', 
'Name Not Found Error') 

End If 
End If 

End Sub 

Private Sub CountButton_Click(ByVal sender As System.Object, 
ByVal e As System.EventArgs) Handles CountButton .Click 

• Display the current number of elements in a message box. 

MessageBox .Show{"Current number of members in the list is • & 
PhoneBookSortedList.Count.ToString(), •count ") 

End Sub 

Private Sub ListButton_Click{ByVal sender As System.Object, 
ByVal e As System. EventArgs) Handles ListButton .Click 

• Display all names and phone numbers in the list. 

Dim ListString As String = String.Empty 

For Each AnElement As DictionaryEntry In PhoneBooKSortedlist 
ListString &= AnElement .Key .ToString() & ControlChars.Tab & 

AnElement .Value.ToString() & ControlChars.Newline 
Next 

MessageBox .Show{ListString) 
End Sub 



II 

Private Sub FindButton_Click(ByVal sender As System.Obj ect , 
ByVal a As System.EventArgs) Handles FindButton.Click 

' Find the phone number for a given name . 

If NarneTextBox .Text = String.Empty Then 
MessageBox .Show( "Please enter name to find. ", "Miss ing Data • ) 

Else 
If PhoneBookSortedList . Contains (NameTextBox.Text) Then 

PhoneMaskedTextBox.Text = 
PhoneBookSOrtedList.Item(NameTextBox .Text) .ToString() 

Else 
MessageBox. Show( ' That name was not found. ", 

"Name Not Found Error" ) 
End If 

End If 
End Sub 

Private Sub ExitButton_Click(ByVal sender As system.Object , 
ByVal a As System.EventArgs) Handles ExitButton .Click 

' End the program. 

Me.Close () 
End Sub 

End Class 

l. What is a coLlection? 
2. What is the advantage of using a collection. rather than an ar ray? 
3. List tl1ree properties or meU1ods of a Sorted List tllat are also used by the 

Items collection for a lis t box. 

347 

our Hands-On Programming Example --------

Create a project for R 'n R-for Reading 'n Refreshment that determines the 
price per pound for bulk coffee sales. The coffees are divided into categories: 
r~lar. decaf. and special blend. The prices are set by the quarter pound, half 
pound. and full pound. Use a Find Price button to search for the appropriate 
price based on the selections. 

Rel!"lnr DecnJTeiunted Spcc inl Blend 

':4 pound 2.60 2.90 3.25 

'h pound 4.90 5.60 6. l0 

FuU pound 8.75 9 .75 11.25 

Create a s tructure that contains the coffee type. amount. and price. Set up 
a module-level variable that is an array of 20 elements of your structure; this 



348 \ S l \ L ll \ .. ( ' Arrays and Colkctioru 

array will hold Lhe transactions. Each time the Find Price button is pressed. look 
up and display the price of the coffee selection and add the data to the array. 

Include a Clear button to clear the selections from the screen and a Print 

button that prints all of the transactions. Using Print Preview. print appropriate 
headings and the data from the transaction array. 

When the Exit button is pressed. give the user another opportunity to print 
all the transactions. 

Planninl! the ProjP<"I 

Sketch a form (Figure 8.10). which your users sign off as meeting their needs. 

t' i~nre 8.10 

A planning sk£tch of the form for the hands-on programming e:cample. 

GroupBox2 

Plan the Objects and Properties 

O bjec t 

BulkCoffeeF onn 

Grou pBoxl 

GroupBox2 

CoffeeTypeComhoBo.t 

Labell 

Label2 

!:lalf Fbund 

Fu[l Pound 

FlndPrtctButton Prfnteutton 

Name 

Text 
Accept Button 

Te:d 

Text 

Narne 

lteuu. 

DropDo~·nStyle 

Text 

Text 

CltarBut.ton ExitButton 

Seuin~ 

BullcColTeeForm 
R 'n R for Reading and Refreshment 
FindPriceButton 

Cofl'ee Prices 

Quantity 

Co!Tee'I)'P"ComhoBo.t 

Regular 
Decall'e inated 
Special Blend 
DropDownList 

&Type 

Price 

GroupBox1 

CoffetTypeComt:>oBox 

Pricer txtBox 



c II i\ •• 1' E R n 

Object ProJ>ei-IY Setting 

PriceTe><tBox Name PriceTextBox 
Read Only True 
TabStop False 

Quarte rPoundRadioBullon Name QuarterPoundRadioBullon 
Text &Quarter Pound 

Checked True 

NaUPoundRadioButton Name HaUPoundRadioBullon 
Text &HaUPowad 

FullPound RadioBullon Name FullPoundRadioButton 
Text Fu&ll Pound 

FindPriceBullon Name FindPriceButton 
Text &Find Price 

ClearBullon Name ClearButton 
Text &Clear 

PrintBuuon Name PrintBullon 

Text &Print 

ExitBullon Name E.•hButton 
Text E&xit 

P rintDocumcntl Name PrintDocumentl 

PrintPreviewDialogl Name PrintPreviewDialogl 

Plan the Event Procedures You need to plan the actions for the event procedures. 

Proce,Jure Ac tions 

FindPriceButton_Click Find the column &om the list selection. 

ClearBullon_Ciid: 

PrintBullon_Click 

ExitBullon_Ciick 

All radio huttons_Ciick 

PrinlDocume nll_PrintPage 

Find the row from the rndi.o button selection. 
Look up the price in the table. 
Display the price in the label. 

Store the type. quantity. and price in the transaction array. 

Select the first radio hu11o11. 
Deselect the I ist entry. 
Clear the price lal>el. 

Set up print previetr. 

Print the report. 

Display message box giving the user opportunity to print. 

If the user wants to print 

Execute PrintBut1on_Cltck procedure. 

End If 
Tenninate the project. 

Sa•·e the name of the selected bullon. 

Print title. 
Loop to print all of the stored transactions. 

349 



3SO ' S l \ L It \ s t: Arrays and Collectioru 

\\rite the Project Follow the sketch in Figure 8.10 to create tl1e form. 
Figure 8.11 shows the completed form. and Figure 8.12 ~hows sample report 
output. 

• Set the properties of each objec t. according to your plan. 

Write the code. Working from the pseudocode, write each event procedure. 

When you complete the code. use n variety of data to thoroughly test the 
project. 

"" R 'r R for Reading ..-.d Refreshment 

ColfMPrio"' 

Ownttt 
•<i j~~~~(j] 
'~ !::!af Pound 

Ou.irttr Pound 

Ou.uter Pound 

Full Pound 

R 'n R Coffee Sates 
by P rogramml!'r N.amt 

Speelal Bienek 

Otc ifftinJttd 

260 

3.25 

Q75 

The J>I'Oje l'l Cooiug Solution 

' Program: 
' Programmer: 
' Date: 
' Description: 

ChOBHandsOn 
Bradley/Millspaugh 
June 2010 
LooK up t he price for bulK coffee 
based upon quantity and type . 

•' i"nre 8.1 I 

The form for the hands-on 
programming I!:Xample. 

Figure 8.1:! 

A sample report creaud by the 
program. 

Uses a structure and arrays, and prints a report 
of the t ransactions from the array . 

' Folder : ChOBHandsOn 



C ll i\ 1°T t: R fl 

Public Class BulkCoffeeForm 
' Declare structure and module- level variables 
Structure CoffeeSale 

Dim TypeString As String 
Dim auantityString As String 
Dim PriceDecimal As Decimal 

End Structure 

Private TransactionCoffeeSale(20 ) As CoffeeSale 
Private NumberTransactionslnteger As Integer 
Private PriceDecimal(,) As Decimal = 

{{2.6D, 2.90, 3.250}, {4.90, 5.60, 6.10}, {8.750, 9.750 , 11.250}} 
Private SelectedButtonString As String 

Private Sub ClearButton_Click(ByVal sender As System.Object , 
ByVal e As System.EventArgs) Handles ClearButton .Click 

' Remove the selection from the list and 
clear the price. 

' Select first radio button. 
auarterPoundRadioButton.Checked = True 
' Clear coffee type selection. 
CoffeeTypecomboBox.Selectedindex = - 1 
PriceTextBox.Text 

End Sub 

Private Sub ExitButton_Click(ByVal sender As System.Objsct, 
ByVal e As System.EventArgs) Handles ExitButton .Click 

' Terminate the project . 
Dim ResponseDialogResult As DialogResult 

ResponseDialogResult = MessageBox .Show('Print the report?', 
'Terminate the Application • , MessageBoxButtons.YesNo, 
MessageBoxicon.Question) 

If ResponseDialogResult = DialogResult.Yes Then 
printButton_Click(sender, e) 

End If 
Me .Close() 

End Sub 

Private Sub FindPriceButton_Click(ByVal sender As System.Object , 
ByVal e As System.EventArgs) Handles FindPriceButton.Click 

' Lookup tne price using the quantity and type. 

Dim Rowinteger, Columninteger As Integer 
Dim SalePriceoecimal As Decimal 

' Allow only 20 transactions. 
If NumberTransactionsinteger < 20 Then 

Columnlnteger = CoffeeTypeComboBox.Selectedlndex 
If Columnlnteger <> -1 Then 

· Coffee selection made, determine quantity selected . 
Select Case SelectedButtonString 

Case ' QuarterPoundRadioButton• 

351 

Rowlnteger = 0 
Transact ionCoffeeSale(NumberTransactionsinteger) .QuantityString 

"Quarter Pound" 



3S2 

Else 

,. S l \ L 

Case "HalfPoundRadioButton" 
Rowlnteger = 1 

It \ s t: Arrays and Collectioru 

TransactionCoffeeSale ( tlumberTransactionsl nteger) . Quanti tyStr ing 
"Half Pound" 

Case "FullPoundRadioButton" 
Rowlnteger = 2 
TransactionCoffeeSale ( tlumberTransact ions Integer) . Quanti tyStr ing 

"Full Pound" 
case Else 

' No selection made; use quarter pound. 
Rowinteger = 0 
TransactionCoffeeSale ( tlUmberTransactionsi nteger) . Quanti tySt ring 

"Quarter Pound ' 
End Select 

' Retrieve price of selection. 
SalePriceDecimal = PriceDecimal(Rowinteger, Columnlnteger) 
PriceTextBox. Text = SalePriceDecimal. ToString( "C") 
' Save this transaction . 
TransactionCoffeeSale(NumberTransactionslnteger) .TypeString 

CoffeeTypeComboBox.Text 
TransactionCoffeeSale(NumberTransactionsinteger) .PriceDecimal 

SalePriceOecimal 
NumberTransactionsinteger += 1 

Else 
MessageBox.Show('Select the coffee type.·, "Selection Incomplete' , 

MessageBoxButtons.OK, MessageBoxicon.Exclamation) 
End If 

MessageBox.Show( "Sorry, only 20 transactions allowed.") 
End If 

End Sub 

Private Sub PrintButton_Click(ByVal sender As Object, 
ByVal e As System.EventArgs) Handles PrintButton.Click 

1 Print the report using Print Preview. 

PrintPreviewDialog1.Document = PrintDocument1 
PrintPreviewDialog1.ShowDialog() 

End Sub 

Private Sub PrintDocument1_PrintPage(ByVal sender As Object, 
ByVal e As System.Drawing .Printing.PrintPageEventArgs 
) Handles Printoocument1.PrintPage 

1 Handle print and print previews . 

Dim PrintFont As New Font("Arial', 12) 
Dim HeadingFont As New Font("Arial', 14, FontStyle.Bold) 
Dim LineHeightSingle As Single = PrintFont .GetHeight + 2 
Dim Column1HorizontalLocationSingle As Single = e.MarginBounds .Left 
Dim verticalPrintLocationSingle As Single = e.MarginBounds.Top 
Dim Column2Horizonta1Locationsingle As Single = 300 
Dim Column3HorizontalLocationSingle As Single 
Dim PrintLineString As String 
Dim FontSizeF As New SizeF 
Dim FormattedPriceString As String 



C ll i\ 11 TER 

' Set up and display heading lines. 
PrintLinestring = ' R 'n R Coffee Sales' 
e.Graphics.Drawstring(Printlinestring, HeadingFont, 

Brushes.Black, Column2HorizontalLocationSingle, VerticalPrintLocationSingle) 
Printlinestring = ' by Programmer Name ' 
VerticalPrintLocationSingle += LineHeightSingle 
e.Graphics.DrawString(PrintLineString, PrintFont, 

Brushes.Black, Column2HorizontalLocationSingle, VerticalPrintLocationSingle) 
VerticalPrintLocationSingle += LineHeightSingle * 2 

' Loop through the transactions. 
For Each IndividualCoffeeSale As CoffeeSale In TransactionCoffeeSale 

' Don't print if blank. 

Next 
End Sub 

If IndividualCoffeeSale.auantityString <> "" Then 
Set up a line. 

' Quantity. 
e.Graphics.DrawString(IndividualCoffeeSale.auantityString, PrintFont, 

Brushes.Black, Column1HorizontalLocationSingle, 
VerticalPrintLocationSingle) 

' Type. 
e.Graphics.DrawString(IndividualCoffeeSale.TypeString, PrintFont, 

Brushes.Black, Column2HorizontalLocationSingle, 
verticalPrintLocationsingle) 

' Right ·align the price. 
FormattedPriceString = FormatNumber(IndividualCoffeeSale.PriceDecimal) 
' Measure string in this font. 
FontSizeF = e .Graphics.MeasureString(FormattedPriceString, PrintFont) 
' Subtract width of string from column position. 
Column3HorizontalLocationSingle = 550- FontSizeF.Width 
e.Graphics.DrawString(FormattedPriceString, PrintFont, 

Brushes .Black, Column3HorizontalLocationSingle, 
VerticalPrintLocationSingle) 

' Increment the Y position for the next line; Double space. 
VerticalPrintLocationSingle += LineHeightSingle • 2 

End If 

Private Sub auarterPoundRadioButton_CheckedChanged( 
ByVal sender As System.Object, ByVal e As System.EventArgs 
) Handles FullPoundRadioButton.CheckedChanged, 
HalfPoundRadioButton.CheckedChanged, 
auarterPoundRadioButton .CheckedChanged 

' Save the name of the selected radio button . 
' This procedure is executed each time any radio button is selected. 

SelectedButtonString = CType(sender, RadioButton).Name 
End Sub 

End Class 

3S3 



354 S l r \ L 11 \ s C Array• and Collcclio"' 

1. A series of variables with the same name is called an array. The individual 
values are referred to as elements. and each element is accessed by its sub
script. which is a position number. 

2. Array subscripts or indexes are zero based; they must be integers in the 
range of the array elements. VB rounds noninteger values. 

3. You can assign initial values in the array declaration or specify the highest 
s ubscript allowed. 

4 . A s pecial form of the For loop called For Each is available for 1mrking 
with arrays. The For Each eliminates the need for the programmer to ma
nipulate the subscripts of the array. 

5. You can declare a s tructure to combine related fields and then declare vari
ables and arrays of the siJucture. Structure statements must appear in the 
dec) a rations section at the lop of a file. 

6. Arrays can be used like any other variables: they can be used to accumu
late a series of totals or to s tore values for a lookup procedure. 

7. The information in arrays may be referenced directly by subscript, or a 
table lookup may be used to determine the correct table position. 

8 . You can use the Selected Index prope1ty of a list box as a subscript of an 
array. 

9. Arrays may be multidimensional. A two-dimensional table contains ro~-s 
and columns and is processed similarly to a one-dimensional array. Access
ing a multidimensional array frequently requires the use of nested loops. 

10 . A collection is an object designed to manage a group of items. Several types 
of collections are available: all contain properties and methods for working 
1tith UJe elements. 

column 337 
direct reference 332 
element 326 
For Each and Next 328 
index 326 

row 337 
SortedList 344 
structure 329 
subscript 326 
subscripted variable 326 
table 326 
table lookup 333 



C ll i\ 11 1' t: H 

L Define the following tenus: 
(a} Array 
(b) Element 
(c) Subscript 
(d) index 
(e) Subscripted va~iable 

2. What is a structure? "\l'hen might a structure be useful? 
3. Describe the logic of a table lookup. 
4. Name some situations in ~+'hich it is important to perfonn validation when 

working with subscripted variables . 
5. Compare a two-dimensional table to an array of a structure. 
6. How can you initialize values in a two-dimensional table? 
7. Why would you want to use a collection mther than an array? 

8.] A"ay of a structure. Create a project to analyze an income survey. The 
statistics for each home include an identification code. the number of 
memhers in the household. and the yearly income. 

A menu wiiJ contain File. Reports. and Help. The File menu will contain 
Enter Data and Exit. As the data are entered. they should be assigned from 
the text boxes to the elements of a structure. 

The reports for the project w:iU be sent to the printer and include the 
following: 
(a) A report that displays the input data. 
(b) A listing of the identification number and income for each household 

that exceeds the average income. 
(c) The percentage of households having incomes below the poverty level. 

Pol'l>ri.Y Cuideliut>s for 2008: 

F amity S ize l ncon1e 

I 10210 

2 13690 

3 171.70 

4. 20650 

5 24130 

6 27610 

7 31090 

8 34570 

For each additional 3.:Ul0 

rson add 

3SS 



3S6 \ S l \ L II \ S ( ' Am•,-• o"d CoJiectioru 

Test Data 

10 Nmul..,. umber of Pt.~norn~ A nnual LK:oo:~e 

2497 2 32500 

3323 5 23000 

4521 t 38'210 

6789 2 38000 

5n6 1 26000 

4123 3 16<100 

6587 <1. 25000 

3221 4 20500 

5555 2 18000 

0085 3 19700 

3097 a 30000 

4480 5 23400 

0265 2 19700 

8901 3 13000 

8.2 Two-dimensional table. Modify Programming Exercise 8.1 to assign the 
data to a multidimensional array ralher than use an array of a structure. 

8.3 Create a project to keep track of concert ticket sales by your club. Ticket 
prices are based on the seating location. Your program should calculate 
the price for each sale. accumulate the total number of tickets sold in 
each section. display the lickel price schedule. and prinl a summary of all 
sales. 

'n1e fom1 should contain a list box of the sections for seating. 
Do not allow the user to receive an exception for subscript out-of

range. 

s~clion Pt·ll·•· 

Orcheolr• !10.00 

Mezz.aninr 27.50 

c.-nero I 15.00 

Balcony 10.00 



C II ;\ 1• 1' •; R n 

8 ,4 Arra)' of a structure. Create a project that will allow a user to look up slate 
and territory names and their two-letter abbreviations. The user "ill bave the 
options to Look up the Abbreviation or Look up the Stae Name. In the event that 
a match cannot be found for the input. display an appropriate error message. 

Use radio buttons with a shared event procedure and a Select case 
to determine trhich text box (stole name or abbreviation) should have the 
focus and 11 hich should be set to ReadOnly. 

Dntfl 

AL Alabama MT M<N>tana 

AK Al...ka NE Nebraska 

AS American Samoa NV Nevada 

AZ ArizonA Nil New Hompsltire 

AR Arkan88o NJ New Jersey 

CA C..lifomia NM New Mexico 

co Colocndo NY New York 

CT Connocticut NC North Carolina 

DE Del3ware ND North Dakota 

DC District of Columbia OH Ohio 

Fl. florida OK Oklahoma 

GA Cewgio OR Oregon 

GU Guam PA PennsyiVllnia 

HI Hawaii PR Puerto Rico 

ID Idaho Rl Rhodeuland 

IL IUinoia sc South Carolina 

IN Indiana so South Dakota 

lA Iowa TN TenneMee 

KS Kan""" TX Texas 

KY Kentucky TT Trust TerritorieA 

LA Louioionu lJT Utah 

ME Moine VT Vennonl 

MD Murylund VA Virginia 

~LA Ma._~tdno.ello VI Virgin Islands 

~u Michigan WA Washington 

~lN Minnet1011 wv \l' eot Virginia 

MS Mi•io•ippi WI U"""~coMin 

MO Mi ... ouri \'II' ~omin 

3S7 



3S8 ' ~ l \ l R .\ S l ' Arra>• uml Collectiom 

8.!'i Two-dimensional table. Create a project that looks up the driving distance 
between tll'o cities. Use two drop-down lists that contain the names of the 
cities. Label one list "Departure~ and the other"Destination''. Use a Look 

Up button to calculate the distance. 
tore the distances in a two-dimensional table. 

La. ...... "\'ew 

Ro~o• Chko;!O Dalno Vp;:u ~le$ \IJruul OrlfiRUJo TMO.IO 

Booton 0 1~ 1753 Z752 3017 1520 1507 ~ 

Chic"'!" 1tm 0 921 1780 2043 1397 919 SIS 

Dallas 1753 921 0 1230 1399 1343 517 1435 

LasVeg .. 2752 1700 1230 0 Z72 2570 1732 22S1 

t...o. Angel•• 30.17 2043 1399 Z72 0 Z716 1858 2523 

Miami 1520 1397 1343 2570 Z716 0 860 I~ 

New Orl•ar.., t507 919 5 17 1732 1858 1160 0 1307 

Toronto ro9 SIS t43S 2251 2523 1494. 1307 0 

Va.ncouv~ 3155 2176 2:Z:U 1322 1278 :wl7 2734 

II"uhinglon DC 448 109 t307 2420 2646 1057 1099 

8.6 Two-dimensional table. Create a project in which the userl\;ll complete a 
10-question survey. Create a form containing labels ~>'ith each of the 
questions and a group of radio buttons for each question with the folio" . 
ing responses: Always. Usually. Sometimes. Seldom. and 'ever. 

Usc a h'-o-dimensional array to accumulate the number of each re
sponse for each question. 

Have a menu or button option that will print an item analysis on the 
printer that shows the question number and the count for each response. 

ample of partial output: 

Qu.,~iou .1\hu •y• Ll.ouult} Son1e thue8 Seldom Ne,·er· 

L 5 2 lO 4· 6 

2 2 2 10 2 1 

3 17 0 10 0 0 

8 .7 U1lltetion. Create a project to store and manage accotmt numbers and cus
tomer names in a SortedList collection. The accow1t number is the key. 
'Ibe user shouJd be able to add accounts. remove accounts. look up a cus
tomer's name or account number. and display a list of current customers 
with the total number of cu tomers displayed at the bottom of the list. 

2820 

571 

\ 'a.•rouu r 

315S 

2176 

2234 

1322 

1278 

3447 

2734 

2820 

0 

2887 

WaihiJl:ton 
DC 

448 

709 

1307 

242!1 

2646 

1057 

1099 

571 

2887 

0 



C ll i\ I'T E I& u 359 

VB lUall Order I 
Create a project that K'ill calcula te shipping charges Zone 

from a two-dimensional table of rates. The rate de-
pends on the weight of the package and the zone to Weigbl A 8 c D 

which it K·ill be shipped. The Weight column spec ifies 1.00 1.50 1.65 1.85 
the maximum weight for that rate. All weights over 10 

3 1.58 2.00 2.40 3.05 pounds use tl1e last row. 
Optional, extra: Print a summary of aU shipping 5 1.7t 2.52 3.]0 4.00 

selections and total charges. 
to 2.04 3.12 4.00 5.01 

>10 2.52 3.75 5.10 7.25 

VB Auto (;eu•er 

Vl3 Auto sells its on11 brand of spark plugs. To cross- YB Aulo B o·and A Bo·and C Bo·nnd X 

reference to major bmnds, it keeps a table of equiva-
PR2l4 MR43T RBLB l4K22 

lent part numbers. VB Auto wants to computerize the 

process of looking up part numbers in order to im- PR223 R43 RJ6 14K24 
prove its customer service. 

PR224 R43N RN4 14K30 
The user should be able to enter tbe part number 

and brand and look up the corresponding VB Auto PR246 R46N RN8 l4K32 
pa1t number. You may allow the user to select the 

PR247 R46TS RBL17Y 14K33 brand (Brand A. Brand C. or Brand X) from a list or 
from radio buttons . PRZiS R46TX RBLI2-6 14K35 

You can choose from two approaches for the look-
PR324 S46 VIK38 up table. Store the part numbers either in a h\·o- Jll 

dimensional table or in an array of a s tructure . In either PR326 SR46E XEJ8 l 4K40 
case. use the part number and bmnd entered by the 
user: look up and display the VB Auto part number. PR<\..14 47L Hl2 14K44 



360 s l ' \ t R t\ S ( ' Array.< and Collection.< 

VIdeo Bonanza 

Create a project that displays the aisle number of a 
movie category in a label. The movie categories ";U be 
in a list box. Store the a isle nwnbers and categories in 
an array. 

A Search button should locate the correct loca.tion 
from the array and display it in a label. Make sure that 
the user has selected a caiCf!:ory from the lis t and use 
the list box Selectedl ndex property to find the appro
priate aisle number. 

Table Oatu 

Aisle l 

Aiole 2 

ru•le 3 

rusle4 

Aiole5 

Back W..U 

Comedy 

Dmm" 

Action 

Sci-Fi 

Horror 

Ne w Releases 

Very Very Boards 

Modify your project from Chapte r 6 to keep track of 
an order in an array. You can then print out the en
tire order with detail lines for each type of s hirt . 
Convert the event handling for the radio buttons to 
share an event procedure. Use a Case s tmcture for 
selec tion. 

Create an array of a struc ture. which holds the 
quanti ty. s ize . monogram (Boolean). pocket (Boolean). 
price. and extended price for each type of shirt or-

dered. As each shirt type is added to an orde r. store 
the information in the array. Add a menu option to 
print out the order. which ~ill have the customer name 
and order number at the top. and one line for each 
shirt type ordered. Use the following layout as a rough 
guide for your list. Make sure to align the numeric 
columns correctly. For the two Boolean fields (Mono
gram and Pocket). print Yes or No. Do not allow the 
user to print an invoice until the order is complete. 

Vet·y Vet·y Bo urd• S hit· I Order • 

By Your Nomn 

Clliltome:r name: xxx:xxxxxxx.xxxxxx.x:txxxx 

Order Number: XX XXX 

Quantitr Size Monogam Pocket Price E:xtended 
Each Price 

XXX XXX XXX XX 

Order Total: 



c D A p T E R 

Web Applications 

I ~ Explain the functions of the server and the client in Web programming. 

2 . Create a Web F'onn and run it in a browser. 

:1. Describe tbe differences among the various types of Web controls and 

the relation> hip of Web controls to controls used on Windows Forms. 

4 . Understand the event struc ture required for Web programs . 

5 . Design a Web Fonn using tables. 

&. Control the styles used on Web pages using cascading style sheets 

(CSS). 

7 . Validate Web input using the validator controls . 

8 . Use AJAX to update a portion of a Web page. 

9 . Define ASP. NET, XML. WSDL and SOAP. 



362 l ' C Web Applicati<ms 

Visual Basic and Web Programming 

So far. all of your projects have been based on Windows Fonns and mn stand
alone in the Windows environment. L1 this chapter you learn to program for 

the Internet. In Visual Basic you use Web Forms to create the user inter
face for Web projects. A Web Form displays as a document in a browset· 
such as Mozilla Firefox. Opera. or Internet Explorer (IE). If you are using 
VB Professional or above (not Visual Web Developer). you can create docu
ments that display on mobile devices such as cell phones and personal digital 
assistants (PDAs). 

Important software 1wte: Microsoft has a free product for developing Web 
applications: Visual Web Developer 2010 Express. which is a streamlined subset 
of Visual Studio. This chapter was created using Visual Studio Professional, but 
the projects can be done using Visual Web Developer (VWD). The steps and 
screen captures may differ slightly if you are using VWD. If you are using the 
Express version of Visual Basic for your Windows applications, you will need to 
download and install Visual Web Developer for the Web applications. 

Clien t!Ses·vet· Web Applica tions 

Most Windows applications are stand-alone applications; Web applications re
quire a server and a client. The server sends Web pages to the client. where the 
pages display inside a browser application (Figure 9.1). 

Server 

\Veh Set'Ver s 

Request 

Response 

Oienl 
(Bt'Owser) 

To develop Web applications you can either use a remote Web sen'er or make 
your local machine a Web server. Microsoft provides two pieces of software that 
can make the development machine fw1ction as a sen,er: the Visual Studio Web 
server and Internet Information Services (llS). TI1e server software handles the 

Web server functions. and the browser acts as the client. 
The Visual Studio Web server simplifies development testing and debug

ging. After you have debugged your Web application, you can use the tools in 
the IDE to transfer the application to an liS Web sen,er to share with others. 
The VS Web server is installed automatically when you install Visual Web De
veloper or Visual Studio. 

Web Clients 

Browsers display pages written in a markup language. Although the most 
common format is still hypeltext markup language (HTML). many programmers 
are using the more dynamic features found in Extensible Hypertext Markup 
Language (XHTML). See the World Wide Web Consortium (W3C) at 
www.w3.org for more details. Web pages also may contain programming logic in 

A server delivers Web pages to 
a client. where the pages 
display in a browser window. 
The server can be on a remote 
machine or on the same 
machine as the client. 



C II A 1• 'I' II ll 9 

the form of script such as JavaScript, VBScript. or ] Script; or as Java applets. 
The browser renders the page and displays it on the local system. 

You have likely seen Web pages that look different when displayed in dif
ferent browsers. or even in different versions of the same browser. Although 
many browser applications are available. the most common are Intemet Ex
plorer, Coogle Chrome, and Mozilla Firefox. 

You may knoK· which browser your users are using, such as when you are 
programming for a network within a company. called an iutrwuu. Or you may 
develop applications that run on the lntemet and might display in any browser. 
If yom projects will run on different browsers. you should test and check the 
output on multiple browsers. 

We b Pages 

One characteristic of HTML Web pages is that they are stateless. That is, a 
page does not store any infonnation about its contents from one invocation to 
the next. Several techniques have been developed to get around this limitation. 
including storing cookies on the local machine and sending state inf01mation to 
the server as part of the page's address, called the uniform re.source locator 
(URL). The server can then send the state information back with the next ver
sion of the page, if necessaty. 

When a user requests a Web page, the browser (client) sends a request to the 
server. The setver may send a preformatted HTML file, or a program on the server 
may dynamically generate the necessary HTMl...to render the page. One Microsoft 
technology for dynamically generating HTML pages is active server pages (ASP). 

ASP. NET 

The latest Web programming technology from Microsoft is ASP.NET 4. which 
represents major advances over the earlier ASP.NET and ASP. The ASP. NET 
product includes libraries. controls. and programming support that allows you 
to write programs that interact 1~ith the user. maintain state. render controls. 
display data. and generate appropriate HTML. When you use Web Fonns in Vi
sual Basic or Visual Web Developer. you are using ASP. NET. 

Using VB and ASP. NET you can create object-oriented. event-driven Web 
applications. 

Visual Bas ic nud ASP.NET 

Each Web Fonn that you design has two distinct pieces: (1) the HTML and in
sttuctions needed to render the page: and (2) the Visual Basic code. Th.is sepa
ration is a big improvement over older methods that mix the HTML and 
programming logic (script or applets). A Web Form generates a file with an 
.aspx extension for the HTML and another ftle with an .aspx.vb extension for 
the Visual Basic code. 

Don't panic if you don't know HTJ\IIL; the HTML is generated automatically 
by the Visual Studio IDE. You visually create the document using the IDE's 
designer. you can then view and modify the HThlL tags in the Visual Studio editor. 

The VB code contains the program logic to respond to events. This code 
file is called the "code-behind" file. The code looks just like the code you have 

been writing for Windows applications. but many of the events for the controls 
on Web Forms are different from those of Windows Forms. Another change is 
that the VB code is not compiled into an executable (.exe) file as it is for Win
dows applications. 

363 



364 v S l l ,\ I. C Web Applications 

Creating a Web Application 

You can create a new Web application in one of two ways. depending on how 
you wont to access the opplicotion Inter. You con select New Project or New Web 
Site from the Visual Studio File menu. The New Project option is best for Web 

applications that you may want to move from one computer to another. such as a 
classroom. lab. laptop. and home. You can create a two-level folder hierarchy. with 
the .sin file in the top-level folder and all files in the project in the lower-level 
folder. TI1e examples in this text all use the New Project approach for creating 
Web applications. 

Beginning a New Web P•·o,jccl 

To begin a new Web project in either Visual Studio 2010 or Visual Web Devel
oper 2010 Express, select File I New Project. The New Project dialog box looks 
somewhat different in the two products. but you will make similar choices. In 
the left pane of the dialog (Figure 9.2). select Visual Basic and Web; for the tem
plate. choose ASP. NET Empty Web Application. Enter a name for the project and 
browse to select the folder in which to store the files. The solution name 

F i ~tn ••e 9 . 2 

Begin a new Web project by entering the location and project name on the New Project dialog box. Note that !.his dialcg box 
can vary depending on the version of VB you are using. 

R«.c:niTc:mpkrto 

Installed Tempf.ates 

• Visucl a.,sic 
Window; 

W,b 

Oft!CEo 
Ooud 

Reportrng 

SharePcint 
Sdvertight 

Te>t 
WCF 

WOc'k.flow 

I Other L~nguoges 

~ ASP.NHWebApplicaticn 

~ A~P.NET ~AVC 2 Web Application 

-1~ A~P.NH Empty Web Application 

~ ASP.NET MVC 2 EmptyW~bApplic~tOn 

v9>-(J'V ASP.NET Dynam1c Data Enbtiei Web Application 

vg., .F A~P.NET Dynamic Data lirHJIO SQl 'ltVeb Application 

m A>P.NH AJAX s,,..,, Control 

m A~P.NET AJAX Sel\/er Con1rol E>.,ende

i!) ASP.NH s~IV~I Control 

Vi-sual Basic 

Vis.ua! Basic 

Vtsu<~I Sas•c 

Visual Basic 

I S=ch ]n,l•&ed T """"''" P] 

r 
Type: Vi;ual B-~;ic 
An Empty projed for creating an 
ttpplicaticn with a Web user interface 



C II 1\ 1• 'I' I' ll 9 

defaults to the same name as the project. Make sure that the box for Create di
rectory for solution is checked and click OK. 

After creating a new empty Web application. you will add the Web pages. 
images. and styles that you need for the site. By convention. usually the main 
Web page in an application is called Default.aspx, which contains the visual 
representation of the page. A second file. Default.aspx.vb. the code-behind file. 

holds the VB code for the project. This model is very similar to a Windows pro
ject, which also keeps the visual elements separate from the code. But in the 
case of Web pages. the visual elements are created 1vith HTML tags rather than 
VB code. 

ASP. NET provides two models for managing controls and code. In addition 
to the code sepa1·atiou model described in the preceding paragraph. you also 
can use a single-file model. which combines the visible elements and the VB 
code in a s ingle file. In early versions of ASP (before .NET). the single-file 
model was the only fonnat available, so you may see old applications created in 
this style. We will use the code separation model for all programs in this text. 

A(lcling a We b P age 

To add a Web page to the empty Web project. select Project I Add New Item. In 
the Add New Item dialog box (Figure 9.3). select the Web Form template and en
ter a name for the Web page. To be con<>istent, it is best to name the first page 

in a project Default.aspx. 

Select Project I Add New Item to add a new Web Forn~ to the empty Web project. 

AM New Item· Ch09Hello 

lmta.llcd Tc:mpktto ~on by: I Q; fault 

Figure 9.3 

"' Vi~ua l Basic 

Code 

D•to 
General 
Web 

~ Vleb Form 
A form for Web Application!: 

Win do-A·:: Forms 

Reporting 

Silve•light 
WorL:f low 

YVPF 

~ Web form u~ing Mo~crPcge 

~ Web User Control 

E1 Cb~s 

Ll M"rtc:r Pdge 

D l"'ested Master Page 

~ HTMLPage 

~ Style Sheet 

Visual Basic 

Visual Ba~ic 

Vis<.J~ I Bosic 

Visual Basic 

Vi!:o.ul Batie 

Visu_, l Bosic 

365 



366 v S l l :\ L G ,\ S (' Web Applications 

Web Fonns in the Visual Studio IDE 

As soon as you open a new Web Fom1 in Visual Studio, you notice many differ
ences from Windows Fonns. Instead of a Windows Form, you see a new Web 
Form (Figure 9.4). also called a Web page or Web document. The toolbar is dif
ferent. as is the list of files in the Solution Explorer. The toolbox has different 
controls. and even those that look the same. such as Text Boxes. Buttons, and 
Labels. are actually different from their Windows counterparts and have some 
different properties and events . For example, Web controls have an ID property 
rather than a Name prope1ty. 

Figure 9.4 

The Visual Web Developer IDE with a new Web site opened. If the page's Source tab is selected, click the Design tab. 

Tools 1e;t Winoo'c\ Help 

-~ .. -J # j .J c;:;:;.; ~;{.QE~ • ~11.!!1'~ ~ ~ !'!!2.0!! !!! . 
;t./ ~ fN~e) tOtf~blt lJ I Y: "' 

... Solut1on Explorer • Q x 

§] ButtM 

['; Cclender 

0 CheckBox 

~= Ched~&o:<li.st 

~ DropOownli!lt 

\J Fii.Upload 

i ~k! HtddenField 

A HypetUnk 

IIi Image 

!i!l trnage6uuon 

~ 

Split the window and show both Design ami Source 

Design tah 

'l11e IDE allows you to view ihe Design. ihe Source (HTML and ASP.NE'l). or 
a Spl.it ~indow. Click on the Design tab at the bottom of the window (Figure 9.4) to 
display the page. The Properties window may not appear automatically; press the 
Properties button or select View I Properties Window to display .it. 

C1·eating Yom· F i•·st We b Fo•·m-Step-by-Step 

This s imple step-by-step exercise creates a Web application that displays a 
Hello message on a document in a browser ~ndow. 

These instructions are written for VB Professional. If you are using Visual 
Web Developer. the menu choices may be slightly different. 



C II A 1• 'I' " ll 9 

Begin the Project 

STEt' I : Open Visual Studio 2010 or Visual Web Developer 2010 Express. 
STEP 2: From the File menu select New Project and select the template for 

ASP. NET Empty Web Application. Set the Web application name to 
"Ch09Hello" and the location to your preferred location. Make sure 
that the box for Create directory tor solution is checked and click OK. 

STEI' 3: From I he Project menu, select Add New Item and click on Web Form. 

Name your form "Default.aspx". 
Note: You also can right-click in the Solution Explorer to add new 

items. 

Create the User lmerface 

You add elements to a Web page in a manner similar to writing text in a word 
processor. You must press Enter to move to a new line and press the spacebar 
to move across a line. 

STEt' 1: Click underneath the box at the top of the page and press Enter a few 
times: type ''Enter Name: " . (Do not include the quotes, but do in
clude the colon and a space.) 

STEt' 2: Add a Text Box control from the Standard section of the toolbox. You 
can drag the text box onto the form or double-click the tool in the tool
box. Double-clicking makes the text box appear at the insertion point. 

Note: The text box is a server control. and the text "Enter Name:" 
is s tatic HTML. You will learn more about these elements later in this 
chapter. 

STEI' 3: Set the lD property of the text box to NameTextBox. You may want to 
click the Alphabetic button in the Properties ~tindow to sort the prop
eJ1ies. The lD proper1y appears at the top of the list due to the paren
theses, just as the Name property appears at the top of tl1e list in 
Windows ForlllS. 

STEI' •t: Click after the text box. press Enter twice. and add a Label control. 
STEt' 5 : Set the Label's lD property to MessageLabel and delete the Text prop

erty. The label will display its ID proper1y at design time but not at 
nmtime. 

STEI' 6 : Click after the laiJel. press Enter a couple of times. and add a Button 
control. Set the ID proper1y to Submit Button and the Text property to 
"Submit". 

STEt' 7: ln the Properties window, drop down the list of objects and select 
DOCUMEN1: which is the Web Fom1. Set the BgColor property (back
ground color) to a color of your choice. 

STEI' II: Set the document's 1itJe property to "Hello Application" . The 1itle prop
erty displays in the title bar of the browser when you run the application. 

Add Code 

STEP 1: Double-click on the Submit button and add the following code. 

'Web Site : 
'Web page : 
' Programmer : 
' Date : 
'Description: 

Ch09Hello 
Defau1t .aspx 
Your Name 
June 2010 
Concatenate the name and display in a label . 

367 



368 l ' (' Web Applications 

Public Class _Default 
Inherits System.Web . UI.Page 

Protected Sub SubmitButton_Click(ByVal sender As Object, 
ByVal e As System.EventArgs) Handles SubmitButton.ClicK 

' Display the name and a message . 

MessageLabel.Text - "Hello " & NameTextBox .Text & " ! " 
End Sub 

End Class 

Hun tbe Web Application 

The menu choices and toolbar buttons for mtming a Web application differ 
somewhat for Visual Web Developer and the full version of Visual Studio. 

STEP 1: Run the project. 
Note: You also can right-click on the aspx file or on the page in the 

Document window and select View in Browser. 

STEP 2: The default browser should launch and open the page with your page 
showing. 

Note: If you are running with a firewalL you may receive a message 
that the firewall has blocked the Web Sen•er and asking what you 
would like to do; choose Unblock to permit the server to render your 
page and then refresh the page in the browser window. 

STEP 3: Enter a name and press the Submit button. A "Hello" message should 
appear in the label. 

STEP L: Close the browser window to end execution. 

Viewing the HTNIL Code 

When you are viewing your Web Fonn in the designer. you can see three tabs 
at the bottom of the form: Design, Split. and Source. You can click on the Source 

tab to see the static HTML code. The HTML creates the visual elements on the 
page and is automatically generated. like the Windows-generated code in a 
Windows Fonn. The Split tab splits the Document window horizontally and 
shows you both the design and the source. 

Cont•·ols 

Several types of conh·ols are available for Web Fonns . You can mix the control 
types on a single fonn. Refer to Figure 9.5 to view the toolbox. For most of yow· 
work, you will use the controls in the Standard section of the toolbox. 

• Standard {ASP.NET server controls). These are the richest. most powerful 
controls provided by ASP. NET and the .NET framework. Web server con
trols do not directly correspond to HTML controls but are rendered differ
ently for different browsers in order to achieve the desired look and feel. 
Some of the special-purpose Web server controls are Calendar. Check
BoxList. AdRotator. and RadioButtonList. 

• Data. This list of controls includes the GridView and DataList for display
ing data. 

• Validation. These controls are used to validate the data before they are sent 
to the server. 



C ll 1\ l1 'l ' li R 9 

Toolbox 

j standa;d 
p O,t;, 

1> Vali:d-ation 

!> Navigation 

1> login 
~ \VebParts 

1> AJAX Extemions 

() Dynamic Dala 
1> Reporbng 

~ HTMl 

4 General 

. ~ )( 

Navigation. This list include5 a Menu control. 

• Login. Visual Studio includes login contTols and wizards. 

• WebParts. The Web Parts set of components enables users to change the ap
pearance and behavior of the interface from the browser. 

• AJAX Extensions. These are a set of AJAX (Asynchronous JavaScript 
and XML) controls that provide for faster Web page loading and richer 
interfaces. 

• HTML. These are the standard HTML elements that operate only on the 
client. You cannot write any server-side programming logic for HTML con
trols. As you submit forms to the server. any HTML controls pass to the 
server and back as static text. You might want to use HTML controls if you 
have existing HTML pages that are working and you want to convert to 
ASP. NET for additional capabilities. 

• Others. Depending on your version of VS. you may have other sections. 
such as Reporting. 

You can see the available controls in the toolbox when a Web Form is in 
Design view. Generally. the Standard section is showing (refer to Figure 9.4). 
Try selecting other toolbox tabs, such as Data. Validation, Navigation. Login. Web

Parts, and HTML. 

In Design view. you can tell the difference between client-side HTML con
trols and server-side controls. Click on a control and a popup Data Tip tells you 
the type of control and its ID (Name). Figure 9.6 shows two button controls. one 
an ASP. NET server control and the other an HTML control. 

ASP server control~ 

Client-side HT'I'viL control ----7 

369 

The Standard section of the 
toolbox holds the ASP.l\'ET 
server controls. which you 1oill 
use primarily. Click on each of 
the tabs to view the controls in 
each section of the toolbox. 

The popup Data1ip for each 
control identifies the type of 
control and its /D. 



370 v S l l ,\ I. C Web Applications 

E ' ·c nl Handling 

You write VB code for events of Web controls in the same way that you write for 
Windows controls. The events may actually occur on either the client or the 
server. The process of capturing an event. sending it to the server. and execut
ing the required methods is all done for you automatically. 

The events of Web Fonns and controls are somewhat different from those of 
Windows Forms. For example, a Web Fonn has a Page_Load event rather than a 
Fonn_Load event. You can see the events of the page using the editor when view
ing the "code behind" file; in the Cfass name list on the left, select (WebFormName 

Events) and drop down the Method name list (on the right) t•) see the list of events 
for the page. You also can select any control on the page to see the events of the 
control. For example. if you select a button control, you can see that you still have 

a Click event, but the list of events is much shorter than it is for Windows F om1s. 

F iles 

The files that you find in a Web application differ greatly from those in a Win
dows application (Figure 9.7). Two files make up the f01m: the aspx.designer.vb 
file and the aspx.vb file. The aspx.designer.vb file holds the specifications for 
the user interface that are used by the server to render the page. The aspx.vb file 
holds the Visual Basic code that you write to respond to events. The aspx. vb file is 
the code-behind file for the other file. When you are designing the user 
interface, you select the FormName.aspx tab and select the Design tab at the 
bottom of the 11inclow; when you are working on the code procedures. you select 
the FormName.aspx.vb tab. 

~olutlon fxplorff • Q X 

~ ®fm m ~l lit 
~ Ch09Hello 
b ~ My Project 
1> !9 Reference~ 
1> '.:J bin 

~ ·:.::.< o~j 
• @] D<faul1.aspx 

~ D=:fault.a;:px.designer,vb 

~ Odoult.ospx.vb 
0' ~ Web.conf1g 

~Soluti ... 

Testing in Othe•· B1·owse•·s 

You can test your project in another browser. such as Mozilla Firefox. From the 
Solution Explorer window. right-click on the Web page file name and select 
Browse With. You can select from browsers that are installed on your computer. 

l. What two files make up a Web Fonn? What is the purpose of each file? 
2 . How can you display a preview of how your Web Fonn ~till display in a 

browser without actually rlllming the program? 
3. What is the difference between an ASP.NET server control and an 

HTML control? When might you want to use each type? 

F i g n 1·e 9. 7 

The Solution &plorer for a 
Web application. The Web page 
called ''Default" consi.sts of two 
.frks: Default.aspx.designer.vb 
(the visual elements) a11d 
Default.aspx.vb (the VB code
behilld file). 



C II A 1• 'I' " ll 9 

Laying Out Web Forms 

You must always be aware that users may have different browsers, different 
screen sizes, and different screen resolutions. ASP.NEf generates appropriate 
HTML to render the page in various browsers but cannot be aware of the screen 
size, resolution. or window size on the target machine. 

Using Tables fo1· Layout 

If you want to have more control over placement of elements on your Web page. 
you can add an HTML table. You can add controls and text to the table cells to 
align the columns as you want them. 

The table is an HTML control. which doesn't need any server-side pro
gramming. Although there is a Web server Table cc•ntrol. that is generally 
used when you want to write code to add rows. columns. or controls at run 
time. 

You can either add a table to a Web page by selecting the Table tool from 
the toolbox HTML section. or allow the IDE to give you more help. Select Insert 

Table from the Table menu. In the Insert Table dialog oox (Figure 9.8). you can 
choose the number of rows and columns. as well as set many attributes of the 
entire table. 

Insert Table 

Size ----------------------

Bows: ~~ Columns: r-~ 
layout 

Atignment: I Default __ 8 l't]Spedfy widtl:!: 

E.loat: 
~ 0 Inpi2S_els 

1§) In perce!}t 

Cell ~dding: r-ffJ 
Cell ~adng: r-~ 

[] Spedfy height: 

In pi~els 

In percent 

Borders---------------------

Si<.e: ro----~ 

~olor: • C2J 
CJ Coll,;pse table border 

Background--------------------

CQ.Ior: 

0 Use background pictyre 

I ~fO'A'Se... I Prope.r!1es ... j 

Set ----------------------

0 Set as default for ne:!!! tables 

OK ) I Cancel 

371 

Figure 9.8 

In the Insert Table dialog box, 
you can create a new ta.ble and 
set many properties of the 
taMe. 



372 \ .' S U A I, C Web Applications 

After you create a table, you can set many more properties, such as bor
ders. alignment, and background color for the entire table, for individual rows. 
or for individual cells (Figure 9.9). Note that the HTML colors differ from the 
ones you can select for the document. You can adjust the column widths by 
dragging the bar between columns. If you want to move the table. you must 
click outside the table and insert or delete lines on the page. 

To add or delete a table row. first select a row. Then tight-click and use the 
context menu. You can use the same technique to add or delete a column. 

Fig u1•e 9.9 

Move the mouse pointer around to make the various arrows and handles appear. You can click on the arrows t.o select the 
entire table. a row. or a collunn. You also can resize the table by draggi11g the resizing handles. 

I Select entire table 

f ··.·.·.· . .,.;·.-.. , . ., ... ·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.-T, ........ "····"""'"'··· .. ····y· .......... ..., .................... 1l 
!::: : ::::: :: :::: :: :::: : ::::: :: ::::: , : ·: ::: : :: : :: : : : ::::: : ::::::::::::: ::l:: : :::: :: :::: :: :::::: ::::: :: ::: : :::l~Resizewidth 
L •••... ~._. ...... , ......... · .... w.·•••·······~'i.,,w_.. ... ,,,,,\M''""'''L,._ ... ._,,._.,,,..,_.,w,._w._,j\ 

Resize height Resize diagonally 

~Select column 

rc:·,~·:·:·:~::·:·:·:~.~:-,,~.~:·:·:·:::·:·:·:·:·,11::::~:::~~::::~::::::::::::::·:r:::~~::~:~:::::::::::::::~~1l 
i~ ; ~ ~~ ~! 
1: :::: ::: ::: ::: : :: ::: : :: :: :::: :::::::: : :: :: :: ::::::::::: :: ::::: : :::: :: :::: ::: :::: : ::::: : :::::: ::::: :: :: ::: : ::! 

~ .............. ·.: .. '.! .. : .. : ... ·.:.:.:..:..•..:..•,..•,:.:..•..!.•.: .. • .. ·..:..-..:.:.: .. • • • ~ ~.::. :.~.:..:.:.:.:.:..:..::..:.:.u.:.:.:..::.:...::..::..: .:..:.:.::.:.JL.:..:.::..:...:.:..::...:.:...:.:..:.:.:.:..:.:..::..:.:...::..:..:.::...:.:.:..:J1 

!C::~:~::·:·:~:·:~:·:·:~:~:·:~:·:~:~:·:~:·:~:·:·:·:·:·:~:·:·:~;::::~::~:::::::~:::::~:::::~:::·:11::::~::::::~:::::::::::~:::::::: ·1i 
Select row ~1 ::: : ::: :: : :: :: : :: ::: :: :: :: :: :::::: ~~ : :: :! ::: : :::: :: :: : : : ::::: :: :::: : : : ~i:: :: : : :: : :: : :::: ::: ::: : :: ::: : ::::: ~ 

t: .. .. ~ 

i'..:,· ...... ·,":,..·.:,.: ... • ... • .. • .. : .. ·.:..·~· .. • .. ·~·.:.: .. ·~·.:~-.: .. ·.:..·,:~·.:.:.:..::..:.:..:.u..:.:.:...:..:..:.:.:.:..:.:..::.;,:.;,.:..::. :.:.,.: .:..:.:..::. .::.ii..:.:.: .:..:..:..!:..: .:.:..:;.,:.:.:.:...:.:..::. :.:...:.u.:...:.::..:..::..::."l 

Emel'iug Contl'o);< Ol' Text iu a Table 

You can add controls to any table cell or type text in a cell during design time. 
H you want to be able to refer to the text in a cell at run time. add a label and 
give it an ID; otherwise you can type text di.rectly into the cell. Figure 9.10 
shows a table in Design view. Although the table's border is set to zero. the 
borders appear at design time but not at run time (Figure 9.11). 

When you are working a;th a table, there are some menu options that may 
help you adjust your table. The Table menu not only allows you to select the 
table and to insert columns, rows, or cells, but it also provides tl1e ability to 
merge cells. This means that you can make the entire top row a single cell for 
your title or you may combine a couple of cells for a larger image. 



C II 1\ 1• 'I' I' ll 9 

Default.aspx x 
~ ••••••w •••••• ••• •• ••••• 

• ...... :· .............. N;;;,;~,F---';.:.:.;:=.:-.....;c:._;;;:;..:;;;.;....: _ __:;,:_...:..._.;.;. __ ...... .J 

Address: 
Phone: r--'----------'----'-

I 

Ill Oesi~~ o Split I WI Source 8J§i)l<icrm#forml>j <:div'>' 

~ htlp://10calllost:S02l7/Defaultaspx · Windows lmernet Explore< l =l121'tfW 

Ov ~~ httr<l'loolhostS01l ~ I ~~ I..!J ltD Bing .P ·I 
W F-avontes 'IJ http<// localhost50l57/ ... I ~ · ~ ~ w <i> ~ Page • Safety ~ 

)) 

Name: I 

Address: 

Phone: 

I Submit ! 

Done ~ local ini:nnet I Protected Mode Off -~'a ~ f!l l OO% . 
~ 

Ahsolut~ P ositjoning 

You can choose to place controls on a Web page using absolute positionin{;. 
Tl1is option places controls in a specific X and Y position. lf you choose ab
solute positioning, be aware that controls may not show up if the user has set 
the browser window to a small size, or they may overlap each other if the user 
has selected a large font size for the browser window. To tum on absolute posi
tioning. select Format I Set Position I Absolute. 

When you are using absolute positioning. you can drag a control using the 
white tab at the top of a selected control (Figure 9.12). 

Absolute positioning keeps controls in the same position relaiive to the 
container- the Web page in our case. You also can set individual controls to an 
absolute position using cascading style sheets, which are discussed later in this 
chapter. 

lnd udjng Images on Web P ages 

You can add graphics to a Web page using the Image control. The concept is 
similar to the PictureBox control on Windows Forms, but the graphic file is 
connected differently due to the nature of Web applications. Each !mage con
trol has an JmageUrl prope1ty that specifies the location of the graphic file. 

373 

Figur e 9.10 

Add text and controls to the 
table cell.s. Although the 
Border property is set to zero. 
the borders stiU show at design 
time. 

Fig11re 9.ll 

The table at rnn time. With the 
Border property set to zero. the 
borders do not appear. 



374 \ .' S U A I, C Web Applications 

Defau~.a<px' )< 

T 
laso:te>tbox•T~ 
II 

• 
~ o SpL;t I GJ So<Jrce I 8J <" p:TextSo;<.<tylol<ITextB .>~ 

To place an image on a Web page. you should first copy the graphic from 
tl1e Windows Explorer and paste it into tl1e Solution Explorer for your Web site. 
If the project is open in the IDE when you add the graphic files. click the 
Refresh button at the top of tl1e Solution Explorer to make the files show up. 

You can add an Image control to a cell in a table or directly on a Web page. 
I n the lmageUrl property. click on the Property button ( ... ) to open the Select 

Image dialog box (F igure 9.13). If you hove added the graphic to the project 
folder and either clicked ilie Solution Explorer Refresh button or reopened the 
project. the graphic file will appear in the Contents pane. 

Drag a control to a new 
position using the tab at the 
top of the selected control. 

J.' i g n•• e 9.13. 

Select the graphic for the lmageUrl property of the Image control in the Select Image dialog box. 

Seled fm<lgc: ~ t> I....O..J 

Projed folders! Contents oi folder. 

I ' ~ Ch09JmagelnT•ble Iii! DB 
;> ~ My Project 

Filet of lyfe: ~~age. Fjle~{*.g if;~.jP$• jpeg;~.bmP!'* .wmf;7 .png) ·I 

l I OK II Coned I 



C II 1\ 1• 'I' I' ll 9 

The page in Figure 9.14 is made up of a table of three rows and three 
columns. The image and company title are in the first row and the text box is in 
the second row. The hyperlink shown in the last row is discussed in the section 
"Navigating Web Pages" later in this chapter. 

lfj http:i/IOCalnost::>UL!O/Ueraultaipx · wmoows intemet txplorer [ ~l SI~ 

v0 I ID htt!>/flocalhort:5Q. ·I +1 I X I e B.rg p • 

~ Favorite~ 'J1 http;//localhort:50270/ .. , l ~ . til • ..:! ~ • Page • 
» 

.. :ti! ·- :ti! g>"""' 

I 

I 

: 

I 

Contact Us 

' I ,-"-- . 
D Q. Local intnnet I P1oteded Mode: Off ~ll . 11\100% . 

= ~ 

l. Name two ways to place a button at the bottom of a Web page. 
2. What is the difference between an HTML Table control and a Web 

Table control? 
3. Where should you store images for a Web application? 

Cascacling Style Sheets 

You can use cascading style sheets (CSS) to create, modify, and apply styles 
to single elements on a page. one entire page. all page.<: of an application. or all 
applications of an organization. 

Using Styles 

Styles are rules that can specify page layout position, font color. alignment. 
margins. borders. background. and bullet and numbering formats. You can cre
ate and apply new styles within a page, attach an external .css file and apply 
the styles. and even save the styles in a page to an external .css file for use on 
other pages or Web sites. 

You can choose to define styles in several locations. including on the Web 
page for individual elements, called an inline style: in a style section of a Web 
page. called a page style; or in an external style sheet (.css file) tl1at is linked or 
imp01ied into the Web page. Generally programmers use inline styles for elements 
that appear only once on a page. page styles for elements that may be used in 
more than one location on the page. and external style sheets for elements tl1at 
may appear on more than one page of a Web site or in multiple Web sites. 

375 

Figure 9.14 

Place images. text. and 
controls where you want them 
l:ry using a t<Zble. The elements 
on this page are inserted into 
table cells. The graphic 
appears in an Image controL 



376 v ( ' lTt,b ApplicatioliS 

The term "cascading" in cascading style sheets refers to the order of prece
dence of style rules. More locally created styles override the rules of the more 
globally created styles. For example. you might apply an h1 style from the style 
sheet (global) that sets the font. color. size. and alignment. And if you also ap
ply a style defined in the page for the color and size. the local (page-defined) 
color and size take precedence. but the font and alignment of the style-sheet 
style are still in effect. And if you also apply an in line style for ihe size. the 
inline (more local) style will oveJTide the size but keep the color of the page
defined style and the font and alignment of the style-sheet style. 

TY[H'S of Styles 

In Visual Studio. you will use several tools to define. apply, modify. and change 
the location of styles. The Apply Styles window and the Manage Styles window; 
both of which you will learn about in the next section, use the icons in Table 9.1 
to identify the various types of styles. You can create a new style sheet or add 
an existing style sheet to a project. When a style sheet file exists within a pro
ject. you can add it to a solution by using Format I Attach Style Sheet. 

Style Tools 

The Visual Studio 2010 IDE and Visual Web Developer have windows that 
make it easy to define, apply. and manage styles. The window~CSS Propetties. 
Manage Styles. and Apply Styles-appear in the same area as the Properties 
window and are available from the View menu. Also. a Fotmatting toolbar 
appears in the default layout of the IDE. Figure 9.15 shows the new tools. 
Note: To display the Style windows. first select a control on the Web page. then 
open the View menu to see the windows listed. In VB Express. select Other 

Windows to see the choices. 

Cascading Style Sheet (CSS) S tyle TY(>es T altl e 9 . 1 

Icon S tyle Tyt>e How R e fere n ced 

• (Red dot) 

• (Green dot) 

• (Blue dot) 

• (YeJlo,.. dot) 

10-basedstyle: defined in a .css file. Applies to a specific 
element by ID. 

Class-based s tyle; defmed in a .css file or the current page. 
Defines style properties that you ,.-ant to apply to some. 
but not all, e lements of a particular type. such as some 
<p> (paragraph) elements. 

Element-based style: defined in the style block of a page. 

Applies to all elements that use a particular tag. s uch as 
<p> (for paragraph) or <td> (for table cell). 

Wine style. Applies only to the specified i tem; ,..ilJ not be 
reused by another element . 

Style name preceded by a pound sign. 
Example: #foot er 

Style name precede<] by a period. 
Example: . int ro 

Style name only. 
Example: p {marg i n -left : 25px; 
margi n-right: 25px} 

In Design view. apply formatting such as 
font. size. and bold. from the Format menu 
or the formatting toolbar. In Source vie .. ·, 
formatting appears using the style element 
of the opening tag. 
Ex,w, ple: <p st yle=" f ont -wei ght : 
bol d; font- s tyle : italic> 

<W (Circled dot) Indicates that the style is used on the current page. A dot without a circle indicates that the 
style is defined but not used. 

@ (At sign) Indicates an imported external cascading s tyle s heeL 



C II A I•'I' I'R 9 

The F onnatting toolbar and the styles windows. 

·-
Gf) Ouuu" 

mil c~lendt.l 

0 Ch«ltb 

:: ('hH"k-ibl i., 

g OropOOWfll ist: 

u f]='Jplo.d D!ml 
aM 1-tddcnMdd 

Jlo ~pe1lin\ 

Bl !rooge 
@ Jmo3cllvltoo 

1!11 ltmgchbp 

A ltbd 

l~~Cfl 

let&·· 

L•er.l 

l~GI~ 

leon for style not in 

CSS Prope1ties window 

The Formatting Toolba1· 

You can use the Target Rule drop-down list on the Formatting toolbar to select 
Automatic or the location of style information. For example. one option is lnline 
Style, which places the style code directly into the HTML source code. You also 
can choose to create an external .css file that can be reused on multiple pages 
or projects. 

Be fining S Lyles 

You define a new style in the New Style dialog box (Figure 9.16). which you can 
display from several locations. Choose Apply New Style from the Formatting 
menu, or select New Style in either the Manage Styles window or the Apply 
Styles window. You also can right-click in the CSS Properties window and 
choose New Style from the context menu. 

In the New Style dialog box. choose the category and then make settings. 
For example. click on Font in the Category list and set the font attributes: click 
on Block and set such attributes as text-align. text-indent, and ve1tical-align; 
click on List to set bullet and numbering attributes; and Table l1as settings for 
such attributes as borders and spacing. 

377 



378 \ S l \ L " \ .... ( ' Wob App/ic<ttwns 

-- ~ NewS~lc: 

Sded:or: .newSt)l~ J.l Dftc:lp'y new at)'4e to occu~ 3eie!;'!ion 

CE:..th! n : Current p~ f}l LJU..: ~ ... 

C4~1=~-t --······ --

Bbot 
font-tcnfv: -~ 

e.ckg....-.1 krt,~; G: ., ~~~&CCif.MO"'' 
So<de" 

font-'AO!tt: '::1 fl underft 
Box I ovcrlnc 
PO!ll)on 

-~· 9 Jlne-tl.ro4> l~)'Out 

~ L~t 
font.YCiflat"t: lblrk 

Tobie ttxtvonsfc:rJ-1; 8 1nonc 

cDcr: .sr 

Prc:,·ic:w: 

1 
A.illbY~gLLij 

CEsOIPklr.! 

I 
I ~~~ 

~lanagiuf! S tyles 

In the Manage Styles window (refer to Figure 9.15). you can see a p review of 
each style. Hover the mouse pointer over a s tyle name to display the code in the 

style. You also can see the setti~ for a given style in the CSS Properties window. 
In the Manage Styles window. you can drag styles from one category to an

other to change the location of the s tyle definition. For example. if you c reated 
a style in the current page and want to move it to the .css file so that you can 
use it in other pages. drag the s tyle name from the Current Page pane to the 
StyleSheet .css (or other name of a .css file) pane. 1£ you have more than one .css 
file attached to the page. you can choose the fLie to which to add a style. 

Applying S t yles 

You can apply styles from several locations, including the Apply Styles window. 
the Manage Styles window. and the New Style dialog box. When you create a 
new style on the New Style dialog box. check the box for Apply new style to doc

ument selection (refer to Figure 9.16). Us ing the Apply Styles 'Iindow. select the 
element on the page and click the desired style. To use the Manage Styles ~~>in
dow. select the element on the page. then right-click the desired s tyle name and 
select Apply Style from the context menu. 

FIJ!ur~ 9 . 16 

Deji111! a. new ~tyle in the New 
Style dwlog box. Enter tlte 
name for the 111!!0 style or 
choose the UJgfor an element 
type in the Selector box. The 
Define in bar allowJ you to 
choose the location for the 
uew Jt)le. 



C II A 1• 'I' " ll 9 

Modifying St yl<'s 

You can change the attributes of a style from either the Apply Styles or Manage 
Styles window. Select the style name. Iight-click, and select Modify Style from 
the context menu. You also can modify style attributes in the CSS P roperties 
window (Figure 9 .17). 

CSS Properties 

~~! ~ 1 ~~ 

Applie<IIM es 

body 
.T extBo<Stvle 
< in line style > 

CSS Propc-rtia 

wlor 
font -family 

££'font 
font· si2e 
font-!>tyle 

ftmt.v.:~riant 

font·wciqht 
tfKt-decontion 
text-transform 

<body> 

•'/X 

lsumrmry l 

(~tyleShee.m) 

< ~~ ~p:l o<tBoxf T ottBcOC..> 
<asp:TextBcx:#Te.xtSoxl "> 

• • FFOOOO 
Comic Sans MS 

,j 

~ [B.~ .. · :::.............. . . . . . . . .. ~ , ...... ,.., ......... : ... ... 
~ CSS Pr ... . . ' • 

Navigating Web Pages 

ASP. NET provides several techniques for navigating from one Web page to an
other. The easiest form of navigation is to use a HyperLink control. 

Using Hypel'links 

You may need to allow your user to navigate to another site or to another page 
in your application. You can add a HyperLink to a Web page. The HyperLink 
control allows you to enter a Text property for the text to display for the user 
and a NavigateUrl property that specifies the URL to which to navigate. 

When you select the NavigateUrl property for a Hyper Link control. theSe

lect URL dialog box appears (Figure 9.18). You can select die page from the list. 
lf you want to navigate to another Web site. simply type the Web address as the 
Navigate Uri property value. 

Adding a Second We b Page 

Often you need to include multiple Web pages in yotu application. For exam
ple, you can have a separate page to display contact information for your com
pany. You can create a Web Form that contains labels about the company and a 
HyperLink control to retum to the company's home page. The following step
by-step exercise adds a page to die Hello project you created earlier and adds 
HyperLinks to each page to navigate back and forth. 

379 

lng u r e 9. 1 7 

View and modify style elements 
in the CSS Properties window. 



380 v S l l ,\ L ( ' lTt,b ApplicatioliS 

F i g n1• e 9 . 18 

Select the page to which to ncwigate for a Hyper Link control from the Select URL dialog box. 

Sclect URl 

Pro;ect folders: Contents of folder. 

~ (t. ~h09Hand!:On ~~mm 
~ B!1 My Project iO:fLit.a~px 

!!lJPoyphone.wmf 
~ Styi~Shc:c:lcss 
~ Web.config 

Add n New Fonn to the l:-le llo Project 

STEP 1: Open the Ch09Hello project in the IDE if necessary. 
STEI' 2: Select Add New Item from the Project menu. 

I OK 

Note: If the templates are not listed. make sure that the project is 
displaying in the Solution Explorer. 

STEP 3: In the Add New Item dialog box (Figure 9.19). set the Name box to Con
tactlnfo.aspx. 

STEI' 4·: Click Add. The Contactlnfo.aspx file appears in t11e Document window. 
STEI' 5 : If the source code for HTML is displaying. display Design view by se

lecting the tab at the bottom of the Document window or by clicking 
on the View Designer button in ihe Solution Explorer window. 

Add Conu·ols to the New Page 

STEI' 1: Set the document's Title property to "Hello Contact Information". 
STEP 2: Add a Hyper Link control to the top of the page. 
STEP 3: Set the HyperLink's Text property to " Return to Home Page". 
STEI' 4., Click on the Propetty button for the HyperUnk's Navigate Uri property 

to open the Select URL dialog box. 
STEI' 5: Select Default.aspx (Figure 9.20). the main page of this Web site. and 

click OK. 
STEP 6 : Press Enter three or four times and enter the contact infonuation. 

(Make up any information.) 

Add n Fl ypet-Liuk to the Main Page 

STEI' 1: Display Default.aspx in the designer and add a HyperLink control to 
the bottom of the page. 

STEP 2: Set the Text property of the control to "Contact Information". 

['i'~ 

II Cancel I 



( ' II ;\ 1• T t: R 9 

J' ll(ure 9.19 

To add a new Web Fonn to a Web site. select Web Form in the Add New Item dialog box. 

Add New kem - ChOSHe!lo 

"' Viscm g,~ic 

Code 

o. •• 
~.neral 

Web 
'/tjndowc Forme 

R~orting 
51\·er!ight 

'lt'crtflow 

1\PF 

k1 
~ 
u 

I U 
l!J 

w~b foJrn 

Web fotrn usin-g Mtsl~ Page 

Web U;cr Control 

Clc~ Vrsuat Bo:sic 

Vrcuai8Ut( 

H1Ml 0 age V1SUa l5t9( 

-} ~ Style Shtrl 

Select Default.aspx. the main page of the Web site. as the page Ia which to navigate. 

Stl«t U~l 

Proje<t fci.ders: ContEntS of folder: 

~jci"C9Hello ~ Coi"'UctlnforiT\3tion.a~px 

.AI My Pro,oa ' 
,.!}Web.config 

[ 

J' IJ,(ure 9.20 

'il~ 

o~ I [ Cal1(:el J 

381 



382 l ' C Web Applicati<ms 

STEI' 3 : Set the NavigateUrl property to Contactlnfo.aspi. 
STEP 4·: Run the application. Test the links on both pages, which should navi

gate back and forth between the two pages. 
Note: 1f the Default.aspx page is not the first page in the browser, in 

the IDE light-click Default.aspx in the Solution Explorer window and 
select Set as Start Page from the context menu. 

l. What property of a HyperLink control indicates to which Web page the 
control is linked? 

2. Describe how to set up the Hyper Links to navigate from a main page to 
a second page and back again to the main page. 

Using the Validator Controls , 

ASP.NET provides several controls that can automatically validate input data. 
You add a validatot· controL attach it to an input control such as a text box. 
and set the error message. At nm time. when the user inputs data. the error 
message displays if the validation rule is violated. These validation controls run 
on the client-side. so the page does not have to be submitted to the server to 
view and clear the message. Table 9.2lists the ASP. NET validator controls. 

Note that a blank entry passes the validation for each of the controls except 
the RequiredFieldValidator. lf you want to ensure that the field is not blank and 

Validator Couu·o ls 

Control 

Required Field Vat idator 

Compare Validator 

Range Validator 

Regular Expression Validator 

ValidatlonSummary 

Pw·poee 

Requires that the user enter something into the Geld. 

Compares the value in the field to the value in another control 
or to a C0118lant value. You al50 can set tbe Type property to a 
numeric type and the Compare Valida tor ~·ill verify that the 
input value can be co.nverted to the correct type. 

Makes sure that the input value falls in the specified range. 

Validates against a regular expreESion, such as a required 
munber of digits. or a formatted value, s uch as a telephone 
number or social securi ty nwnber. 
Use the Regular Expression Editor to select or edit 
expressions; open by selecting the Property button on the 
ValidationExpression property. 

Displays a summary of a U of the messages from the other 
validation controls. 

Tn bl e 9 . 2 

Prope11ies to Set 

ControiToValidate 
Error Message 

ControlTo Validate 
ControlToCompare or 
ValueToCorupare 
Type (To force type checking) 
ErrorMessage 

ControlTo Validate 
Minimum Value 
"Maximum Value 
Type (To force type checking) 

Error Message 

ControlTo Validate 
ValidationExpression 
ErrorMessage 

DisplayMode 
(Can be set to a list. buUeted 
list, or a single paragraph.) 



C II A 1• 'I' " ll 9 

that it passes a range check, for example. attach both a Range Validator and a 
RequiredFieldValidator control to a field. 

For the ErrorMessage property of the validator controls. you can either en
ter a complete message or set the propetty to an asterisk. When the user leaves 
the tleld blank or enters invalid data. the asterisk will appear. 

Ft•t•dhack 9.4 

Dt:scribe huw tu valiJate a text bux callt:J NuUtuerTextBux usiug valiJaturcuu

trols. A numeric entry is required. in the range 0 to 1000. Tite field must not be 
blank. 

Maintaining State 

As you learned earlier. a Web page holds static data. Each time a page is dis
played. or redisplayed. it is a new "fresh" copy of the page. In fact. each time 
the page is posted back to the server, a new fresh copy of the program is loaded. 
The server responds to the postback. handles any events that have occurred. 
sends the page back to the client (the browser). and releases the memory used 
by the program. Unless steps are taken to maintain the values of variables and 
the controls on the page. called the state of the page. all values will be lost in 
every postback. 

Re ta ining Llw ConLe nLs of Cont1·o ls 

Although regular HTML does not retain the contents of controls during a post
back, ASP. NET can retain and redisplay control contents. Web controls have an 
Enable ViewState property, which indicates that you want the server to send the 
control's contents back with the page. EnableViewState is set to True by de
fault. so control contents reappear for each postback. 

Re ta ining the Values of Va1·ia bles 

Local variables in a Web application work just like local variables in a Win
dows application: The variables are re-created each time the procedure begins. 
But module-level variables in Web applications do not work like the ones you 
are used to in Windows. Because the program is reloaded for each postback, 
the values of module-level variables are lost unless you take steps to save them. 
You can store the value of a module-level variable in a. control on the Web page; 
the control's Enable ViewState prope11y takes care of holding the value during 
post back. 

Note: More advanced techniques for maintaining state. such as cookies and 
session variables. are beyond the scope of this text. These techniques are cov
ered in the authors' Advanced VB text. 

You can either set up a label with its Visible property set to False or use the 
HiddenField control in the toolbox. Then assign the module-level variable to 
the invisible control. For an invisible label. use the Text property: for the hidden 
field, you must use the Value propet1y, which is a string. In dte following ex
ample. DiscountTotalHiddenField is a control on the page and DiscountTo
talDecimal is a module-level variable. 

383 



384 v S l l ,\ I. 

' Declare a module -level variable 
Private DiscountTotalDecimal As Decimal 

Private Sub SubmitButton_Click(ByVal sender As System.Object, 
ByVal e As System.EventArgs) Handles SubmitButton.Click 

' Perform calculations . 
Dim DiscountDecimal As Decimal 

C Web Applications 

' omitted code to convert input to numeric and calculate a discount . 

' Add to the discount total. 
DiscountTotalDecimal += DiscountDecimal 
' Save the discount total in a hidden field. 
DiscountTotalHi ddenField .Val ue = DiscountTota l Decimal .ToString() 

End Sub 

Owckiug for l~ostback 

When an ASP.NET Web application loads. the Page_Load event occurs. But 
unlike Windows applications. t11e page is reloaded for each " round-trip" to the 
server (each postback). Therefore, the Page_Load event occurs many times in 
a Web application. The page's TsPostBack property is set to False for the initial 
page load and to True for all page loads following the first. If you want io per
fonn an initialization task once, you can test for IsPostBack = False (or Not 
IsPostBack) in the Page_ Load event procedure. And if you want to make sw·e 
that you perform an action only on postback (not the initial page load). you can 
check for IsPostBack = True. 

Private Sub Page_Load(ByVal sender As System .Object, 
ByVal e As System.EventArgs) Handles MyBase. Load 

' It a value exists for the Discount total ... 
If Is PostBack And DiscountTotalHiddenField .Va lue <> "" Then 

DiscountTotalDecimal = Decimal . Parse(DiscountTotalHiddenField .Value) 
End If 

Notice that the module-level variable DiscountTotalDecimal is assigned a 
value only on postback and DiscountTotalHiddenField already has been as
signed a value. 

Why is it necessary to check for a postback when writing Web applications? 

AJAX _ 

One of the newest improvements for Web applications is Asyu clu·ouous 
JavaScript and XML (AJAX) for creating interactive applications. AJ AX al
lows you to reload only a portion of the Web page. rather than the entire page. 
on each postback. 

Often large portions of a Web page are unchanged for a postback. Using 
standard protocols. the entire page is redrawn every time. Using AJAX. the 



C ll t\1•'1'1\ R 9 

loading speed can increase dramatically by d01mloading and rendering only 
the portion that does change. 

AJAX is an open and cross-platform teclmology that works on many oper
ating systems . Many AJAX objects are available in the toollibrnry. and any de
veloper can contribute more objects due to the open nature of the standards. 
You can find more information at www.asp.net/community/. 

AJ AX is included in Visual Studio 2010, so you can use it on yom Web 
pages. Any page that uses AJAX features must include a ScriptManager com
ponent. which is available in the toolbox under AJAX Extensions. Mter you 
place the Script Manager component on the page. you can add other controls, 
such as the UpdatePanel. which is a container for other controls. 

Placing controls inside of an UpdatePanel detennines what portion of the 
page updates on a postback. One fun way to test this is to place a label con
taining the time inside the update panel and another outside the panel. When 
a Submit button posts hack to the server. only the time inside the update panel 
changes. Hint: See " Retrieving the System Date and Time" in Appendix B for 
the methods to display the time. 

In the following small program (Figure 9.21), the user enters a name in a 
text box and clicks the Submit button. The page then welcomes the user by 

Figu•• e 9.21 

A Web page that uses AJAX rnust have a ScriptManager component. The UpdatePanel holds the controls that should be 
posted back to the server. The area outside the UpdatePanel remains unchanged. 

ao Ch09AJAX - Microsoft Vasuol Studio 

~ Pointer 

e.g Script Manager 

~ ScriptManagerPro ... 

0 Timer 

~ UpddcPt.nel 

,£] Upd.::teP;ogrc:ss 

• Generat 

There are no usable 
controh in thi) group. 
Drag an item onto ttbs 

£e-rt to add it t o the. 
toolbox. 

11- ProfileSetvic£ 
~ RoleService 

ScriptMode Auto 
ScriptP01th 

Scripts (Colledion] 

385 



386 \ S l \ I , IC \ S ( ' Web Applicati<ms 

name. The large image is outs ide the Update Panel so it does not redraw when 
the page posts back the response. 

Protected Sub SubmitButton_Click(ByVal sender As Object, 
ByVal e As System.EventArgs) Handles SubmitButton.Click 

' Concatenate Welcome to the name . 

Welcomelabel.Text = ' Welcome • & NameTextBox.Text 
End Sub 

Some Web Acronyms 

You have seen many acronyms in this chapter. such as HTM L. ASP. liS, and 
URL. But we have only scratched the s tuface. As you read the Help files for 
VB and begin developing Web applications. you will want to kno~- the meaning 
of many more. These include the foUo~·ing: 

XML 

SOAP 

HTIP 

Web Service 

WSDL 

Extensible Markup Language. This popular tag-based no
tation is used to define data and their format and transmit 
the data over the Web. XML is entirely text-based. does 
not folJow any one manufacturer's specificat ions. and can 
pass through f.irewalJs. 
See the pages ''XML" and "XML Tools in Visual Studio" 
in Help for further infonnation. 
Simple Object Access Protocol. An XML-based protocol 
for exchanging component information among distributed 
systems of many different types. Since it is based on 
XM L. its messages can pass through network ftrewalls. 

See http:/fwww.w3.org/TR!soapl2-prut 11 
Hypertext Transfer Protocol. The protocol used to send 
and receive Web pages over the lntemet using standard
ized request and response messages. 
Code in classes used to provide middle-tier services over 
the Internet. 
Web Services Description Language. An XML document 
using specific syntax that defines ho~· a Web service be
haves and how clients interact with the service. 

Your Hands-On Programming Example 

R ' n R has decided to start selling books online. Create a Web site to calculate 
the amount due. including discounts. AU ow the user to display the total of the 
discounts. 

The user enters the quantity. title, and price of a book. and the program 
calculates the extended price, a 15 percent discount, and the discounted price. 

The input must be validated. The quantity and price nre required fields. 
and the quantity must be an integer between l and 100. 

Additionally. the program will maintain a total of all discounts given and 
d isplay that total on the page in response to a button click. 

Include a second page for contact information. 



C IIAI'Tt: H 

Now: This project is a Web vers ion of the Book Sales program for R ·n R 
from Chapter 3. 

I'Lanuin~ the Pt·oject 
Sketch the Web forms (Figure 9.22). which your users sign off as meeting their 
needs. 

t' lgare 9.22 

Sketch thefonn$for tM hands-on programming example: a. the main (default) page and b. the conl.act.s page. 

R 'n R Book Sales 

Quantity IL==~--------------+- QuantltyText8ox 

Title~ ~~~~~~~~~~~~~~~~~~~ntleTextBox Price l Prlce T IJxtBox 
ExtllndedF'rlceTextBox 

Extended Price I I I ErrorMe.r.;a9eLabel 

387 

Discounted Price 1 DIGCOuntedPr1C<"JTextBox 157. Discount~ ~~~~~~;;;l~~~~~~~~~~ OlscountText8ox 
I OlscountTotallabel 

a. r 
I 

Is"\ I a\ ~~~=~=~ ~~·~-

\ \ \ 
Submlt8utton ClearButton Hyperllnk1 

I 
DIGCountTotaiHiddenFleld 

Contact us at 

Email: Wel7master@mrl:>ooke;.com 

Phone: 1-(800) 555-1111 

Graphic 

Return to R 'n R main EB!:Jil 

b. ~ 
\ 

Hyperllnk1 lmage1 



388 \ 

Plan the Objects and Properties 

Default Pnge 

O bject 

HTML Tahle (9 rows by 3 columns) 

Text entered directly iu celL. (not in controls) 

QuantityTextBox 

TitleTextBox 

Price Text Box 

E:<lendedPriceTertBo:x 

DiscountTextBo:x 

DiscountedPriceTe>1Box 

DiscountTotall.abel 

DiscountThLnl H iddenField 

Submit Button 

Cle<~rButton 

Summoryllullon 

QuanLityRequiredFieldValidatOl' 

QuantityRange Valid at or 

s l \ L 

Properly 

ID 
Text 

1D 
Text 

ID 
Text 

lD 
Text 
ReadOnly 
Back Color 

m 
Text 
Re<tdOnly 
Back Color 

ID 
Text 
ReadOnly 

Back Color 

ID 
Text 

ID 

ID 
Text 

ID 
Text 

ID 
Text 
Cau..,. Validatioo 

ID 
ControiToValidate 
.ErrorMessage 

ID 
ControiToValidate 
Type 
Maximum Value 
Mininmm Value 
ErrorM .. sage 

B .\ S £ IVeb Applu:alions 

Set.tillfl' 

R 'n R Book Sales 
(Font: Bold. Aritd. Medium) 

Quantity 
Till~ 

Price 
ExtenJed Price 

15% Discount 
Discounted Price 

Quantity Text Box 

(blank) 

Title TextBox 
(blank) 

PriceTextBox 
(blank) 

E.<tendedPriceTextBox 
(blank) 
True 
TransJ>arent (Hint: Select from Web colors) 

I>iscountTextBox 
(blank) 
True 
Transparent 

I>iocountedPriccTextBox 
(blank) 
True 

Transparenl 

I>iscountTotalLabel 
(blank) 

I>iocountTotullliddenField 

SubmitButton 

Suhmit 

ClcarButton 
Clear 

SummoryButton 

OiP.oCOunt Summary 
raloe 

QuantityHequiredrie ld Valida tor 
QuantityTextBox 

• 
Quant ityfumge Validator 
QuantityTextBox 
Integer 

100 
1 
1-100 Only. 



C II 1\I•Tt:H 

Object 

PriceReqwredFieldValidator 

PriceRangeValidator 

ErrorMess!!f>eLabel 

HyperLinkl 

9 

Property 

10 
ControlTo Validate 
ErrorMessage 

ID 
Controrro Validate 
Type 
ErrorMessage 

ID 
Text 
ForeColor 

Text 
Navigate Uri 

Set lin~ 

PriceRequiredFieldValidator 
Price'l'extBox 
Required Field 

Price Range Validator 
PriceTextBox 
Currency 
Must be nwnerie 

ErrorMessageL.abel 
(blank) 
Red 

Contact Us 
Contact.aspx 

Hint: Create a style to apply to the text boxes that should have numeric 
amounts right-aligned. fn the Block category, set text-align: right. You can ap
ply the style to right-aligned labels as well as text boxes. 

C onHU.'I Page 

O bjec t 

Text e ntered directly in cells 
(not in controls) 

HyperLink t 

Image! 

Plan the Procedures 

Defa ult Page 

Proc~dur-e 

Page_Load 

Submit Button_ Click 

ClearBullon_Click 

Summary Button_ Click 

Property 

Text 
Na,~gateUrl 

lmageUrl 

Ac tio n!' 

s~u ing 

Contact us at 
Email: WebrnliSter@rnrbooko.corn 
Noll!: This will convert to an e-mail link Butomatically. 
Phone: l-(800) S55-llll 

Return toR "n R main page 
HomePage.aspx 

Pnyphone.wmf (Stored in project folder) 
(lmoge found in StudentData\Graphics) 

If Post Back and hidden field has a value 
Load discount total from hidden field. 

Clea.r ""Y text in ErrorM""""f>"l.abel. 
Convert input text values to nume ric. 
Calculate the extended price = price • quontity. 
Calculate the di..,owlt = extended price • di!!Counl rate. 

Calculate the discounted price = extended price - discowtl. 
Add the discount to the discount total. 
Assign the discount total to the bidden field. 
Format and display the results. 
Handle any conversion exceptions. 

Clear oll text boxes and lubeht. 

Display the discount total in a label. 

389 



390 ,. S l .\ L t ' IVeb Applications 

Con tact Page 
The contact page has no event procedures. 

\\rite the Project F'oUow the s ketch in Figure 9.22 to create the Web pages. 
Figure 9.23 shows the completed p~es. and Figure 9.24 s hows the pages in 
Design view. 

• Set the properties of each of the objects according to your plan. 

Write the code. Working from the pseudocode. write each procedure. 

• When you complete the code. use a variety of data to thoroughly test the 
project. Make sure to test with empty fie lds. data out of range. and nonnu
meric data in the numeric fields. 

The finished Web application: a. the main (default) page and b. the contac~ page. 

R 'o R Book Sales 
Quantity 

Title 

Price 

Extended Price 

15% DiiiCOUOt 

Discounted Price 

t' l j! urt- 9 . 23 

...__ ____ _,! ..__[ __ C_Ie_ar _ __,ll Discount Summary I 
ConbCt Us 

a. 

Coo tact us at 

Email: 'i\ ebmasterarnrbooks.com 

Pbooe: 1-(800) 555-1111 

Re!Um to R 'n.R Home Page 

b. 



C ll i\ 1°T t: K 

f'igar~ 9.24 

Lay out the control-! in Design view: a. tAe main (default) page and b. the contacts page. 

R '• R Book Sales 

1-100 Only 

... !-Aust be numaic 

Submi 
Dl;count summ;l 

O ear ] 
Contact Us 

a. 

• I 
I Q o ... gn I "' Split \ iii: Sou ret 

~~a!!lll~~~o;;;~.~c~~·p;x~xllllllllllllllllllllllllllllllllllllllllllllllllllll~~ 
lli'.J ·· -··· 
Coatadus :u 

Email: Webmuter@rorbooks.coltl 

Pbooe: 1-(800) 55~111.1 

Return toR 'n RHome Page 

·-····--~-· -······--.. ·-- ···--····-·-··- ···-- ····-- ·'-···· - o· ·-·····- ···- ···· -·· 

b. 
~ o~gn I t:l Split llij ~ouru 

----o - ····· ····- ······--·····--····--····-

--·1 
i 
i 

391 



392 ,. S l \ L It \ s t: Web Applications 

'Program: 
'Programmer: 
'Date: 

Chapter 9 HandsOn 
Bradley/Millspaugh 
June 2010 

'Page: 
'Description: 

Default 
A Web site to calculate the extended price for books sold, 

'Folder: 

a discount, and the discounted amount . Calculates and displays 
the total discounts. 
Uses validator controls for input validation . 
Ch09HandsOn 

Partial Class Default_aspx 
Inherits System.Web.UI.Page 

Private DiscountTotalDecimal As Decimal 
Const DISCOUNT_RATE_Decimal As Decimal 0.150 

Sub SubmitButton_Click(ByVal sender As Object, 
ByVal e As system.EventArgs) Handles SubmitButton.Click 

' Calculate values for sale. 
Dim auantityinteger As Integer 
Dim Priceoecimal, ExtendedPriceDecimal As Decimal 
Dim DiscountDecimal, DiscountedPriceDecimal As Decimal 

ErrorMessageLabel.Text ~ String.Empty 
Try 

' Convert input values to numeric variables. 
auantityinteger = Integer.Parse(QuantityTextBox .Text) 
PriceOecimal = Oecimal.Parse(PriceTextBox.Text) 

' Calculate values for sale. 
ExtendedPriceoecimal = auantitylnteger * Priceoecimal 
DiscountDecimal = ExtendedPriceOecimal * DISCOUNT_RATE_Decimal 
DiscountedPriceOecimal = ExtendedPriceOecimal - DiscountDecimal 

' Add to the discount total. 
DiscountTotalDecimal += DiscountDecimal 

' save the discount total in a label. 
DiscountHiddenField.Value = OiscountTotalDecimal.ToString() 

' Format and display answers . 
ExtendedPriceTextBox.Text = ExtendedPriceDecimal .ToString( ' C' ) 
DiscountTextBox.Text ~ DiscountDecimal .ToString( ' N' ) 
DiscountPriceTextBox. Text = DiscountedPriceDecimal. ToString( •c•) 

Catch ex As Exception 
ErrorMessageLabel .Text ~ •unable to calculate . Check for numeric values . • 

End Try 
End Sub 

Private Sub ClearButton_Click(ByVal sender As Object, 
ByVal e As System.EventArgs) Handles ClearButton.Click 

' Clear previous amounts from the page. 



C ll i\ 11 T E R !) 

auantityTextBox.Text = ' " 
TitleTextBox.Text = •• 
PriceTextBox.Text = •• 
EXtendedPriceTextBox .Text 
DiscountTextBox.Text = ' " 
DiscountPriceTextBox .Text 
DiscountTotallabel.Text = 
ErrorMessageLabel.Text 

End Sub 

Sub Page_Load(ByVal sender As Object , 
ByVal e As System.EventArgs) Handles Me .Load 

' ChecK for existing value for the discount total . 

With OiscountHiddenField 
If IsPostBacK And .Value <> "'Than 

DiscountTotalOecimal = Oeoimal.Parse(.Value) 
End If 

End With 
End Sub 

Private Sub summaryButton_ClicK(ByVal sender As Object, 
ByVal e As System.EventArgs) Handles summaryButton.Click 

1 Display the total discount. 

393 

I DiScountTotallabel.Text = "Total Discounts: $ " & DiscountTotalHiddenField.Value 
DiscountTotalLabol . Toxt = ' Total Discounts: • & DiscountTotalOeoimal. ToString( "C") 

End Sub 
End Class 

l . A Web application runs in a browser whereas most Windows applications 
run stand-alone. 

2. A Web s ite has a c lient. which is the system running the Web page in a 
browser. and a server. 11·hich is the location of the Web page files. 

3. Different browsers may d isplay Web pages differently. Web developers 
must test their applications on multiple browsers unless they know that all 
users will use the same browser. such as in a company intranet. 

4. Web pages are s tatic and sta teless. They require processing t:o change the 
appearance of t11e page and cannot store variables on the ir 011'11. 

5. ASP.NET is the Web technology included in Visual Studio. Web Fonns in 
Vis uaJ Basic use ASP. NET. 

6 . A Web Form consists of two files: the .aspx file that holds the code to ren
der the use r interface and the .aspx.vb file that holds the VB code. 

7. The controls for Web pages are different from those used on Windows 
Forms. 

8 . In Design view. the HTML tab displays the HTM L that is automatically 
generated. 



394 S l r \ L 11 \ s C Web Applicalions 

9 . You can display a page preview as it will appear in a browser. 
10. Controls on Web pages may be HTML (client-side) controls or Web server 

controls. which are the controls provided by ASP. NET Web server controls 
are rendered specifically for the browser being used. 

11. Although the events of Web controls are somewhat different from those for 
Windows controls. coding for the events is the same. 

12. A different set of files is generated for Web projects than for Windows 
projects. 

13. L1 a Web page. controls are placed one after another. from top to bottom. 
s imilar to a word processing document. 

14. You can use an HTML table to lay out controls and text in roll'S and 
columns. 

15. The positioning of a page or a control may be set to absolute. which allows 
you to set the location by dragging the control to the desired position. 

16 . Add graphics to a page using an Image control. The control's lmageUrl 
property holds the location of the file. 

17. Cascading style sheets can be used to set font properties. position. borde r, 
and the background for Web pages and controls. The location of the style 
definition detem1ines the type of style---inline. page. or .css file. 

18 . Validator controls allow testing for a required field. proper type of data. or 
a range of values. 

19 . The EnableViewState property of a Web control detennines whether the 
control maintains its value during post back. To maintain the value of a pro
gram module-level va riable. assign the variable's value to a hidden or in
visible control. 

20. A HyperLink control is used for navigation. Set the NavigateUrl property 
to the page to which to navigate. which can be in the cun·ent project or an
othe r Web s ite. 

21. You can add multiple pages to a Web application and set up navigation be
tween the pages. 

22. AJAX (Asynchronous JavaScript and XML) improves the speed of Web 
applications. By us ing the Update Panel. only a portion of a Web page is 
s ubmitted and reloaded on a postback. 

23. XML is used to s tore and transfer data on the fntemel. XML is tag-based 
and text-only and can be trans milled through network frrewalls. SOAP and 
WSOL are based on XM L. 

absolute position 373 
AJAX 384 
browser 362 
casCllding style sheet (CSS) 375 
code separation model 365 
inlTanet 363 

single-file moclel 365 
stateless 363 
table 371 
validator control 382 
Web Fom1 362 
Web page 363 



C ll i\ 11 1' t: H 9 

1. Explain the differences between the execution of a Windows application 
and a Web application. 

2. Diffe rentiate between the client and the senrer for a Web application. 
3. \'\' hat is meant by the statement that Web pages are stateless? 
4. What are the diiJerences between HTML controls and standard controls? 
5. How does event handling differ from that for Windows applications? 
6. Describe at least two methods for controlling the layout of controls on a 

Web page. 
7. What fw1ctions are done by validator controls? How can you set up a val

idator control? 
8. Describe the purpose and functionality of AJAX. What is meant by open 

s tandards? 
9 . What is the purpose of XML? of SOAP? 

9.1 Rewrite your project from Chapter 3 to be a '\'\'eb project: include valida
tion. 

9.2 Rough Riders Rodeo wants to sell tickets online. Allow the user to enter 
the nwnber of tickets needed. The data en tty screen should also include 
the shipping address for the ticke ts. a credit card number. expiration 
date, and a drop-down box allowing the user to select the type of credit 
card. Also include a check box for attending the Awards Event. Include a 
hype rlink for confirming the order. Make the link invisible to begin with. 
but display it after the Submit button has been clicked. 

The confirmation page should say "Thank you for your order". 
'The tickets are Sl5 for just the rodeo. $25 if they want to allend the 

awards event. Note that all members of the party must select the same 
type of tickets. 

When the user selects the Submit button. display the amount due and 
display a link to confmn the order (make the existing link visible). Use an 
UpdatePanel to improve performance. 

9.3 Create a Web page for entering new customer information. The fields in
clude name. e-mail. usemame. and password. Include a second text box 
to confirm the password. Set the TextMode property of the two password 
fields to ''Password''. Use a table to lay out your controls. 

Validate that all fields contain information. Display appropriate mes
sages for any empty fields. include a Submit button. 

When all information is entered and the Submit button is pressed. 
compare the lim password fields to see if they are equal. Jf not, clear both 
text boxes and display a message to reenter the password information. 
When the passwords match. display a message that says "Welcome" and 
the name of the customer. 

395 



396 \ S l \ L ll .\ s c w~b ApplicatiOIL\" 

VB Mall Order 

Write the VB Mail Order project &om Chapte r 4 as a 
Web project. Use validator controls for the validation. 
Place a n image or logo on the page located outside an 

Write the VB Auto Center project from Chapter 4 as a 
Web project. Use validator controls for the validation. 

AJAX UJXlate Panel. include a second page with con
tact information for the company. 

include a second page with contact information for the 
company. 

Suggestion: Use a Radio Button List control. 

\'ldeo Bouaaza 

Write tJ1e Video Bonanza project (rom Chapter 3 or 
Chapter 4 as a Web project. Use validator controls for 

the validation. Include a second page with contact 
infonnation for the company. 

Suggestion: Use a Radio Button List control. 

Very Very Boards 

Write tJ1e Very Very Boards projec t from Chapter 4 as 
a Web projec t. Use validator controls for the valida
tion. including a range validator for the qua ntity. 

include a second page wiili contact information for the 
company. 

Suggestion: Use a Radio Button List control. 



D A p T E R 

Database 
Applications 

J. Use database terminology conectly. 

2. Create Windows and Web projects that display database data. 

3. Display data in a DataGridView control. 

4 . Bind data to text boxes and labels. 

5 . Allow the user to select from a combo box or list box and display the 

corresponding record in data-bound controls. 

6 . Query an object us ing U NQ. 



398 l ' C Databa .. e Applicatiom 

Databases 

Most data handling today is done with relational databases. Many manufacturers 
produce database management systems (DBMSs). each with its own proprietary 
format. One challenge for software developers ha~ been accessing data from mul
tiple sources that are stored in different fmmats. Most of the new tools available 
to developers. including Microsoft's Visual Studio, attempt to handle data from 
multiple locations (servers) and data stored in different fom1ats. 

Vis ual Basic and Databases 

You can use Visual Basic to JtTite projects that display and update the data 
from databases. Visual Basic uses ADO.NET, which is the next generation of 
database technology. following Microsoft's previous version called ActiveX Data 
Objects (ADO). One big advantage of ADO.NET is that information is stored 
and transferred in Extensible Markup Language (XML). You will find more 
information about XML in the section "XML Data" later in this chapter. 

ADO.NET allows you to access database data in many formats. The basic 
types of providers are OleDb. SQLClient for SQL Server (Microsoft's propri
etary DBMS). Odbc. and Oracle. Using OleDb you can obtain data from sources 
such as Access, Oracle, Sybase. or DB2. The examples in this text use Micro
soft's SQL Server Express (SSE). which installs automatically with Visual 
Studio. 

Database Tc•·minology 

To use databases. you must understand the standard tem1inology of relational 
databases. Although there are vmious definitions of standm·d database terms. we 

will stick with the most common tenns. those used in SQL Server and Access. 
A database file (with an .mdf or .mdb extension) can hold multiple tables. 

Each table can be viewed like a spreadsheet .• with rows and columns. Each 
t·ow in a table represents the data for one item. person, or transaction and is 
called a record. Each coltmm in a table is used to store a different element of 
data, such as an account number, a name. an address, or a numeric amount. 
The elements represented in columns are called fields. You can think of the 
table in Figure 10.1 as consisting of rows and columns or of records and fields. 

Most tables use a priuuu·y key field (or combination of fields) to identify 
each record. The p1imary key field is often a number such as employee number, 
account number. identification mm1ber. or social security number; or it may be a 
text field. such as last name, or a comhinatio11. such a.~ last name and first name. 

A relational database generally contains multiple tables and relationships 
between the tables. For example. an Employee table may have an Employee lD 
field. m1d the Payroll table also will have an Employee ID field. The two tables 
are related by Employee ID. You cm1 find tl1e employee information for one 
payroll record by retrieving the record for the corresponding Employee ID in 
the Employee table. One reason to create relationships between tables is to 
keep the data compact and easy to maintain. By having multiple payroll 
records related to one employee record through the Employee ID. an em
ployee's address, for example. can be changed in one spot without having to go 
to each payroll record to update it. 



C II A 1• 'I ' " ll 10 

lSGN Title AutJtor· Publisher 

0-111-11111-1 89 Years in a Sand Trap Beck. Fred Hill and Wang 

0-15-500139-6 Bu$iness Programming inC Millspaugh, A. C. The Dryde n Press 

0-394-75843-9 Cultural Literacy Hirsch. E. D. Jr. Vintage 

0-440-22284-2 Five Da ys in Paris Steel. Danielle De ll Publishing 

0-446-51251-6 Mega trends N aisbitt. John W amer Books .,....._ 

0-446-51652-X Bridges of Madison County Waller. Robert W amer Books 
James 

0-446-60274-4 The Rules Fein/Schneider Warner Books 

0-451-16095-9 The Stand King. Stephen Signet 

0-452-26011-6 Song of Solomon Monison, Toni Plume/Pe nguin 

0-517-59905-8 Ho"' to Talk to Anyone. King. Larry Crown 

All)1imc. Anywhere 

0-534-26076-4 A Quick Guide to the Bradley. Julia Integrated Media 
Inte rnet Case ..........___ Group 

............... F1eld or column 

Any time a database table is open. one record is considered the current 
record. As you move from one record to the next. the current record changes. 

Xl\1L Data 

XML is an industry-standard format for storing and tmnsferring data. You can 
find the specifications for XML at http://www.w3.org/XML. which is the site for 
the World Wide Web Consortium (W3C). 

You don't need to know any XML to write database applications in VB. The 
necessary XML is generated for you automatically. like the automatically gen
erated VB code and 1-ITML. However. a few facts about XM L can help you un
derstand what is happening in your progmms. 

Most proprietruy database fonnats store data in binary. which cannot be ac
cessed by other systems or pass through Intemet firewalls. Data stored in XML 
is all text. identified by tags. similar to HTML tags. An XML ftle can be edited 
by any text editor program, such as Notepad. 

[f you have seen or written any HTML. you know that opening and closing 
tags define elements and attributes. For example, any text between <b> and 
</b> is rendered in bold by the browser. 

<b>This text is bold . </b> <i>This is italic . </i> 

The tags in XML are not predefined as they are in HTM.L. The tags can 
identify fields by name. For example. following are three records of the 

1--

Fif.(ur e 10 . 1 

A database table consists of 
wws (records) and columm 
(fields). 

Record or row 

399 



400 l ' C Databa .. e Applicatiom 

RnrBooks database exported to XML. (Later in this chapter you will be using 
the RnrBooks database for VB projects.) 

<?xml version=" 1.0" encoding="UTF-S"?><dataroot xmlns :od=" urn :schemas-microsoft-com: officedata"> 
<Books> 

<ISBN>0-15-500139-6</ISBN> 
<Title>Business Programming in C</Title> 
<Author>ldillspaugh, A. C. </Author> 
<Publisher>The Dryden Press</Publisher> 

</Books> 
<Books> 

<ISBN>0-446-51652-X</ISBN> 
<Title>Bridges of Madison County</Title> 
<Author>Waller, Robert James</Author> 
<Publisher>Warner Books<{Publisher> 

</Books> 
<Books> 

<ISBN>0-451-16095-9</ISBN> 
<Title>The Stand</Title> 
<Author>King, Stephen</Author> 
<Publisher>Signet</Publisher> 

</Books> 
</dataroot> 

In addition to an XML data file. you usually also have an XML schema file. 
The schema describes the fields, data types. and any constraints, such as re
quired fields. AOO.NET validates the data against the schema and checks for 
constraint violations. The schema also is defined with XML tags and can be 
viewed or ecUted in a text editor. You will be able to see the schema for your data
bases in a VB project by viewing the .xsd file shown in the Solution Explorer. 

The format of XML data offers several advantages for programming. Be
cause an XML schema provides for strong data typing. the various data types 
can be handled properly. And ADO.NET can treat the XML data as objects. 
allowing the IntelliSense feature of the Visual Studio environment to provide 
information for the programmer. In addition, data handling in XML and 
ADO.NET e.llecutes faster than in earlier fonns of ADO. 

Fet'dback I 0.1 

l. Assume you have a database containing the names and phone numbers 
of your friends. Describe how the terms file, table, raw. column. record. 
fold. and primary key fold apply to your database. 

2. What is an advantage of transferring data as XMl rather than as a pro
prietary fotmat such as Access or SQL Server'? 

Using ADO.NET and Visual Basic 

In Visual Basic, you can display data from a database on a Windows Form or a 
Web Fonn. You add controls to the fotm and bind data to the controls. The controls 
may be labels or text boxes or one of the special controls designed just for data. 
such as the DataGridView or DataLi.st. However. just as you found in Chapter 9, 



C II A 1• 'I' " ll 10 

the control~ for a Windows application are different from the control~ for a Web ap
plication and have different properties and events. In this chapter. you will write 
database applications using both Windows Fmms and Web Forms. Figure 10.2 
shows a data table displaying in a DataGridView on a Windows Fonn. 

Fi g u re 1 0. 2 

The DataG1idView control is bound M a table in a dataset. The data fields display automatically in the ceU.s of the grid. 

401 

•51 R 'n R Books l= I §J I~J 

W e Author Name Publisher 

• . . . . Beck. Fred Hill and Wang 

Business Programming in C Millspaugh. A. C. The Dryden Press 

Cu~ural Uteracy Hirsch, E. D. Jr. Vintage 

Five Days in Paris S1eele. Daniello Dell Publishing 

Mega1rends Naisbitt. John Wamer Books 

Bridge& of Madicon County W aller. Robert Jamec Wamer Bookc 

The Rules Fein/ Schneider Wamer Books 

The S1and King, S1ephen Signet 

Song of Solomon Morrison, Toni Plume/ Penguin 

How to Talk to Anyone. Anytime. Anyotihere King, lany Crown 

A Quick Guide to the lr1temet Bradley, Julia Case Integrated Media Group 

< Ill 

You must use several classes and objects to set up data access in Visual 
Basic. 

Da ta Access in Visual Studio 

The Visual Studio Data Sources window provides an easy way to create data
bound controls on a form. As you will see later in this chapter. you can drag 
tables and fields from the window onto a form to automatically create controls 
that are bound to the data. You can display the data in grids or individual 
fields. which are referred to as details. You also can drag a field from the Data 
Sources window and drop it on an existing control. which causes data binding 
to be set up automatically. 

When you add data-bound controls to a fonn, two things occur: An .xsd file 
is added to the Server Explorer window. and BindingSource. TableAdapter, and 
DataSet objects are added to the form's component tray. 

The following list is an overview of database objects: each of the classes is 
further described in the sections that follow. 

• Binding source. A binding source establishes a link to the actual data. 
which is a specific file and/or database. 

• Table adapter. A table adapter handles retrieving and updating the data. A 
table adapter automatically generates SQL statements that you can use to 
access or update data. SQL. or Structured Query Language. is an industry
standard language that is used to select and update data in a relational 

database. 

~ 

-

-
I ' 



402 v S l l A I, G .\ S C Database Applications 

• Dataset. A dataset contains the actual data. The data in a single dataset 
may come from multiple binding sources and/or multiple table adapters. 

Figure 10.3 shows a visual representation of the required steps. 

To display dawbase daw in bound controLs on a form. you need a binding source. a wble a.dapter, and a daroset. 

Binding 
Table Adapter Dataset 

Source 

I I I 
Specific file 

Bindi ,,g,Sou_rce Handle!l data tranliifer Actual dab. Can 

or database 
object and provides data contain multiple 

for dataset. Uses SQL tables and 
lo specify data to relationships. 
retrieve or update. 

Binding Som·ces 

A binding som·ce object establishes a link from a specific file or database to 
your program. In this chapter. you ~~ill use a wizard to automatically create 
BindingSource objects. You also can add new BindingSource objects using the 
Data Sources window or the ~ta menu. 

Note : Earlier versions of V B used Connection objects rather than Binding
Sources. 

Table Ad apte1·s 

A ta ble ada ptet· does all of the work of passing data back and forth between a 
d ata som·ce (the binding source) and a program (the dataset). The binding 
source for a table adapter does not have to be a database: it also can be a text 
file, an object, or even an array. No matter where the actual data (the source) 
for the binding source are. the table adapter transfers data from the source to 
t11e dataset (fills) or transfers data from the dataset to the source (updates). all 
viaXML. 

Da tasets 

A d ataset is a temporary set of data stored in the memory of t11e computer. In 
ADO.NET. datasets are disconnected. which means that the copy of data in 
memory does not keep an active connection to the data source. This technique 
is a big improvement over the recordsets in earlier versions of ADO. which 
maintain open connections to the data source. A dataset may contain multiple 
tables; however. the examples in this chapter use only one table per dataset. 

Any controls that you have bound to the dataset will automatically fill with 
data. 

Data d..is.play on 

lhe form in bound 
controls. 



C II A 1• 'I' " ll 10 

Explain the purpose of and the differences between binding sources. table 
adapters. and datasets. 

Creating a Database Application 

In the follm~ing step-by-step exercise. you ~till create a Windows application 
that displays data from the Books table of the RnrBooks.mdf database. You will 
display the fields from the table in a DataGridView colllrol on a Windows 
Form. Refer to Figure 10.2 for the finished application. 

A Windows Database Application-Ste p-by-Ste p 

This step-by-step exercise uses the RnRBooks.mdf SQL Server database file. 
which is available in the StudentData folder from the text download site 
(www.mhhe.com/vb2010/). Make sure that the file is available before starting 
this project. 

Start a New (lroject 

STEP 1: Start a new Windows Application project. Save it as "Ch10DataGrid
View". 

STEP 2: Name the form "BooksForm" and set the Text property to "R 'n R 
Books". Widen the form to about three times the original size. 

STEP 3 : Select Save All from the File menu or the toolbar button. 

Add a Cr·id to Display the Data 

STEI' l : Add a DataGridView control to the form. You can find the contJ·ol in 
the toolbox in both the A// Windows Forms tab and the Data tab. Click 
the Smart Tag arrow to pop up the smart tag (Figure 10.4). 

Add a DataGridView control to afornt and pop up il.s smart tag . 

403 

Fif,fure 10.4 

Q:! R'nRBook:!: .................................................................... :§::.~~ LoGridVicw T.,b 

Choose oct, Sou ICC: III:UIC· ••••BI 
[eft Columns. .. 

Add Coh.1•·nn,., 

I!' EMble Addmg 

R"" Enable Edit ing 

[71 Enable DEietmg 

C Enable Colun~n Reo1dering 

li!::============================::::LOock.nparentcontau·w 

STEP 2: On the smrut tag. drop down the list for Choose Data Source. Select 
Add Project Data Source from the drop-down (Figure 10.5). which acti
vates the Data Source Configuration Wizard. 



404 S l .\ I. IC \ .... (.' /)awba..e Applicarion~ 

Choosl! Data Soorc! ... 
[c 19~ 

A 

11 
:tl 
?.] 

:J 
D 

t] A.Jd P(pjt\t Octa S~ 

Click the 'Add Proj<ct a Source . .' hnk to 
conntct to dab. 

STEI' 3 : Select Database (Figure 10.6) and click Next. 

Note that it isn't necessary to copy the database .mdf file into the 
project folder: the wizard will ask you la ter if you want to add the data 
file to the project. ~·hich automatically copies the file to your project 
folder. You can select the file &om anywhere it is available. 'Wh en the 
project runs. it uses the copy in your project folder. If you want to use 
a database file stored somewhere else. for example to share with other 
applications. you will not add the file to your project. 

STEI' l : On the next page of the wizard. select Dataset for the Database Model 
and click Next. 

Add a neiU data sol/rce to a project wing the Data So!trce Configllration Wiza¥d. 

ChooM • 0.1» S..urce Type 

,.4ol• 

F i g u re 10 .5 

Add a new dma •o<crce to a 
project from the smart tag of 
the DataCridView. 

1qg u1•e 10 .6 



C II i\ I' T t: R 10 

STJW s , Select New Connection to set up the connection for the binding source 
object. TI1e next dialog asks what type of database you want to use. 
Click the Change button. 

!-TEl' (., In the Change Data Source dialog box (Figure 10. 7). select Microsoft 

SOL SeNer Database File. This dialog may not appear if the option was 
chosen previously and the Always use this selection option button was 
selected. Click OK. 

Ch41nge Data Source 

II Dab ~curce: 
Microsoft P.ccess [)au base File 
Micrl)~oft 0[}8C Data Sourc:e 
Mtcnnoft SQl SerY"tr 
Micro•olt SQl S•rvor Con1P•ct 35 

Orad ,e Oatab.ate 
<Oth~J> 

j.NET Framewo<i( Oota Pro,-ider for SQl ' ~I 

E Ahvit)'S we this selection 

Description 

Uu tnit ~election to 1tbth 1 ebb ban 
file to a local Mmo;.oft SQLServer 
in~encc: (induding Microsoft SQL 
Exprt~:.) usrng tlle .NET Fnmtwork Oah 
Pro" de< for SQL ~'· 

\....__ O_K _ _,JI Canal 

STEP 7: In the Add Connection dialog box (Figure 10.8). the Data source should 
be set to "Microsoft SQL Server Database File (SqiCiient)." Browse to 
select the RnRBooks.mclf file. You can find it anywhere it is available. 
including on a CD: later the file will be added to your project. Click 
Open and then Test Connection: you should see a message that the test 
connection succeeded. Click OK. 

Add Connection 

Enter inro1maticn to con11ect to the selected data sou ret or click 
"Change• to choose a different Wta source md!or prolAde.r. 

Data sour<~ 

Microsoft SQL Server Database File (SqiCiient) Change .. 

Database file name (now or existing): 

C:\Users\ Public\ Documenls\SilJdentData\ Datal 

log on to the server 

0 1 Us.e Windows Authentication 

_ U~e. SQl St:rve:r Autf'lo-.tic:~bon 

Pas rc: 

Advanced ... 

I Test Connection ] OK Cancel 

405 

Fl~ure 10.7 

Select Microsoft SOL Server 
Database File in the Change 
Data Source dial~g box, 

•' i~are 10.3 

Set up the cotlnection to the 
database fik in the Add 
Connection dialcg box. 



406 \ .' S U A I, C Dat<tbase Applicalions 

STEI' 8: Back on the wizard page, your new connection should now appear se
lected; click Next . 

A dialog pops up asking if you want to add the file to your project 
(Figure 10 .9). Click Yes. which will make your project portable. so 
that you can run it on different computers without wonying about the 
file location. 

Microsoft Visual Studio ~ 

a The connection you selected u~es a local data iile that is not in the 
~ current project. Would you like to copy the file to your project and 

modify the connection? 

If you copy the data file to your project, it will be copied to the project's 
output directory each t im e you run the application. Pre~s Fl for 
information on controlling this behavior. 

Yes l I No II Help 

STEP \1 : Click Next. The database objects in the RnRBooks database will appear. 
STEP 10: Expand the Tables node and place a check mark in front of Books 

(Figure 10 .10). Click Finish. 

Click on the triangle for Tables to expand the node and select the Books table. 

0.,. Sou«• C<>nliglntion Wiz.ord 

ll1 CbooM Your O..t.obAM Objects 

~~~do~~~tmll 
f!l tbl ..

:::J 8oob

' r :::J s..o,.cu r:ll!slv,
r:J 'Jp Slor•d ~nxodurrs
!:] Cl, Fun<tlons

l Wl>le 1CcM cltt.l"-cw..,g

o.us..-------
Rllr8ocl.s0ot•Sd

I <.,_.,., I II I FIMh

l<' ig u re 1 0 .9

This dialog gives you the
option of making a copy of the
database file in the current
folder. Select Yes.

li.i.>~

--

I I c-ti I
-

C II A 1• 'I' " ll 10

.STI£1' 11 : Notice that the grid column headings now have the names of the
fields. Later you will learn to resize the widths of the columns.

Run tbc Data Application

STEP 1: Ruu your program. The grid should fill with data. At this point. the
user can resize the columns by dragging the dividers between column
headings.

STEP 2: Close the forn1 or click the Stop Debugging button (Shift + FS) in the
IDE to stop program execution.

Examine the Components

STEJ> 1: Take a look in the components tray (Figure 10.11). Your forn1 now
contains a TahleAdapter component. a DataSet component. and a
BindingSource component. The wizard automatically names the dataset
with the name of the database source and the others using the name of
the table.

Fi g ur e 10.11

The data components that were generated by the Data Sottrce Configuration Wizard appear in the component tray of
thefomt.

8oobfomt.w[~•r"

• • .-: ·nttloob - - -
ISBU Tclo - ~ s.Joto<t.Codo

* 1

J "'
lbwtoo~ t:; 90Gbainclin9S.....• ~&ooi<ITobl~

STEP 2 : Now look at the form's code. The Form_Load procedure automatically
contains the code to fill the dataset from the table adapter.

Me .BooksTableAdapter . Fill(Me.RnrBooksDataSet.Books)

Format tbc OataGr·idVicw

STEI' 1: Switch hack to the designer and click on the DataGridView and then
click on the Smart Tag arrow- the small arrow on the right side of
the grid or form. In the smart tag that pops up. select Edit Columns
(Figure 10.12).

STEP 2: In the Edit Columns dialog box (Figure 10.13). you can add. remove.
and reorder the columns. You also can select any of the columns on
the left side of the dialog box and view or modify its properties on the
right side. For example. you can set the width of a column and change
its heading text (HeaderText proper1y).

.
~'Gi~

~ - -""-'-I Rctl,ln r!l

-.

407

408 v S l l ,\ L (' Database Applications

DataGridView Tasks

Choose Dot:~ Source [IM$!JitMdiiHMc:Jj

IZ Enoble Adding

[L Enable Editing

l:z Enable Deleting

1:: Enable Column Reordering

Oock in parent< ontaUler

AddQue'Y ...

PrevieW Data ...

Figua• c 10 . 12

Pop up the smart tag and
select Edit Columns to format
the grid.

Fi~ua• e 10.1 3

Format the columns of the grid in the Edit Columns dialog box. Yon can set Header Text. Tool Tip Text. Width. and maw.t
other properties of a column.

!!!Em
;!!!Tille

~ ,._
~PIJ-
;;!! SubJ«\.. Code
~ Sht:H_loc.•dor>

0f~·""'

Move selected column d01m

(N.omt)
,,.l ypt • l.,......
AucoS<a M<>dt
DM<It1Width

NotS.t .,_-----H +----Set to

0 None
f«W....,.. 100

Fro:tt\ F1l'a

~tni~~~~~<nWidtll S
Wodlh 100 ~------:-'-+t----Set the

F column

I ~~the nomu>td In c<>d<cl<>""'""'rllrullj«t. width

Remove a colunm

STEP 3: Remove the extra columns so that the grid displays only the title.
author. and publisher. For the Title column. change the AutoSizeMode
setting to "None" and set the Width to "250 pixels" . For the Author
column, set AutoSizeMode to "None" . Width to "250 pixels". and
header text to ''Autl10r Name". Set the Publisher column to AutoSize
Mode = "None" and Width = "250 pixels".

C II A 1• 'I' " ll 10

STEP •t : Run the application and make note of any changes that would improve
the layout.

STEP 5: Return to design time. make any furtl1er modifications, and run the
application again.

The Smm·t Tag

Earlier you used the smart tag to select a data source and to edit the properties
of grid colwru1s. You also can use ilie smart tag to dock the grid in its parent
container (the fonn) and add and edit columns.

T he Database Schema File

When you add a new data source to a project. a file with the extension .xsd is
added to tl1e Solution Explorer. This file contains the XML schema definition.
which has the description and properties of the data. You can double-click on
the .xsd file to open the Data Designer (Figure 10.14). The schema shows the
names of ilie table(s) and fields. the primary keys for each table. and ilie relation
ships among the tables if more than one table is represented. You can click on tl1e
table name or a field name to display the properties in the Properties window.

RnrBooksData.Set.xsd x Sooksform \b" •

Notice in Figure 10.14 that at ilie bottom of the schema appears the
TableAdapter for the table. The TableAdapter handles the Fill and GetData
methods for the table. You can click on the TableAdapterrow to display its prop
erties in the Properties window. or click on the Fiii,GetOata() row to view the
properties of the Fill Query.

-

Binding Individual Data Fields

You can bind table fields from your dataset to many types of controls. such as
labels. text boxes, combo boxes. and check boxes. Controls that are connected
to fields in the database are referred to as bound couu·ols or data-bound
conu·ols. The easiest way to create bow1d controls is to use the automatic

409

Figare 10 . 14

The .xsd file holds the schema
of the database. where you carl
view and modify the table
elements, relationships, and
keys.

Right·dick on the .xsd file in the So
lution Explorer, select Open With,
ond select XML (Text} Editor, to view

the actual XML in the Visual Studio

XMLeditor. •

410 v S l l :\ L G ,\ S (' Database Applications

binding features of the Data Sources window. You can set the data to display as
details and then drag the table to the form. This technique creates individual
text box controls for each field of data and a navigation control. which allows
the user to move from one record to another. Figure 10.15 shows a form with
data-bound text boxes: you will create this form in the next section.

•':! R 'n R Books D<!tail View l·=l § l..a.J

1 M30

ISBN: &llllimDI I

Tlle: 85 Years ., a Sand Trap

Author: Beck. Fred

Publisher: Hiland Wang

Subject Code: HMR

SheW l oca!ion: RC·111 1

ftclion: R1

T he D ata Som·ces Window

You can display the Data Sources window by selecting Show Data Sources from
the Data menu. In a new project. you can use the Data Sources window to add
a new data source (Figure 10. 16).

D~DSource:s

Your proj«t curn:ntly hl'ls no
d('lh ~Ot.ltCO (I'SSOtit'ft~d: W'lfh it.
Add ~ ne-N o,t~ ::ou:ce. then
dolb~b>iod 1tam by dn ggtng
from thi~ VAn.jo'v onto forrru

or exJ~ling controls.

Add NEVt Qt'lt.;. Soll it:IL

ijj oata ...

When you select the option to add a new data source, the Data Source Con
figuration Wizard opens and steps you through selecting the file and table. just
as you did in the earlier step-by-step exercise. The new data source appears in

Flgur·e lO.Jt;

Each text ba,; or check box is

bound to one field from the
table. As the user clicks the
navigation buttons. aU controls
change to display the data for
the next record.

Figur e 10.16

Add a new data source in the
Data Sources window.

C II A 1• 'I' " ll 10

the Data Sources window. You can click on the table name to make a drop-down
list available. on which you can select Details (Figure 10.17). Note that the
default view is DataGridView, which is the view that you used in the previous
step-by-step exercise. After you select Details view. the table's icon changes to
match the view (Figure 10.18).

Note: The form must be open in the Form Designer for the table's down
arrow to appear.

Customize ...

iQl Data S..

A ~ RnrBoohOataSE-t

· ~llilllil
~~~ISBN 

ra>i) Title 
~ Author 

~ Publisher 

~ SL!bject_Code 

~ S.helf_Location 

0 F-iction 

t§l Data S ... 

• fl. X 

Database De ta ils Pr·ogram-Sle p- by-Ste p 

This step-by-step exercise creates the data-bound Details view shown in 
Figure 10.15. 

Begin a New Pr·oject 

STI':I' 1: Create a new Windows project. Save it as "ChlODetailsView". 
STEP 2: Change the form's filename to "DetailsFonn" and the fonn's Text 

property to " R 'n R Books Detail View". 
STEP 3: Save the project. 

411 

Drop down the list for the table 
name and select Details to 
bind each field to its own Text 
Box control. 

Fi g ur e 10 . 1 8 

The tables icon changes to 
indicate Details view. 



41 2 v S l l ,\ L ( ' Database Applications 

Set U ll the Da ta Sour•·e 

STEP 1: Open the Data Sources 1~indow by selecting Show Data Sources from 
the Data menu. 

STEP 2: Click on Add New Data Source in the Data Sources window. 
STEP 3: In the Data Source Configuration Wizard. click Next. select Dataset, 

and click Next again. If the Change Data Source dialog box appears. 
click on Microsoft SOL SeNer Database File and click OK. 

STEP 4: Click on New Connection and browse to locate a copy of 
RnRBooks.mdf database file. This file can be in any other folder or on 
a CO. Click Open and OK. 

STEP 5 : Click Next, which pops up the dialog box asking if you want to add the 
file to your project: click Yes. tl1en click Next again. 

STEI' 6: Open tl1e Tables node and click in the box for the Books table. Click 
Finish. 

Cr eate the Hound Controls 

STEP 1: In the Data Sources window, click on Books, which makes a clown ar
row appear to the light of the name (J<'igure 10.19). Warnin.g: The J<'om1 
Designer must be open for the down an-ow to appear. 

Gata Sources ... ~X 

• ~ Rnr8ooks0ata.Set 

·~ 

1:3) Data S. .• r.:, Serve-r ~ Tootb 

STEP 2: Click on the down an-ow and select Details (refer to Figure 10.17). 
STEP 3: Point to the Books table name and drag the table to the fonn to a po

sition about an inch down from tbe top of the form. 
STEP ·l : Change the widths of the text boxes and the form as desired and delete 

the Text property of the check box. Notice in Figure 10.20 that the 
component tray holds five new components: a DataSet. Binding
Source. TableAdapter. TableAdapterManager. and BindingNavigator. 
which provides the navigation buttons at the top of the form. 

Also notice the text of the labels on the fonn. Visual Studio is smart 

enough to figure out multiple-word field names. For example. if your 
table names contain underscores or multiple capital letters. the smart 
labels will have the words separated by spaces. 1l1e Books table has 
fields called "Subject_ Code" and "Shelf_Location". but the labels say 
"Subject Code" and "Shelf Location". 

STEP 5: Rtm the project. T1y the navigation buttons to step through the records. 

Note: Remember that the ADO.NET dataset is loaded into memory and is 
disconnected from the database. so you can make changes to the records and 
use the navigation bar buttons for Add New (the record is added to the end of 
the dataset). Delete, and Save. To see any updates from one mn to the next. select 
tl1e database file or tl1e .xsd file in the Solution Explorer and set its "Copy to 
Output Directory" property to "Copy if newer" . 

l!' ign••e 1 O . l9 

Click on the table name t.() 

make the drop-down list 
available. 



C II A 1• 'I' " ll 10 

Dtt11i!sform.vb (Design]~ x 

:!J R 'n R Books Detail V.ew ~"@:]~ ~ 
~l ~ 4 0 ol lO} I ~ •1 19Jo 'X Q 

' ISBN: I 
1llle. 

ALtho"· 

PLblsher· " 
SLbjoctCode: 

Shofl.ocoticn. 

I Action· lEI 

~ RnrBookso.toSd W BoobBindingSourc• ~ BooksT .bi•Mopter 

tj]; BocksBindinsNavigo~or 

Selecting Records from a List ' 

Many applications allow the user to select an item to display from a list. You can 
fill a list box or combo box with values from a database. Consider the previous 

program. A better approach might be to display the list of JSBN numbers in a 
drop-down list and allow the user to make a selection. Then, after the JSBN is se

lected. the corresponding data elements fill remaining fields (Figure 10.21). 
You can easily select the control type for a bound control in the Data Sources 

window. The choices are Text Box. Combo Box. Label, LinkLabel, and List Box. 

aD R n R Booh O~tait View l= I8 1..B.l 

ISBN: ,lliUJ~ II I 

Trtle: 89 Years in a Sand Trap 

PtJthor: Beck. Fred 

Publisher. Hi• and 'Nang 

Subject Code: HMR 

Shd lo<:atlon: RC-1111 

F'tc:!ion: ~ 

413 

l'iJtu_re 10 .2 0 

Resize the form and controls of 
the autom.atic,~lly generated 

conaols. The componentaay 
holds the five automatically 
generated databaJe 
components. 

Figu_re 10.21 

The user can select a. book from 

the combo box. The text boxes 
automatically fill with the 
field values that correspond to 
that ISBN. 



414 v S l l A L G .\ S ( ' D<ftabau AJ'I•Iica.tion.• 

Convertin~ to Combo Box Scle<" Lion-Slep- by-Step 

This s tep-by-step exercise converts the previous exercise to a selection appli
cation. Figure 10.21 shows the output. 

Be!!'in the Project 

HEP 1: Open your Chl ODetailsView project. It should contain text boxes for 
the data. 

STEP 2: Click on the BooksBindingNavigator component in tl1e component tray 
and press the Delete key to delete tJ1e navigation bar from the form. 

Set l t' a ComhoBo' Conu·ol 

STEP 1: Select the LSBN Text Box control and delete it. 
ST EJ' 2: In the Data ources window, cl ick on the ISBN field to make the down 

arrow appear. Then click on the arrow to drop down the list of possi
ble control types (Figure 10.22). Select ComboBox. 

Select ComboBoxfor the ISBN fiellL 

Oat• Sou,ces • q X Oetaiisf crm.vb [Designr x 

JJ P. 'n R Sook> Detail View 

ISBU: 

lle 

A.thor. 
l .,tlabof 

l i>lllcn 
Ft.bloncr 

s (No.el Slbj;oa Olde. 

Cusrol'rize ... ~lcailcrc 

llctioo: 1:] 

t"} llooloBindingSou<tc 

~TEP 3: Drag the lSBN field from the Data Sources window to the fonn. which 
will automatically create a ComboBox control and an extra label for 
JSBN. Delete the extra label and resize the combo box to match the 
text boxes (refer to Figure 10.20). 

~TEl' 1: Click on the Smart Tag arrow for the combo box and select Use data 

bound items. which pops up some new fields for Data Binding Mode 
(Figure 10.23). Drop down the list for Data Source and select Books
BindingSourco. elect ISBN for Display Member. The Scloctcd Vsluo 

should have (None) selected. 

l~ l.;n•· •· 10.22 



C II A I•'I' I'R 10 

•fil R 'n RBoob: Detail 'liew GJ~CEJ 1 
. 

ComboBoM Tosks ISBN: 9 
Ttle: 

f!] Us.e Oata Bound Items 

Arthor. 
Data llirw:liBg Mode 

DatJJ Source I BooksBindingSource El Publisher: 

SUbiect eoee Display Member I fSBN El 
Shelf location: Vduc Membc:1 I GJ 
F'dicn 1!:1 ~elected Value !<none) El 

Add Quc'Y ... 

Prev~S:wOata . . 

STEP 5: With the combo box still selected, scroll to the top of the properties 
in the Properties window and expand the entry for (OataBindings). 

Click in the entry for (Advanced) and click its Properties button 
(Figure 10.24) to open the Formatting and Advanced Binding dialog 
box. Drop down the entry for Data Source Update Mode and select 
Never (Figure 10.25). Click OK. 

Note: Without tlus setting. each time the user makes a selection 
from the combo box the database updating routines will attempt to 
add the selection as a new book in the table and generate a "dupli
cate" error message. 

Properties ~ Jt x 

lSBNComboBox System.VIindows.Forrr • 

~1·1IT 'il ·f ~ 
~ . (Application5e1 

A (03taBinding i) D 
we;;;,;g.t ~ Sele<tedlte (none) 

SelededVa! (none) 

Tog (none) 

Text BooksBinding.Sourc• 
(Name) IS8NCombo8ox -

(Advaocod) 

Advenced b inding oUowsyou to bind 
propertie~ of the control. 

STEP 6: Set the Tabl ndex of the ISBN combo box to 2. which was the index of 
the text box that you deleted. 

Run the Application 

STEr 1: Run the program. 
STEr 2: Drop do1t11 the combo box and select another ISBN. The other controls 

automatically fill with the data for the selected book. 

415 

Fig•••· e 10 .2 3 

Set up the data binding joT the 
ISBN combo box wing the 
smart tag . 

Fit.(u••e 10. 2 4 

Click on the Properties butt.on 
for Advanced DataBindings to 
open the Formatting and 
Advanced Binding dialog box. 



416 v S l l A I, G .\ S C Database Applications 

Figure 10.25 

Select Never for Data Source Update Mode so that the database does not try to add a new record for e11ery selection in the 
combo box. 

Formatting a nd Advanced Bindins 

Bind the prcpertie~ of a control to a sourc~ and format the result. 

Property: Binding: oata source Update Mocte: 

tl Common . I Book:sB.ndtngSource - ISBN l· ( (onValldatiOrl 
~ Sclcdcdlten1 

Q S:electedValue ... ~ OnP(o Chan ed Fom1.t IT~ ~ 
Use no lormatttng t o cfisp!ay the value fr jOnVcbd,llon g 

lJ Text Formot type Sampte 

t] All @i!tt«Mii!.; ·1234.5 
& Acces~•blcOcstttptlc Numenc 

Cuueoc}' 
0 Acce>sibleName 0dtc Time: Null value: 
& AccetsibleRole Scientific 
$ AttowOrop Custom 

& Anchor 

Q AutoConnpleteCustc 
9 AutoConnp&eteMod• 
~ AutoConnpfeteSouu 
t, B(lckColor 

g CausesVa!idatioo 
G Conte>:tMenUStnp 
~k Cu~or . . " . 

I OK 

SdecLiug F ields fa·om the Ta ble 

Often you only need to display some of the fields from a database table. You 
can select individual fields wh en you create the new data source. or select the 
fields later. after you have created the data source. 

Selecting Fields \Vlteu You C1·eate the Data Som·ce 

To set up a new dataset. with selected fields. choose the Add New Data Source 

option from the Data menu or the Data Sources window. The Data Source Con
figuration Wizard appears as described earlier. When you get to the Choose 

Your Database Objects. expand the Tables nocle and place a check mark on just 
the fields that you want (Figure 10.26). 

Selecting Fields after the Data Source Is Ct·eated 

To moclify the fields in a dataset after it has been created. select the dataset 
nome in the Doto. Sources window. You con either click the Configure DataSet 

with Wizard button at the top of the window or right-dick and choose the same 
option. You can make the field selection from the wizard as described in Figure 
10.26. which will change the schema for your dataset. 

Soa·ting Lh(' Lis t Data 

You cmmot sort bound data in a combo box or list box using the Sorted property 
of the control. However, you can sort the records in the query that selects the 

II 

1'61~ 

. 

Unccl I 



C ll 1\l1 'l' li R 10 

Select only the fields that you want to include in the Data Sozuce Configuration Wizard. 

Om:~ Source Config:.m:tion Wiz~rd 

I ~ Choose Your Ooi:>bose Objects 

~h data bate objects do you want in yot-.x datastt? 

• ~~Tables • •:a Boo~s 
l!lJl!] ISBN 
l!lJ I!] TillE 
~ @I Author 
l!:l rn:J Pub!i'h" 
1!:1 rn:l S...bject_ Code 
E! [!I Shdf_locotion 
El l!! nction 

~ EJ(jj! Subjects 
lEI~ Views 
1Elf81 S.ored Procedures 
I!S~ FunctioM 

iE] Enable loc.al datab-ase ca<hing 

DataSet name: 

RnrSoolcsOateSe£ 

I <Pr~l tlf''rl'> I Finish 

data for the dataset. Although the SQL SELECT statement is generated auto
matically by the designer. you can find and modify it. In the Solution Explorer. 
double-click on the dataset's schema file. with the .xsd extension. In the dis
played schema (Figure 10.27). click on the Fiii,GetDa ta() entry at the bottom, 
which displays the properties of the Fill command in the Properties window. 
Click on the Property button ( ... ) for the CommandText property; the Query 

RnrSooksOataSet.)Sd X 

c;d Solution 'WindowsApplicotionl' (l ""

• 15'1 WindowsAppl cationl g 
~ My Project LJ 
,jj App.config 

~ml.vb 
~~~~~ 
~SolUtio ...

Pcoperties

ComrnandT ext
The quc:ry or stored procedure to be
executed against the o ·atabase

417

Fi g •••· e 10 .2 6

['il -l~

II Cancel I

Figu•• e 10. 2 7

Click on the RII,GetDataO entry
in the data.set schema to display
the properties of the Fill
command in the Propertie.s
window.

418 v S l l t\ L (' Database Applications

Builder window will open. H you have any expelience creating queries in Ac
cess, this window will look very familiar to you.

ln the Query Builder you can modify the SQL SELECT command that se
lects the data for the dataset. To sott by a field. drop down the Sort Type I ist for
the desired field and choose Ascending or Desoending. After you make the se
lection and press Enter, the SQL statement changes to include an ORDER BY
clause (Figure 10.28), which so11s the data records as they are retrieved and
makes the list items appear in sorted order. You also can type directly into the
SELECT statement to make modiJications. if you wish. Notice at the bottom of
the Query Builder window that you can execute the query to preview its output
in the lower part of the window.

l<' iJtu••e I 0 .28

Select Asoending for the Sort Type to sort the data. by the Title field. The SQL statement changes to include an ORDER BY
clause.

Query Bt..'i lder

• C

· I

Bools ~
l='' (All Columns) j
0 JS8N
0 Title ~~
0~.L~hor
0 Publi;her ..:J

Colum n

1i11e

Aut hor

Alias

SELECT ISBN, Tit le, Autha<
FROM Books
ORDER BVTitle

' I

Table

Books

Books

1• I r---nfQ ~ ~I • I·

E>:ecute Query

Ill

Choosing the Cont1·ol Type fo1· Fields

Outp... Sort Type Sort Order

IZ Ascending

1Z I - ~

J

When you drag a Details view to a form. by default text fields are repre
sented by text boxes. You saw earlier that you can select a different type of
control in the Data Sources window before dragging a control to the form. In
the Data Sources window, click on a field name: a small down arrow appears
to the right of the field name. Drop down the list and choose the control type

~ iiter Or ... "'
_j

OK J l C.ancel

C II A 1• 'I' " ll 10

(Figure 10.29). You can choose the control type for all controls and then drag
the table to the form to create the Details view.

Note: You must have the form displayed in the Fonn Designer to select the
control type for the :field.

, fp(•dhal'k 10.3

Data Sources

_. ~ RniBooksData.Scl

• {jD Book>
~ ISBN

till oat.s ...

List Box

G [None)

Cu~tomize ..

• '/ X

1. You drag a table name from the Data Sources window onto a form. What

determines whether the action produces a bound grid or a set of indi
vidual fields?

2. How can you create data-bound text boxes? data-bound labels?
3. What properties of a ComboBox control must you set to bind the control

to a data field?
4. How can you make the list items in a data-bound combo box appear in

sorted order?

Selecting Records Using Web Forms

When you write database programs for the Web instead of Windows, you have a

few more considerations. You still set up data sources and bind to controls. but
the Web controls are considerably different from their Windows counterparts.
You also have additional security issues for Web-based database applications.

A Web database application operates somewhat differently than a Windows
application due to the nature of Web pages in a client/server environment.
Remember that a Web page is stateless. Each time a page displays. it is a "new
fresh page."

In the Web version of the list selection program (Figure 10.30}. each time
the user makes a selection from the list. a r•ostback occurs . A postback is a
round-trip to the server. After a postback. the Web page redisplays with only
the selected data.

419

Figure 10.29

Select the control type for each
control before creating tlze
Details view.

420 \ s l \ 1.. R \ S l ' Datnba.oe Applirolioru

~ R n R 8ool< S..leclion- WindOws lrt!O'""t bplor•r l=-18~

0 Q • ~ ~ttp: 1ocalholt611 ~].~1 X l[b 3m~ p ~

-

>l Fa..,,~., ~ ~R nij8ook!.e!«bon Gl •I.)1• Q ~ . Pa_gt •
,.
~

Select Books by Title

How to T olk to Anyo•e. Anytime, Anywhere G
-

ISBN 0-517-59905-8

I Author King, L11111'

.
Q.. l ocal .ntrillnft 1 ProC:•ctl!d Mode Off 4il • lf. IIJO')I; .

-
~

Sccm·ity in We L Datai.JaS(_• Application~

Security i much tighter for Web database applications than for Windows ap·
plications. You wouldn't want an unauthorized user to be able to access data
from the "W'eh. If you set up a Web application that displays or allows modi
fications to data. you must require use r authentication and set permission
levels. Visual Studio integrates security features. which are generally strict
by default. so that data will be secure unless you take steps to unprotect
your files.

For the programs in this texL which introduce the basic features of Web
progmmming. the challenge is to a\•oid security restrictions. rather than to secure
your database. You will use a SQL Server database ftle. stored in the Data folder
beneath the project folder. This folder has the necessary pennissions for the
default user of development projects.

Note: If you wish to use a database stored in a folder other than the
ProjectName\Data folder, the folder must have read and write permissions for
the ComputerName\ASPNET user.

Crt.>aling the Web St>lectiou Application- Step-by-Step

This step-by-step exercise develops the Web version of the selection program
that you created earlier in Windows. The Web version must use two data
sources rather than one. The drop-down list must have a separate data source
from the one used for the individual fields of data. The finished application ap
pears in Figure 10.30.

Begin a N"ew Web P1·oject

STEP 1: Begin a new project and select ASP.NEr Empty Web Application for the
template. Name the project "ChlOWebSelection" and choose the

Fi g ur e I 0 . 30

Allcw the user to select a book
tide from the drop-down list;
then display the corresporuling
Author and fSBN for tht
<ekct.ed title.

C II A I•'I' I'R 10

location for the folder. Make sure that Create directory for solution is
checked and click OK.

STEl' 2: Add a new Web Form to the project (Project! Add New Item I Web Form).
Name the fom1 "Default.aspx''.

STE£' 3: With the project name selected in the Solution Explorer. select Add
ASP. NET Folder from the Project menu and App_Data from the popup
submenu. The App_Data folder is the standard location to store the
project's data llle.

STE£' '~' Switch to Windows Explorer and copy RnrBooks.mdf into the project's
App_Data folder. An easy way to copy the file is to locate the file and
press Ctrl + C and then click on the App_Data folder in the Solution
Explorer window and paste the file (Ctrl + V). The database appears
in the App_Data folder after you click the Solution Explorer's Refresh

button (Figw·e 10.31).

~Solution hplorer

STEP 5: Click in the Web Fomt's designer window, then select Document in the
Properties window Object drop-down list and set the Web page's Title
property to "R 'n R Book Selection".

STEP 6: Click at the top of the Web Form. inside the div box. and type "Select
Books by Title". Select the text and select Heading 2 from the Block

Format dropdom1 list on the Formatting toolbar. Click after the text
and press Enter hvice to move the insertion point dmm the page.

Set Up the DI'OJJ-Down l...ist

STE£' 1: Add a DropDownList control from the Standard tab of the toolbox. lu
the smart tag select Choose Data Source.

STE£' 2: lu the Data Source Configuration Wizru·d. drop down the list for Select

a data source and select <New data source ... >.

STEr 3: [n the next page of the wizard. select SQL Database (Figure 10.32).
You can leave the ID of the data source set to SqiDataSourcel.
Click OK.

421

Figu•• e 10.3.1

Click the Refresh button ajier
you have copied the fik into
the App _Data folder to see the
changes in the Solution
Explorer.

422 v S l l ,\ L (' Database Applications

Fign•• e 10 . 32

Set the data source to an SQL database.

Data Sou1ce Configuration Wizard l'iii~J

Choose ~ Ootn Source Type

Where vril the appliu tion get data from?

~ ~~
Entity UNQ Obj ect Site Map XML File

Connect t o any SQL d:JU!bose $Uppcrted by /Ji)O.NfT, such a:. Microsoft SQL Server, Ori!ld~ or OLEDB.

Specify an 10 for the data sour< e:

SqiDataSource1

sn :P ~' lf the Choose Data Source dialog box appears. select Microsoft SOL
Server Database File, check Always use this selection, and click Continue.

STEP 5: Next you set up the connection: Click on the New Connection

button. If the data source does not say "Microsoft SQL Server Data
base File (SqiClient)". click on the Change button and make that
selection.

STEP 6 : In the Add Connection dialog box. browse to select the RnrBooks.mdf
file in the App_Data folder beneath the project folder. Click Open,
OK, and Next. Click 11/ext again.

STEP 7 : On the Configure the Select Statement page, you will select t11e data
fields for the dataset tor the drop-do~tn list. Click on (check) ISBN and
Title. You need the ISBN because it is the table's primary key.

STEP 8: Click on the ORDER BY button (Figure 10.33).
STEP 9 : In the Add ORDER BY Clause dialog box. drop down the Sort by list

and select Title. Click OK.
STEP JO, Back on the Configure the Select Statement page of the wizard. you

can see the new ORDER BY clause added to the SQL SELECT statement
(Figure 10.34).

STEI' 11: Click Next. Before you click Finish. you can click on the Test Query

button if you would like to see the records returned from the query
you just created. Click Finish.

1be Data Source Configuration Wizard reappears.

OK I C?-~

C II A I•'I' I'R 10

F'i g •••·e 10 .3.3

Select the Title and ISBN fields and click on the ORDER BY button to set the sort order for the data.

Configure Data Source 4 SqiDataSotuce1

How would you like to re1rieve data from your database?

C Specify a cuUom SQL statement or rlored procedure

@ Specify columns from a table or view

[Book>

Columns:

EJ •
~ ISBN ,.,w •.
~ Author

IE! PublishEr
1!21 Subject_ Code:
lei Shelf . lootion

I!J Fiction

SEUCT s'htement

SELECT [JSBN].]Tit!e] FROM]Books)

-I

!!.] Return only unique: rows

WHERE...

ORO£RBV.I)

Advanced ...

< Pre~ious I(Not> } I ~ruSt\ II c.ncd

STEP 12: Choose Title for Select a· data field to display in the DropDownList. Keep
ISBN as the value of the DropDownList (Figure 10.35). Click OK.

STEP 13 : Display the smmt tag for the drop-doW111ist again and select Enable

AutoPostBack (Figure 10.36). 1l1is impol1ant. step specifies that each
time the user makes a new selection from the list. the page should be
sent. back to the server. TI1is step is necessary to select and display
the data for the selected book.

STEP J.1.: Widen the DropDownList control so that it is wide enough to hold a
book title.

STEP 15 : Click after the SqiDataSource component (which will not appear at
run time) and press Enter two or three times.

Set Up the Addjtjoual Fields

STEP 1: ln the toolbox. open the Data tab and view the available controls and
components.

You can see tools for data sources. which is another way to add a
new data source.

STEP 2: Add a Details View cont rol to the Web page. In the smart tag. drop
down the Choose a Data Source list and select <New data source ... >. Do
not choose SqiDataSourcef. which you just created. TI1e data for the
Details View must be different from the data for the list.

423

424 v S l l ,\ I. C Database Applicatio1>s

An ORDER BY clause is added to the SQL SELECT statement.

Conf~gure Data Source - SqiDataSourcel

How would you like to retrieve data from your datab.Me?

5 Specify~ cu:;tom SQL stdement or rtorcd procedure

@ Specify columm from a table or view

Name::

lsook;

Column~

rcr--
li!I JSBN

~·· ['J Autho1
lEI Publisher
EJ Subjed_Code
lEI Shdf_Locotion
E] Ficllon

SHECT sbtemcnt;

SELECT (ISBN1 [Title) FROM (Books] ORDER BY (Title)

-~-

~ Previous II NEXt>

STEP 3: Select SOL Database and click OK. Then drop down the list and select
the connection for RnrBooks.mdf that you already created. The hvo
data sources will share the same connection since they both refer to
the same database file. Click Next.

STEP 4 : On the Configure the Select Statement page of t11e wizard, select ISBN
and Author for the fields. Then click on the WHERE button.

STEP 5 : In the Add WHERE Clause dialog box. you wi.ll set up the parameter
used to select the correct data for the individual fields. Drop down the
Column list and select ISBN: leave the Operator drop-down as "=".
then drop down the list for Source and select Control. The Parameter
properties group box pops up on the right side of the dialog box. For
Control ID select DropDownListf and notice the SQL Expression
([ISBN] = @ISBN) (Figure 10.37). This type of query is called a
parameterized query.

STEP 6: Click on Add and view the WHERE clause at the bottom of the dialog box.
It should say [ISBN) = @ISBN DropDownList1.SelectedValue. If it
isn't correct, you can click Remove and repeat step 5. Click OK.

Back in the wizard, the SELECT statement should read:

Fi~u••e 10.34

iEI Return only unique rows

\VHERL.

ORDER BY ...

Advanced ...

Cancel

SELECT [ISBN], [Author] FROM [Books) WHERE ([ISBN] @ISBN)

C ll 1\l1 'l ' li R 10 425

Fi g iii' C 1 0 .3. 5

Set the display field and value field in the Choose a Data Source page.

- - .-==-
Oat.a Soufce Configuration Wizard

Choose • Data Sourc-e

Select c deb sourc~;

ISqiData.Soorcel ~ I
Select a data field to display in the DropDownli:st:

~ I
Select a d.rta field for the value of the OropOwmlist:

ISBN

as : ro own ist:D10

Oatabo~<L=..It:J. O.opll<>wnli>t T .. b

SqiOcrta.Soutc.c - S Choose Oau Source, ..

Configure Oa:ta Source ...

Refresh Scheme

Edit items ...

l2l_KnabiE AutoPottBad:

STEP i : Click Next and Finish.
Note: Don't bother with Test Query U1is time because you must supply

an existing ISBN number- the parameter-to make the query work.
STEP 8 : Resize the Details View control to be approximately the same width as the

OropDownList control (Figw-e 10.38). Note: If your grid does not look like
the figure. select Refresh Schema from the Sq!DataSource's smart tag.

STEP 9: Click Save All (or press Ctrl + Shift+ S).

Run the ApJ>Iicatiou

STEI' 1: Press Ctrl + FS (or Debug /Start without Debugging) to test the application.
STEP 2: Make new selections from the list: the data fields below should change

to match the selection.

OK II Cancel

Fig •••• e IO . :J.G

Select Enable AutoPostBack
fron~ the smart tag so that the
users selection will be sent ta

the server.

426 \ .! S l ' .\ L R \ S (' Databrue Application.!

FI,Zure 10 .37

Set up the selection paTameter in the Add WHERE Clause dialog box.

Add WH.:Rf Cl<ruse

Add on~ or more conc'rt•::M~Uto th r WW[tt£ d•ua ior the sbl;c:mcnt. ~o~ cuh cond1t10nyou Of'l ~pc<Jty 11tbcr llrtcrll\'~luror
• paumdc.~i.tc.d va:uc. P11Gtnt=h:r iLC:d uluo gd thcu Y•luo at runtime bmd on lhc:il propc:rtio.

Fljfure .10 .38

Wulm the Detnii~View control.

Select Books by Title

!oatabcmd

SqiOot.SO..rcc Sqlloi4Sourctl I

IIIISB);
l]AIU.or

1 Sq!O~ou.-ce · SqDirtaSDurce2 [

I Q Os 9"t j o Split I l!i SOurce

C II A 1• 'I' " ll 10

Make the llrojecl l)ortable

This optional step will make your Web application portable. The web.config file
has a hard-coded path for the co11.11.ection to the database file. If you move or re
name the Web site folder. the connection fails due to the path. You can modify
the com1ection entry to make the project portable.

STill' 1: Open the web.config file from the Solution Explorer and locate the
entry for the connection string. The path for AttachDbFilename will
show the current folder where you created the Web site.

<connectionstrings>
<add name="RnrBooksConnectionString" connectionstring=" Data

427

SOurce=. \SQLEXPRESS;AttachDbFilename=C:\Users\UserName\Documents\Visual Studio 2010\Web
Sites\ChlOWebSel ection\App_Oata\RnrBooks.mdf;Integrated
Security=True;connect Timeout=30;User Instance=True "

providerName=" System . Data . SqlClient " />
</connectionstrings>

STEP 2: Very carefully select the text that shows the path (but not the file
name). Replace the highlighted text with " IDataDirectoryl''. (That is
" DataDirectory" '~ith a vertical bar before and after. with no spaces.)

The completed entry should look like this:

AttachDbFilename=! DataDirectory !RnrBooks . mdf;

STEP 8 : Compile (build) the project (Build I Build Oh fOWebSelection).
STEP ,~, Save and close the project.

After you have changed the web.config file. you can rename your project
folder and move it to another location. The portable connection string will al
ways point to the database file in the Web s ite's App_Data folder.

Make sw·e that the project is not open in the IDE and copy the complete
folcler from one computer or location to another.

In this optional section we will examine and demonstrate Language Integrated
Que1·y (LINQ). which is a recent addition to Visual Basic. LINQ is a general
purpose query language that can a->k a question of any data that is defined as an
object. as a database, or as XML. The source of the data may be a database but
could also be any collection. such as the collection for a list box. VB contains a
LINQ to SQL component to convert database items to objects and a LINQ to XML
component for converting XML document collections to objects. An-ays. which
you leamed about in Chapter 8. are also objects that contain a collection of items.

Que 1-yjng Otlel·ating System Data

For an example. we will use the collection of processes that are curTently IUlming
on your operating system. Yes. it's easy to access operating system information
with VB. To make it obvious that we are treating the operating system information
as data. we will use the DataGridView control for displaying the data.

The key operators in the query are From. In. and Select.

~

428 ,. C Database Applications

The LI NQ Quet·y-G<>ner·al For·m

Dim VariableName = From ItemName In Object Select ListOfFields/Items

The VariableName in the format does not have a data type assigned. In Visual Stu

dio 2008 and newer. if the data type is not specified. the compiler can assign a
type in a process called type inference.lf you were to type Dim Amount = 5. move
to another line. and then hover the mouse over the variable. it would show you that
through type inference. Amount is preswned to be Integer. Change the value to 5.5
and hover over Amount and the type will be Double. Although. it is not wise to use
type inference when the type is knmm. the feature was introduced to allow some
of the operators in LfNQ (Order By. Where) to be used in a different order.

The Ll NQ Qu<>ry-Exruuple

~ Dim Myauery = From Anitem in Process .GetProcesses
~ Select Anitem.ProcessName, Anitem .StartTime
It

C1·eating a LINQ P•·oj ect-Step-by-Step

Jn our operating system example. you will see a new method of an enumerable
collection called the Tolist, which works much like a ToString but returns a
list of items.

STEP r. Open n new Windows Forms application project; save it os ChlOLinq.
STEP 2: Name the form ProcessesFonn and change the form's Text property to

"Display System Processes Using LINQ".
STEP 3: Add a DataGridView control. naming it ProcessesDataGridView.
STEP ,~, Double-click on the form to access the Fom1_Load event.
STEP 5: Type in the following code:

' Display the current system processes.

Dim Myauery = From Anitem In Process.GetProcesses
Select Anitem.ProcessName, Anitem.Threads . count

ProcessesDataGridYiew.DataSource = MyOuery.ToList

STEP 6: Run the program. It should retrieve the system processes. convert
them to an object. and assign the object as the data source of the data grid view
(Figure 10.39).

A F ileSyste m LINQ Example

A very useful object that belongs to the My object is My.FileSystem. which can
return information about files and directories on the computer system. This ex
ample will perform tln·ee LINQ queries. each on the results of the previous
query. First. we will get the collection of files in the current directory. Then. for
each file we will retrieve a collection of the file information. The final query
selects the name and last access time for each ftle in the directory. Figure 10.4.0
shows the output of the queries in a DataGriclView control.

C II 1\ 1• 'I' I' ll 10

Jil Disploy Sy>tem p,O<<SS<S u,;ng UNQ I = I @!} I~

J ?I'OCessNarne Q>Jnt .
f ~- ". 7 c::

E S40RPS •
It~ ax z~

·1m 10

M~daiVaiServar g

llsa;;s 9

:MsMoEno 46
,(1,101; ~

Figure J 0 .39

Using a UNQ query to jill a
DataGridView control,

Figu•· e 10.40

429

Using a UNQ query to retrieve
and displa.y FileSystem data
in a DataCr.idJ!icw control.

'Project:
' Date :
' Programmer :
'Description:

Ch10LinqFileSystem
June 2010
Bradley/Millspaugh
Demonstrates a LINQ query to fill a DataGridView
with system information .

Public Class FileSystemForm

Private Sub FileSystemForm_Load(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles MyBase.Load

' Use a LINQ query to get information on system files
' and directories.

' Select all the files in the current directory .
Dim MyQuery = From file In My.Computer.FileSystem.GetFiles(CurDir())

Select file

430 ,. S L \ I, B .\ S (' Databrue Applicatioll.!

• For each file, get the file info.
Dim Nextauery = From file In MyQuery

Select My .Computer.FileSystem.GetFilelnfo(file)

• For each file in the file info collection, find the file name and
• the last access date .
Dim FileinfoOuery = From file In Nextauery

Select file.Name, file.LastAccessTirne

FileDataGridView.DataSource = FilelnfoOuery.Tolist
FileDataGridView.Columns(1) .Width = 200

End Sub
End Class

Fc·.-dhac·J, IO. t

L What is UNQ?
2. What can be queried with LTNQ?
3. Explain what is meant by type inference.

Your Hands-On Progranuning Example --------

Create a Windows application that contains a drop-down list of tHles from the
RnrBooks.rndf database file. When the user selects a title. display the corre
sponding 1SHN. autho r. and publisher in labels. Include additionallal)els to
identify the contents of the list box and the data fields.

Pl:muin;! tlu• Proje<' l

Sketch the form (Figure 10.41). which your users sign off as meeting their
needs. Figure 10.42 shows the form in Design mode.

Select the control types for the controls in tl1e Data Sources window before
dragging the Details view to tlle form.

Select J:ltle:

ISBN:

Author.

Put;>llsher:

FI~Cur e 10 .4 1

A planning sketch of the
Windows foml for the
hnuds-on progra.mming
example.

Clli\1°Tt:K 10

Plan the Objects and Properties

Objeel

BooksBin<lingSource

RnrBook.Oataset

Books1ableAJaple r

TitleComboBo-.

Labels

Name

Name

Name

Name
BindingSouroe
DiBplsyMember

Name

Selling

BookoBindinP<>urce

RmBooksDatasel

BooksTableAd apler

Tit leComboBox
BookoBinclingSource
Title

Keep default names

Plan the Procedure:. No code is required if all properties are correctly set.

Write the Project

Create a ne~· Windows project.

Create the new SQL Server data source based on the RnrBooks.mdf data
Cile. lnclude only those fields that appear on the finished form.

Set the control type.~ to a combo box and labels for the fields.

• Drag a Details view of the data to the fonn and rearrange the controls to
mntd1 the s ke tc.h in Figure l 0.41. Figures l 0.42 and l 0.4:l show the c.om

pleted f01m.

Set the properties of the combo box according to your plan.

Thoroughly test the project.

Th .. Pt·oj•·r t Cud"

lsn 't it amazing that so powerful a program doesn't require any code at all?

T ltfESEiecbonForrn.vb jOesignJ X

.,. R'n RBooHootupb) Tllo.;_ ______________ ..;.., = I e ~

0 ··--·· ··-; • · ··
! IS9N: . o

T.~-~J :
t~;;;;; :······

.,,, ,., __ ,, ._,,,,..., .. _,,,,_ ... _,, '"' oOOOooRo'"- ffi l ..
·-··•••- ··w-•·•- •·••·- ·••-• ··•·-·····-·••••-··•·•--•••••- .. -~-••·"-'""'-.$. .

.. .-.-;.-_-.-.-.-~--· ... -.•• :.- .- •• -.-;;.:_;_.·.-• .-.. ~--------~ . .-.-_;;;~..,;..·;,-;.;._· .-. .-.-. ...:.·ill-1

.... - ., ,._ ,_,.. -..... - ... ~

t ' lgar«" 10.42

Theformfor the hands-on
programming example in
Design nwde. showing the
component tray .

431

432 ,. S L \ I, B .\ S (• Databrue Applicatioll.!

r
•.,. R 'n R Bcol: l,gc;kup by Title

Seled Tae: .:Siif ri •&1ffiilamJ · I

IS&>j: 0.111·1 111 J.1

M ho!. Beck, Fre<l

P~oher. l-lil ood W,.-,,

l . Visual Studio uses Microsoft's ADO.NET technology to access databases in
many different fonnats.

2. ADO.N ET provides several types of connections for databases: OleDh.
QL Server. Odbc. and Oracle.

3. Databases are composed of tables of related information. Each table is
organized into rows representing records and columns containing fields
of data.

4. The primary key field uniquely identifies a row or record.
5. ADO.NET stores and transfers data using a format called XML (Extensible

Markup Language). which can be used by many different platfonns.
6. Many controls can be bound to a database including labels. text boxes. list

boxes. or a DataGridView.
7. A binding source establishes a link to a data source. which is a specific

data file or server.
8. A table adapter handles the transfer of data between a data source and a

dataset.
9. A dataset s tores infonna.tion from the database in the memory of the com

puter. A dataset can contain multiple tables and their relationships.
10. You can c reate datasets by dragging tables from the Data Sources window

or by using the Configuration Wizard that displays when Add New Data
Source is selected from the Data menu.

II . A table adapter uses an SQL SELECT s tatement lo specify the data to
retrieve.

12. You can add a DataGridView to a form and automatically bind the grid to a
data source.

13. The dataset's schema is defined in the .xsd file that appears in the project
folder.

14. To bind individual controls to data fields. select Details for the table in the
Data Sources window and drag the table to the form.

15. You can change the type of control used to display bo1md data in the con
trol's smart tag.

L6. It is common to allow the user to select a value from a list and then display
the data values for the selected item in bound labels.

F l l(ur t> 10. 43

The form for the hand.!-on
programmi11g example.

C ll i\ I' TE I& 10

17. To use a bound combo box for selection. you must set its Da taSource and
Dis play Member properties.

18. You can select a subset of the fields in 8 table for 8 datase t.
19. In a Web database a pplication. you must be very aware of the security

requirements.
20. Each selection from a I ist requires a post back to the server to filJ the bound

controls. You must set the AutoPostBack prope1ty of the drop-down list to
True to make the postback occur.

21. A Web selection program requires a parameterized query to retrieve the
data matching the list selection. The Windows program does not have the
same requirement.

22. LINQ is a que ry language that works on object data types.

binding source 402
bound controls 409
colwnn 398
data binding 401
Data Designer 409
data source 402
data-bound controls 409
Uata(;ridView control 403
dataset 402

field 398
LINQ 427
postback 419
primary key field 398
record 398
row 398
table 398
table adapter 402
XJ\IrL 399

l. Explain the purpose of a binding source.
2. Explain the purpose of the table adapter component.
3 . " rhat is a dataset?
4. How is a DataGridView control used?
5. Explain the steps to c hange a data source from DataGridView to Details.
6. What options are available for s tyles of a bound control?
7. What is the purpose of the Data Source window?
8. H ow do a Windows and a Web version of a lis t selection program vary?

Why?
9. What is a parameteri7.ed query? When would it be used?

10. What is a postback? When does it occur?
ll. What is the purpose ofUNQ? Name three operato1·s.

Note: Each of tJ1ese exercises can be written as a Windows Forms application
or as a Web application.

10.1 '111e R.nrbooks.mdf database tile holds two tables: the Books table used in
this chapter and the Subjects table. '111e Subjects table has only two
fields: the Subject Code (the key) and the Subject Name. Write a project
that displays the Subjec ts table in a grid. Hint: Fora Web application. use
a Data Lis t control for the grid.

433

434 S l ' \ I. ll \ s C Databa.e Application•

10.2 "'' rite a project to display a List of the subject names in the Subjects table
described in Programming Exercise 10.1. Use a drop-down combo box.
Display in a label the subjec t code for the name selected from the list.

10.3 W'rite a project to display the Publishers table (rom the Contacts .mdf data
base from your StudentData\DatabaseFiles folder on the text Web s ite. The
Publishers table has the following fields: PublD (the key field). Name.
Company Name. Address. City. State. Zl P. Telephone, and Fax.

Allow the user to select the publisher name from a sorted drop-down
lis t: dis play the rest of the fields in labels.

l. Create a Windows application to display the VB
Mail Order Customer table from the VbMail.mdf
database from the Student Data folder on the text
Web site. Use the navigation bar to move from
record to record.

2. Create a Web application to display the Customer
table in a grid on a Web Form. Hint: Use a Data
List control for the grid.

The Customers table holds these fields:

Cu•tome1o£D

LastName

firstN:une

A.ddress

City

State

Zip Code

VB 1\11to (;eater

Create a Windows application or a Web application to
display the VB Auto Center Vehicle table from the
VBAuto.mdf database from the StudenlData folder on
the text Web site. Display the JnventoryLO in a sorted
combo box. Display the remaining fields in individual
controls.

The table holds these fields:

l. Create a Windows application to display the infor
mation from the Studio table in the VBVideo.mdf
database file from the StudentData folder on the
text. Web site. Allow the user to select the studio
name from a sorted drop-down list and display the
rest of the fields in labels.

2. Create a Windows or Web application to display
the Studio table in a grid. Hint: For a Web appli
cation. use a DataList control for the grid.

JnventorylD

~lanufacturer

ModelName

YehiclerD

Cost Value

The Studio table contains these fields:

Studio ill

StudioName

Contact Penoon

Phone

C II i\ I' 1' •: ll

Very Very Boards I
l. Create a Windows application to display the Prod

uct table from the VeryBoards.mdf database file
from the Student Data folder on the text Web site.
AJiow the user to select the product fD from a
sorted drop-down list and display the rest of the
fields in labels.

2. Create a Windows or a Web application to display
the Product table in a grid. Hint: For a Web appli
cation. use a DataList control for the grid.

The Product table contains these fields:

ProductlD

OellCription

MfgiD

Unit

Cost

LastO...!erDate

LastO...!erQuantity

435

This page intentionally left blank

c D A p T E R

Data Files

J. Store and retrieve data in files using streams.

2 . Save the values from a list box and reload for the next program run.

3 . Check for the end of CiJe.

4 .. Test whe ther a file exists.

5 . Display the standard Open File and Save File dialog boxes to allow the

user to choose or name the file.

438 v S l l ,\ I. C Data Files

Data Files

Many computer applications require that data be saved from one run to the
next. Although the most common technique is to use a database, many times a
database is overkill. Perhaps you just need to store a small amount of data.
such as the date of the last program run, the highest ID number assigned. a
user preference, or the property values of an object to transfer to another
application. 111is chapter deals with techniques to store and retrieve data
fil es on disk.

Note that the default security policy for the Intemet and for intranets does
not allow access to disk files . This chapter presents only basic file input and
output (I/0) for Windows applications.

In computer tem1inology. any data/information that you store on disk is
given its own unique name and is called a file. In other words, a file is a col
lection of related data stored together and assigned a name so that it can be ac
cessed later. Each of your Visual Basic projects requires multiple files-for the
fonns. other classes. assembly infonnation. and project infonnation. However.
the files you will create now are different; they contain actual data. such as
names and addresses. inventory amounts. account balances. or even the con
tents of a lisi box.

FiJc 1/0

You can read and write data in a disk file. You may have the user enter data into
text boxes that you want to store in a file; that is called u•riting or output. At a
later tinle. when you want to retrieve the data from the file. that is reading or in
put (Figure 11.1).

ll'Tite outputfron~ a program w afrle: read input from the file into a program.

Form
-

~~
........

/
Write Output Data Read Input v, File

Cl -

Simple VB File 1/ 0

Visual Studio includes a library of simplified data file input and output (I/0)
objects. You can use the methods of these objects to quickly and easily write
and read data t1les. But be aware tJ1at these objects are not the standard .NET
objects that are used by the other .NET programming languages. such as C# and
C++. Although a C# programmercou.ld add the Microsoft.VisualBasic.FileiO
library to a prog.ram. that is extremely unlikely. If you want to use the more
universal and robust flle-hanclling objects of .NET. see ".NET Standard File
Handling" later in this chapter.

F i gure 11. 1

f orm

~
D

C ll t\l•l' I' R II

Wt·iting and Reading Text F iles

The quickest and easiest way to write text files in VB is to use the Wri teAllText
method of I\1y.Computer.FileSystem. This method specifies the file name
and the text string to ~tTite to the file. You also can choose whether the data will
replace the existing file or will be added to the end of the file (appended).

The \Vt·iteAllText .1\lethod-Geueral Form

439

~~.--. ~ ~ e ~ My.Computer.FileSystem.WriteAllText(FileName, StringToWrite, AppendBoolean)
j;l

If the Append Boolean argument is set to True. the new data are written to
the end of the file; if it is set to False, any data in an old file are replaced by the
new data.

When you use this method, there is no need to open or close a ftle. The
statement creates a file if one does not already exist. You also can specify a
complete path tor the tile.

The Wt·iteAJJText Method-Examples

~ My.Computer.FileSystem.WriteAllText("Names.txt", NameString , True)
5 My .computer. FileSystem. WriteAllText ("C: \Final Count . txt", countlnteger . ToString(),
} False)

00 ~--------------------------------~ To read the string back in. you can use the ReadAllText method. which
reads the entire file into a single string.

The ReadAIIText l\1etbod-Genen\l Form

My.Computer.FileSystem.ReadAllText(FilePath)

The ReadAllText method fails if the file or path does not exist. so you
should code the method in a Try /Catch block.

T he HeadAllText Method-Example

Try
NameString = My.Computer.FileSystem.ReadAllText("Names.txt")

Catch
MessageBox.Show("File or path not found or invalid ")

End Try

The ReadAllText and WriteAllText methods are handy when you need to
read or write a single string. To 11Tite multiple fields of data. you will want to
JtTite and read delimited files.

W1·iting and Uea<ling Delimited FiJes

The tetm delimited file refers to a ffie that consists of multiple fields of data.
with the fields separated by some predefined character. The most common

440 l ' (' Data Files

character used as a delimiter (separator) is the comma, but you can specify
some other character. such as a tab or carriage return. if you wish.

Wr·iting a Delimited FiJe

In the following program example. the user enters a name and phone number
into a form (Figure 11.2) and clicks the Save button. In the Sa.veButton_Click
event procedtue. the WriteAllText appends the name and phone number to
the end of the file. with the fields delimited by commas and the end of each
record delimited with a carriage return.

•. Create Name Phone File l= . ~-~

Name

~ve

You can insert delimiters in your text file by concatenating the fields when
you write the file:

My . computer . FileSystem .WriteAllText("Names.txt " ,

Fi ~ n•• e 11 .2

The user enters data into the

text boxes and clicks the Save
button. which writes these
fields of data into the file.

NameTextBox.Text & ", " & PhoneTextBox . Text & Environment.Newline, True)

The preceding line of code wtites the names and phone numbers from text
boxes. delimited with a comma. and uses the Newline constant for a carriage
retum (technically it's a carriage retum and line feed). 'The final argument is set to
True so that new data will be appended to the end of the existing file. Note that
for thP. ~amngP. rP.hlm ~harn~IP.r. you ~an u;oP. thP. .NF.T Environment . Newline.

or ControlChar. Newline. as you have used in the past. or the VB-only
vbCrl f intrinsic constant. The Newline character serves as the end-of-record
marker.

Delimited Data File Output fr·om the l't·ognuu

Ann,714-555- 4444
Dennis , 805-555 -7777
Richard ,626-555-5678
Katie,909-555-6789
Ally ,626-555-9999
Danny,909-555- 3333

C II A 1• 'I' " ll II

Tue Simple Delimited File Write flrogram

' Program :
' Programmer :
'Date :
'Description :

Ch11SimpleDelimitedFileWrite
Bradley/Millspaugh
June 2010
Allow the user to enter names and phone numbers and
save them in a delimited file .

' Folder:

Each record holds two fields, separated by commas.
Uses the simplified VB file access methods .
Ch11SimpleFileWrite

Public Class EntryForm

Private Sub saveButton_Click(ByVal sender As System .Object,
ByVal e As System.EventArgs) Handles SaveButton.Click

' save the record to the end of the file.

Dim FileString As String = "TextFile . txt "
Dim RecordString As String = NameTextBox .Text & ", " &

PhoneTextBox.Text & Environment . NewLine

' This line opens the file, appends delimited text to the end of the file ,
' and closes it .
My .Computer . FileSystem.WriteAllText(FileString, RecordString, True)

With NameTextBox
. Clear()
.Focus()

End With
PhoneTextBox.Clear()

End Sub

Private Sub ExitToolStripMenultem_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles ExitToolStripMenultem.Click

' Close the file and the form .

Me .Close()
End Sub

End Class

Viewing the Contellls of a File

Mter you mn your project, you can view the new file using a text editor such as
Notepad. You also can view the file in the Visual Studio IDE. Unless you spec
ified a path to a folder in a different location, by default your new file is created
in the bin\Debug folder in your project folder.

To view the file. select the project name in the Solution Explorer. If you
don't see the bin and obj folders listed. click on the Show All Files button at the
top of the 1~indow. Then you can expand the bin folder and the Debug folder.
find the data file's name (Figure 11.3). and open it. The contents of the file
should appear in the Editor window. If the filename does not appear when you
open the bin\Debug folder. click on the Refresh button at the top of the Solution
Explorer.

Reading a Delimited File

To read a delimited file using the simplified VB objects. you will need a
TextFieldParser object. which comes from the Microsoft.VisualBasic.FileJO
namespace. include an Imports statement at the top of the code to use the
library objects.

441

442 v S l l ,\ I. C DataFiles

/ Show All Files button

/ / Refres h button

g Solution 'ChllSimplcFi!eVJrite' (1 project)

• fil ChllSrnpleF;IeWrae +--------+-Select the projecl name
o ~ MyProjcd
~ ~ R€fereoce> - bin folder
• 'i'~i bin

• f!.:) O.bvg Debug folder
,.J Ch11SimpleFi!eWrite.exe
J ChllSimpleFileWrite.pdb
~~.) Chll Simp!eF~cWritc.v~host.cxe
:.J Chll Simp!efileWrite.vshost.ex:e.manifest
.:.J Ch11Simp!eFileWr1te.xml
L.1 Te:df~e.tXIJ+-------+- New file

t':i Release -~
;. ~~] obj
p. ~ PhoncForm:vb

' Top of code file:
Imports Microsoft .VisualBasic .FileiO

' Module-level variable :
Private NamePhoneTextFieldParser As TextFieldParser

Specifying a Delimiter A VB TextFieldParser object can read delimited files as
well as fixed-width fields. When you declare a TextFieldParser, you must spec
ify that the file is delimited and which character(s) to use as the delimiter.

The TextFieldType prope1ty of U1e TextFieldParser specifies whether you are
using a delimited or fixed-width file. Assuming that the TextFieldParser is de
clared at the module level, the following lines of code instantiate the TextField
Parser object, set the file, indicate a delimited file, and specify that the delimiter
is a comma. A good location for this code is t11e form's Load event procedure.

Private Sub DisplayForm_Load(ByVal sender As System .Object,
ByVal e As System.EventArgs) Handles MyBase.Load

' Instantiate the TextFieldParser and set the delimiters
Dim FileString As String = "TextFile . txt "

Try

F i ~ u re 11 .3

View t.he contents of your new
file in the Viwal Studio IDE.

NamePhoneTextFieldParser = New TextFieldParser(FileString)
NamePhoneTextFieldParser.TextFieldType = FieldType.Oelimited
NamePhoneTextFieldParser.SetOelimiters(" , ")

Catch
MessageBox .Show("Unable to read the file : " & FileString, "File Error")

End Try
End Sub

Notice that you create a TextFieldParser object using the New keyword and
indicate the filename associated with the parser.

Note: To specify delimiters such as a tab. the TextFieldParser uses the VB
intrinsic constants. Example:

MyTextFieldParser .SetOelimiters(vbTab)

C II ,\I> 'I' I' R II

Tb<' TextField l'arser.ReadFiel<ls Method-Ceueral Fo1111
Read from a delimited file with the ReadFields method. This method reads
one record of the file into a string array. The end of the line or record is deter
mined by a carriage retum.

443

~~).---. Q ~ I B i StringArray = TextFieldParser. ReadFields ()

The Text Field Pm-ser.ReadFielcls l\1etl10d-Example

~ r---~ >< e
'e.
~

Dim InfoString() As String NamePhoneTextFieldParser .ReadFields()

~------------------------------~ Once you have retrieved the fields into the array, you can use the sub
scripts as you learned in Chapter 8. Remember that an array begins with sub
script 0. If we know that each record contains two strings. the first field will
have a subscript of 0. and the second subscript is l. Notice that you can check
for the end of the file using the EndOfData method.

Private suo NextButton_ClicK(ByVal senoer As system.ooject,
ByVal e As System.EventArgs) Handles NextButton.ClicK

' Read a name and phone number from the file .
Dim FieldString() As String ' Must be a string array for delimited fields .

If Not NamePhoneTextFieldParser. EndOfData Then
FieldString = NamePhoneTextFieldParser . ReadFields()
' First field.
NameTextBox .Text = FieldString(O)
' Second field .
PhoneTextBox.Text = FieldString(1)

Else
MessageBox . Show(" No more records to display.", "End of Data ")

End If
End Sub

Tbe Simple Delimited File l{ead Program

Here is the completed program that reads the names and phone numbers from
a delimited file and displays them on the form (Figure 11.4). Each time the user
clicks Next. the program reads and displays the next record. Note that for this
example program. we copied the TextFile.txt file from the bin \Debug folder of
the previous program-the Simple Delimited File Write program.

' Program:
' Programmer :
' Date:
'Description :

Ch11SimpleDelimitedFileRead
Bradley/Millspaugh
June 2010
Uses a TextFieldParser object to read delimited fields from
a file .
Uses the simplified VB file access methods.
By default, the data file is expected to be in the
project's bin\Debug folder .

Imports Microsoft.VisualBasic.FileiO

444 v S l l ,\ I. C Data Files

Public Class DisplayForm
' Declare module-level variable .
Private NamePhoneTextFieldParser As TextFieldParser
Private Sub DisplayForm_Load(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles MyBase.Load
' Instantiate the TextFieldParser and set the delimiters
Dim FileString As String = "TextFile.txt"
Try

NamePhoneTextFieldParser = New TextFieldParser(FileString)
NamePhoneTextFieldParser .TextFieldType = FieldType.Delimited
NamePhoneTextFieldParser .SetDelimiters(" , ")

Catch
MessageBox. Show(" Unable to read the file : " & FileString , "File Error ")

End Try
End Sub
Private Sub NextButton_Click(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles NextButton .Click
' Read a name and phone number from the file.
Dim FieldString() As String ' Must be a string array for delimited fields.

If Not NamePhoneTextFieldParser.EndOfData Then
FieldString = NamePhoneTextFieldParser .AeadFields()
' First field .
NameTextBox .Text = FieldString(O)
' Second field.
PhoneTextBox .Text = FieldString(1)

Else
MessageBox.Show("No more records to display. ", "End of Data")

End If
End Sub

Private Sub ExitButton_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles ExitButton .Click

' Close the form.

Me .Close()
End Sub

End Class

aD Display Name Phone File

Name: kon

Phone: 55& 1234

l = l @l l...a.J

Figure 11 .4

Each tim~ the user clicks Next.
the next record is read from th~
file and displayed in the
labels.

C II ,\I> 'I' I' R II

.NET File Handling

The simple file handling that you saw in the previous section can work well for
small amounts of data in a VB program. But for more robust and universal file
handling. which is the same for all .NET languages. you will want to use

streams.

File Ha ndling Usjng St1·cams

.NET uses streams for file input and output. A stream is designed to transfer a
series of bytes from one location to another. Streams are objects that have meth
ods and properties, just like any other object. The stream objects are found in
the System.l O nam espace. You can save the trouble of fully qualifying ref
erences by including an Imports statement at the top of the file, before the
statement declaring the form's class.

Imports System . IO

Public Class FileiOForm

The most straightfonvard way to read and write small amounts of data is to
use the Su·eamRead er and Stt·eamWriteJ' objects. Generally, you write the
Stream Writer code first. to create the data file. Then you can write the Stream
Reader code to read the file that you just created.

W1•iting Data in a File Using a St1•eam Write•·

To write data to a file, you first have the user input the data into text boxes and
then write the data to the disk. The steps for writing data are

• Declare a new Stream Writer object. which also declares the name of the
data file.

• Use the Stream Writer's Writeline method to copy the data to a buffer in
memory. {A buffer is just a temporary storage location.)

• Call the Stream Writer's Close method, which transfers the data from the
buffer to the file and releases the system resources used by the stream.

Dim ObjectName As New Streamwriter("FileName ")
Dim ObjectName As New Streamwriter("FileName " , BooleanAppend)

You declare a new Stream Writer object for writing data to a file. The first argu
ment in the constructor specifies the name of the file. The default location for
the file is where the program executable (.exe) is placed, which is the bin\Oe
bug folder beneath the folder for the cuJTent project. You also can specify the
complete path of the file.

In the second version of the Stream Writer constructor. you can specify that
you want to append data to an existing file. Specify True to append. By default.

445

446 v S l l ,\ I. C DataFiles

the option is set to False. and the old data file is deleted and a new data file is
created. in effect overwriting any existing data.

Declaring a new Stream Writer object opens the file. The file must be open
before you can write in the flle.lf the file does not already exist. a new one is
created. lf you don't use a full qualifying path. then the file is opened or cre
ated in the project's bin \Debug folder where the program executable is located.
No exception occurs whether or not the file exists. so you could declare the
Stream Writer object in the declarations section of your program or in a proce
dure. However. because you don't want to keep a file open any longer than nec
essary. it's best to open the file inside a procedure. If you use a full path in the
filename, then you should instantiate the Stream Writer object in a Try /Catch
block in case the path does not exist.

o~clat•iug l\ Stream Wt•iLN' Ohject-Exampl~s

l~llii:J
Use .txt as your extension to a llow
for easy viewing of the file in

Notepad or the Visual Studio IDE. •

~ P--. ~

5
-.:;
;;-
00

Dim PhoneStreamWriter As New Streamwriter ("PhOne . txt ")
Private Namesstreamwriter As New Streamwriter("C: \MyFiles\Names . txt ") • could throw

• an exception if the path doesn't exist .
Friend LogFileStreamWriter As New Streamwriter("LogFile . txt " , True)

The Stream Writer object has both a Write and a Writeline method. The
difference between the two is a carriage-return character, which sen•es as the
end-of-record marker. The Write method places items consecutively in the file
with no delimiter (separator). The Writeline method places an Enter (carriage
return) between items. We will use the Writeline in this chapter because we
want to easily retrieve the individual data elements later.

The WriteUnt- Method-General Form

~~I ~ t ObjectName. WriteLine(DataToWrite)

The Data To Write argument may be string or numeric. 'n1e Wri teline method
conve11s any numeric data to string and actually writes string data in the file.

The WI·iteUne i\letllofi-Examples

~ .---... ~

3
'E.
~

PhoneStreamwriter .WriteLine(NameTextBox .Text)
PhoneStreamwriter .WriteLine(PhoneTextBox .Text)

Namesstreamwriter . Wr i teline ("Sammy ")

BankBalanceStreamwriter .WriteLine(BalanceDecimal . ToString())

H you are inputting data from the user and Wiiting in a file. you generally place
the Writeline in a button click event procedure. The follmting phone list
example is similar to the earlier file writing program. but uses a StreamWiiter
object. rather than the VB WriteAl!Text method. You can refer to Figure 11.2 to
see the data entry form.

Private Sub saveButton_Click(ByYal sender As System . Object,
ByYal e As System . EventArgs) Handles saveButton.Click

' save the record to the file .

C II A 1• 'I' " ll II

' Write to the already-open stream.
PhoneStreamwriter.WriteLine(NameTextBox.Text)
PhoneStreamwriter .WriteLine(PhoneTextBox .Text)
With NameTextBox

.Clear()

. Focus()
End With
PhoneTextBox .Clear{)

End Sub

The Save button writes the data from the screen to the Stream Writer object
and then clears the screen.

Closing a File

After you finish writing data in a file. you must close the file. Closing a file is
good housekeeping; it finishes writing all data from the stream's buffer to the
disk and releases the system resources. Use the StreamWriter's Close
method, which is similar to closing a form. A common location for the Close
method is in your program's Exit cotmnand or the form's FormClosing event
procedure (see page 457).

Private Sub ExitButton_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles ExitButton.Click

' Close the file and the form.

Phonestreamwriter .Close()
Me.Close()

End Sub

If you fail to close a file when you are finished with it, the file may remain
open for an indefinite time and sometimes may become unusable. See ''The
FormClosing Event Procedure" section later in this chapter.

R e acling Data ft·mu a File Using a Stt·eamReadet·

You use the Stream Reader class to read the data from a file that you created
with a Stream Writer.

The steps for reading the data from a file are the following:

• Declare an object of the Stream Reader class. The constructor declares the
:filename and optional path. This statement opens the file so that you can
read from it.

• Use the Rea<lline method to read the data. You may need to use a loop to
retrieve multiple records.

• When finished. close the stream using the StreamReader's Close method.

Oechwiug and Instantiating a Strcatnlleader Ohject-Cenenu Fonu

' Declare a module-level variable.
Private QbjectName As StreamReader

' Inside a procedure .
ObjectName = New StreamReader("FileName")

447

,_,. ii:J
It's best to open a file only when it
is needed and close it as soon as

you ore done with it so that you

don't tie up system resources
unnecesso rily. •

448 \ ' s l i \ • • IC 1\ S l ' D<llo File.!

The Stream Reade r class works i:n much the same way as the Stream Writer.
However. the file must exist in the location where the application expects it. IJ
no such file exists. an exception occurs. For this reason. you must instantiate
the StreamReader object in a procedure so that you can enclose it in a
Try /Catch block.

o .. d nl'iU!: a nd l u'"HU1tiatiug a Su· .. a mlt .. ader· Ohjet·t-Examplt·~

~~--~ ., Try
8

l
Dim NamesStreamReade r As New StreamReader ("C: \MyFiles\Names. txt")

Catch
MessageBox.Show("File does not exist. ")

End Try

• In declarations section , to create a module - level variable name.
Private PhoneStreamReader As StreamReader

' In a Procedure, to catch an exception for a missing file .
Try

PhonaStreamReader = New StreamReader("Phone . txt ")
Catch

MessageBox.Show("File does not exist. ")
End Try

U~>jng the ltt•:tdLin(' MNhod

Use the StreamHeader's Readline method to read the previously saved data.
Each time you execute the method. it reads the next line from the file. Assign
the value from the read to the desired location. such as a label. a text box. or a
string variable. The Readline method has no arguments.

NameTextBox .Text = PhoneStreamReader .Readline()

Checking fom· the End uf the File

Use the StreamReader's Peek m ethod to check for end of file. The PeeK
method looks at the next element without really reading it. The value retumed
when you peek beyond the last ele ment is negative 1 (-1).

If PhonestreamReader . PeeK <> - 1 Then
NameTextBox .Text = PhoneStreamReader. ReadLine()
PhoneTextBox. Text = PhoneStreamReader. Readline()

End If

Note that the Readline method does not throw an exception when you at
tempt to read past the end of the file.

You must always make sure to read the data elements in the same order in
which they were written. Otherwise your output will display the wrong values.
For example, if you reversed the two lines in the program segment above, the
phone number would display for the name and vice versa. The Readline
method just reads the next line and assigns it to the variable or property that
you specify.

C II A 1• 'I' " ll II

The File ({cad (lrogram

Here is the completed program that reads the name and phone numbers from a file
and displays them on the form. Each time the user clicks Next. the program reads
and displays the next record. Note that for this example program. we copied the
PhoneList.txt file from the bin\Debug folder of the Write File project. to the
bin \Debug folder of this project. You also could specify the exact path of the file.

' Program:
' Programmer :
' Date :
'Description :

Ch11StreamReaderReadFile
Bradley/Millspaugh
June 2010
Retrieve the information stored in a data file
and display it on the screen .
Uses a StreamReader.

Imports system.IO

Public Class DisplayForm
' Declare a module-level variable .
Private PhoneStreamReader As StreamReader

Private Sub DisplayForm_Load(ByVal sender As System .Object,
ByVal e As System.EventArgs) Handles MyBase.Load

' Open the input file and display the first record .

Try
PhoneStreamReader = New StreamReader("Phonelist.txt")
DisplayRecord ()

Catch ex As Exception
MessageBox. Show("File not found or is invalid ." , "Data Error ")

End Try
End Sub

Private Sub NextButton_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles NextButton.Click

' Display the next record .

DisplayRecord()
End Sub

Private Sub DisplayRecord()
1 Read and display the next record .

If PhoneStreamReader.Peek <> - 1 Then
NameTextBox . Text = PhoneStreamReader.Read line()
PhoneTextBox. Text = PhoneStreamReader.Readline(1

Else
MessageBox . Show("No more records to display ." , "End of File")

End If
End Sub

Private Sub ExitToolStripMenuitem_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles ExitToolStripMenuitem.Click

I End the project .

If Not PhoneStreamReader Is Nothing Then
' Close the file, only if it is open.
PhoneStreamReader.Close()

End If
Me .Close()

End Sub
End Class

449

450 l ' C Data Files

l. Write the statement to create an inventory Stream Writer object that will
write data to a me called " Inventory. txt".

2. Code the statement to write the contents of Description Text Box into the
inventory stream.

3. Why should the declaration statement for a Stream Reader object be in
a Try /Catch block? Does the declaration statement for a Stream Writer
object need to be in a Try /Catch block? Why or IVhy not?

4. Write the statement(s) to read a description and a product number from
lnventoryStreamReader assuming it has been opened as a Stream
Reader object. Make sure to test for the end of the file.

Using the File Common Dialog Box 1

In the preceding file read and write programs . the filenames are hard-coded
into the programs . It is best to allow the user to browse and enter the
filename at run time. You can display the standard Windows Open File dialog
box. in which the user can browse for a folder and filename and/or enter a
new filename. Use the OpeuFileDialog common dialog component to dis
play the dialog box. and then use the object's FileName property to open the
selected file.

o ,JenFile Dialog Com i>Onenl Pl'OIJel·tjes

You will find the follm~ing prope11ies of the OpenFileDialog component very
useful:

Proper-ty

Name

CheckFileExis ts

CheckPathErists

FileNau1e

Filter

Initial Directory

Safe FileName

Title

Description

Name of the component. You can use the default OpenFileOialogl.

Display an error message if the file does not exis l Set to False for saving a file, s ince you 14•ant to
create a new file if the tile does not exist. Leave at the default True to read an exis ting file .

Dis play an error message if the path does not exist. Set to False for saving a file. s ince you ,.·aut it to
create the new folder ii necessary.

The name of the file selected or entered by the user, which includes the file path. Use this property
after displaying the dialog box to determine whkh file to open. You also can give this property au
initial value, whic h places a default filename in the dialog box when it appears.

filter file exte nsions to display.
Example: Text Files (*.txt) 1 * . txt !All files (*. *) 1 *. *

Dinectory to d.isplay ,.·hen the dialog box opens . Set this in code to Directory.GetCuJTentDirectory() to
begin in the current directory.

The name of the file s elected or entered by the user. which does not include U1e file path .

Title bar of tl1e dialog box.

C II A 1• 'I' " ll II

Displaying the Open File Dialog Box

To display an Open File dialog box (Figure 11.5), you must first add an Open File
Dialog component to your form. The component appears in the component tray. At
design time. set initial prope1ties for Name. CheckFileExists. CheckPathExists.
Filter. and Title (see the preceding table for the values). In code. set the lni
tia!Directory property to Directory. GetcurrentDirectory (). display the
dialog box using the ShowDialog method. and retrieve the FileName property.

451

Fiaure J l .5

Di.splay the Windows Open File dialog box using the OpenPikDialog component. The Filter property detennines the entries
that display in the drop-down box.

-

!51 Open file to Read

CJQ rl -.,-b-in-•-Debu-~---------.•[-=-~~ II Seorrh De!>~g
--

Org.onize ... New fokb
~-

!r! Desktop D<~tc modified

j. Download:>

~ Rece1t Places
EJ Phoro<List.M .5/1112010 10..33/\M Text Oocum

~ libr~ries

~ Documents
jt Music

~ Pictures

81 Videos

4 Homegroup

~Computer

£:. OS(C:)

Ci1 RECOVERY([):)

c;a l oco! Di>k (G;) ••
Filename: • 1 lr..tfileo('.t>t) •I

Open H I Cane.! I

Private Sub OpenToolStripMenultem_Click(ByVal sender As System.Object,
ByVal e As System .EventArgs) Handles OpenFileToolStripMenultem .Click

' Open the file.
Dim ResponseDialogResult As DialogResult

' Is the file already open?
If PhoneStreamWriter IsNot Nothing Then

PhoneStreamWriter.Close()
End If

' Set up and display the Open File dialog .
With OpenFileDialog1

' Begin in the current folder .
• Initia l Directory = Directory .GetCurrentDirectory()
. FileName = "Phonelist . txt "
. Title = "Select File or Directory for File"
' Display tile Open File dialog box .
ResponseDialogResul t = .ShowDialog()

End With

452 l ' C Data Files

' Make sure that the user didn't click the cancel button .
If ResponseDialogResult <> DialogResult.Cancel Then

' Open the output file .
PhoneStreamWriter = New StreamWriter(OpenFi l eDia l ogl. FileName)

End If
End Sub

Notice that the user may click on the Cancel button of the Open File dialog
box. Check the DialogResult for Cancel. And if the user does click Cancel, that
presents one more task for the program: You cannot close a Su·eam Writer object
that isn't open.

Cheddug for Successful File Ov('u

In the preceding file-open procedure, tJ1e statement

PhoneStreamWriter = New StreamWriter (OpenFileDialog1 . FileName)

may not execute. [n that case. the Stream Writer is not instantiated. You can ver
ify the object's instantiation using the VB keyword Nothing. An object variable
that has not been instantiated has a value of Nothing. Notice the syntax: You
must use the keyword IsNot ra.ther than the not equal operator(<>).

' Is the file already open?
If PhoneStreamWriter IsNot Nothing Then

Phonestreamwriter.Close()
End If

Place this code in the fom1's Form Closing event procedure.

Checking fot· Ah·eady 01J('ll File

It's possible that the user may select the File / Open menu item twice. which can
cause a problem. A second open instantiates another file stream. and the Close
method never execute:; for the fir:;t file. It's best to chec k for an ac tive instance

of the file stream before instantiating a new one.

Private Sub OpenToolStripMenuitem_Click(ByVal sender As System.Object,
ByVal e As System. EventArgs) Handles OpenFileToolStripMenultem.Click

' Open the file .
Dim ResponseDialogResult As DialogResult

' Is the file already open?
If PhoneStreamWriter IsNot Nothing Then

PhoneStreamWri ter.Cl ose()
End If

' Set up and display the Open File dialog .
With OpenFileDialog1

' Begin in the current folder .
. InitialDirectory = Directory .GetcurrentDirectory()
. FileName = "Phonelist.txt "
.Title - 'Select Hle or Directory for ~ile"

' Display the Open File dialog box.
ResponseDialogResult = .ShowDialog()

End With

C II A 1• 'I' " ll II

' Make sure that the user didn't click the cancel button .
It ResponseDialogResult <> DialogResult.Cancel Then

' Open the output tile .
PhoneStreamWriter = New StreamWriter(OpenFileDialog1 .FileName)

End If
End Sub

Using tbe Save File Dialog Compon<>nt

In addition to the OpenFileDia]og. you also can choose to display a SaveFile
Dialog component. which displays the standard system Save As dialog box. The
SaveFileDialog allows the user to browse and enter a filename to save; it has
most of the same properties as the OpenFileOialog component. By default. the
SaveFileDia]og component checks for an already existing file and displays a di
alog box asking the user whether to replace the existing file.

T he Open and Wt·ite File P t·ogram

Here is the complete I isting of the Open and Write File program. which allows
the user to select the filename. The user can select the Open command from the
File menu. But if the Save button is clicked and the file is not yet open. the
Open File dialog box displays automatically.

' Program:
' Programmer:
'Date :
' Description :

Ch11 StreamWriter Open and Write File
Bradley/Millspaugh
June 2010
Allow the user to enter names and phone numbers and
save them in a tile .

' Folder:

Display the File Open dialog box tor the user to
enter the tile and path.
Ch11 StreamWriterOpenAndWriteFile

Imports System. IO

Public Class PhoneForm
' Declare module-level variable .
Private PhoneStreamWriter As StreamWriter

Private Sub saveButton_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles saveButton .Click

' save the record to the tile.

It PhoneStreamWriter IsNot Nothing Then ' Is the tile open?
PhoneStreamWriter .Writeline(NameTextBox .Text)
Phonestreamwriter.WriteLine(PhoneTextBox .Text)
With NameTextBox

. Clear()

.Focus()
End With
PhoneTextBox .Clear()

Else ' File is not open.
MessageBox.Show("You must open the tile before you can save a record ." ,

"File Not Open", MessageBoxButtons.OK, MessageBoxicon . Information)
' Display the File Open dialog box.
OpenToolStripMenuitem_Click(sender, e)

End If
End Sub

4S3

454 v s l1 -" •• C Data Files

Private Sub OpenToolStripMenuitem_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles OpenFileToolStripMenultem.Click

' Open the file .
Dim ResponseDialogResult As DialogResult

' Is the file already open?
If Phonestreamwriter IsNot Nothing Then

PhoneStreamWriter.Close()
End If

' Set up and display the Open File dialog .
With OpenFileDialog1

' Begin in the current folder .
. InitialDirectory = Directory .GetCurrentDirectory()
.FileName = "Phonelist . txt "
. Title = "Select File or Directory for File"
' Display the Open File dialog box.
ResponseDialogResult =. ShowDialog()

End With

' Make sure that the user didn't click the Cancel button .
If ResponseDialogResult <> DialogResult.Cancel Then

' Open the output file .
PhoneStreamWriter = New StreamWriter(OpenFileDialog1.FileName)

End If
End Sub

Private Sub ExitToolStripMenultem_Cli.ck(ByVal sender As Object,
ByVal e As System.EventArgs) Handles ExitToolStripMenuitem.Click

' Close the file and the form .

If Phonestreamwriter IsNot Nothing Then ' Is the file open?
PhoneStreamWriter .Close()

End If
Me.Close()

End Sub
End Class

l. What is the Filter property setting to d isplay only .txt files?
2. Write the statement to set OpenFileDialogl to begin in the current

directory.
3. Write the statement to close PhoneStream Writer; make sure to allow for

the possibility that the file is not open.

Saving the Contents of a List Box

In Chapter 7 you wrote a program to maintain a list. The user was allowed to
add items and remove items. but the next time the program ran. the list changes
were gone. The changes were not saved from one execution to the next.

C II A 1• 'I' " ll II

Now that you know how to save data in a file. you can save the contents of
a list when the program exits and reload the list when the program reopens. Use
the following techniques for this project:

• Oo not give any values to the list's Items collection at design time. Instead.
when the program begins. open the data file and read the items into the
Items collection.

• If the user makes any changes to the list. ask whether to save the list when
the program ends.

• Include a menu option to save the list.

• If the file holding the list elements does not exist when the program begins,
give the user the option of creating a new list by adding items.

The examples in this section use the hands-on example from Chapter 7.
which allows the user to make changes to the Coffee Flavor list (Figure 11.6).
We will load the list from a file in the Form_Load procedure and query the user
to save the list if any changes are made.

cr-J R 'n R for Re~ing 'n Refreshment l e~ IS IOIIIIE.I.ol

File _.,_ Edit !::!elp

Select Colfee and Syrup

~eeFiavor SYnc> Flavor

I . Chocolate
HozchA
Irish Creme
Orange

- -

i

Loading tbe List Box

Assuming that the list items are stored in a data file. you can read the file into
the list in the Form_Load procedure. Loop through the ftle until all elements
are read, placing each item in the list with the Items .Add method.

Dim CoffeeFlavorString As String

• Read all elements into the list .
Do Until FlavorsStreamReader.Peek = - 1

CoffeeFlavorString = FlavorsStreamReader . ReadLine()
CoffeeComboBox.Items .Add(CoffeeFlavorString)

Loop

Checking fo1· Exi.ste nce of the F ile

When you create a Stream Reader object. the constructor checks to make sure
the file exists. If the file does not exist. what do you want to do? Maybe the user

F'ig11 a· e J 1.6

The form for the li.st sove
program. taken from
Chapter 7.

4SS

456 \ ' S L .\ L R .\ S (' Data Files

wants to exit the program. locate the file. and try again. Or maybe the user
prefers to begin with an empty list. add the I ist items. and create a new file.
TI1is technique is a good way to create the file in the first place.

You can catch the exception for a missing file and display a message box
asking if the user wants to create a new file.

ResponseDialogResult = MessageBox.Show("Create a new file? ·, "File not Found",
MessageBoxButtons.YesNo, MessageBoxlcon.auestion)

If the user says Yes. allo11· the program to begin running with an empty list;
the fil e will be created when the program exits or the user saves the list. lf the
user says No. exit the program immediately.

Private Sub FlavorsForm_Load(ByVal sender As Object,
ByVal e As System.EventArgs) Handles Me.Load

' Load the items in the CoffeecomboBox list.
Dim ResponseDialogResult As DialogResult
Dim CoffeeFlavorString As String

Try
' Open the file.
Dim FlavorsStreamReader As StreamReader

New StreamReade r("Coffees.txt ')
• Read all elements into the list.
Do Until FlavorsStreamReader.Peek = - 1

CoffeeFlavorString = FlavorsStreamReader.Readline()
CoffeecomboBox.Items.Add(CoffeeFlavorString)

Loop
• Close the file.
FlavorsStreamReader.Close ()

Catch ex As Excepti on
' Fil e missing .
ResponseDialogResult = MessageBox. Show("Cr eate a new file?",

"Fi le Not Found" , MessageBoxButtons.YesNo, _
MessageBoxlcon.Ouestion)

If ResponseOial ogResult = Dial ogRes ult.No Then
' Exit the program.
Me .Close()

End If
End Try

End Sub

Saving tbe F ile

In this program the user can choose a menu option to save the file. Open a
Stream '\'l'riter object and loop through the Items collection of the list box. sav
ing each element with a Writeline method.

Private Sub SaveFlavorlistToolStripMenuitem_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles SaveFlavorlistToolStripMenuitem.Click

· Save the flavor list in a file .
Dim Numberitemsinteger As Integer

(; II ,\ 1• 1' 1·: II II

' Open the file.
Dim FlavorsStreamWriter As Streamwriter =

New StreamWriter("Coffees.txt", False)
' Save the items in the file.
Numberitemsinteger = CoffeecomboBox. Items. count - 1
For Indexlnteger As Integer = o To Number ltemslnteger

FlavorsStreamWriter.Writeline(CoffeecomboBox.Items(Indexinteger))
Next Indexlnteger
' Close the file .
FlavorsStreamWriter.Close ()
IsDirtyBoolean = False

End Sub

The last line in this procedw-e needs some explanation. The next section
explains the reason for I sDi r t yBool ean = False.

Que t·ying Lht' Use•· Lo San '

If your program allows users to make changes to data during program execu
tion. it's a good idea to ask them if they want to save the changes before the pro
gram ends. This is s imilar to working in a word processing program or the VB
editor. If you close the file after making changes. you receive a message asking
if you want to save the file. But if you haven "tmade any changes s ince the last
save. no message appears.

To keep track of da ta changes during execution. you need a module-level
Boolean variable. Because the standard practice in programming is to refer to
the data as "dirty'' if changes have been made. we will call the variable ls
DirtyBoolean. In each procedure that allows changes (Add. Remove. Clear).
you must set ls DirtyBoolean to True. After saving the ftle. set the variable to
False. ('The code for this appears in the preceding section.)

Just before the project ends. you must check the value of lsDirtyBoolean:
if True. ask the user if he or she ~·ants to save: if False. you can just exit with
out a message.

T lw Fot·mCios ing EYc nl Pt·occthu·c

If you want to do something before the project ends. such as ask the user to save
the file. the best location is the form's Fo•·mClosiug ncut procedure. This is a
much better place for such a question ll1ru1 your exit procedure because the user
can quit the progrrun in more than one 1ray. The Form_ FormClosing event pro
cedure executes before the fonn closes when the user clicks on your Exit button
or menu c01runand. clicks on the window's Close button. or even exits Windows.

Private Sub FlavorsForm_FormClosing(ByVal sender As Object ,
ByVal e As system.Windows.Forms.FormClosingEventArgs) Handles Me.FormClosing

' Ask the user to save the file.
Dim ResponseDialogResult As DialogResult
Dim MessageString As String = "Coffee list has changed. save the list?'

If IsDirtyBoolean Then
ResponseDialogResult = MessageBox. ShOw(MessageStr ing, "Coffee List Changed ",

MessageBoxButtons .YesNo, MessageBoxlcon.Ouestion)

If ResponseDialogResult = DialogResult.Yes Then
saveFlavorlistToolStripMenuitem_Click(sender , e)

End If
End If

End Sub

457

458 \ S L \ 1, IE _\ S (' Data File.

l. Write the loop to save all of the elements from NamesUstBox using
NamesStreamWriter. which is a Stream Writer already opened and con
nected to Names.Lxl.

2. In what procedure should the code from Question l be placed?
3. Write the s tatements in the Form_Load event procedure to load the list

of names into NamesListBox.

XML Files ~
An increasingly important topic. XML files. is covered in Chapter 14. See
'"XML Data Files" for tenninology and examples. including the new XML Lit
erals. X Document and XElement objects. and LINQ to XML.

Your Hands-On Programming Example --------

Modify the hands-on programming example from Chapter 7 to save the lis t
changes from one run of the program to the next. TI1e user can add items to the
Coffee Flavor list. remove items. and clear the list. lf there are any changes to
the list, allow the user to save the lis t. ~'hen the program begins, load the list
from tl1e disk file. so that it displays the list as it appeared during the last run.

Do not give the Coffee Flavor list initial values: if the user has not entered
any flavors. the list should be blank. Lf the file holding coffee flavors is not
found. allow the user to enter the new flavors at run time.

Add a Save Aavors Ust menu item on the File menu. Also query tl1e user lo
save the file if the list has changed when the program closes.

Note: 're have removed L11e printing routines from the Ch07Hands0n pro
gram to better focus on the file-handling routines.

Plmmin~ the !•rojcN

Sketch the form (Figure ll. 7). which your users sign off as meeting their needs.

Flavor5Form

Edit t:lelp

GroupBox1
~yrup Fla..-or

I<' I ~urt> I 1.7

A skeUh oftheformfor tiul
hands-on programming
example.

CoffeeComt>oBox

D
Syru pllstBox

C II 1\ I' T t: R II

Plan the Objec ts and Properties See the planning for the Chapter 7 hands-on
programming example and make the following addition:

O hje• l I
SaverJa,orListToolStripMenullem

Properly I
Name
Text

Sel ling

Save F'lavorListToolStripMcnulte m
&Save Flavor List

Plan the Procedures Refer to the planning for the Chapter 7 hands-on pro
granuning example and make the following changes. You can remove the con
trols and procedures for printing.

P rQccdm-e

SaveFtavorLisiTooiStripMenullem_Ciick

Form_ Load

Form_FormCI011ing

Actio ns

Open the file.
Save the list items in the file.

Close the file.
SetlsOirtyBoolean to F alae.

Try

Open I he 6le.
Read the file contents into the Flavors list.
Close the file.

Catc h (File io missing)
Query Lhe user to create the ne w file.
U ans,.·er is No

Exit the program.
End lf

End Try

lf liot has c h•ngeJ (is dirty)
Query the user to •ave the List data.
l fY.,.

Call S.veFlavorl..istToolStripMenul lem_ CJjck.

Wri te the Project Begin with the Chapter 7 hands-on programming example.
See "Basing a New Projec t on an Existing Project" in Chapter 5 (page 233) for
help. Figure 11.7 shows the sketch and Figure 11.8 shows the completed form.

• Add the menu item and set the properties according to your plan.

• Make sure to add d1e new Imports statement:

Imports System . IO

• Add the module-level variable lsDirtyBoolean.

• Write the code for the ne11· menu item based on the pseudocode.

• Write the nee+· code for the Form_l.oad and Form_FormClosing event pro
cedures. based on the pseudocode.

• When you complete the code. thoroughly tesl tbe project. Fill the list. save
the 'lis t. and rerun the program multiple limes. Make sw·e that you can
modify the list and have the changes appear in the next program run. Also
test the option to not save changes and make sure that it works correctly.

459

460 \ S L \ I, ll \ s (' Data Fil~.,

fil• fd~ !:folp

Tbt> P rojN· t (~odin~ Solut ion

'Project:
'Prograrrrner:
'Date:
'Description:

Ch1 1HandsOn
Bradley/Millspaugh
June 2010
Maintain a list of coffee flavors.

t ' IJ!ure I 1.8

The completedf omtfor the
haruls-on programming
example.

' Folder:

Note: This program extends Ch07HandsOn to save the modified list
in a file . The printing has been removed for clarity .
Ch11Hands0n

Imports System.IO

Public Class FlavorsForm

' Declare module- l evel variable .
Private IsDirtyBoolean As Boolean

Private Sub FlavorsForm_Load(ByVal sender As Object ,
ByVal e As System.EventArgs) Handles Me .Load

' Load the items in the CoffeecomboBox list.
Dim ResponseDialogResult As DialogResult
Dim CoffeeFlavorstring As String

Try
' Open the file.
Dim FlavorsStreamReader As StreamReader

New StreamReader(' Coffees.txt ')
' Read all elements into the list.
Do Until FlavorsStreamReader .Peek = -1

CoffeeFlavorString = FlavorsStreamReader .Readline()
CoffeeComboBox.Items.Add(CoffeeFlavorString)

Loop
' Close the file .
FlavorsStreamReader.Close()

C ll i\ 1°T t: R II 461

catch ex As Exception
' File missing.
ResponseDialogResult = MessageBox.Show('Create a new file?",

"File Not Found", MessageBoXButtons. YesNo,
MessageBoxicon.ouestion)

If ResponseDialogResult = DialogResult .No Then
' Exit the program.
Me.Close()

End If
End Try

End Sub

Private Sub FlavorsForm_FormClosing(ByVal sender As Object,
ByVal e As System.Windows.Forms.FormClosingEventArgs) Handles Me.FormClosing

' Ask the user to save the file.
Dim ResponseDialogResult As DialogResult
Dim MessageString As String = "Coffee list has changed. Save the list?"

If IsDirtyBoolean Then
ResponseDialogResult = MessageBox.Show(MessageString, "Coffee List Changed" ,

MessageBoxButtons.YesNo , MessageBoxicon.ouestion)

If ResponseDialogResult = DialogResult.Yes Then
saveFlavorListToolStripMenuitem_Click(sender, e)

End If
End If

End Sub

Private Sub saveFlavorListToolStripMenuitem_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles SaveFlavorListToolStripMenuitem.Click

' Save the flavor list in a file .
Dim Numberltemsinteger As Integer

' Open the file.
Dim FlavorsStreamWriter As StreamWriter = New Streamwriter("Coffees.txt" , False)
' Save the items in the file.
Numberitemsinteger = CoffeeComboBox.Items.Count - 1
For Indexinteger As Integer = o To Numberitemsinteger

FlavorsStreamWriter.WriteLine(CoffeecomboBox.Items (Indexinteger))
Next Indexinteger
' Close the file.
FlavorsStreamwriter.Close()
IsDirtyBoolean = False

End Sub

Private Sub ExitToolStripMenuitem Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles ExitToolStripMenuitem.Click

' End the program.

Me .Close()
End Sub

Private Sub AddCoffeeFlavorToolStripMenuitem_Click(ByVal sender As system.Object,
ByVal e As System.EventArgs) Handles AddCOffeeFlavorToolStripMenuit em.Click

' Add a new coffee flavor to the coffee list.

462 ,. S l \ L

With CoffeeComboBox
' Test for blank input .
If .Text<> · · Then

It \ s

' Make sure item is not already on the list .
Dim ItemFoundBoolean As Boolean
Dim Itemlndexlnteger As Integer
Do Until ItemFoundBoolean or Itemlndexlnteger = .Items.Count

If .Text = .Items(Itemindexinteger) .ToString() Then
ItemFoundBoolean = True

Loop

Exit Do
Else

Itemlndexinteger += 1
End If

If ItemFoundBoolean Then

Else

MessageBox. Show(' Duplicate item. " , • Add Failed",
MessageBoxButtons.OK, MessageBoxicon .Exclamation)

' If it's not in the list, add it .
. Items.Add(.Text)
. Text = • •
IsDirtyBoolean = True

End If
Else

MessageBox . Show("Enter a coffee flavor to add · ,
'Missing Data', MessageBoxBut tons.OK,
MessageBoxicon.Exclamation)

End If
. Focus()

End With
End Sub

Private Sub ClearCoffeeListToolStripMenuitem_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles ClearCoffeeListToolStripMenuitem.Click

' Clear the coffee list.
Dim ResponseDialogResult As DialogResult

ResponseDialogResult = MessageBox.Show('Clear the coffee flavor list? ' ,
"Clear Coffee List ", MessageBoxButtons.YesNo, MessageBoxicon.auestion)

If Re.sponseDialogResult = DialogResult .Yes Then
CoffeeComboBox. Items .Clear()
IsDirtyBoolean = True

End If
End Sub

Private Sub RemoveCoffeeFlavorToolStripMenuitem_Click(ByVal sender As Object,
ByVal e As system.EventArgs) Handles RemoveCoffeeFlavorToolStripMenuitem.Click

' Remove the selected coffee from list.

With CoffeecomboBox
If .Selectedlndex <> -1 Then

.Items.RemoveAt(.Selectedindex)
IsDirtyBoolean = True

Else
MessageBox.Show(' First select the coffee to remove.",

' No selection made', MessageBoxButtons.OK,
MessageBoxicon.Exclamation)

End If
End With

End Sub

(; II i\ I' 1' 1•: H II

Private Sub DisplayCoffeecountToolStripMenui tem_Click(ByVal sende r As Object,
ByVal e As System.EventArgs
) Handles OisplayCoffeecountToolStripMenuitem.Click

' Display a count of the coffee list .

MessageBox.Show("The number of coffee types is " &
CoffeeComboBox.Items.Count, "R ' n R Coffee Type Count •,
MessageBoxButtons.OK, MessageBoxicon.Information)

End Sub

Private Sub AboutToolStripMenuitem_Click (ByVal sender As Object ,
ByVal e As System.EventArgs) Handles AboutToolStripMenuitem.Click

' Display the About form.

About Form . Show()
End Sub

End Class

l. The My.Computer.F'ileSystem makes it easier to work with data.
2. A stream object is used to transfer data to and (rom a data file. The

Stream Writer outputs (writes) the data and the Stream Reader inputs (reads)
data.

3. The constructors for a S tream Writer and StreamReader take the name of
the file. with an optional path. as a parameter.

4. The Writeline method writes a data line to disk.
5. A Cl ose method should be used as soon as you are done with the s tream.

Make sur e the stream is closed prior to the termination of a program that
uses streams.

6. The Peek method looks at the next element. which allows testing for the
end of the file. The Peek method returns - 1 at the end of file.

7. List box data may be saved to a file. The Items collection should be filled
in the Form_Load if the file exists. Any changes are saved back to the file
~·hen the program terminates.

8. A Boolean variable is used to track whether changes are made to the data.
9. The fo tm's Form Closing event procedure is a good location for the code to

prompt tl1e users if they wish to save any chw1ges.
10. The OpenF'ile Dialog and Save FileDialog components can be used to dis

play the Open File and Save As dialog boxes and allow the user to select the
fil ename.

Close method 447
data fil e 438
delimited fil e 439
FomiClol!ing event 457
My.Computer.F'ileSystem 439
Nothing 452

OpenFileDialog 450
Peek method 448
ReadAllText method 439
Readl ine method 448
s tream 445
StreamRead€r 445

463

464 S l r \ L 11 \ s C Dota Fil~•

StreamWriter 445
System.IO namespace 445
TextFieldParser 442

Write method 446
WriteAllText method 439
WriteLine method 446

l. Explain how to crente a new object that should have moduJe-level scope
and be instantiated in a Try I Catch block.

2. Explain what occurs when a stream object is instantiated.
3. Name two types of s tream classes. What is the difference behveen the hvo?
4. ·what is the difference betK·een a Write method and a Wri teune method?
5. What steps are necessary for storing the list items from a list box into a

disk file?
6. What is the fonnat for the s tatements to read and ltTite s treams?
7. What method can be used to detemline the end of(ile?
8 . \\'hen is exception handling necessary for stream handling?
9. Explain when a form's Fom1Closing event occurs and wha t code might be

included in the FonnCiosing event procedure.

ll.l ReKTite Programming Exercise 8.4 us ing a ille to store the state names
and abbreviations. You need two projects : The first will allow the typist to
enter the state name and the abbreviation in text boxes and store them in
a file. The second project will perform the lookup functions specified in
Programming Exe rcise 8.4.
Note: Unless you include Open File dialog boxes. copy the file created in
bin \Debug for the first project into the bin\ Debug folder for the second
project.
Note: For help in basing a new p roject on an existing project. see "Basing
a New Project on an Existing Project" in Chapter 5.
Optional extra: Allow the user to select the file to open using the Open
File dialog box.

11.2 Create a file for employee informa tion and call it Employee.txl. Each
record will contain fields for first na me. last name. employee number. and
hourly pay rate.

Write a second project to proce5s payroll. The application 1\illload the
employee data into an array of structures from the file with an extra field
for the pay. 11te form will contain labels for the information from the array
(display one record at a time) and a text box for the hours worl<ed.

A button called FindPay will use a For /Next loop to process the array.
You 1rill calculate the pay and add the pay to the totals. Then display
the labels for the next employee. (Place the pay into the extra field in the
array.)

The Exit button l'ill print a report on the printer and terminate the proj
ect. (Print the array.)

C II A 1•1'" R II

Processing: Hours over 40 receive time-and-a-half pay. Accumulate the
total number of hours worked. the total number of hours of overtime. and
the total amow1t of pay.

Sample Report

/l et> ludustrit>s

Eu1plo~·ee llom·• HoUI·!! A m o uu l

Nam e Wo1·kcd Ovea·tU.ne Pay Rate Enn1ed

Janice Jones 40 0 5.25 210.00

Chris O'Connel 35 0 5.35 187.25

Karen Fisk 45 5 6.00 285.00

Tom Winn 42 2 5.75 247.25

Totals 162 7 929.50

Now: Unless you include an Open File dialog. copy the ftle created in the
bin\Debug folder for the first folder into the bin\Debug folder for the second
folder.
Optional Extra: Allow the user to select the file to open using the Open
File dialog box.

11.3 Modify Programming E xercise 7.6 to s tore the list box for Bradley's
Bage ls in a data file. Load the list during the F'onn_Load event procedure
and the n close the me. Be sure to use error checking in case the file does
not exist.

ln the FormClosing procedure. prompt the user to save the bagel list
back to the dis k.
Note: F'or he lp in basing a new project on an exis ting project. see "Basing
a New Project on an Exis ting Project" in Chapter 5.
Optional Extra: Allow the user to select the file to open using the Open
File dialog box.

11.4 Create a s imple text editor that has one large text box (with its Multiline
property set to Tme) or a RichTextBox control. Set the text control to fiJ]
the fonn and set its Anchor property to all four edges. so that the control
[ills the form even whe n it is resized.

Allow the user to save the conte nts of the text box in a data file and
load a data file into the text box using the Open File dialog box.

Use a Stream'il'riter and StreamReader or My.Computer.FileSystem.

WriteAIIText and My.Computer.FileSystem.ReadAifText.

Hinl : You will need to save multiple lines.
ll.5 Create a project that s tores personal infom1ation for a little electronic

"black book.'' The fields in the file should include name. phone number.
pager number. cell phone number. voice ma il number. and e-mail ad
dress. Allo-..· the user to e nter the data into text boxes .

Create a second project to load the names into a list box. Perfom1 a
"look up'' and dis play the appropriate information for the selected name.
Now: Unless you include an Open File dialog. copy the file created in the
bin\Debug folder for the first folder into the bin\Oebug folder for the second
folder.
Optional Ex.tra: Allow the user to select the file to open using the Open
File dialog box.

465

466 \ S l \ L ll .\ s C DataFi/~,

Not-e: F'or help in ba.sing a ne~t- project on an existing project. see " Basing a New Project on an Existing Project"
in Chapter 5.

l 'll lUaU Ortl~r

Modify your project from Chapter 7 to save the
changes to the catalog name combo box from one run
to the next. When the progrnm begins. load the list
from the data file. lf the file does not exist. display a
message asking if the user ~t·ants to create il.

Allow the user to save changes from a Sav9 menu
item. 'When the program terminates. check to see if

there are any unsaved changes. If so. prompt the user
to save the changes.

Optional extra: Allow the user to select the file to
open using the Open File dialog box.

VB Auto (;entel" I
Write a project to store vehicle information including
mode l. manufacturer. year. and YIN number.

Create a second project that loads the data from
the ftle into memory and loads a drop-down combo box
with the VlN numbers. When a nwnber is selected
from the combo box. display the appropriate informa
tion regarding the vehicle in labels.

Modify your project from Chapter 7 to save the changes
to the movie combo box &om one run to the next. When
the program begins. load the list from the data file. l f
the fsle does not exist. display a message asking if the
user wants to create it.

Allow the user to save changes from a Save menu
item. \lThen the program terminates. check lo see if

Note: Unless you include an Open File dialog, copy
the file created in the bin\Debug folder for the first
folder into the bin\Debug folder for the second folder.

Optional extra: Allow the user to select the file to
open using the Open File dialog box.

there are any unsaved changes. U so. prompt the user
to save the changes.

Optional extra: Allow the user to select the file to
open using the Open Fil9 dialog box.

Very Very Boartls

Modify your project from Chapter 7 to save the
changes to the shirt style combo box from one nm to
the next. When the program begins. load the list from
the data file. If the file does not exis t. display a mes
sage asking if the user wants to create it.

Allow the user to save changes from a Save menu
item. When the program terminates. check to see if

there are any unsaved changes. If so. prompt the user
to save the changes .

Optional extra: AUow the user to select the fi le to
open using the Open Fil9 dialog box.

D A p T E R

OOP: Creating
Object-Oriented
Programs

Use object-oriented terminology correctly.

2. Create a ht·o-tier application that separates the user interface from the

business logic.

!l . Differentiate between a class and an object.

-t. Create a class that has properties and metl1ods.

5. Declare object variables and use property procedures to set and

retrieve properties of a class.

G. Assign values to the properties with a constructor.

7 . Instantiate an object in a project using your class.

8 . Differentiate between shared members and instance members.

9 . Understand tl1e putpose of Lhe constructor and destructor methods.

Inherit a new class from your own class.

Use visual inheritance by deriving a form from another form.

468 l ' C OOP: Creating Object-Oriented Programs

Object-Oriented Prograuuning .

You have been using objects since Chapter l. As you know quite well by now.
objects have properties and methods and generate events that you can respond
to (or ignore) if you choose. Up until now, the classes for all objects in your proj
ects have been predefined; that is. you could choose to create a new object of
the form class. a button class. a text box class. or any otlter class of control in
the toolbox. In this chapter you willleam to define your own new class and cre
ate objects based on that class.

Object-oriented programming (OOP) is cmTently the most accepted style of
programming. Some computer languages. such as Java. C#. and SmallTalk.
were designed to be object oriented (00) from their inception. Other languages.
such as Visual Basic. have been modified over recent years to accommodate
OOP. Visual Basic .NET was the first version of Visual Basic to be truly object
oriented.

Writing object-oriented programs is a mind-set- a different way of looking
at a problem and requires an understanding of Object Oriented Design. You
must think in tenus of using objects. As your projects become more complex,
using objects becomes increasingly important.

Objects

Beyond the many built-in choices you have for objects to include in your proj
ects. Visual Basic allows you to create your own new object type by creating a
class. Just like other object types. your class may have both properties and
methods. Your class can have events too. just like the Click event for the But
ton class. So remember: Properties are cl1aracteristics, and methods are actions
that can be performed by a class of objects.

An object is a thing such as a button. You create a button object from the
button tool in the toolbox. In other words, button. is a class hut ExitBuuon is an
actual occunence or instance of the class; the instance is the object. Just as
you may have multiple buttons in a project, you may have many objects of a
new class type.

Defining your own class is like creating a new tool for the toolbox: the
process does not create the object. only a definition of what that type of object
looks like and how it behaves. You may then create as many instances of the
class as you need using the New keyword. Your class may he a student. an em
ployee. a product, or any other type of object that would be useful in a project.

Many people use a cookie analogy to describe the relationship of a class
and an object. The cookie cutter is the class. You can't eat a cookie cutter. but
you can use it to make cookies: the cookie is the object. When you make a
cookie using a cookie cutter. you instamiate an object of the cookie class. You
can use the same cookie cutter to make various kinds of cookies. Although all
the cookies made will have the same shape. some may be chocolate. others are
lemon. or vanilla; some may he frosted or have colored sprinkles on top. The
characteristics of the cookie. such as flavor and topping. are the properties of
the object. You could refer to the properties of your cookie object as

Cookie1. Flavor =" Lemon"
Cookie1 . Topping = "Cream Frosting "

C II A 1• 'I' " ll 12

What about methods? Recall that a method is an action or behavior
something the object can do or have done to it. such as Move. Clear, or Print.
Possible methods for our cookie object might be Eat. Bake, or Crumble. Using
object terminology. you can refer to Object.Method:

Cookie1.Crumble

Sometimes the distinction between a method and an event is somewhat
fuzzy. Generally. anything you tell the object to do is a method; if the object
does an action and needs to inform you, that's an event. So if you tell the cookie
to Ciumble. that is a method; if the cookie crumbles on its own and needs to in
form you of the fact. that's an event.

0 hject-Ol'icnle<l Te •·minology

Key features of an object-oriented language are abstraction. encapsulation.
inheritance, and polymorphism.

Ahstraction

AJ>sll•nction means to CI'entc n model of nn object. for the purpose of deter
mining the characteristics (properties) and the behaviors (methods) of the ob
ject. For example, a Customer object is an abstract representation of a real
customer. and a Product object is an abstract version of a real product. You
need to use abstraction when planning an object-oriented program, to deter
mine the classes that you need and the necessary properties and methods. It is
helpful to think of objects generically; that is, what are the charactelistics of a
typical product. rather than a specific product.

Encapsulation

.Encapsulation refers to the combination of characteristics of an object along
with its behaviors. You have one "package" that holds the defmition of all prop
erties. methods. and events. You can think of all of the parts of the package as
being in a capsule.

You can witness encapsulation by looking at any Windows program. The
fotm is actually a class. All of the methods and events that you code are en
closed within the Class and End Class statements. The variables that you
place in your code are actually properties of the specific fom1 class that you are
generating.

When you w1derstand and use encapsulation successfully. you can imple
ment data hiding. Each object can keep its data (properties) and procedures
(methods) hidden. Through use of the Public. Private, Protected, and
Friend keywords, an object can "expose" only those data elements and proce
dmes that it wishes to allow the outside world to see.

lnltcritauce

Iuhet·itance is the ability to create a new class from an existing class. You can
add enhancements to an existing class without modifying the original. By creat
ing a new class that inherits from an existing class. you can add or modify class
valiallles and methods. For example. each of the forms that you create is inher
ited from. or detived from. the existing Fonn class. The oliginal class is known

469

470 v S U 1\ L If ,, s (' OOP: Creating Object-Oriented Programs

as the base cia§. superclass. or pat·ent class. The inherited class is called a
sul>class. det·ived class. or child cla.;;s. Of course, a new class can inherit from
a subclass- that subclass becomes a superclass as well as a subclass.

You can see the inJ1eritance for a form. which is declared in the form's
designer. vb file. Show all files in the Solution Explorer. expand the files for
a form, and open the form's designer.vb file. Look closely at the first line
of code:

Partial Class Form1
Inherits System.Windows .Forms.Form

The base class is System. Windows.Forms.F' orm. and Form1 is the derived class.
Inherited classes have an "is a" relationship with the base class. In the form
example. the new Form1 "is a" Form.

The real purpose of inheritance is t'ettsabUity. You may need to reuse or
obtain the functionality from one class or object when you have another similar
situation. TI1e new Fonn1 class that you create has all of the characteristics and
actions of the base class, System.Windows.Forms.Form. From there you can
add the functionality for your own new form. Other classes that you have reused
multiple times are the Button class and the Text Box class.

You can create your own hierarchy of classes. You place the code you
want to be common in a base class. You then create other classes from it.
which inherit the base class methods. Tlus concept is very helpful if you have
features that are similar in two classes. Rather than writing two classes that
are almost identical. you can create a base class that contains the similar
procedures.

An example of reusing classes could be a Person class. where you might
have propetties for name. address. and phone number. The Person class can
be a base class from which you derive an Employee class. a Customer class.
or a Student class (Figure 12.1). The derived classes could call shared pro
cedures from the base class and contain any procedures that are unique to
the derived class. In inheritance. typically the classes go from general to the
more specific.

Person

-Name
-Address
-Pl1uu~

I I
Employee Cttst.om er· Student

·HireDate -PIN
-supervisor -Birtl1Date

The derived classes inlterit
front the base class.

C II A 1• 'I' " ll 12

I' ol ymor·puism

The term polymorphism actually means the ability to take on many shapes or
forms. As applied to OOP. polymorphism refers to methods that have identical
names but different implementations. depending on the situation. For example.
radio buttons. check boxes. and list boxes all have a Select method. In each
case. the Select method operates appropriately for its class.

Polymorphism also allows a single class to have more than one method with
the same name. When the metJ10d is called. the argument type determines which
version of the method to use. Each of the identically named methods should per
form the same task i11 a slightly different manner, depending on the arguments.

Later in this chapter you will use both overloading a metJ10d and over·
r·idiug a method to implement polymorphism. You have already seen examples
of overloading. such as the MessageBox. Show method that gives you several
argument lists for calling the method. Overriding refers to a method iliat has the
same signature (name and parameter list) as a method in its base class. The
metJ10d in t11e subcla~s. or derived class. takes precedence over, or overrides.
the identically named method in the base class.

When a derived class overrides a method of its base class. boili methods
have the same name. But in each case, the actions performed are appropriate
for the class. For example, a Person class might have a Print method that
prints an address label with name and address information. But the Print
method of the Employee class, which overrides the Print method of the Person
class. might display the employee's ulfonnation, including hire date and super
visor name. on the screen.

Re usable Classes

A big advantage of object-oriented programming over traditional programming
is the ability to reuse classes. When you create a new class, you can then use
that class in multiple projects. Each object that you create from the class has
its own set of properties. This process works just like the built-in VB controls
you have been using all along. For example. you can create two PictureBox ob
jects: PictureBoxl and PictureBox2. Each has its own Visible property and Im
age property. which will probably be set differently from each other.

As you begin creating classes i11 your projects. you will find many situations
in which classes are useful. You might want to create your own class to provide
database access. You could include metJ1ods for adding and deleting data mem
bers. If you work frequently with sales, you might create a Product class. 1l1e
Product class would likely have properties such as description, quantity. and cost.
The methods would probably include finding the current value of the product.

Developing applications should be like building objects with Lego® blocks.
The blocks all fit together and can be used to build many different things.

IVIuhiLie t· Applicatio ns

A common practice fol' writing professional applications is to write independent
components that work in multiple "tiers" or layers. Each of the functions of a

multi tier· application can be coded in a separate component. and the compo
nents may be stored and run on different machines.

One of the most popular approaches is a three-tier application. 1l1e tiers in

this model are the Presentation (or user interface) tier. Busi11ess Services tier.

471

472 l ' C OOP: Creating Object-Oriented Programs

and Data tier (Figure 12.2). You also hear the tenn "n-tier" application. which
is an expansion of the three-tier model. The middle tier. which contains all of
the business logic, may be written in multiple classes tlmt can be stored and
lUll from multiple locations.

Uset• lut.e rfaee Business Ohj eet.s
Fonns, controls. menus Validation

Calculations
Business logic

Business rules

Data Retrieval

Data storage

In a multitier application. the goal is to create components that can be
combined and replaced. If one part of an application needs to change, such as
a redesign of the user interface or a new database fonnat. the other components
do not need to be replaced. A developer can simply "plug in" a new user inter
face and continue using the rest of the components of the application.

The Presentation tier refers to the user interface. which in VB is the form.
Consider that in the future the user interface could be redesigned or even con
verted to a Web page.

1be Business Services tier is a class or classes tl1at manipulate the data. This
layer can include validation to enforce business rules as well as the calculations.
If the validation and calculations are built into the form, then modifying the user
interface may require a complete rewrite of a working application.

The Data tier includes retrieving and storing the data in a database. Occa
sionally an organization will decide to change database vendors or will need to
retrieve data from several different sources. The Data tier retrieves the data and
passes the results to the Business Services tier. or takes data from the Business
Services tier and writes them in the appropriate location.

Programmers must plan ahead for reusability in today's environment. You
may develop the business tier for a Windows application. Later the company
may decide to deliver the application via the Web or a mobile device. such as
a cell phone or palm device. TI1e user interface must change. but the process
ing shouldn't have to change. If you develop your application with classes that
perform the business logic. you can develop an application for one interface
and easily move it to another platform.

Classes

The classes that you have worked with up until now have generated visual
objects such as text boxes and labels. These were easily created from the
toolbox at design time. Yon also can create objects at run time. In Chap
ter ll you instantiated objects of the StreamWriter and StreamReader
classes. and in Chapter 7 you instantiated objects of the Font class in your
printing routines. Tn both cases you used tl1e New keyword to instantiate the
objects.

l!' ig••••e 1 2.2

The three-tier model for
application design.

I_, IIi I #l
Before you con refer to most prop

erties and methods of a c lass, you

must instantiate on object of the

class. The exception is shared mem

bers, which you will see later in this

chapter. •

C II ,\I> 'I' I' R 12

Designing Yom· O wn Class

To design your own class. you need to analyze the characteristics and behaviors
t11at your object needs. The characteristics or properties are defined as vari
ables. and ilie behaviors (methods) are sub procedures or function procedures.

For a simple example, assume that you have a user interface (form) that
gathers the unit price and the quantity of a product. You can design a class to
perform the calculations. For the class to calculate the extended price. it must
know the tmit price and the quantity. 'flte form needs to retrieve the extended
ptice. The price. quantity. and extended p1ice are stored in private variables in
the class; those variables are accessed ilirough property procedures.

The fotm 'vill instantiate the class, pass the price and quantity to it through
property procedures. call a method to calculate the extended price, and then
display the extended price on the fonn by retrieving it from a property proce
dure (Figure 12.3).

Figure .12.3

A PresenwtWn tier and a Business Services tier. The daw are entered and displ.ayed in the Presentation tier: calcula.tions
are performed in the Business Services tier. Yon pass in the Title. Quantity. and Unit Price, and then yon can retrieve the
Extended Plice.

Presentation Tiel' Business Services Tier

oi} R ' n R Book Sales l~tel-l..t3.1
BookScde claJJs

File
Receives as properties:

Ttle: Title
Quantity

0\Ji!riity: -Price

Price; - Ptivate calculation methods:
Extended Price: ~

Returns as a property:
- Extended Price

Cs·ealing Ps·ot>es·ties in a Class

Inside your class you define private member variables. which store the values
for the properties of the class. Theoretically. you could declare all variables as
Public so iliat all other project code could set and retrieve their values. How
ever. this approach violates the rules of encapsulation t11at require each object
to be in charge of its own data. Remember t11at you use encapsulation to imple
ment data hiding. To accomplish encapsulation, you will declare all variables
in a class as Private or Protected. Protected variables behave as private but
are available in any class that inherits from this class. As a private or protected
variable. the value is available only to procedures within the class. the same
way that private module-level variables are available only to procedures within
a form's class code.

When your program creates objects from your class. you will need to assign
values to the properties. Because the properties are private variables. you will

473

474 ,. S l l ,\ I. C OOP: Creating Object-Oriented Programs

use special propetty pmcedures to pass the values to the fields in an instance of
t11e class and to return field values from the instance.

Pt·opet·ty Pt·o cedures

The way that your clas:; allows its properties to be accessed is with accessot·
methods in a pt·o peJ·ty procedure. TI1e procedure may contain a Get acces
sor method to retrieve a property value and/or a Set accessor method to assign
a value to the property. The name t11at you use for the Property procedure be
comes the name of the property to the outside world. Create "friendly" property
names t11at describe the property. such as Last Name or EmployeeNumber. You
do not include the data type as part of a property name.

The Pro pet·ty Pl'Ou dure-Geueral Form

{Private 1 Protected} ClassVariable As DataType ' Declared at the module level.

(Public) Property PropertyName() As DataType
Get

PropertyName = ClassVariable
or

Return ClassVariable
End Get
Set(ByVal value As DataType)

(statements, such as validation]
Classvariable = value

End Set
End Property

The Set statement uses the va lue keywol'<l to refer to the incoming value
for the property. Property procedures are public by default. so you can omit the
optional Public keyword. Get blocks are similar to function procedures in at
least one respect: Somewhere inside the procedure. before the End Get, you
must assign a return value to the procedure name or use a Return statement to
return a value. The data type of the incoming value for a Set must match the
type of t11e retum value of the corresponding Get.

The Pro pet·ty Procedm·e-Example
~
~ Private LastNameString As String ' Declared at the module level .
e
1- Property Last Nama() As String

Get
Return LastNameString

End Get
Set(ByVal value As String)

LastNaneString = value
End Set

End Property

Remember. the private modu1e-level variable holds the value of the property.
The Property Get and Set retrieve the cunent value and assign a new value
to the property.

Note: lf you do not specify an access modifier. the default is Public.

C II A 1• 'I' " ll 12

Read-Only Properties

In some instances. you may wish to have a property that can be retrieved by an
object but not changed. You can write a property procedure to create a read
only property: Use the Read Only modifier and write only d1e Get portion of the
property procedure. Security recommendations are to not include a Set proce
dure unless one is needed for your application or for class inheritance.

' Define the property at the module level .
Private TotalPayDecimal As Decimal

' The property procedure for a read-only property.
ReadOnly Property TotalPay() As Decimal

Get
Return TotalPayDecimal

End Get
End Property

Wr·ite-Only P r·o (.ler·ties

At times you may need to have a property that can be assigned by an object but
not retrieved. You can create a property block iliat contains only a Set to cre
ate a write-only property.

' Private module- level variable to hold the property value .
Private PriceDecimal As Decimal

Public WriteOnly Property Price() As Decimal
Set(ByVal value As Decimal)

If value >= o Then
PriceDecimal = value

End If
End Set

End Property

Class Me th ods

You create methods of the new class by coding public methods within the class.
Any methods that you declare with the Private keyword are available only
within the class. Any methods that you declare with the Public keyword are
available to external objects created from this class or other classes.

' Private method used for internal calculations.

Private Sub CalculateExtendedPrice()
' Calculate the extended price .

ExtendedPriceDecimal = Quantityinteger * PriceDecimal
End Sub

Consl.r·uc lo t·s and Deslruc lo t·s

A consu·uc wr· is a method that executes automatically when an object is in
stantiated. A dest ructo t· is a method that executes automatically when an ob
ject is destroyed. In VB. the name of a constructor method is New.

475

476 l ' C OOP: Creating Object-Oriented Programs

Consu·uc tors

The constructor executes automatically when you instantiate an object of the
class. Because the constructor method executes before any other code in the
class. the constructor is an ideal location for any initialization tasks that you
need to do, such as setting the initial values of variables and properties.

The constructor must be public or protected because the objects that you
create must execute this method.

Note: If a class does not contain a constructor. the compiler creates an im
plicit method called the default constntctor. The default constructor has an
empty argument list.

O vet'loading the Consu·uctot·

Recall from Chapter 3 that overloading means that two methods have the same
name but a different list of arguments (the signature). You can create overloaded
methods in your class by giving the same name to multiple procedures. each with
a different argument list. The following example shows an empty constructor
(one without arguments) and a constructor that passes arguments to the class.

Sub New()

1 Empty constructor.

End Sub

Sub New(ByVal Title As String, ByVal Quantity As Integer,
ByVal Price As Decimal)

I Code statements to assign property values.

End Sub

Pm·ame te1ized ConMJ'uct.oJ·

The term parameterized co11stntctor refers to a constructor that requires ar
guments. This popular technique allows you to pass arguments as you create
the new object.

' Instantiate the object and set the properties .
TheBookSale = New BookSale(TitleTextBox.Text,

Integer.Parse(QuantityTextBox.Text),
Decimal .Parse(PriceTextBox .Text))

Within the class code, assign the values passed as arguments to the class con
structor to the properties of the class. This teclmique is preferable to just as
signing the passed argument to the class-level property variables. since
validation is often pelfonned in the Set methods.

Sub New(ByVal Titlein As String, ByVal auantityin As Integer,
ByVal Pricein As Decimal)

' Assign property values .

Title = Titlein
Quantity = auantityin
Price = Pricein
CalculateExtendedPrice()

End Sub

C II A 1• 'I' " ll 12

Ct·ca ling a New Class-Step-by-Ste p

In this step-by-step exercise. you will create a new class to hold book sale in
fonnation for R 'n R.

Begin the P1·ojcct

A class file is part of a Visual Basic project. so the first step is to create a new
project.

STEI' 1: Create a new Windows project called "Chl2SBS" .

Begin n New Class

STEI' 1: Select Add Class from the Project menu. The Add New Item dialog box
~till appear (Figure 12.4) with the Class template already selected.

Add a new class tc a project in the Add New Item dialcg box.

_, Commonlterns

Code

Add a new class

Figu1•e 12.4

Data
GeMrDI

Web

.O.n empty class defin•tion

Windows l=orms

Reporting
Workflow

WPF

Online T ~mplatf'S

~ Module

:;1~ lmerface

§'i] Windows Form

~ User Control

Common Items

C.ommonl1ems

Common Item~

Common Items

Enter the name of the new class

STEP 2: In the Add New Item dialog box. type "BookSale. vb" for the class name
and click on Add. You will see a new tab in the Document window for
the new class.

Defin e the Class Propc rtics

STEP 1: In the Code Editor window. in the line after the Class statement. de
clare the Private variables. These module-level variables will hold
the values for the properties of your new class.

417

478 v S U i\ I, C OOP: Creating Object-Oriented Programs

Private TitleString As String
Private auantitylnteger As Integer
Private PriceDecimal, ExtendedPriceDecimal As Decimal

This class has private module-level variables: 'l'itleString. Quanlitylrlleger,
PriceOecimai. and ExtendedPriceOecimai (Figure 12.5). Because the variables
are declared as Private. they can be accessed only by procedures within the
class module. To allow access from outs ide the class module, you mus t add
property procedures.

BookSale.vb~ X ~orml \h (IJf""'t n •

- Cl (DecbntiGn<)

f'rlv;ate T!tleStdnR M. String
Privne OUant1tylnteier AS Inteser l

Put>llc c l ass Hook5ol<

rdvat~ Pr1C~Oecin~l~ t)(te:nctedPriceOecifld AS ~r.in~tl

End Class

Atl41 tht• Title Pr·ojtt•r·ty P•·oc·crlur·e

ST EP 1: In the Code Editor window. after the property declarations. type
"Property Title() As Str ing". Press Enter.

Note: The srnarl editor takes care of the capiLal izalion of keywords.
However. the new propelty name that you declare will be capita lized
exactly as you enter it. You can save a little time by typing the line
" prope1ty Title() as siTing".

/lT EI' 2o l.n a change from VB 2008. the Get and Set blocks do not appear au
tomatically, but you can use a shortcut to generate the statements: On
the line following the Property statement. type "g" (for "get") or "s"
(for "set") and press Enter; I he editor will generate the Get and Set
blocks for you.

~TIW a: Write the code for the Property procedures.

Property Title() As String
Get

Return T1t l eStri ng
End Get
Set(ByVal value As String)

Titl eStr ing = value
End Set

End Property

Add tbc Quantity Pr.'OJJel'lY l'r:ocedm·e

STEP 1: On a new I ine afte r the End Property for Title. type "Property
Quantity() As Integer" ru1d press Enter.

STEP 2: Type "g" and press Entel'.
The Get and Set blocks ,~;u appear.

STEP 3: Write the code for the Property procedure.

Fl ,: ur .. ·1 2 . 5

Declare module-level variable$
for the cla~s propertie.s.

Follow variable naming convenlions,

for the modu!e-level variable to hold
the property value; use a friendly
nome lor the- property nome in the
Property procedure. •

C II ,\I> 'I' I' R 12

Property Quantity() As Integer
Get

Return Quanti tyint eger
End Get
Set(ByVal value As Integer)

I f va lue>= 0 Then
Quanti t y l nteger = va lue

End If
End Set

End Property

Notice the code to validate the incoming value in the Set.

Add tuc l'ric<' Propc r·ty P roccdm·<'

STEP 1: After the End Property for Quantity. add the property procedure
for Price.

STEP 2 : Write the code.

Property Price() As Decimal
Get

Retu rn PriceOecimal
End Get
Set(ByVal value As Decimal)

I f va l ue>= 0 Then
PriceOecimal = val ue

End If
End Set

End Property

Add IU<' Ex t<>nd<>d l•t·ic<' Pt•op<>r ty Procedm·<'

STEP 1: After the End Property for Price. add the property procedure for
ExtendedPdce.

STEI' 2: Write the code.

Property ExtendedPrice() As Decimal
Get

Return ExtendedPriceDecimal
End Get
Set(ByVal value As Decimal)

If va lue>= 0 Then
Ext endedPriceDec i mal

End If
End Set

End Property

\Vrilc tl1e Co ru;u·uctor

val ue

STEP 1: Following the Ptivate module-level vadables and above the proper1y
procedures. type in "Public Sub New(fitleln As String, Quantityll1 As
Integer. Pricel11 As Decimal)" and press Enter.

Notice that the editor adds the ByVal before each argument.
The constructor can actually appear anywhere in the code, as long

as it's inside the class and not inside another procedtue. A good con
vention is to place the constructors near the top of the class, tight after
the module-level declarations.

479

480 l ' C OOP: Creating Object-Oriented Programs

STEP 2 : Type the code for the procedure.

Public Sub New(ByVal Titleln As String, ByVal auantityln As Integer,
ByVal Priceln As Decimal)

' Assign the property values.

Title = Titlein
Quantity = auantityin
Price = Pricein
CalculateExtendedPrice()

End Sub

The call to CalculateExtendedPrice is flagged as an en-or. You will code that
procedure next.

Code a Metuod
You can create methods by adding sub procedw·es and functions for the behav
iors needed by the class. For this class. you will add a sub procedure to calcu
late the extended price. which is the price per book multiplied by the quantity.
Note that if you declare sub procedures and functions with the Public key
word. the methods are public; if you use the Protected keyword. the methods
can be executed from the current class or any inherited classes; if you use the
Private keyword. the methods are private and can be executed only from in
side the class.

STEP 1: After the property procedures, type
"Protected Sub CalculateExtendedPrice" and press Enter.
Notice that the editor adds the parentheses after the procedure name.

STEP 2 : Type the code for the procedure.

Protected Sub CalculateExtendedPrice(}
' Calculate the extended price.

ExtendedPriceDecimal = auantitylnteger • PriceDecimal
End Sub

Add Ceue l'al Re mal'ks

STEP 1: Type the remarks at the top of the file. before the Class declaration
line.

' Class Name:
' Programmer :
' Date:
'Description:
' Folder :

STEP 2 : Save your project.

The Comple te Class Code

BookSale
Your Name
Today•s Date
Handle book sale information.
Ch12SBS

' Class Name:
' Programmer:
'Date :
' Description:
' Folder :

BookSale
Your Name
Today•s Date
Handle book sale information .
Ch12SBS

C II A 1• 'I' " ll 12

Public Class BookSale
Private TitleString As String
Private Quantityinteger As Integer
Private PriceDecimal, ExtendedPriceDecimal As Decimal
Public Sub New(ByVal Titlein As String, ByVal Quantityin As Integer,

ByVal Pricein As Decimal)
' Assign the property values .

' Assign the input parameters to the properties by using their
' property procedures .
Title = Titlein
Quantity = Quantityin
Price = Pricein
CalculateExtendedPrice ()

End Sub

Property Title() As String
Get

Return TitleString
End Get
Set(ByVal Value As String)

TitleString = Value
End Set

End Property

Property Quantity() As Integer
Get

Return Quantityinteger
End Get
Set(ByVal Value As Integer)

If Value >= o Then
Quantityinteger = Value

End If
End Set

End Property

Property Price() As Decimal
Get

Return PriceDecimal
End Get
Set(ByVal Value As Decimal)

If Value >= o Then
PriceDecimal = Value

End If
End Set

End Property

Property ExtendedPrice() As Decimal
Get

Return ExtendedPriceDecimal
End Get
Set(ByVal Value As Decimal)

If Value >= o Then
ExtendedPriceDecimal = Value

End If
End Set

End Property

Protected Sub CalculateExtendedPrice()
' Calculate the extended price .

ExtendedPriceDecimal = Quantityinteger • PriceDecimal
End Sub

End Class

481

482 ~- s ll -" •• £ OOP: Creating Object-Oriented Programs

P1·ope rty P1·ocedm·es with Mixed Access Levels

It is possible to set the Property statement as Public and then to assign either the
Get or the Set procedure to a more restrictive level such as Friend or Private.

Privat e Tit leString As String

Publi c Property Ti t l e() As String
Get

Return TitleString
End Get
Pri vate Set(ByVal value As String)

TitleString = value
End Set

End Property

This code allows public access to the Get procedure, but the Set procedure is
private. TI-tis would work well with our progmms where we cull the Sot only from
the consbuctor. Remember. if you do not speciJY the access. it defaults to Public.

Auto-lmpleme nte.:l P1·o pe•·Lies

A new feature added to VB 2010 simplifies writing property procedures. Using
auto-implemented p i'Operties. you can declare a new property of a class ~tith
out writing the Get and Set procedmes. For example. you can enter the following
line and press Enter.

Property PersonName As String

The VB compiler automatically generates a default Get and Set. as well as the
private (module-level) variable used to store the property value.

Auto-implemented properties can save coding time for many, but not all.
properties. You can use auto-implemented properties for any prope11y ~tith both
a Get and Set that does not require validation for the Set. You must write your
own property procedmes for ReadOnly and WriteOnly properties. properties
with mixed access level. and any properties that need validation code for the
Set. See "Auto-Implemented Properties" in Help for more information.

l. What js the clifference between an object and a class?
2. Given the statement

Private TheProduct As Product

Is TheProduct an object or class? What about Product?
3. What actions are performed by the following statement?

TheProduct.Quantity = Integer .Parse(QuantityTextBox .Text)

4. Write the property declarations for a class module for a Student
class that !till contain the properties LastName. FirstName.
StuueutiDNu~~tber, anu GPA. Where will these slalelllenls appear?

C II A 1• 'I' " ll 12

5. Code the Property procedw:e to set and retrieve the value of the
LastName property.

6. Code the Property procedure to retrieve the value of the read-only CPA
property.

Creating a New Object Using a Class

Creating a new class defines a new type; it does not create any objects. This is
similar to creating a new tool for the toolbox but not yet creating an instance of
the class.

Generally you will create new objects of your class in a two-step operation:
first declare a variable for the new object and then instantiate the object using

the New keyword. Use Dim. Public. or Private to declare the identifier that
refers to the object of the class.

Private TheBookSale As BookSale

This line merely states that the name TheBookSale is associated with the Book
Sale class. but it does not create an instance of the object. You must use the
New keyword to actually create the object.

TheBookSale = New BookSale()

In Visual Basic it is legal to declare and instantiate an object at the same time:

Dim TheBookSale As New BookSale()

lf you will need to use the object variable in multiple procedures. you should
declare the object at the module level. But when you instantiate an object. you
may need to include the New statement in a Try /Catch block to allow en·or
checking. and a Try /Catch block must be inside a procedure. Make sure to en
close the instantiation in a Try /Catch block if you are conve1ting and passing
values that a user enters in a text box so that you catch any bad input data.

The preferred technique is to include the New statement inside of a proce
dure at the time the object is needed. And if the object is never needed, it won't
be created needlessly.

If you do choose to declare the variable and instantiate it at the same time.
these two statements are equivalent:

Private TheBookSale As BookSale = New Booksale()
Private TheBookSale as New BookSale()

The second statement is a coding shortcut for the first (more complete) statement.
If you are using a parameterized constructor. you must pass the values for

the arguments when you instantiate the object.

Private TheBookSale As BookSale

' Instantiate the BookSale object and set the properties .
TheBookSale = New BookSale(TitleTextBox.Text,

Integer .Parse(OuantityTextBox.Text) ,
Decimal.Parse(PriceTextBox .Text))

483

484 v S l l ,\ I. C OOP: Creating Object-Oriented Programs

Defining a nd Using a New Object-Sle l>-by-Step

To continue the step-by-step tutorial for the BookSale class. the next step is to
design the form for the user interface. The form has text boxes for the user to
enter the title, quantity. and price; a menu choice to calculate the sale (the ex

tended price); and another menu item to exit.
In the Calculate Sale event procedure. you will create an instance of the

BookSale class and assign the input values for title. quantity. and price to the
properties of the BookSale object. The Extended.Price property in the BookSale
class rettieves the amount of the sale. which appears in a ReadOnly text box on
the fonn. Figure 12.6 shows the completed fonn.

·~ R 'o ~ Soo~ Sales

84ended Pllce

Placing all calculations in a separate class is a good thing. You are seeing
your first example of dividing a program into a Presentation tier and a Business
Services tier.

Cr eat<' th e Form

This is a continuation of the step-by-step tutorial for this chapter. If the project
is not still open, open it now.

STEP 1: Open the Form Designer for Fonnl. Refening to Figure 12.6. create
the user interface 1vith text boxes for the title. quantity, and price, and
a Read Only text box for the extended price. Set appropriate properties
for the form and the controls .

.STIW 2 : Change the fonn name to "SalesForm".
STEP 3: Create menu items on the File menu for Calculate {2ale. Qfear. and ~t.

You may want to create keyboard shortcuts for the menu items to sim
plify testing.

Add Gen era l Rema~·ks

STEP 1, Type the remarks at the top of the fonu's code.

Chapter 12 BookSale Step-by-Step
Your Name
Today's Date

The user interface that uses the
11ew BookSale class; the
completedfomlfor the step-lry
step exercise.

' Program:
' Programmer :
'Date :
'Description: Calculate sales price using the BookSale class .

' Folder :
Instantiate TlleBookSale as a new object of the BookSale class.
Ch12SBS

C II ,\I> 'I' I' R 12 485

Oe clat·e the New Objt•c t

STEl' 1: Declare the object variable lll the Declarations section. right under
the Public Class SalesForm statement.

' Declare the new object .
Private TheBookSale As BookSale

W1·ite t.he Code

STEI'l : In the CalculateSaleToolStripMenultem_Click event procedure, write
the cocle to instantiate the .BookSale object. assign the values to the
properties, calculate the extended price, and assign t11e result to ex
tendedPriceTextBox. Notice that IntelliSense pops up with the prop
erties and method of your new BookSale class.

Private Sub CalculateSaleToolStripMenultem_Click(ByVal sender As System.Object ,
ByVal e As System.EventArgs) Handles CalculateSaleToolStripMenultem.Click
' Calculate the extended price for the sale .

Try
' Instantiate the object and set the properties .
TheBookSale = New BookSale(TitleTextBox.Text,

Integer.Parse(QuantityTextBox .Text), Decimal.Parse(PriceTextBox.Text))
' Calculate and format the result .
ExtendedPriceTextBox.Text = TheBookSale .ExtendedPrice .ToString("N")

Catch ex As Exception
MessageBox .Show("Enter numeric data ." , "R ' n R Book Sales",

MessageBoxButtons . OK, MessageBoxicon .Exclamation)
End Try

End Sub

STEJ> 2 : Cocle the ClearTooiStripMenultem_Click procedure.

Private Sub ClearToolStripMenultem_Clici<(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles ClearToolStripMenultem.Click

' Clear the screen controls .

auantityTextBox .Clear()
PriceTextBox.Clear()
ExtendedPriceTextBox .Clear()
With TitleTextBox

. Clear()

.Focus()
End With

End Sub

STEJ' 3: Cocle the ExitTooLStripMenultem_Click procedure.

Private Sub ExitToolStripMenultem_Clici<(ByVal sender As Object,
ByVal e As System.EventArgs) Handles ExitToolStripMenultem.Click

' Exit the program.

Me .Close()
End Sub

Save Your Work

STEI' 1, Click the Save All toolbar button to save the project. class. and form.

486 v s u :\ •.

Hun tbe Project

The next step is to watch the project lUll-hopefully without errors.

STEP 1: Run the program: your form should appear.

C OOP: Creatin.g Object-Oriented Programs

STEJ' 2 : Fill in test values for the title. quantity. and price. Select the Calculate
Sale menu item. What did you get for the extended price? Is it cor
rect? Try putting in something other than a number for Quantity. What
happened when you calculated the sale?

STEP 3: Stop program execution using the File/Exit menu item.

Sing iP.-St.P.(l tht> li:xf!mll io n

If you get an error me>sage or an incorrect answer in the output. you will need
to debug the project. The quickest and easiest way to debug is to single-step
program execution. Single-stepping is an interesting exercise. even if you did
get the right answer.

To single-step. you need to be in break time. Place a breakpoint on the first
line in the CalculateSaleToolStripMenuitem_ Click procedure (the Try state
ment). Run the program, enter test values for quantity and price. and select File I
Calculate Sale. When the program stops at the breakpoint. press the F8 (or Fll)
key repeatedly and watch each step: you will see execution transfer to the code
for ihe BookSale class for each prope1ty and for the CalculateExtendedPrice
method. If an error me>sage halts program execution. point to the variable names
and property names on the screen to see their current values.

When the Click event procedm-e finishes, if the form does not reappear.
you can click on your project's Taskbar button.

IusL<m ce Val'iables vE>rsus Shat·ed Variables

The class properties that you have created up to this point belong to each in
stance of the class. Therefore, if you create two BookSale objects. each object
has its own set of properties. This is exactly what you want for properties such
as quantity and price. but what if you need to find a total or count for all of the
BookSale objects? You don't want each new object to have its own count prop
erty; there would be nothing to increment.

The variables and properties that we have declared thus far are called in
stance variables. or instauce p1·opet-ties. A separate memory location exists
for each instance of the object. Now we will create sh:u·ecl variables. also
called shlll·ecl properties. A shared prope1ty is a single variable that exists, or
is available. for all objects of a class.

Terminology varies from one OOP language to another. In some languages.
shared members are called class variables or static variables. Microsoft docu
mentation refers to instance members and shared members. which include both
properties and methods. In general. a shared member has one copy for all ob
jects of the class. and an instance member has one copy for each instance or
object of the class. Methods also can be declared as shared and are considered

shared members.
Another important point is that you can access shared members without in

stantiating an object of the class. When you display class documentation in MSDN
Help. shared members display '~ith a yellowS next to the name (Figure 12. 7). You
must reference these shared members with ClassName . Property or Class
Name. Method (),whether or not you have instantiated ru1 object from the class.

C II A 1• 'I' " ll 12 487

l<'i g n r e 1 2. 7

Shared members display in MSD!I' Help with a yellow S.

Shared member

\
~ String Methods ~ndao'\'s Jntemct b:plotcr- l c::r 113 I.a.!

Q 0 <> 1@1 httpV)i[2J.O.O.H 78J3/helpJ1/ms,help?melhod=p•g•&•d=METHODS.l:SYIHI • I ~t I X lit:> Sing .P . r

~ favori1es !l~S.;~;~~¥Eihods il -, ~ · fill • 121 t!i> · Page ,.. S:afety • Tool~ • 9 •))

\ .
~c, •rfl • \ O.. l 010\/lfual Studio

(ii)

String Methods

Lib1aryHome ~.end Feedtlad:.
Vrtual Studio 2010

.NET F-ramewo."k .t

.NET Fro.mtwork a~ss Libr~uy The String type exposes the following members.
System Na-JI\€space
String C.I<Kt

Methods StriAg Me thods
String.Oon~ Method
String. Corn pore Metho-d Name D•scilf'1ion
String.CompareOrctinal Melflod ·-
Stnng.CompareT o Method

,. Clone Returns a reference to iihis instance of Stnng.
$tring.Coocat Method \ 'X
String.Contoio'S Mc:thod

1\,. String. Copy Melhod Cornpare(SVing. String) Compares iWO specifoed String objects and
Stnng.Copyro Me:hod s return~ an integer that indicates 1heir relative
String.End.s\Vith MEthod

'X posii ion in the sort order. String.Equdls Mdhod
String.Fo1mat Method

~ Compare(Stnng, Stnng, Compares two spocrfied Stnng objects, ignoring Stnng.G.!.1Enumecator Me1hcd
String.Getl-lashCode Method s Boolean) or honoring their caSQ, and rQturns: ~n int~er
String.GctTypcCodc: Method 'X lhat ind£cates 1hE.oir n:~lath/~ position in Lh e sort
String.ICon\'Ertible.ToBoci.Ean MethOd order. Stnng.IConvertible.ToByte Method

~ Stnng.JCon¥ertib!e.T oChar Method Compare(String, String, Compares two speclfred String objects using the
StringJConvc:rtibt:c.T oD~tc Time Method s SVingComparison) specified rules. and retums an integer that
String.IConvenibfe.ToDecirrti! l Method

'X indicates their refative position in th e sort order. String.IConvenibfe. To Double Method
StnngJConvertibte.f olntl6 Me1hod .. Compare(String, String. Compares two spe-cified String objects, ignoring
;~!ng.:~onvcrt~~c:.~olnt3~ ~dhod ., o ... 1,.,.. ... r ~~ T < ~_ -.~,..,,.; .. _ ... -- .. ·-- l+o ...

~

EJ ir.tc:rnd I Protectc:d Mode: 01'1 4i · ill,l OO% ~

=====

Creating Sh:u·cd Mc mbcr·s

Use the Shared keyword to create a shared member.

Private) Shared VariableName As Datatype [Public
[Public

Protected
Protected Private) Shared Function FunctionName(ArgumentList) As Datatype

If we want to accumulate a total of all sales and a count of the number of
sales for our BookSale class. we need shared properties:

Private Shared SalesTotalOecimal As Decimal
Private Shared Salescountlnteger As Integer

You will want to make these shared properties read-only. so that their
values can be retrieved but not set directly. The values of the properties are
accumulated inside the class; each time a new sale is calculated. the ex
tended price is added to the total sales and the sales count is incremented
by one.

I

I

I

I

I

I

;I

I

488 \ S l <\ L R .\ S

Shared ReadOnly Property SalesTotal() As Decimal
Get

Return SalesTotalOecimal
End Get

End Property

Shared ReadOnly Property SalesCount() As Integer
Get

Return Salescountlnteger
End Get

End Property

(. OOP: Creating Objet:J-Oriented Programs

Note that the Shared keyword on tl1e Private module-level variable makes it
a shared member and is required: the Shared keyword on the property proce
dure is optional. You need to use it if you plan to retrieve the property without
fll'St creating an instance of the class.

Adding Shan •d Pt·opc rties to the Ste p-by-Step Exm·cise

You will now make the BookSale c lass calculate the total of all sales and a
count of the number of sales. You will need shared properties for the sales total
and sales count in the class. TI1e11. on the form. you will add a menu option for
Summary that displays the totals in a message box.

\dd S hare d JlroJw r·tie,; w tbt> Cbs.~

lf the chapter step-by-step exercise is not still opeiL open it now.

:-IF.t' 1: In the BookSale class. add the private module-level declarations for
SalesTotaiDecimal and SalesCowttlnteger.

Private Shared SalesTotalDecimal As Decimal
Private Shared Salescountinteger As Integer

~n:J• :.!: Add the properly procedures for these two shared read-only
properties.

Shared ReadOnly Property SalesTotal() As Decimal
Get

Return SalesTotalDecimal
End Get

End Property

Shared ReadOnly Property Salescount{) As Integer
Get

Return Salescountinteger
End Get

End Property

Jlodify the Code to Calc ulate the To tals

ST EJ> 1: Add a protected procedure for calculating the totals. This method 11ill
be called inside the class (or any classes that inherit from this class)
but cannot be called from an object outside the class.

C II A 1• 'I' " ll 12

Protected Sub AddToTotals()
' Add to summary information .

SalesTotalDecimal += ExtendedPriceDecimal
Salescountlnteger += 1

End Sub

STEI' 2 : Modify the consb·uctor procedme to call the AddToTotals procedure.

Public Sub New(ByVal Titleln As String, ByVal auantityln As Integer,
ByVal Priceln As Decimal)

' Assign property values.

Title = Titleln
Quantity = auantityin
Price = Priceln
CalculateExtendedPrice()
AddToTot al s()

End Sub

Modify the Form
STEP 1: Add a menu item for Fife I Summary to the form.
STEI' 2: Write the event procedure for SummaryTooiStripMenultem_Click to

display the sales total and sales count from the properties of the class.
Use a message box and format the sales total to display dollars and
cents. Note that you retrieve the shared members of the BookSale
class without using an instance of the class: Book Sale. Sales Total.

Private Sub summaryToolStripMenuitem_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles summaryToolStripMenuitem.Click

' Display the sales summary information .
Dim MessageString As String

MessageString = "Sales Total: " & BookSale .Sales Total. ToString("C") &
tnvironment .NewlinG & "Sales Count: " & BookSale .Salescount . ToString()

MessageBox.Show(MessageString, "R ' n R Book Sales Summary " ,
MessageBoxButtons . OK, MessageBoxicon.Information)

End Sub

STEI' 3 : Test the program. Try entering several sales and checking the totals.
Also try selecting Summary without first calculating a sale. If the pro
gram throws an exception. it means that you probably left the Shared
modifier off the property procedures for the two shared properties.

D estr·u c to r·s

If there is special processing that you need to do when an object goes out of
scope. you can write a Finalize procedure, which is also called a destmctor.
However. Microsoft recommends against w1iting Finalize procedures unless
you need to do something special that the system doesn't know how to handle.
such as closing some types of database connections.

489

490 \ ' S L .\ L B .\ S C OOP: Creating Object-Oriented Programs

GadJ~e Collectio n

The garbage colleclio u feature of the .NET Common Language Runtime
cleans up unused components. Periodically the garbage collector checks for
unreferenced objects and releases all memory and system resources used by
the objects. If you have 1nitten a Finalize procedure. it executes during
garbage collection. Microsoft recommends that you rely on garbage collection
to release resources and not try to final ize objects yourself. Using this tech
nique. you don't know exactly ~-hen your objects will be finalized. since the
CLR performs garbage collection on its own schedule. when it needs to recover
the resources or has .spare lime.

Inheritance

When you create a class. the new class can be based on another class. You can
make the new class inherit from one of the existing .NET classes or from one of
your own classes. Recall that a form uses inheri lance using the s tatement

Partial Class Form1
Inherits System.Windows.Forms.Form

The Inherits statement must follow the class header prior to any comments.

Class NewClass
Inherits BaseClass

All public and protec ted data members and methods of the base class are in
herited in the derived class. lf you want the de rived class to have a different
implementation for a base-class method. you must write the method in the de
rived class t1101 overrides the base-class me tJ1od.

In the past you have used the Public. Private. and Friend key~·ords.
You also can declare elements with tlle Protected keyword. which specifies
that the element is accessible only within its own class or any class derived
from that class. Recall that if you leave off the accessibility keyword. it defaults
to public.

Cons t•·uctm·s in lnhm·itance

Although a derived class can inllerit all public and protected metllods. there is
one exception: A subclass cannot inherit constructors from the base class. Each
class must have its own constructors. unless the only constructor needed is
an empty constructor. (Visual Basic automatically creates an empty constructor
for all classes. so you don't need to write one if that's the only constructor
that you need.)

(.; II 1\ I' 'I' 1•: II 12

\.allill:;! tlw lhsi'-Cla~s Cuns u·twltlr

Often an inherited class needs to make sure that the constructor for ·the base
class executes as well as the constructor for the inherited class. You can call
the base-class constructor with the statement

MyBase. New()

You generally place this code in the constructor for the inherited class. before
any additional s tatements.

491

Sub New(ByVal Titleln As String, ByVal Quantityin As Integer, ByVal Pricein As Decimal)
' Assign property values .

' Call the base-class constructor.
MyBase. New(Titlein, auantityln, Pricein)

End Sub

Ovtwridinl! M t•Lho tJ.,

You can create a method with the same name and the same argument list as a
method in t he base class. The new method is said to oveJTide the base-class
method. The derived class will use the new method rather tJ1an tlle method in
the base class.

To override a method in Vis ual Bas ic. you musl declare the original method
with the Ovet'l'idable keywunl and declare the new metJwd with th.e Over
rides keyword. The access modifier for the base-class procedure can be
Private or Protected (not Public).

Base Class

Protected Overridable Sub CalculateExtendedPrice()

Inherited Class

Protected Overrides Sub CalculateExtendedPrice()

In a base class. you can actually use the Overridable. Overrides. or
MustOverr i de keyword on a method that can be O\'erridden. Use Ove rr idable
when you are writing a new method tllat has code. Use MustOverride for an
abstr act method, which is an empty method. Abstract methods are designed to
be overridden by subclasses and have no implementation of their own. TI1e only
time that you declare a base-class method •~ith the Overrides keyword is when
the method is oveniding a method in its base class.

When you use tJ1e keyword Overridable for a base-class method. in the
derived class you have the option of using the base-class implementation for
the method or overriding the method by supplying new code. However. if you
use the MustOverride keyworrl on a base-class method. the method does not
have any code; tlle derived class must provide its own code for the method. A
class that has any method declared as MustOverride is considered an
a bsu·act dass, which can be used only for inheritance. You cannot instantiate
objects from a class tl1at contains abstract methocl.s.

492 \ ' S L .\ L R .\ S (' OOP: Creating Object-Oriented Programs

Accessing P 1·ope•·tie-s

Your derived class can set and retrieve the properties of the base class by us
ing the property accessor methods. Usually your derived class needs to make
use of properties and methods of the base class. You can call the base class
constructor from the deiived class constructor. which allows you to use the
property values from the base class. In the follm~ing example. the derived Stu
dent HookSale class inherits from BookSale. Notice the constructor. which uses
the My Base. New () statement to call the constructor of the base class. If the
constructor requires arguments. you can pass the argument values when you
call the constructor:

Sub New(ByVal Titleln As String, ByVal ouantityln As Integer,
ByVal Pricein As Decimal)

' Assign property values .

' Call base-class constructor and pass the property values.
MyBase.New(Titlein, auantityln, Priceln)

End Sub

After you have assigned values to the properties of the base class, you can
refer to the properties in methods in the derived class. In t11e following exam
ple. the CalculateExtendedPrice method in the derived class uses proper
ties of the base class by property name.

• Procedure in the derived class that overrides the procedure in the base class :
Protected overrides Sub CalculateExtendedPrice()

' Calculate the extended price and add to the totals.

DiscountDecimal = Quantity * Price * DISCOUNT_RATE_Decimal
ExtendedPri ce = Quantity * Price - DiscountDecimal
DiscountTotalDecimal += DiscountDecimal

End Sub

Note that to use base-class properties in the derived class as in t11is example.
the properties must have both a Get and a Set accessor method. Read-only or
write-only properties cannot be accessed by name from a derived cl!l.'ls.

The BookSale class could be considered a generic class, which is appropriate
for most sales. But now we 1nmt another similar class. but with some differ
ences. The new class should have all of the same properties and methods of the
BookSale class. but it1~ill calculate sales witl1 a student discotmt of 15 percent.
We also want a new shared property in the new class to hold the total of the stu
dent discounts.

Our new derived class 11·ill be called StudentBookSale; the base class is
BookSalc. Figure 12.8 shows the UML diogrnm to indicate the inherited clnss.
The inherited class automatically has all public and protected properties and
methods of the base class; in this case. StudentBookSale automatically has six.
prope11ies and one method.

C II A I' 'I' t; H 12

BookSule

luo.tciiiBO<>kSut<·

Addinl't' Tnlw •·ita nf'f' l o tlw Step- hy-Stc p Exen· is('l

This continuation of the chapter step-by-step exercise includes adding a nea·
subclass class, overriding a method. and adding a new property.

Add the New Cia""

:.TEl' 1: Open your project. if necessary. and select Add Class from the Project

menu.
STEI' 2: In the Add New Item dialog. ,,;th Class selected. type

"Student BookSale'" for the class name and clkk on Add. You 11~1l see
a new tab in the Document window for the new class.

STEI' 3: Add a new line after the class declaration and type the Inherits
statement.

Public Class StudentBookSale
Inherits BookSale

You can ignore the a·aming error message: it tells you that this subclass
must have a constructor, which you ~till do in the next step.

All of the public and protected properties and methods of the base class
will be inherited by the subclass.

Add Lhe Constntc tor

STEI' 1: The subclass must have its own constructors, since constructors are
not inherited. Write the follo'\\wg code inside the new class:

Figur e 12.8

The diagram for a base cla33
and a derived c~.

Sub New(ByVal Titlein As String, ByVal auantityin As Integer,
ByVal Pricein As Decimal)

' Call the base class constructor.

MyBase . New(Titlein, ouantityin, Pricein)
End Sub

493

494 v S l l ,\ I. C OOP: Creating Object-Oriented Programs

Add tbe New PrO()Ct"IY

STEP 1: Add a module-level variable to hold the value of a new shared prop
erty for the total of discounts.

Private Shared DiscountTotalDecimal As Decimal

STEP 2: Add the property procedure for DiscountTotal.

Shared ReadOnly Property DiscountTotal() As Decimal
Get

Return DiscountTotalDecimal
End Get

End Property

Add a Constant

STEP 1: Add a constant at the module level to hold the discount rate of 15
percent.

Const DISCOUNT_RATE_Decimal As Decimal 0 . 15D

0 YetTide a l\'le thod

When you override a method from the base class in an inherited class. the
method name and the argument list must match exactly.

STEP 1: Open the BookSale base class in the editor and modify the procedure
header for CalculateExtendedPrice.

Protected Overridab l e Sub CalculateExtendedPrice()

STEJ> 2: In the StudentBookSale inherited class. write the new Calculate
ExtendedPrice procedure. using the Overrides keyword.

Protected Overri des Sub CalculateExtendedPrice()
' Calculate the discount, extended price, and add to the total .
Dim DiscountDocimal As Docimal

DiscountDecimal = Quantity • Price • DISCOUNT_RATE_ Decimal
ExtendedPrice = Quantity • Price - DiscountDecimal
DiscountTotalDecimal += DiscountDecimal

End Sub

Modify the Form to U8e t11c lnlJet·ited Class

STEP 1: Add a check box to the form. named StudentCheckBox, with the Text
set to "Student". You can set the RightToLeft property to Yes, if
you want the text to appear to the left of the box (Figure 12.9). Re
lurange the cunlrub to keep the inpul fieh.b together ami resd the ta!J
sequence.

STEP 2: In the form's code editor window, add a module-level variable for an
object of the new StudentBookSale class.

Private TheStudentBooKSale As StudentBooKSale

C II A 1• 'I' " ll 12 495

F i g nr e 1 2.9

a.s_l R 't1 R Book Sales
Add a Student check box to the
form.

!):le:

Quontity:

~ce:

Sudcnl LJ

STEP 3: Modify the CalculateSaleToo!StripMenultem_Click event procedure to
create the conect object. depending on the state of StudentCheckBox.

Try
If StudentChecKBox.ChecKed Then

' Instantiate the StudentBooKSale object and set the properties.
TheStudentBooKSale = New StudentBooKSale(TitleTextBox.Text,

Integer.Parse(OuantityTextBox .Text), Decimal.Parse(PriceTextBox.Text))
' Calculate and format the result .
ExtendedPriceTextBox .Text = TheStudentBooKSale.ExtendedPrice .ToString("N")

Else
' Instantiate the BooKSale object and set the properties .
TheBooKSale = New BooKSale(TitleTextBox.Text,

Integer .Parse(OuantityTextBox.Text), Decimal .Parse(PriceTextBox.Text))
· Calculate and format the result .
ExtendedPriceTextBox .Text = TheBooKSale.ExtendedPrice.ToString("N")

End If
Catch ' Rest of code for the procedure is unchanged .

Notice that the code uses the ExtendedPrice property in either
case. But when StudentCheckBox is checked, the ExtendedPrice of
the subclass is retrieved; when the check box is not checked, the Ex
tencledPrice property of the base class is used. Both classes add to the
shared SalesTotal and SalesCount properties of the base class. which
will hold the totals for both classes.

STEP 4·: Modify the SummaryToolStripMenultem_Click event procedure to
include the discount total.

MessageString = "Sales Total: " & BooKSale . Sales Total. ToString ("C") &
Environment . NewLine & "Sales count : " & BooK Sale. Salescount. ToString () &
Environment.Newl ine & "Tota l of Student Di sco unts: " &
StudentBookSale .Di scountTotal .ToStri ng("C" I

STEI' 5: Run the program. Try both student and nonstudent sales; check the
totals.

STEI' 6 : Close the project.

496 \ ' S L ,\ L u .\ s l ' OOP: Creating Object-Oriented PrografflJl

C t·caling a B ase Oass S tric tly fo r lnbc t·itatH'C

Sometimes you may want to create a c lass solely for the purpose of inheritance
by two or more similar classes. For example. you might create a Person class
tl1at you don't intend to instantiate. Instead you will create subclasses of the
Person class. such as Employee. Customer. and Student.

For a base class that you intend to inherit. include the Mus tlnherit mod
iller on the class declaration. tt·hich creates an abstract class. In each of the
methods in the base class that must be overridden. include the Mustoverride
modifier. The method tJmt must be overridden does not contain any code in the
base class.

Base Class

Mustlnherit Class BaseClass
Public Mustoverride Sub SomeProcedure ()

' No code allowed here, specifically, no End Sub statement.
End Class

Inherited Uao.s

Class DerivedClass
Inherits BaseClass
Public overrides Sub SomeProcedure()

' Code goes here.
End Sub

End Class

Note: You must build (compile) the base class before using it for an inher
ited class.

lnhe t·itin,!.! F onn Cla,;scs

Some projects require that you have several forms . You may want to use
a similar design from one form to the next. You can use visual in]Je ritauce
by des igning one form and then inhe riting any other forms from the first
(Figure 12.10).

Once you have designed the form that you want to use for a pattern. you
can add more forms that i.nherit from your design master. caUed your base class.
Your base class inherits from System. Windows.Forms.Fonn. and your new
forms inherit from your base class.

When you design the base class. you can include design elements and
otJ1er controls, such as labels. text boxes. and buttons. You also can write pro
cedures and declare variables in the base class. Just as you saw earlier. all pub
lic and protected procedures and variables are inherited from the base class to

the sub class. You can write procedures in the base class and specify Over
ridable or MustOverride. and then in ilie subclass write the identically
named procedure Kith the Overrides keyword.

To create an inherited form in your project. first create the base class,
save, and build the project. You cannot inherit from a form that has not been
compiled. Then select Project I Add Windows Fonn and type the name of the

Cll ,\l• 'rEil 12 497

Figur e 12 . 10

Creo.w a bose form and inlier it the vimo.l illterfoce to rltlll fonnJ. a. The boJe form: b .. c .. a11d d.. i11herited fon11J.

i 15 J Bose Form

R ' n R fOI' Raccline And Raf,.eshm.ant

a.

6 k J:!dp

-ill 'n R fo~ Reodill~ and Ref,..,.h,..nt

b.

a:l Stfltrrury-

'ft 'n R for laadinj end R•"'-shonant

c.noct< 2:010

- / MII'Il1!Uoh

~~=============----

c. d.

498 \ ' S U \ I, (' OOP: Creating Object-Oriented Progr,ams

new Windows Form. l n the Solution Explorer, show all files and open the
designer-generated code file for the form. For example, if your form is called
Entry Form, the Solution Explorer will have two files: tntryForm.vb and Entry
Form.Designer.vb. Change the Inherits clause to inl1erit from your base form
using your project name as the namespace.

Partial Class EntryForm
Inherits Ch12Visualinheritance.BaseForm

Open the new form in the designer and you should see the inl1erited visual
elements.

Note: 1l1c Inherits clause can be in either the Fot1nNarne.vb or F'ormName.
Oesigner.vb file. but not both. Since the designer places the Inherits c lause
in the Designer file. it's best to make the change there.

FHI'Ilt l nlu' t'itant·•· Exnmrtlt·

This example ltas three forms that inherit from a base class. The base class has
an OK button. a picture box, and labels. All forms that inherit from the base
class will have all of these controls. You cannot delete any of the controls on the
inherited fonns. but you can make a control invisible. For example. in Main
Form. the OK button's Vis ible propCity is set to False.

The base class has an OkButton_Click event procedure. which can be
overridden in the sub classes. Note that the OkButton_Click event procedure
must be declared as Public or Protected to be inherited and overridden in
derived classes.

All forms are in the same project, called Chl2Visuallnheritance.
Make sure to open the Project Designer (Project I ProjectName Properties)

and set the startup object to the form that you want to appear first.

Base Form. Designer.vb

Partial Class BaseForm
Inherits System.Windows.Forms.Form

BaseFonn.vb

Public Class BaseForm

Public overridable Sub OKButton_ClicK(ByVal sender As system .Object,
ByVal e As System . EventArgs) Handles OKButton .ClicK

· Allow inherited classes to overr ide this method .

Me .Close()
End Sub

End Class

AboutForm.Designer.vb

Partial Class AboutForm
Inherits Ch12Visuallnheritance .BaseForm

C II ,\ 11 'I' t; R 12

AboutFonn.vb

Public Class AboutForm

' No code needed; event procedure for OKButton is inherited from the base class.

End Class

Main Foml. Designer.vb

Partial Class MainForm
Inherits Ch12Visuallnheritance.BaseForm

MainFom1.vb
Make sure to set this form as the startup object in the Project Designer (Project I
Projec!NlUTie Properties).

Public Class MainForm

Private Sub MainForm_Load{ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles MyBase.Load

' Hide the OK button for this form.

OKButton. Hide ()
End Sub

Private Sub AboutToolStripMenultem_ClicK(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles AboutToolStripMenultem.Click

' Show the About Box.

AboutForm.ShOWOialog()
End Sub

Private Sub summaryToolStripMenuitem_ClicK(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles summaryToolStripMenultem.ClicK

' Show the Summary form.

summaryForm.ShowDialog()
End Sub

Private Sub ExitToolStripMenultem_ClicK(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles ExitToolStripMenuitem.ClicK

' Exit the project.

Me.Close()
End SUb

End Class

SummaryForm. Designer. vb

Partial Class summaryForm
Inherits Ch12Visuallnheritance.BaseForm

SummaryForm.vb

Public Class summaryForm
Public overrides Sub OKButton_ClicK(ByVal sender As System.Object,

ByVal e As System.EventArgs)

499

500 v S l l ,\ I.

' override the base class method.

Me .Hide()
End Sub

C OOP: Creating Object-Oriented Programs

Private Sub SummaryForm_Activated(ByVal sender As Object,
ByVal e As System.EventArgs) Handles Me .Activated

' Code to retrieve the summary data and fill the form's controls .

End Sub
End Class

Note: If you have problems with creating inherited forms or want further infor
mation. see the MSDN topics ''Walkthrough: Demonstrating Visual Inheri
tance" and "Windows .Forms Visual inheritance".

Coding i'ot· Events of an IJJJJet·ited Class

When you derive a new form class from an existing form. you often want to
write code for events of inherited controls. Unfortunately. you can't double
click on an inherited control and have the event procedure open. as you can
for most controls. In the previous example of form inheritance. for the
OkButton_Click event procedure header. we copied the procedme from the
base class into the derived class and made the modifications.

Passing Properties between Forms

In Chapter 6 you learned to pass values among fom1s by declating the variables
as Friend. Now that you can create your own new properties. you can comply
with OOP principles and pass data the correct way. For a form's class to be
properly encapsulated, the only data values visible to other classes should be
the propetties it exposes.

As you know, a form is a class. which has properties. You can add proper
ties to any form by writing propetty procedures that allow other forms to get
and/or set values. In that way. each fonn's variables are Private, and any val
ues that you want to pass are properties.

Passing Values Lo a Sununm·y Fonn

In this example. based on the hands-on project from Chapter 6. the main form
(BillingForm) accumulates totals and displays a summary form. The original
form of the project used Friend variables in BillingForm so SummaryForm
could retrieve the values. In this improved version. BillingForm has ReadOnly
properties for the totals. and SummaryFonn retrieves the properties in its
Form_ Activated event procedure.

The l\lain Fonu

Here is the code from the top of the main fotm, which is the only section of this
form's code that is changed.

'Program Name :
' Programmer :
' Date :
' Description:

Ch12PassProperties
Bradley/Millspaugh
June 2010
This project is based on Ch06HandsOn. It calculates

C II A 1• 'I' " ll 12

' Folder :
'Form:

the amount due based on the customer selection
and accumulates summary data for the day .
This version of the project uses form properties to
pass values to the summary form, in order to conform
to OOP principles.
Ch12PassProperties
BillingForm

Public Class BillingForm
' These Friend variables have been removed and replaced with Private

variables and property procedures .
' Friend GrandTotalDecimal, AverageDecimal As Decimal
' Friend customercountinteger As Integer
' Declare new module -level variables for the form ' s properties .
Private GrandTotalDecimal, AverageDecimal As Decimal
Private customercountinteger As Integer

' Property procedures .
ReadOnly Property SalesGrandTotal() As Decimal

Get
Return GrandTotalDecimal

End Get
End Property

ReadOnly Property SalesAverage() As Decimal
Get

Return AverageDecimal
End Get

End Property

ReadOnly Property Salescustomercount() As Integer
Get

Return customercountlnteger
End Get

End Property

The Summ:u·y Form

ln Summary Form you can retrieve the properties of BillingFom1 to display the
summary data. The form's properties pop up in IntelliSense to make the coding
extremely easy.

' Program Name :
' Programmer:
' Date :
'Description:

' Folder:
' Form:

Ch12PassProperties
Bradley/Millspaugh
June 2010
This project is based on Ch06HandsOn . It retrieves
the summary values from properties of the main form
instead of from Friend variables.
Ch12PassProperties.
summaryForm

Public Class SummaryForm

Private Sub SummaryForm_Activated(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles MyBase .Activated

' Get the data from properties of the main form .

TotalSalesTextBox.Text = BillingForm.SalesGrandTotal .ToString("C")
AverageSalesTextBox .Text = BillingForm.SalesAverage.ToString("C")
NumbercustomersTextBox .Text = BillingForm.Salescustomercount .ToString()

SOl

502 v S l l ,\ I. C OOP: Creating Object-Oriented Programs

' Removed references to the Friend variables .
' TotalSalesTextBox . Text = BillingForm.GrandTotalOecimal . ToString ("C")
' AverageSalesTextBox . Text = BillingForm. AVerageOecimal . ToString ("C")

NumbercustomersTextBox .Text = BillingForm. customercountlnteger.ToString()
End Sub

P ass.ing Objects as Pt·ope rLies

Earlier in this chapter you learned to display summary values from shared
properties of a class. At times you may need to display the instance properties
of an object. rather than the shared properties. For example. in the in-chapter
step-by-step example. perhaps you want to display the details of a single sale
on a second form. In the main form, SalesForm. you declare an object of the
BookSale class and calculate a sale. But that object is declared as Private (as
it should be) and is not available to other forms unless you create a property to
expose it.

The following example is based on the BookSale step-by-step exercise. Af
ter a sale is calculated. a second form displays the details of the sale. The main
SalesForm needs a ReadOnly property for a BookSale so that the second f01m.
ViewForm. can retrieve the BookSale object and display its values.

The Fonu-SalesFonu

The only changes to the SalesForm are a new Read Only property. called Com
pletedSale. and a ShowOialog method to display View Form at the conclusion
of the calculations.

Public Class SalesForm
' Declare the new object .
Private TheBooKSale As BooKSale

ReadOnly Property CompletedSale() As BooKSale
Get

Return TheBooKSale
End Get

End Property

Private Sub CalculateSaleToolStripMenultem_ClicK(ByVal sender As System.Object,
ByVal e As System . EventArgs) Handles CalculateSaleToolStripMenultem. ClicK

' Calculate the extended price for the sale.

Try
'Instantiate the object and set the properties
TheBooKSale = New BooKSale(TitleTextBox .Text,

Integer .Parse(QuantityTextBox.Text), Oecimal . Parse(PriceTextBox.Text))
' Calculate and format the result.
ExtendedPriceTextBox .Text = TheBooKSale . ExtendedPrice .ToString("N")
ViewForm .ShowDialog()

Catch ex As Exception
MessageBox .Show("Enter numeric data ." , "R ' n R BooK Sales",

MessageBoxButtons .OK, MessageBoxicon . Exclamation)
End Try

End Sub

C II ,\I> 'I' I' R 12

The Second Fonu-Viewl'orm

This fonn must declare an object variable for the BookSale object. It retrieves the
object from the main fonn through the CompletedSale property and displays the
individual elements from the object.

' Project :
' Programmer:
' Date :
'Description:

Ch12PassObjectAsProperty
Bradley/Millspaugh
June 2010
Retrieve a BookSale from the main form and display
the elements .

Public Class ViewForm

Private ABookSale As BookSale

Private Sub ViewForm_Activated(ByVal sender As Object,
ByVal e As System.EventArgs) Handles Me .Activated

' Retrieve and display the sale figures.

ABookSale = SalesForm.CompletedSale
Titlelabel.Text = ABookSale.Title
ouantitylabel .Text = ABookSale .ouantity .ToString()
Pricelabel.Text = ABookSale.Price.ToString("C")
ExtendedPricelabel . Text = ABookSale . Extended Price . ToString ("C")

End Sub
End Class

Managing M ulticlass Projects

This chapter has examples of projects with multiple forms and multiple classes.
In each case. every class is stored in a separate file. Although you must keep
form classes in separate files. other classes do not have that requirement. You
can code multiple classes in one file.

AtlcJiug <Ill Exi~tlu~ Cia~~ File Lu <1 P1·uject

If you have an existing form or other class ftle that you want to include in a pro
ject. you can choose to reference the file in its original location or move or copy
it into your project folder. Unless you need to share a class among several proj
ects. it's best to place the class file into the project folder. After you move or
copy the desired file into the project folder, add the file to the project by se
lecting Project I Add Existing Item (or right-click the project name in the Solution
Explorer and select Add I Existing Item from the context menu).

Using the Object Browser

The Object Browser is an important tool for working with objects. The Object
Browser can show you the names of objects. properties. methods. events. and
constants for VB objects. your own objects. and objects available from other
applications.

503

504 v s u :\ •. C OOP: Creatin.g Object-Oriented Programs

Select View I Object Browser or the Object Browser toolbar button (Figure
12.11) to open the Object Browser window (Figure 12.12). You can enter an
item for which to search in the Search box.

The Object Browser uses several icons to represent items. Notice in Figure
12.12 the icons that represent prope1ties. methods. events, constants, classes.
and namespaces . In the lower-right comer of the window you can see a de
scription of any item you select.

The Object Browser window; notice the icons to indicate the member type.

• !.i Bool&lle

v <1$ Salesform
b ge Set1inq<

" ~fiftM@fjffi
~ IQo B., :.c T)'pe~

~ ..:tt BookSale
> (} Chl2SQS3.My
> {} Ch12SBS3.My.Reso<.nces
11 {} l\lic1osoft.CSh~rp

:> {} 1\licrosoft.VisuaiBasfc
'" {} Nicrot.oft.VisuaiBasic.ApplicationS rvi•
9' {} 1\licrosoft.Vi.su~IB.:Jsic.Devices

" { } Nicrosoft.VisuaiBasic.FileiO
(} Nicrosoft.VisuaiBasic.l ogging

!> 0 Nicrosoft.Win32
{} Nicrosoft.Win3l.SofeHOJndl

(} S'fstem
0 9t<tcm.Code0om

{} ~~~tem.Collections
? {} S:tstem.Collections.G eric
~ {} Q!'tem.Collections.

' I

Property icon

Examining VB Classes

~C ddToTotai>O
.j C.:~lculotcExtendcdPriceO

~ DiscountTotaiAs Decimal
Equals(Object) ~Boolean

4:> tquals(Object. Object) As Boolean
rffj &:tcndedPcicc: A~ Occim41

<j• FinalizeD
~ GetHas.:hCodeQ As Integer
.. GetTypeQ As Syrtem.Type

<j4 Membc:rwisc:CioncO A~ Object
,. No\11()

-=0 Ne\v(String, Integer, DecimaO
r1? Price: As Oecim~l
@' Q.J•ntity As Integer
_,. ReferenceEquals!Object. Object) A; Boolean
~):aletCount As Integer

~ S~leslot~l AsOecimol
!ffi' TitleAsS<ring

Public Oass Stud~nt~kSale
lnhEnts ChllSBSl .BookS:alo

Member of Ch12SBS3

Description pane

You can look up the available properties. methods. events, or constants of a Vi
sual Basic class. You can see which elements are defmed in the cla~s. what is
the base class. and which properties. methods. and events are inheritecl. Tn Fig
ure 12.13 notice the entries for System. Windows.Fonns .MessageBox; the over
loaded constructors appear in the Members list. And in Figure 12.14, you can
see the constants for MessageBoxButtons.

l!' i g••••e 1 2. 11

Open the Object llro-wserfi·om

the toolbar butt.on.

F i g ur•e 12. 1 2

C II A I•'I' I'R 12

Fig111•e 12.13

Display the members of the System. Wind=s.Forms.MessageBox class.

r- Constant icon

/Class icon

Object Browse.~jx.

llfovm:; ! Mvholution

II <Search> I
~.fo!emge

- ~~-L--1-->'~iF'- Mess~geBo)(Buttons
uP Messc:geBoxDefaultButton
rffi Meso.a.geBol<kon
tfiJ Messt<gc:Boli.Options
~ Mrthodlnvo~er

~ ~ MonthCalendar
~ MonthCal~ndc:f.HitArea

I' 4f: MonthCalandar.Hitledlnfo

GFJ MouscButtons
o 'U McuseEventArgs
~ MouseEventHandler

I> ~ Nctivc:Window

/ Method icon

I -1 ... ~ -l tl @l ·

I -1~
!4 ShoN(String) As System.VIindows.Forms.DialogResult G
:0 Show(Stnng, Stnng) As Sys.tem.Windo\V".Formt.Oia!ogResult

-'t ShO'N(String, String, Systc:m.WindowsJorms.Me$sogeBoxBu'ct:ons) As Systcm.Window
.,. ShOIN(String, String, System.Windows.Forms.MessageBo)(futtom, System.Windows.f•
;t, Show(String, String, Syttem.Windowdorms.MessageBo~s, System.Windows.t:•

~· Show(Strin-g, Stfing, Syston.Windows.Form:s.M:::sSGgc:BoxBurtorn, Syslc:m.Windows.Fo
,. Show(String. String. Sys,tem.Windows.Forms.Message6o}f3uttons. System.Windows.f•
,. Sho-N(String, String, System.Windows.Forms.MessageBo><Buttons, Sy;tem.Windows.F•

~• Sho'IY(S[fing, Sttiog, System.Windows.Forrns.MessageBo:xButtons, System.Wir•dows.F•
=0 Show(String, String, Sy;:tem.Windovx.Forrns.MessageBo~Buttom, Sydem.Windows.F, ·~

·• ShO'N(String, String, Systcrn.Windows.Fomls.Mes~geBoxBottom, Syrlcm.Windows.F•
~• ShO'N(System.WindowsForms.JWin3l\Vindow, String) AsSystem.WindOYts.Forms.Oia
;O Sho<N(Syr.tem.Windowi.FormdWin31Window, String, String) As Sy!tem.\Vindows.For

;. ShO'N(S)'stc:m.Windows.forms.JWin32Window, Siring. String. Sy:slc:m.VIindO'M.fofms

D ~ NavigateEventArgs
~ NavigateEventHandler 0

,. Show(System.Windows.Forms.JWin32Wmdow. Stong. Stnng. System.VIindows.Form;
'• .Shovv(System.W~dows.Fo•ms.JWin32\'hndow, Siring, String, Syrtem.VIindows.Forms
:t Sho..v(System.Windows.folms.JWio31Window, String, String. SysLem.WindO<Ns.FoimsEJ o 'U Nodel•betEditEventArgs

~ NodelabeiEditEventHandler "' o <!; Nctilylcon
1> <U NumericUpOown

Public Class M•ss.ogeBox

Member of ~l!llinJlJ!m..~ =
Summ-ary.

1> ~ NumencUpOownAccela•atiOI

1> <.t: Numc:ricUpOO'A'nAcc~lerdtiOI
o '1: Opac<yConvener

< I "'

Inherits Srstem.Q!lim 8
G Displays a mess.age box that can contain text, buttons, and symbols that inform

and instruct the user.

Fig111•e 12.14

Display the MessageBoxButtons constants.

Ob;ect Browser X

S.owsc: i My Solution ·! - l !b l@ ·
I <Search> ·l~ ;.

• 'l; MessageBox ~1 f.!l AbortRe<rylgne<e
rfPPfi.!j:$@¥ l.iJ OK
riP Mes~gcBoxDdllultSutton G OKCt!nccl
t.:fJ Messc:geBo:dcon r;J R"'rycancel
riP Mes;cageBolCOptions (i) VesNo
ti" Mc:thodlnvokc:t 0 Ye:sNoCancd

o ~ MonthC•Iend"
riJJ MonthCalendar.HitArea)

1> <U MonthCalendar.Hitlestlnfo
riP MouseButtons (J

I> "ls MousehcntArgs
Li MouseEventHandler Public Enum Mo.,..,goBoxButton• As Intogor .

to ~ Native\\llndow Men1ber of System.Windows.Forms

A ~ ~ NavigctcEvcntArgs Summuy:

1:i.t ~:lliaau:E~entHand!er G specifi~s constants dE!fining which buttons t o display on a

• I I Syst~m.Windows.Forms.Mess.ageBox. .

sos

506 \ S L \ 1, IE _\ S (' OOP: Creatirtg Object-Orii!llted Programs

Examining Your Own Classe.o.

You can see your own classes listed in the Object Browser. With the chapter
step-by-step project open. select your project name in the Object Browser. Try
clicking on each class name and viewing the list of properties and methods
(Figure 12.15).

F l rt u re 1 2. 1 5

View the prop<'r1ies and methods for your own cla~es. Double-click on an item in the Members list to jump to its definition

in code. You can control the infonnation to display in the Object Browser by using the Object Browser Settings butt-on.

Object brow..,r setlinp button
/

Ob}«t Broo.ser X

llrowoe l My Solution -1-· .. ~~~
~ <S•arch> ·Ia -
• 0 ChllSBSl I · t • AddToTotal>(}

• <I:I!BI'I [!_ .,. (alc~ab!Ute.ndedPrtefO

p 4$ Solel i=OI'm ~ EXtended Price A~ De:cii"\CCI

b .>n S•tting; ,;P ExtendedPrice!lecimal
., ~ St\JdaniBcdcSJie 6 N.w(String.lrrttgtr. OtcirNO

> CJ B.>e Typo ~ Price As Ottlll\41
> 0 ChllSBSl.My ;{I PricoOO<imol
> () Ch12SBS3.My.REsource~ ~ Quantity As Integer
> 0 Mia<><oft.CSh.,p til Qu•rtil) lntegfl
"> {) Mtc;ro'~>cft.V~ui.IB.u•c ~ Sals.Count As lntF:9Ef

> (J Miao~oft.Vi1ut:IB4sic:..A.ppi.c:Miol ;# SaloCountlr:kgu

> () Miaosott.Visu~IBlsi<.Devi<es "5f SalesTotal M Decimal
() Maot:oft.Vituallb_gc.Fileii.O ,# Sai.-Tob!DKtmal

> (~ Mia05oft.Visu•IS•~c.Logging ~ liU< AI String
> (f MICJO<oft.\'lln32 $1 Tlt.I~St1ing
> () Moaosoft.\\lin32.SafeHincl<:s

> 0 S,.Slcm ~oblic Cl• " Boolcs..lo

\ (> () SyUem.Cottr-Oom klher~s ~ste.,o,Q!>iKI

> (. System.Co:h.Dom.Compile:r M~nlbef of tbl2SJIS3
ill t:; -. ' I -

• I ., l '
\ - .. . Double chck an e nlry lo JUillp

lo it• definition in code

You can use the Object Browser to jump to the definition of any property or
method by double-clicking on its name in the Members list. This technique is
also a great way to jump to any of the procedures in your fonns. Select your
form name in the Objects list and double-click on the name of the procedure
you want to view.

Your Hands-On Programming Example

This progmm must calculate book sales for R 'n R. with a discount of 15 per
cent for students. The project will use the BookSale and StudentHookSale
classes developed in the chapter step-by-step.

Create a project with multiple forms that have a shared design element. In
clude a main form. an About form. and a summary form that displays the sales
summary information.

Design a base form to use for inheritance and make the other three forms
inherit from the base form. The About form and summary form must have an
OK button, whjch closes or hides the form. 1l1e main form 11-·ill have menus and
no OK button.

C II 1\ I' T t: R

l\1ain Foa"UJ l\l cnu

file
.~<alculate Sale
Cj_ear
.§ummary

!:.lit

l'l:mnin~ tht> Projt>rl

1%

Help
about

Sketch a base form for inheritance. a main form. an About form. and a sum
mary form (Figure 12.16) for your users. The users approve and s ign off the
forms as meeting the ir needs .

507

l<' lgur e 12 . 1G

The plannin g sketch"' of thefonns for the hands-on programming example. a. The base form: h. the main f orm: c. the About
jimn: and d. the Summary f orm.

f'>aGeForm --1

a.

Malnform

'\• file

b.

IL============]}------~~ ComparctNamel.a~el

\ La~el2

!:!elp

R 'n R for Re.sdtne and <:ef're6hment

.Iltle: I
guantlty: 1 I

frlce: 1 I
~tudent 0

Extended Pt1ce: 1 I

n I

OK] +--r- Ok:f'>utton

OK I

TitleTexte>ox

QuantltyTextf'>ox

PrfceTextBox

StudentCheck:Box

ExtendedPrtce Textf'>ox

508

C-

\

At:>out Fon11

Bummaryf0n11

S L \ I, ll \ s

R 'n R for Reading and Refn:shment

By 6r1!1dley and Mlllspau~h

Version 1.0

R 'n R for Reading and Refre.:;hment

(' OOP: Creating Object-Orien!ed Program<

Fl"are 12.16

(continued)

OK

Sales Total: ._I ___ _, +-------------r- SalesTotaiTextBox

Sales Count: I SalesCountT~tBox

TotaiStuelent DI6COUnt6< I DlscountTotaiTextBox

n OK

C II A I' T E R 12

Plan the Objects and Propertie~ for the Base F'om1

Ohjec t Pro (>el'l)' Setting

B""eFonn Name BaoeFonn

CompanyNameLabel Name CompanyNameLabel
Text R 'n R for Reading and Refreshment

OkButton Name OkButton
Text &OK

Label2 Name l..abel2
Size 250. 4

Label3 Name Label3
Size 300.4

Pic tureBoxl Name PiclureBoxl

Image Coffee.pn£

Plan ll1e Procedures for llw Ba:>e Fonn

Proccdu1··e

OkButlon_Ciick

Actions

(Overridable)

Cl""" the form.

Plan the Objects and Propertie~ for the Main F'onn

Object Properly

MainFonn Name
Text

Labell Name
Text

TitleTertBox Name

Label2 Name

Text

Quantity Text Box Name

Label3 Name
Text

PriceText lk>x Name

StudentCheckBox Name
Text
RightToLeft

Label4· Name
Text

Exte ndedPriaeTextBo• Name
Read Only
TnhStop

Setting

Mainform
R 'n R Book Sales

Labell
&Title:

Title TextBox

Label2

&Quantity:

Quanlii)•TextBox

Label3
&Price:

PriceTextBox

Student CheckBox
&Student
Yes

Label <I-
Extended Price:

ExtendedPriceTextBox
True
Folse

509

51 0 s l \ L R \ S (" OOP: Cnating Object-Orime.d Progra=

Objerl Properly Sellin,;

f ileTooiSiripMe nu ltem NlliDe FileTooiStripMenultem

Text & f il<:

CalculateSaleTooiStripMenultem Name CalculateSaleToolStripMenultcm
Text &Calculate Sale

ClearTooiStripMenultem Name ClearTooiStripMe nultem
Text C&lear

SummaryTooiSiripMenultem Name SummaryToolStripMenultem
Text &Summary

ExitTooiStripMe nultem Name ExitToolSiripMeoultem

Text E&xit

HelpTooiSiripMenultem Name HelpTooiSiripMenultem

Text & Help

AhoutTooiStripMenultem Name AboutTooiStripMenul tem
Text &About

Pion the Procedures for the Main Fom1

Pr ocedure

f orm_Load

CalculateSaleTooiStripMenultem_Ciick

ClearTooiStrip~lenultem_Ciick

SummaryTooiStripMenultem_Ciick

ExitTooiStripMenultem_Ciick

AhoutTooiStripMenultem_Ciick

A c l-io n"'

Hide the inherited OK button.

If student sale then
Create a StudentBookSale object.

Calculate and formal the extended price.
Else

Create a BookSale object.

Calculate and format the exlende<l price.
End If

Clear the text boxes.
Uncheck the checl< box.

Set the focus on fi rst text box.

Sho~· tl1e Sumllll1ry form.

End the project.

Sho~· tl1e About fcnn.

Plan the Objects and Properties for the About ~'orm

O bject P r o perly Setting

AhoutForm Name About form

Text About This Program

OkButton Name (Inherited) OkButton
Text &OK

Plan the Procedures for the About F'orm

Proced ure A c tiOJl!f

OkButtoo_ Click (No code: inherited from base class)

C ll i\ 1°Tt: R 12

Plan I he Objecls and Properties for Lhe ummary F'orm

O bj ect Property Selling

SwnmaryFonn Name Summary Form
Text Sununary

Labell Name Labell
Text Sales Total:

SalesTota!TextBox Name Sal...,TotalTextBox

Read Only True
TabStop False

Lahel2 Name Lahel2
Text Sales Count:

SalesCount TextBox Na.m e SalesCountTextBox

Read Only True
TabStop False

Lahel3 Name Label3
Text Thtal Student Diocounts:

DiocountTotalTextBolt Name Di!!CountTotaiTextBox

ReadO.:dy True
TabStop False

OkBullon Name Onherited) OkBullon
Text &OK

Plan Lhe Procedure& for the Summary F'onn

Procedu1·e

Form_ Aclivated

OlcBullon_Click

A c t:iO Jlii

FiU the form controls.

(Override the b,.,., class method)
Hide this form.

Plan lhe BookSale Object Cla~<s

Propea1iea

Declare private module-level variables and write property procedures for all public properties:

Instance:
Title
Quantity
Price

Sbare<l:
Sal~sTotal

SalesCO<mt

Me thod•

Procedure

ExteodedPrice

Ac tio ns

Calculate Extended price = Quantity* Price.
Add Extended price to Sales Total.

Add Ito SalesCount.

Retum Exte nded price.

Sll

512 ' S l \ L It \ s t: OOP: Cnating Object-Oriented Programs

Plan the SturlentBookSale Object Class

Inherit from BookSale.

Add it ionol Pro(l<'rlic•

Shared:
DiscoontTotal

~1etbod~

Pr;ore<ln•·e

Extended Price

Actio n.,

Calculate Discount= Price* Quantity • Di.counl role.
Calculate Extended price = Quru1lily * Price- Discount.
Add Extended price lo SalesTotal.
Add llo SalesCounl.
Add Discount to DiscountTotal.
Return Extended price.

\\ rite the Project Follow the sketches in Figure 12.16 to create the forms. Cre
ate the base form first and inherit Lhe other three forms from the base fotm. Fig
ure 12.17 shows tl1e completed forms.

t' l g nr e 12.1 7

Th~J completed forms for th~J hands-on programming e:romple. a. The ba$eform; b. the main form: c. the About form: and
d. the Summary form.

a.

c.

It 'o R fCf' ~odlog Gfld Refresii,...T .. '• • f .,. a....un, and Rcfrortw.c.t

b.

.

it 'n j:l for R..tcading Clnd Rafrc.s:~rncnt

By Bradley ond MIJI>poU!If\

v...,;o, 1.0

d.

.. -... -

~ '• R for Rcodlog Gfld Rcfrcslvneot

. "'

w "' a

C ll i\ 11 T E R 12

Sel the project's startup object to the main form.

Set the properties of each of the objects according to your plan.

Create the BookSale and StudentBookSale classes, or copy them into your
projec t folder and add them to the project.

Write the code. Working from the pseudocode. write each procedure.

When you comple te the code. use a varie ty of data to thoroughly test the
projec t.

ThP Projl'c l t:odin;! ~olution

BaseF'orm

'Program:
'Progranvner:
'Date:
'Description:
'Folder:

Chapter 12 BookSale Hands-on Program
Bradley/Millspaugh
June 2010
Base form for hands-on project .
Ch12Hands0n

Public Class BaseForm

Public Overridable Sub OkButton_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles OkButton.Click

' Allow inherited classes to override this method .

End Sub
End Class

Mainf'orm

'Program:
' Programmer:
'Date:
'Description:

' Folder:

Chapter 12 BookSale Hands-On Program
Bradley/Millspaugh
June 2010
Calculate sales price using the BookSale and StudentBookSale classes.
Main form for hands-on project.
Ch12HandsOn

Public Class MainForm
Inherits BaseForm

' Declare the new objects .
Private TheBookSale As BookSale
Private TheStudentBookSale As StudentBookSale

Private Sub MainForm_Load(ByVal sender As Object,
ByVal e As system.EventArgs) Handles MyBase.Load

' Make the OK button invisible on this form.

OkButton.Visible = False
End Sub

Private Sub CalculateSaleToolStripMenuitem_Click(ByVal sender As Object ,
ByVal e As System.EventArgs) Handles CalculateSaleToolStripMenuitem.Click

' Calculate the extended price for the sale.

513

514 S l \ L n ' "
C OOP: Creating Object-Oriented Programs

Try
If StudentCheckBox.Checked Then

• Instantiate the studentBookSale object and set the properties.
TheStudentBookSale =New StudentBookSale(TitleTextBox.Text,

Integer.Parse(OuantityTextBox.Text), oecimal.Parse(PriceTextBox.Text))

Else

• Calculate and format the result.
ExtendedPriceTextBox.Text •

TheStudentBookSale. ExtendedPrice . ToString ("N")

• Instantiate the BookSale object and set the properties.
TheBookSale = New BookSale(TitleTextBox.Text,

Integer.Parse(OuantityTextBo~.Text),

Decimal .Parse(PriceTextBox .Text))
Calculate and format the result.

ExtendedPriceTextBox.Text = TheBookSale.ExtendedPrice .ToString('N")
End If

Catch
IAessageBox . Show(• Error in quantity or price field." , 'R • n R Book Sales • ,

WessageBoxButtons.OK, MessageBoxlcon.Exclamation)
End Try

End Sub

Private Sub ClearToolStripMenultem_Click(ByVal sender As Object ,
ByVal e As System.EventArgs) Handles ClearToolStripMenultem.Click

• Clear the screen controls.

ouantityTextBox.Clear()
PriceTextBox.Clear()
ExtendedPriceTextBox .Clear()
StudentCheckBox.Checked = False
With TitleTextBox

.Clear()

.Focus()
End With

End Sub

Private Sub SummaryToolStripMenuitem_Click(ByVal sender As Obj ect,
ByVal e As System.EventArgs) Handles SummaryToolStripMenuitem.Click

' Display the sales summary information .

Summaryform. ShOWOialog()
End Sub

Private Sub AboutToolStripMenultem_Click(ByVal sender As Object ,
ByVal e As System.EventArgs) Handles AboutToolStr ipMenultem .Click

' Display the About form.

AboutForm.ShowDialog()
End Sub

Private Sub ExitToolStripMenultem_Click(ByVal sender As Object,
ByVal e As System. EventArgs) Handles ExitTo·)lStripr.lenultem. Click

' End the project .

Me .Cl ose()
End Sub

End Class

C II A I•Tt: R I Z

AboutForm

'Program:
'Programer:
'Date:
'Description:

'Folder:

Chapter 12 BookSale Hands-on Program
Bradley/Millspaugh
June 2010
Calculate sales price using the BookSale class.
About form for hands -on project .
Ch12HandsOn

Public Class AboutForm

Public overrides Sub OkButton_Click(ByVal sender As Object ,
ByVal e As System.EventArgs) Handles OkButton .Click

· override the base class method .

Me.Close()
End Sub

End Class

SurnmaryFonn

'Program:
• Programer:
'Date:
'Description:

'Folder:

Chapter 12 BookSale Hands-On Program
Bradley/Millspaugh
June 2010
Calculate sales price using the BookSale class.
summary form for hands-on project .
Ch12Handson

Public Class summaryForm
' Inherits BaseForm

Public Overrides Sub OkButton_Click(ByVal sender As system.Object,
ByVal e As System.EventArgs) Handles OkButton.Click

· override the base class method .

Me. Hide()
End Sub

Private Sub SummaryForm_Activated(ByVal sender As Object,
ByVal e As System.EventArgs) Handles Me.Activated

' Display the summary information on the form.

SalesTotalTextBox.Text ~ BookSale.SalesTotal.ToString("C")
SalescountTextBox.Text ~ BookSale.Salescount.ToString()
DiscountTotalTextBox.Text ~ StudentBookSale.DiscountTotal .ToString ('C")

End Sub
End Class

Book.Sale Clas•

'Class Name:
' Programmer:
'Date:
'Description:
'Folder:

Book Sale
Bradley/Mi11spaugh
June 2010
Handle book sale information.
Ch12HandsOn

SIS

516 \ S l \ L It .\ .. £ OOP: Creating Object-Oriented Programs

Public Class BookSale
Private TitleString As String
Private Quantityinteger As Integer
Private PriceDecimal, ExtendedPriceDecimal As Decimal
Private Shared Sal esTotalDecimal As Decimal
Private Shared SalesCountinteger As Integer

' Parameterized Constructor.
Sub New(ByVal Titlein As String, ByVal auantityin As Integer,

ByVal Pricein As Decimal)
' Assign property values .

Title = Titlein
Quantity = auantityin
Price = Pricein
CalculateExtendedPrice()
AddToTotals()

End Sub

Property Title() As String
Get

Return TitleString
End Get

Set(ByVal Value As String)
TitleString = Value

End Set
End Property

Property Quantity() As Integer
Get

Return Quantityinteger
End Get

Set(ByVal Value As Integer)
If Value >= 0 Then

auantityinteger = Value
End If

End set
End Property

Property Price() As Decimal
Get

Return PriceDecimal
End Get

Set(ByVal Value As Decimal)
If Value >= 0 Then

PriceDecimal = Value
End If

End Set
End Property

Property ExtendedPrice() As Decimal
Get

Return ExtendedPriceDecimal
End Get
set(ByVal Value As Decimal)

ExtendedPriceDecimal = Value
End Set

End Property

I Z

Shared ReadOnly Property SalesTotal() As Decimal
Get

Return SalesTotalDecimal
End Get

End Property

Shared ReadOnly Property salescount() As Integer
Get

Return Salescountinteger
End Get

End Property

Protected overridable Sub CalculateExtendedPrice()
' Calculate the extended price.

EXtendedPriceDecimal = auantitylnteger * PriceDecirnal
End Sub

Protected Sub AddToTotals()
' Add to the summary information.

SalesTotalDecimal += ExtendedPriceDecimal
Salescountlnteger += 1

End Sub
End Class

tudrntBookSale Cla~8

'Class Name:
' Programmer:
'Date:
'Description:

'Folder:

StudentBooKSale
Bradley/Millspaugh
June 2010
Handle booK sale information for student sales,
which receive a discount.
Ch12HandsOn

Public Class StudentBooKSale
Inherits BookSale

Const DISCOUNT_RATE_Decimal As Decimal= 0.150
Private DiscountDecimal As Decimal
Private Shared DiscountTotalDecimal As Decimal

Sub New(ByVal Title As String, ByVal Quantity As Integer,
ByVal Price As Decimal)

' Assign property values .

' Call base-class constructor and pass the property values.
MyBase.New(Title, Quantity, Price)

End Sub

Shared ReadOnly Property DiscountTotal() As Decimal
Get

Return DiscountTotalDecimal
End Get

End Property

51 7

518 \ ' s l .\ l l ' OOP: CreMing Objut-Orienud Programs

Protected overrides Sub CalculateExtendedPrice()
' Calculate the extended price and add to the totals.

DiscountDecimal = Quantity * Price * DISCOUNT_RATE_Decimal
ExtendedPrice = Quantity * Price - DiscountDecimal
DiscountTotalDecimal += DiscountDecimal

End Sub
End Class

l. Objects have properties and methods. and can lligger events .
2. You can create a new class that can then be used to create ne\\· objects.
3. Creating a new object is called instanti.ati-11g the c lass: the object is called

an instance of the class.
4. In object-oriented terminology. encapsrdation refers to the combination of

U1e characteristics and behaviors of an item into a s ingle class definition.
5. Polymorphism allows different classes of objects in an inheritance hierar

chy to have similarly named methods that behave diflerently for that par
ticular object.

6. inheritance provides a means to derive a new class based on an existing
class. The existing class is called a base class. superclass, or parent class.
The inherited class is called a subclass. derived class, or child class.

7. One of the biggest advantages of object-oriented programming is that classes
U1at you create for one application may be reused in another application.

8. Multi tier applications separate program functions into a Presentation tier
(the user inte rface). Bus iness Services tier (the logic of calculations and
validation). and Data tie r (accessing stored data).

9. The variallles inside a class used to store the properties should be private,
so that data values are access ible only by procedures wi thin the c lass.

10. The way to make the properties of a class available to code outside the
class is to use Property procedures. The Get portion returns t11e value of
t11e property. and ilie Set portion assigns a value to the property. Validation
is often perfonned in the Set portion.

11. Read-only properties are declared with the ReadOnly keyword and have
only a Get accessor method. Write-only properties are written with the
WriteOnly keyword and have only a Set accessor method.

12. The public functions and sub procedures of a class module are its methods.
13. Using VB auto-implemented properties. it isn't necessary to l>Tite property

procedures with Get and Set.
14. To instantiate an object of a class. you must use ilie New keyword on either

U1e declaration s tatement or an assignment statement. The location of the
New keyword detennines when the object is created.

15. A constructor is a method that automatically executes when an object is
created: a destructor method is triggered when an object is destroyed.

C ll i\ I'T E I& 12

16. A constructor method must be named New and may be overloaded.
17. A parameterized constructor requires argument.s to create a new object.
18 . Sha1·ed members (properties and methods) have one copy that can be used

by all objects of the class. generally u.sed for totals and counts. Instance
members have one copy for each instance of the object. Declare s hared
members with the Shared key~<·ord.

19 . The garbage collection feature periodically checks for unreferenced ob
jects. destroys the object references. nnd releases resources.

20. A s ubclass inherits all public and protected properties and methods of its
base class. except for the constmctor.

21. To override a method from a base class. the original method must be de
clared as overridable or Mustoverride. and the new method must use
the Overrides keyword.

22. A base class u.sed stric tly for inheritance i.s called an abstract class and can
not be instantiated. 'JOe cla~s should be declared as Mustlnheri t . and the
met11ocls that must be overridden should be declared as Mustoverride.

23. You can use visual inheritance to derive new forms from existing fom1s.
24. You can use the Object Browser to view classes. properties. methods.

events. and cons tants in system classes as well as your own classes.

abstract class 491
Abstraction 469
abstract method 491
accessor methods 474
auto-implemented property 482
base class 470
child class 470
class 468
constructor 475
derived class 470
destructor 475
encapsulation 469
garbage collection 490
inheri ta nce 469
instance 468
instance property 486
instance variable 486
instantiate 468
multi tie r application 471

Mustlnherit 496
Mustoverride 491
object 468
overloading 471
overriding 471
parameterized constmctor 476
parent class 470
polymorphism 471
property procedure 474
Protected 490
ReadOnly 475
reusability 470
shared property 486
shared variable 486
subclass 470
superclass 470
value keyword 474
visual inheritance 496

519

520 S l ' \ I. ll \ s C OOP: Creating Obftct-Oriented Programs

l. What is an object? a property? a method?
2. What is the purpose of a class?
3. Why should property variables of a class be declared as private?
4. What are property procedures and what is their purpose?
5. Explain how to c reate a new object.
6. What steps are needed to assign property values to an object?
7. What actions trigger the cons tructor and destiUctor methods of an object?
8 . How can you write methods for a new class?
9. What is a shared member? How is it created?

l 0. Explain the steps necessary to inherit a class from another class.
ll. Differentiate between overriding and overloading.
12. What is a paramete rized constructor?
13. When might you use the Protected keyword on a constructor?
14. What is visual inheritance?

Note: F'or help in basing a ne~· project on an existing project. see "Copy
and Move Projects" in Appendix C.

12.1 Modify the program for Programming Exercise 5.1 (the piecework pay) to
separate the business logic into a separate class. The class should have
properties for Name and Pieces. as well as shared read-only properties to
maintain the summary information.

12.2 Modify Programming Exercise 12.1 to include multiple forms. Create a
base form that you can use for visual inl1eritance. Display the summary
infonnation and the Ahout box on separate forms, rather than in message
boxes.

12.3 Extra Challenge: Modify Programming Exercise l2.2to have an inherited
class. Create a derived class for senior workers. who receive 10 percent
higher pay for 600 or more pieces. Add a check box to the main form to

indicate a senior worke r.
12.4 Modify Programming Exercise 5.3 (the salesperson commissions) to sep

arate the business logic into a separate class. The class should have prop
erties for Name and Sales. as well as shared read-only prope11ies to
maintain the summary information.

12.5 Modify Programming Exercise 12.4to include multiple forms. Create a
base form that you can use for visual inheritance. Display the summary
information and the About box on separate forms. rather than message
boxes.

12.6 Extra Challenge: Modify Programming Exercise 12.5 to have an inherited
class. Create a derived class for supervisors. who have a different pay
scale. The supervisor quota is $2.000. the commission rate is 20 percent.
and the base pay is $500. L1clude a check box on the main form to incli
cate a supervisor. and calculate separate totals for supervisors.

C ll i\ l• l 'E IC 12

L2.7 Modify Programming Exercise 5.2 (the check transactions) to separate
the business logic from the user interface. Create a Transaction class
and derived classes for Deposit. Che ck. a nd Service Charges. Display
tlte summary infonuation on a separate form rather than a message box.
Optional Extra: Use visual inheritance for the forms.

J 2.8 Modify Programming Exercise 5.4 (the I ibrary reading program) to sep
arate the business logic from the user interface. Create n class witlt
properties for Name and Number of Books. Display the summary infor
mation and About box in separate forms rather than message boxes.
Optional, Extra: Use visual inhe ritance for the forms.

12.9 Extra Challenge: Modify Programming Exercise 12.8 to have inherited
classes. Have separate classes and separate totals for elementary. inter
mediate. and high school. Include radio bullons on the form to select the
level; display totaJs for all three groups on the Sllmmary.

12.10 Create a project that contains a class for sandwich objects. Each sand,vich
object should have properties for Name. Bread. Meat. Cheese. and Condi
ments. Use a fonn for user input. Assign the input values to the properties
of the object. and display the properties on a separate form. Hint: Use a
ReadOnly property on the input fonn to pass the object to the second form.

12.11 Create a project that contains a Pet class. Each object will contain pet
name. animal type . breed. and color. The form should contain text boxes
to enter the information for the pets. A button or menu item should dis
play the pe t information on a separate fom1. Hint: Use a ReadOnly prop
erty on the input form to pass the object to the second form.

12.12 Modify the project that you created in Chapte r 3 to separate the user in
terface from the business logic (calculations) and return the results
I h.rough a property.

VU Jtl a ll Ord~r

S21

Modify your VB Mail Order project from Chapter 5 to
separate the user interface from the business logic.
Create two ne~t· classes: one for customer information
and one for order items. The order item class should
perform the calculations and maintain the summary
information.

Optional extra: Use visual inheritance for the
forms.

Add a menu option to rusplay the customer infor
mation. Display the properties of the Customer object
on a separate form. Hint: Use a Read Only property on
the input form to pass the object to the second fom1.

Display the About box and the s ummary informa
tion on forms. mtber than message boxes.

Need a bigger challenge? Create an inherited
class for preferred c us tomers. Preferred customers re
ceive an automatic 5 percent discount on all pur
c hases. Use a check box to determine if the customer
is a preferred cus tomer and instantiate the appropriate
class. Maintain and display separate totals for pre
ferred customen>.

Note: For help in basing a new project on an exist
ing projec t. see "Copy and Move Projects" in Appen
dix C.

522 \ s l ! \ ••

Modify your VB Auto Center project from Chapter 5 to
separate the business logic from the user interface.
Create a class for purchases, with properties for each
of the options. The class method will calculate the
subtotal. tax. total, and amount due.

Make the About box display on a separate form.
rather than a message box.

Need a bigger clwllenge? Add summary totals for
the number of sales. the total sales. and the total

IC \ S l ' OOP: Creating Object-Oriented Programs

trade-ins. Maintain the totals as shared read-only
properties of the class and display the summary infor
mation on a separate form.

Note: For help in basing a new project on an exist
ing project. see '·Copy and Move Projects'' in Appen
dix c.

VIdeo Bonanza

Modify the Video Bonanza project from Chapter 5 to
separate the user interface from the business logic.
Create a class for each rental. Include a property for
title. Boolean properties for video f01mat. new members.
price of current item. and membership. and shared read
only properties for the summary information.

Display the s ummary information and the About
box on forms, rather than message boxes.

Note: For help in basing a new project on an exist
ing project. see "Copy and Move Projects" in Appen
dix c.

Very Very Boarch

ModHy the Very Very .Boards project from Chapter 5 to
separate the user interface from the business logic.
Create a class for each shirt sale with properties for
Order Number. Quantity. and Size. Use Boolean prop
erties fo r Monogram and Pocket and a method to cal
culate the price. Maintain shared read-only properties
for the summary information.

Display the s ummary information and the About
box on forms. rather than message boxes.

Opt.wnal extra: Use visual inheritance for the
forms.

Note: For help in basing a new project on an exist
ing project. see ''Copy and Move Projects" in Appen
dix c.

B A p T E R

Graphics, Animation,
Sound, and
Drag-and-Drop

I . Use Graphics methods to draw shapes, lines, and filled shapes.

2. Create a drawing surface K' ith a Graphics object.

3 . Instantiate Pen and Brush objects as needed for drawing.

4 . Create animation by changing pictures at mn time.

5 . Create s imple animation by moving images.

G. Use the Tin1er component to automate animation.

7 . Use scroll bars to move an image.

8 . Add sounds to a project.

9 • Play videos on a folln.

Incorporate drag-and-drop events into yo11r program.

Draw a pie chart using the methods of the Graphics object.

524 v S l l ,\ I. C Graphics. Animation. Sound.

You had your first introduction to graphics when you learned to print docu
ments in Chapter 7. In this chapter you will learn to draw shapes, such as lines.
rectangles, and ellipses. using the methods of the Graphics object. You can use
the Graphics methods to draw pictures and charts in a business application.

You will do simple animation by replacing and moving graphics. You also
will use a Timer component to cause events to fire, so that you can create your
own animation.

Graphics in Windows and the Web

The tenn gmphic.s refers to any text, drawing, image, or icon that you display
on the screen. You have placed a graphic image in a PictureBox control to dis
play pictures on your forms. A picture box also can display animated .gif files,
so you can easily produce animation on the screen.

You can display a graphics file on either a Web Form or a Windows Form.
Recall that the Web control is an Image control and the Windows control is a
PictureBox. Both display graphics files. but the Windows control accepts a few

more file formats.
Using Windows Fonns. you can draw graphics shapes such as circles.

lines. and rectangles on a form or control. TI1e Graphics methods work only on
Windows F01ms. not Web Forms. Therefore. the programs in the next section
use Windows Forms only.

The Graphics Environment

The .NET Framework uses a technology called GDI+ for drawing graphics.
GDI+ is more advanced and an improvement over the previous Graphics De
vice Interface (GDI) used in some earlier versions of VB. GDI+ is designed to
be device-independent. so that the programmer doesn't have to be concerned
about the physical characte1istics of the output device. For example. the code
to draw a circle is the same whether the output goes to a large-screen monitor,
a low-resolution monitor, or the printer.

Steps £01· D1·awing G•·al)ltics

When you draw a picture, you follow these general steps. The sections that fol
low describe the steps in more detail.

• Create a Graphics object to use as a drawing surface.

• Instantiate a Pen or Brush object to draw with.

• Call the drawing methods from the Graphics object.

Looking over the steps, you realize that this is what you did for creating
printer output in Chapter 7 . In that chapter you used the DrawString method

and Drag-and-Drop

C ll t\l•l' I' R 13

to place text on the Graphics object; in tl1is chapter you will use methods that
draw shapes.

T he P aint Event Pt·ocedm·e

You draw lines and shapes on a form or control by drawing on a Graphics ob
ject. And where do you place the code for the drawing methods? In the Paint
event procedure for the form or the control on which you are drawing.

Each time a window is displayed. resized, moved, maximized. restored. or
uncovered, the form's Paint event executes. In the Paint event procedure. the
form and its controls are redrawn. If you draw some graphics on the fonn. in say
the Form_Load event procedure or the click event of a button. the graphics are
not automatically redrawn when the form is repainted. The only way to make
sure d1at ilie graphics appear is to create them in the Paint event procedure.
Then they are redrawn every I ime the form is rendered.

So far we have ignored the Paint event and allowed the repainting to pro
CPP.Il antomatically. Now WP. will placP. coriP in that P.VPnl prncP.IlurP.. Yon can
write code in the fonn's Paint event procedure to draw on the fonn. or code in a
control's Paint event procedure to draw graphics on the control.

In the Paint event procedure. you can use the e. Graphics object or declare
a Graphics object. You assign the Graphics property of the procedure's
PaintEvent.Args argument to the new Graphics object.

Private Sub Form1_ Paint(ByVal sender As Object,

525

l~ljii:J
To write code for the form's Point

event, in the Editor window select

(FormName Events) from the

Class Name list and then drop

do¥on the MethOd Name list and

click on Paint; or, in the Form De

signer, click on the Events button in

the Properties window ond double

click on Paint. •

ByVal e As System .Windows .Forms.PaintEventArgs) Handles Me . Paint
' Create a graphics object .
Dim GraphicsObject As Graphics = e . Graphics

You also can create a graphic object by calling the CreateGraphics
method of a f01m or control. You would use this method when you want to dis
play a graphic from a procedure other than the Paint event.

' Draw on the form.
Me.CreateGraphics.DrawMethoo

' Draw on a control .
GroupBox1 . CreateGraphics .DrawMethod

Pe n and Bt·ush Objects

Using a Peu object you can draw lines or outlined shapes such as rectangles
or circles. A Bntsh object creates filled shapes. You can set the width of a
Pen and the color for both a Pen and a Brush. ·Figure 13.1 shows some lines
and shapes created with Pen and Brush objects.

When you create a new Pen object, you set the color using the Color con
stants. such as Color.Red. Color.Blue. and Color.Aquamarine. You also can set
the pen's width, which is measured in pixels. The term pixel is an abbreviation
of pictrue element-a dot that makes up a picture. You are probably most famil
iar with pixels in d1e determination of the resolution of a monitor. A display of
1.280 by 1,024 is a reference to the number ofpixels horizontally and vertically.

You con use the form's Refresh
method to loroe a Paint event to

occur. •

526 \ ' S U A I.

li<:' UUIW1"9~ ~

l_l

e

The Pen Class--Cous truetot·s

~ = Pen(Color) ~I ~ ~ Pen(Color, Width)

If you don't set the width of the pen, it defaults to one pixel.

The Pen Class-Exruul>les

(: Graphics. A11imation.. SCJU~~d,
and Drag-a11d -Drop

Graphic shapes created by
drawing with Pen and Brush
object.s and the methods of the
Graphics class.

~ r---~ e Dim RedPen As New Pen(Color .Red)
~ Dim WidePen As New Pen(Color.Black, 10)
~ ~

You may find that you want several different pens. For each different color or
line width. you can create another Pen object or redefine an already dimen
sioned Pen vatiable jf you are finished with it.

If you want to create filled figures. declare Brush objects-one for each
different color that you w1111t to use.

The SoUd Lh·usll Cla.~Cot15 1l'U Ctol'

"'!1(."'5

~ tl SolidBrush(Color)

Use the Color constants to assign a color to your Brush objects. •
~ r---... ;.<

S Dim BlueBrush As New SolidBrush(Color .Blue)
'2..

~ ~--------------------------------.... You may have deduced from the name of the Solid Brush class that other types
of bmshes exist. See Help if you are interested in using a Texture Brush. Hatch
Brush. LinearGradientBrush, or PathGradientBrush.

C II A 1• 'I' " ll 13

T he Co01·din ah• System

Graphics are measured from a starting point of 0.0 for the X and Y coordinates
begiruling in the upper-left comer. The X is the horizontal position. and the Y is
the vertical measurement. The starting point depends on where the graphic is
being placed. If the graphic is going directly on a fonn. the 0,0 coordinates are
the upper-left comer of the form. below the title bar and menu bar. You also can
draw graphics in a container. such as a PictureBox. GroupBox. or Button. In
this case. the container has its o'm 0,0 coordinates to be used as the starting
point for measuring the location of items inside the container (Figure 13.2).

0,0~.---------------,

o.o-.

0

Each of the drawing methods allows you to specify the starting position us
ing X and Y coordinates. Most of the methods also allow you to specify the posi
tion using a Point structure. In some methods it is useful to use a Rectangle
structme. and in others a Size structure comes in handy.

Tbe Poim Su ·u cttu·e

A Point su ·ucuu·e is designed to hold the X andY coordinates as a single w1it.
You can create a Point object. giving it values for the X and f. Then you can use
the object anywhere that accepts a Point as an argument.

Dim MyStartingPoint As New Point(20, 10)

You can see an example of a Point in the design of any of your forms. Ex
amine the Location property of any control: the Location is assigned a Point ob
ject. with X andY properties.

Tbe Size Su·uctm·e

A Size su·u cuu·e has two components. the width and height. Both integers
specify the size in pixels. Some Graphics methods accept a Size structure as an
argument.

527

l<' igu•• e 13 . 2

The coordinates for graphics
begin with 0.0 in the upper-left
corner of a form or container.

Dim MyPictureSize As New Si ze(100, 20) ' Width is 100, height is 20 .

You also can see an example of a Size structure by examining the design of
any of your forms. Each of the controls has a Size property, which has width and
height properties.

For an interesting exercise. examine the automatically generated code for
a Button control in the FormName.Designer.vb file. The button's Location is set
to a new Point object. and the size is set to a new Size object.

528 v S l l ,\ I. C Graphics, Animation, Sowul.
and Drag-and-Drop

TJ1e llcctaugle Su·n.-turc

A Rectangle sU'Uetm·e defines a rectangular region. specified by its upper
left corner and its size.

Dim MyRectangle As New Rectangle(MyStartingPoint, MyPictureSize)

The overloaded constructor also allows you to decla1·e a new Rectangle by
specifying its location in X and Y coordinates and its ~tidth and height.

Dim MyOtherRectangle As New Rectangle(XInteger, Ylnteger, Widthlnteger, Heightlnteger)

Note that you also can create Point. Size. and Rectangle structures for
single-precision floating-point values. Specify the PointF. SizeF. and RectangleF
structures.

Gt·aphics Methods

The drawing methods fall into two basic categories: draw and fill. The draw
methods create ru1 outline shape and the 1ill methods are solid shapes. The first
argument in a draw method is a Pen object; the fill methods use Brush objects.
Each of the methods also requires the location for the upper-left comer. which
you can specify as X andY coordinates or as a Point object. Some of the meth
ods require the size, which you may supply a~ width and height. or as a Rect
ruJgle object.

Graphics Methods-General Forms

~ c DrawLine(Pen, X1Integer, Y1Integer, X2Integer, Y2Integer)
~ Drawline(Pen, Point1, Point2)
~

1-.;11 i I #l
Rather than declaring a Pen or
Brush, you can type Pens . color
or Brushes . color directly in
your Graphics method. You must de
clare the Pen or Brush object if you
want to change the width. •

~ DrawRectangle(Pen, XInteger, ¥Integer, Widthinteger, Heightinteger)
~ DrawRectangle(Pen, Rectangle)

FillRectangle(Brush, XInteger, ¥Integer, Widthinteger, Heightinteger)
FillRectangle(Brush, Rectangle)

FillEllipse(Brush, XInteger, ¥Integer, Widthinteger, Heightinteger)
FillEllipse(Brush, Rectangle)

The following code draws the outline of a rectangle i11 red using the
DrawRectangle me thod and draws a line with the Drawline method. The
FillEllipse method is used to draw a filled circle.

Private Sub GraphicsForm_Paint(ByVal sender As Object,
ByVal e As System .Windows .Forms.PaintEventArgs) Handles Me.Paint

With e.Graphics
' Draw a red rectangle .
'.DrawRectangle(Pens.Red , 10, 10, 30, 30)
'or
Dim SmallRectangle as New Rectangle(10, 10, 30, 30}
.DrawRectangle(Pens.Red , SmallRectangle)

' Draw a green line .
. Drawline(Pens.Green, 50, o, 50, 300)

C II A 1• 'I ' " ll 13

' Draw a blue filled circle.
' If the width and height are equal , then the FillEllipse method
' draws a circle; otherwise it draws an ellipse .
. FillEllipse(Brushes . Blue, 100, 100, so, 50)

' Draw a fat blue line .
. Drawline(New Pen(Color . Blue, 15) 1 3001 o, 3001 300)

End With
End Sub

Table 13.1 shows some of the methods in the Graphics class.

Selected l\fethods fr·om the Gr·apbics Class

!Uethoo

Cl ear(Color)

Tabl .- 1 3. 1

Purprue

Clear the drawing s urface by setting it to the
specifi.ed color.

529

Dispose() Release the memory used by a Graphics object.

DrawArc(Pen, X1Integer, Y1Integer, X2Int eger, Y2Integer,
Widthinteger, Heightinteger)

DrawArc(Pen, Rectangle, StartAngleSingle,
AngleLengthSingle)

Drawline(Pen, X1Integer, Y1Integer, X2Integer, Y2Integer)

Drawl ine(Pen, Point1, Point2)

DrawEll ipse (Pen, X Integer, ¥Integer, l'lidt hinteger,
Height Integer)

DrawEllipse(Pen, Rectangle)

DrawRectangl e (Pen, X Integer, ¥Int eger, Widthinteger,
Helg/Jtinteger)

DrawRect angle(Pen, Rectangle)

DrawPie (Pen, X Integer, ¥Integer, Widthinteger,
Heightinteger, AngleStartinteger, AngleLengthinteger)

DrawPie(Pen, Rectangle, AngleStartSingle,
AngleLengthSingle)

DrawSt ri ng (Text String, Font, Brush , XSingle,

DrawString(TextString, Font, Brush, PointF)

YSingle)

Fi llEllipse(SolidBrush, XInteger, ¥Int eger, Widthinteger,
Height Integer)

Fi llEl l i pse(SolidBrush, Rectangle)

FillPie(Brush, XInteger, ¥Integer, Widthinteger,
Heightinteger, AngleStartinteger, AngleLengthinteger)

Fi llPie(Brush, Rectangle , AngleStartSingle,
AngleLengthSingle)

Fi llRectangle(SolidBrush, XInteger, ¥Integer,
Widthinteger, Heightinteger)

Fi llRec tangle(SolidBrush, Rectangle)

Draw an arc (segment of an ellipse).

Draw a line from one poh1t to another.

Draw an oval s hape. A circle has equal ";dth
and height.

Draw a rectangle.

Draw a partial circle (segme nt of a pie).

Draw a string of text. Note that coordinates a re
s ingle-precision.

Draw a filled oval: a circle for equal width and

height.

Draw a prutial filled oval (se gment of a pie).

Draw a filled rectangle.

530 l ' C Graphics. Animation, Sound,

There are a number of other draw and fill methods. like Drawcurve. Draw
Lines. DrawPath. FillClosedCurve. FillPolygon. and so forth. See Help
for all the draw and fill methods.

Random Numbers

Often it is useful to be able to generate random numbers. The J~audom class
contains various methods for returning random numbers of different data types.
A Random object is popular for use in games. as well as problems in probabil
ity and queuing the01y.

Dim GenerateRandom As New Random()

Unfortunately. the computer can't really generate random numbers. Each time
you run an application. the Random object produces the identical sequence of
"random" numbers. To generate a different series for each run. use an integer
value when you instantiate an object. from the Random class. This is called
seeding the random number generator. You can use the sy>tem date and time to
get a different seed for each execution of the code.

· Instantiate and seed the random number generator.
Dim GenerateRandom As Random = New Random(DateTime.Now. Millisecond)

You seed the Random object once when you instantiate it and generate the
random numbers using the Random object's Next method, which returns a
positive integer number. You can use one of three overloaded argument lists to
choose the range for the random numbers.

The R:mdom.Nexl ~lethod-Cent'ml Forms

and Drag-at•d-Drop

~·.--. t!>

;
e..
~ e e
"'

L

' Any positive integer number .
Object . Next()

' A positive integer up to the value specified .
Qbject . Next(MaximumValueinteger)

' A positive integer in the range specified .
Object.Next(MinimumValueinteger, MaximumValueinteger)

Tlw Raudom.Next MNhod- ExmUJll<'s

~ P---.. "' §
'0

f

' Return an integer in the range 0 - 10.
GeneJ·ateRandomlnteger = GenerateRandom . Next(1 0)

' Return an integer in the range 1 to the width of the form.
RandomNumberlnteger = GenerateRandom.Next(1, Me.Width)

A llandom Numbet• Example

This example program draws graphics using the Graphics methods and gener
ates snowflakes using the Random. Next method. Figure 13.3 shows the screen
generated by this code.

C II A 1• 'I' " ll 13 531

Fi g ur e J 3 . 3

This output is produced by
the Ch13RandomNumbers
example program. The
program draws the figure and

generates random snowflakes
in the forms Paint event
ha.ndler.

' Program:
' Programmer :
'Date:
' Description :

Chapter 13 Random Numbers
Bradley/Millspaugh
June 2010
Draw a snowman using filled ellipses and then snow using
random locations.

' Folder : Ch13RandomNumbers

Public Class GraphicsForm
' Declare module -level variable .
Private GenerateRandom As Random = New Random(DateTime.Now .Millisecond)

Private Sub GraphicsForm_Paint(ByVal sender As Object,
ByVal e As System.Windows . Forms .PaintEventArgs
) Handles MyBase.Paint

' Generate dots (snowflakes) in random locations.
' Draw a snowman at the bottom center of the screen .
Dim xlnteger As Integer = Convert .Tolnt32(Me .Width 1 2)
Dim ylnteger As Integer = Convert.Tolnt32(Me.Height 1 2)
Dim Indexinteger As Integer
Dim WhitePen As New Pen(Color.White, 2)

With e .Graphics
' Draw the snowman .
. FillEllipse(Brushes .White, xlnteger, yinteger, 100, 100)
' Top of last circle .
ylnteger -= 80
' Offset for smaller circle.
xinteger += 10
.FillEllipse(Brushes .White, xinteger, yinteger, 80, 80)
yinteger -= 60
xinteger += 8
.FillEllipse(Brushes.White, xinteger, ylnteger, 60, 60)

' Add a top hat .
. Drawline(Pens .Black, xinteger - 10, yinteger,

xinteger + 80, yinteger)
.FillRectangle(Brushes.Black, xinteger + 10, ylnteger - 40, 40, 40)

532 l ' C Graphics. Animation, Sound,

' Make it snow in random locations .
For Indexlnteger = 1 To 40000

Next
End With

End Sub
End Class

xlnteger = GenerateRandom. Next(1, Me .Width)
ylnteger = GenerateRandom.Next(1, Me .Height)
.Drawline(WhitePen, xlnteger, ylnteger,

xlnteger + 1, ylnteger + 1)

1. Write the statements necessary to draw a green vertical line down the
center of a fom1.

2. Write the statements to draw one circle inside another one.
3. Write the statements to define three points and draw lines between the

points.

Simple Animation

There are several ways to create animation on a form. The simplest way is to
display an animated .gif file in a PictureBox control. The animation is already
built into the graphic. Other simple ways to create animation are to replace one
graphic with another, move a picture. or rotate through a series of pictures. You
also can create graphics with the various Graphics methods.

If you want to create animation on a Web page. displaying an animated .gif
file is the best way. Another way is to write script using a scripting language such
as V BScripl or JavaScript or to embed a Java apple!, which creates the animation
on the client side. It doesn't make any sense to create animation using server-side
controls. since each movement would require a round-trip to the server.

Displaying an Animated G1·aphic

You can achieve animation on either a Windows Form or a Web Form by dis
playing an animated .gif file (Figure 13.4). Use a PictureBox control on a Win
dows Fonn and an Image control on a Web Fonn.

and Drag-at•d-Drop

1~11 i I #I
Use the time's millisecond properly as

a seed for the Random class to gener

ate different random numbers for each

execufion of the program. •

Figure 13 . 4

Create animation by
displaying an animated .gif
file on either a Windows Fonn
or a Web Fomt.

C II A 1• 'I' " ll 13

Note: You can find the graphics for the programs in tlus chapter in the
Graphics folder.

Contt·oUiug Pic tm·es at Rtm Time

You can add or change a picture at run time. To speed execution. it is usually
best to have the pictures loaded into controls that you can make invisible until
you are ready to display them. But you also can store image files in the project's
resources and load a picture at run time.

If you store a picture in an invisible control, you can change the Visible prop
erty to True at run time; or you may decide to copy the picture to another control.

LogoPictureBox .Visible = True
LogoPictureBox . Image = InvisiblePictureBox.Image

To remove a picture from the display, either hide it or use the Nothing
constant.

LogoPictureBox .Visible = False
LogoPictureBox.Image = Nothing

Swi tching Images

An easy way to show some animation is to replace one picture with another.
Many of the icons in the Visual Studio icon library have similar sizes but oppo
site states. such as a closed file cabinet and an open file cabinet; a mailbox
with the flag up and with the flag down: a closed envelope and an open enve
lope; or a traffic light in red, yellow, or green.

TI1is sample program demonstrates switching between two phone icons: a
phone and a phone being held. The program has three PictureBox controls: one
to display the selected image and two, 1~ith their Visible property set to False, to
hold the two phone images. The hvo icons are Phonel2.ico and Phonel3.ico in
the Graphics\Microsoftlcons folder in StudentData. When the user clicks the
Change button, the icon is switched to the opposite one. (See Figure 13.5.)

o Simple Animation

Qlange ~------·--:

! ________ __!

533

Fi g ur e 13 . 5

Create animation by switching
from. one icon to another. Each

of these graphics is placed into
the upper picture box when the
user clicks the Change button.

534 v S l l ,\ I.

Chapter 13 Simple Animation
Bradley/Millspaugh
June 2010

C Graphics, Animation, Sowul.
and Drag-and-Drop

'Program:
' Programmer :
' Date :
'Description:
' Folder:

Change a picture of a phone to show someone holding it .
Ch13SimpleAnimation

Public Class AnimationForm
Private Sub ExitButton_Click(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles ExitButton .Click
' End the program.

Me .Close()
End Sub

Private Sub CllangeButton=Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles ChangeButton .Click

' Toggle the image from one to the other .
Static SWitchBoolean As Boolean = True

If SWitchBoolean Then

Else

DisplayPictureBox. Image = WithHandPictureBox . Image
SwitchBoolean = False

DisplayPictureBox. Image PhonePictureBox . Image
SwitchBoolean = True

End If
End Sub

Private Sub AnimationForm_Load(ByVal sender As Object,
ByVal e As System.EventArgs) Handles MyBase.Load

' Set the initial image .

DisplayPictureBox . Image PhonePictureBox.Image
End Sub

End Class

Storing Image Files iu the Project Resources
You can add image files to your project's resources and then retrieve them at
run time. Open the Project Designer (Project I ProjectName Properties) and
click on the Resources tab (Figure 13.6). Drop down the Add Resource list
and choose Add Existing Filt> to add an ex.isting file to your project. You can
browse to find the file wherever it is; the file will be copied into a Resources
folder in the project.

When you want to refer to the filename in code. use this form:

My.Resources.Filename

Example

APictureBox . Image = My .Resources .DrinkMilk

C II A 1• 'I' " ll 13

Ch13t oadlmage x

Applica~ion

Compile

O.bug

References

Resources

Services

Signing

My fxtens.IOIH

Security

..

Ql Ima.2.!..: ;;;ll;.A_d=d=Re;=ou_rc=e=·=-~R-•m_cw_• -R""'-r-"-'c_e ~ •
Add Exi,;ting ~ile .~

~ Add NewSt ring '

New Image

Add New leon

Add New Tod File

Moving a Picture

The best way to move a control is to use the control's SetBounds method. The
SetBounds method produces a smoother-appearing move than the move that is
produced by changing the Left and Top properties of controls.

SetBounds(XInt eger, Yinteger, Widthi nteger, Heighti nteger)

You can use a control's Set Bounds method to move it to a new location and/or
to change its size.

The SetBounds 1\lethod-Examples

535

Figur e 1 3 . G

Add image files to the project
resorcrces in the Resources tab
of the Project Designer.

~ c Pl anePi ct ureBox .SetBounds(XInt eger, Ylnteger , PlaneWi dthl nteger, PlaneHei ght lnteger)
;:; ..,
f EnginePi ctureBox.SetBounds(XInteger , Ylnteger , Widthinteger, Hei ghtlnteger)

The program example in the next section uses a timer and the SetBounds
method to move a graphic across the screen.

The Timer Component

General! y events occur when the user takes an action. But what if you want to
make events occur at some interval. without user action? You can cause events
to occur at a set interval using the Timer component and its Tick event.
Timers ru·e very useful for animation; you can move or change an image each
time the Tick event occurs.

S36 v S U 1\ L If ,, s (' Graphics. Animation. Souml,

When you have a Timer component on a form, it "fires" each time an in
terval elapses. You can place any desired code in the Tick event procedure; the
code executes each time the event occurs. You choose the interval for the timer
by setting its l.utenal pl'OpeJ·ty. which can have a value of 0 to 2,147,483,647.
This value specifies the number of milliseconds between the calls to the Tick
event. One second is equivalent to 1.000 milliseconds. Titerefore, for a three
second delay, set the timer's Interval property to 3.000. You can set the value at
run time or at design time.

You can keep the Tick event from occurring by setting the Timer's Enabled
property to False. The default value is False. so you must set it to True when
you want to enable the Timer. You can set the Enabled property at design time
or run time.

When you add a timer to your fonn, it goes into the component tray. The tool
for the timer is represented by the little stopwatch in the toolbox (Figure 13. 7).

This Timer example program achieves animation in two ways: It moves an
animated .gif file for a steam engine across the screen. When the steam engine
moves off the left edge of the form, it reappears at the right edge. so it comes
arotmd again. Figure 13.8 shows the form. You'll have to use your imagination
for the animation.

. u Timer Animation

' Program
'Programmer :
'Date :
'Description:

Ch13 Timer Animation
Bradley/Millspaugh
June 2010
Move a steam engine across the screen .

and Drag-and-Drop

Figure 1:1.1

The wol for the Timer
component in the toolbt;x..

Figu••e 13 . 8

Each time the Timer fires. the
train moves 10 pixels I1:J the
left.

' Folder :
It reappears on the other side after leaving the screen .
Ch13TimerAnimat ion

C II ,\I> 'I' I' R 13

Public Class TimerForm

Private Sub TrainTimer_Tick(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles TrainTimer .Tick

' Move the graphic across the form.

Static XInteger As Integer = EnginePictureBox.Left
Stat ic Yinteger As Integer = EnginePictureBox.Top
Stati c Widthinteger As Integer = EnginePictureBox.Width
Static Heightinteger As Integer = EnginePictureBox .Height

' Set new X coordinate .
XInteger ~ 10
If XInteger <= -EnginePictureBox .Width Then

' Graphic entirely off edge of form; reset it.
XInteger = Me .Width

End If
' Move image .
EnginePictureBox.SetBounds(XInteger, Yinteger,

Widthlnteger, Heightinteger)
End Sub

End Class

1. Write the statement(s) to move Command Button 10 pixels to the left us
ing the Set Bounds method

2. How long is an interval of 450?
3. What fires a Timer's Tick event?

The Scroll Bar Controls

You can add b01·izontal scroll bars and vertjcaJ sc1·oll ba1-s to your fonn
(Figure 13. 9). 111ese scroll bar controls are similar to the scroll bars in Windows
that can be used to scroll through a document or window. Often scroll bars are

•!? Scroll Bars I <=> j,{§ l..a.J

Speed

VollJ'Ile

S37

Horizontal scroll bars and
vertical scroll bars can be used
to selecl a value over a given
range.

538 v S l l A I, G .\ S (' Graphics, Animati.on. Sound.

used to control sound le1rel. color, size. and other values that can be changed in
small amounts or large increments. The HScrollBar control and VScrollBar
control operate independently of other controls and have their own methods,
events, and properties.

Scroll Bar Pmperties

Properties for scroll bars are somewhat different from the controls we have
worked with previously. Because the scroll bars represent a range of values,
they have the following properties: Minimum for the minimum value. J\'laxi
rnum for the maximum value. SmaUCbauge for the distance to move when the
user clicks on the scroll arrows. and Lat·geOtange for the distance to move
when the user clicks on the gray area of the scroll bar or presses the Page-Up
or Page-Do~·n keys (Figure 13.10). Each of these properties bas a default value
(Table 13.2).

Mjnimum value (Minimum property) ~r- Scroll arrow (SmallChange property)
~ Scroll box (Value prope1ty)

I r Gray area (LargeChange property)

Maximwn value (Maximum property) --lJ
Default Values fot· Sct·oll Bat· Proper ties

P•·ope1-ty Default Vnlue

Minimum 0

Maximum 100

Small Change 1

LargeChange 10

Value 0

The Value property indicates the current position of the scroll box {also
called the thumb) and its con·esponding value within the scroll bar. When the
user clicks the up arrow of a vertical scroll bar. the Value property decreases by
the amount of Small Change (if the Minimum value has not been reached) and
moves tl1e scroll box up. Clicking the down arrow causes the Value property to
increase by the amount of SmallChange and moves the thumb down until it
reaches the bottom or Maximum value.

Figure 13.11 shows the horizontal scroll bar tool and vertical scroll bar tool
from the toolbox.

and I.Jrag-aml-I.Jrop

F i g ur e 1 3. 10

Clicking 011- the scroll arrow
changes the Value property
lry SmallChange anwunt;
clicking the gray area of the
scroll bar changes the Value
property by LargeChange
amount.

Tab It> I 3 . 2

C II 1\I'TI:R I J

~ ~ HScroiiBar

~ VScroiiBar

The events that occur for scroU bars differ from the ones used for other controls.
Although a user might click on the scroll bar. there is no Click event: ratJ1er
there are two events: a ValueCbauged eveut and a Scroll even I. The Val
ueChanged event occurs any time that the Value property changes. a·hether it's
changed by the user or by the code.

If the user drags the scroU box. a Scroll event occurs. In fact. multiple scroll
events occur. as long as the user continues to drag the scroll box. As soon as the
user releases the mouse button. the Scroll events cease and a ValueChanged
event occurs. When you write code for a scroll bar. usually you will want to code
both a ValueChanged event procedure and a Scroll event procedure.

A P•·ug•·t~mmin!! Exumpl••

This little program uses scroll bars to move an image of cars around inside a
container (Figure 13.12). The image is in a PictureBox. and a Group Box is the
container. By placing the image inside a container. you use tJ1e container's co
ordinates rather than those of the form.

af:o Fun with Scroll Bars

0

0

539

Fiaurt> 13.11

The t{)olbox tools for horizontal
.scroll bar5 and vertical .scroll
l1<m.

Flaurt> 13 . 1 2

The form for the scroll bar
programming example. M(JI)e
the cars around imide the
container wing the scroll bars.

540 v S l l ,\ I. C Graphics, Animation, Sowul.
and Drag-and-Drop

A horizontal scroll bar will make the image move sideways in the con
tainer, and the vertical scroll bar "~ll make it move up and down. Although
you want the Maximum properties of the scroll bars to reflect the height and
width of the container. due to the shape of the image, you may need to set
the properties using trial and error. For example. the width of the Group Box
is 247 pixels but the Maximum property of the horizontal sc roll bar is set
to 210; that's the point at which a car's bumper touches the edge of the
container.

' Program :
'Programmer :
' Date :
' Description :

Ch13Scrol1Bars
Bradley /Millspaugh
June 2010
Use scroll bars to move an image
horizontally and vertically within the
limits of a group box .

' Folder : Ch13Scrol1Bars

Public Class ScrollForm

Private Sub ExitButton_Click(ByVal Sender As System.Object ,
ByVal e As System . EventArgs) Handles ExitButton .Click

' Terminate the project.

Me . Close()
End Sub

Private Sub MoveCarHorizontalScrollBar_Scroll(ByVal sender As System .Object,
ByVal e As System .Windows.Forms .ScrollEventArgs

Handles MoveCarHorizontalScrollBar .Scroll
' Control the side-to-side movement .
' Used when scroll box is moved .

CarPictureBox . Left = MoveCarHorizontalScrollBar .Value
End Sub

Private Sub MoveCarVerticalScrollBar_Scroll(ByVal sender As System .Object,
ByVal e As System .Windows . Forms .ScrollEventArgs

Handles MoveCarVerticalScrollBar .Scroll
' Pos ition the up and down movement .
' Used when the scroll box is moved .

CarPictureBox . Top = MoveCarVerticalScrollBar .Value
End Sub

Private Sub MoveCarVerticalScrollBar_ValueChanged(ByVal sender As Object ,
ByVal e As System . EventArgs

Handles MoveCarVertical Scr ollBar . ValueChanged
' Position the up and down movement .
' Used for arrow clicks .

CarPictureBox . Top = MoveCarVerticalScrollBar .Value
End Sub

(; II ;\ I' 'I' 1•: II S41

Private Sub MoveCorHorizontalScrollBar_ValueChanged(ByVal sender As Object,
ByVal e As System.EventArgs
) Handles MoveCarHorizontalScrollBar.ValueChanged

' Control the side-to-side movement .
' Used f or arrow clicks.

CarPictureBox.Left = MoveCarHorizontalScrollBar.Value
End Sub

End Class

Playing Sounds I
It 's fun to add bound to an application. Your computer plays sounds as you turn
it on or ofT. There's also likely a sound when you receive e-mai l. You can make
your program play sound files. called ~11ve files (.wav). by using My. Computer.
Audio. Play.

When you plan to usc sounds iu a project. the best plan L~ to add the Illes to
the project's resow-ces. This is similar to adding images to the project's resow·ces.
which you saw earlie r in this c.hapter (refer to Figure 13.6). When you want to
refer to the filename in code. usc this fonn: "My. Resources .Filen8111e".

Extlllll)lf'

My.Compuler.Audlo . Play(My .Resources . chimes, AudioPlayMode.WaHTocomplete)

A Soumi-P iu) in{! P•·oj!ram

The follo~·ing program {Figure 13.13) plays three different sounds found in
the \Vindows\Medio folder or allows the user to select a file using the
Openf'ileDialog component. The filter property for the OpenfileOialog is set to
wave files (\VAV Files (*.wav)l*.wav).

• I Play Sounds using SoundPtayrr

(Q1Hnes Qing

£.elect File

Fl tt •r•• 1 3 . 1 3

Tile user can chl)o~ to play
one of three preselected sounds
or select a .roo11jile II) play.

S42 s l l \ l B \ S (' Graphic•. A11immion. Sot~ncl.

Chapter 13 Sounds
Bradley/ Millspaugh
June 2010

aiUI Drag-{Jnd· Drop

' Program:
' Programmer:
' Date:
' Description:
' Folder:

Play sounds using a SoundPlayer component and My.Computer.Audio.Play.
Ch13Sounds

Public Class soundForm

Private Sub ChimesButton_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles ChimesButton.Click

• Play the chimes sound.

• Play the sound using ~~.computer and My.Resources.
My.computer.Audio.Play(~.Resources.chimes , AudioPlayMode.WaitTocomplete)

End Sub

Private Sub DingButton_Click (ByVal sender As System.Obj ect,
ByVal e As System.EventArgs) Handles DingButton.Click

' Play the ding sound .

' Play the sound using My.computer and My.Resources.
My.Computer.Audio.Play(My.Resources.ding, AudioPlayMode .WaitToComplete)

End Sub

Private Sub TadaButton_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles TadaButton.Click

· Play the tada sound.

• Play the sound using ~~.Computer and My.Resources.
My.Computer.Audio.Play(~.Resources.tada, AudioPlayMode.WaitTocomplete)

End Sub

Private Sub SelectButton_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles SelectButton.Click

• Allow user to select the sound file.

If OpenFileDialog1.ShowDialog() = DialogResult .OK Then
My.Computer.Audio.Play(OpenFileDialog1.FileName.ToString)

End If
End Sub

End Class

lf you want to have a sotmd play as the application opens. you can play the
sow1d in the Form_Load or Fonn_Activate event procedure.

Playing Videos 1

You have seen how to play sounds using My . Computer .Audio. lf you would
like to include a video in your Windows application. use the Windows Media
Player control (Figure 13.14). ~t·hich can play audio and video files in many
fom1ats. including .avi .. wmv, and .wav.

C II 1\ 1• 'I' I' ll 13

Play a sample video fde

Select media type;

Using the Windows Med ja Playm· Control

The Windows Media Player control does not appear in the Visual Studio tool
box by default. so you must add it. Right-click on the toolbox and select
Choose Items. You "ill find the control on the COM components tab. Place a
check mark in the box and press OK to add the control. Then you can place a
Windows Media Player control on your form.

The URL property of the control determines the file that plays. lf you set
the property at design time. you must include a hard-coded path. and the file
begins playing when the program loads. You also can control the U RL property
at rw1 time. You can store the video and audio files in the project resources to
make the project portable, but the Windows Media Player ca1mot automatically
retrieve files from resources. You must set the URL property to the Resources
folder in code.

You can set several properties of the Windows Media Player control. If
you wish to just play sound. you may choose to set the visibility to False. Set
Ctlenabled to True to allow the user access to the Play. Pause, and Stop

buttons. Set the URL property to the path and filename to play, and choose
whether the loaded file will begin playing automatically with the settings.
autoStart property. For example. set WindowsMediaPlayer1 . settings .
autoStart = False so that the video won' t begin playing w1til the user
clicks the Play button. By default autoStart is set to True. so the video sta11s
playing as soon as it is loaded.

The following program allows the user to select and play a sample file by
choosing the file type from a list box. It then assigns the URL prope1ty in a
Select Case statement in the List box Selection Committed event procedure.

Figu•·e 13 . 14

Place a Windows Media
Player control on a form tc

play an audio or video file.

543

544 s l \ •• u \ s C. Graphics, Anii1J(Jti1Hl. Sound.

Ch13Video
Bradley{Millspaugh
June 2010

and Drag-and-Drop

' Program:
'Programmer:
'Date :
'Description: Uses a Windows media player for wmv, mp3, avi, and wav files.

Audio and video files are stored in project resources to maKe
the project portable.

Public Class MediaForm
Private Sub MediaComboBox_SelectionChangecommitted(ByVal sender As Object,

ByVal e As System.EventArgs) Handles MediaComboBox.SelectionChangeCommitted
' Select the type of file to play.
Dim ResourcePathString = IO.Path.GetFullPath(Application .StartupPath &

"\ .. \ .. \ resources\ •)

With AxWindowsMediaPlayer1
Select Case MediaComboBox .Selectedindex

case o
.URL = ResourcePathString & "bear .wmv•

Case 1
.URL = ResourcePatnstring & "Sleep Away.mp3"

Case 2
.URL ResourcePathString & "applause.wav•

Case 3
.URL ResourcePathString & "clocK.avi'

Case Else
MessageBox.Show("Please select media type. ")

End Select
End With

End Sub
End Class

Drag-and-Drop Programming !

Often Windows users use drag-and-drop events rather than selecting a menu
item or pressing a button. For example. you can copy or move (iles in My Com
puter by dragging the file and dropping it on the new location icon.

Drag-and-drop programming requires you to begin the drag-drop
with a l\louseDowu event and de termine the effect of the drop with a
DragEutet• event. The event that holds the code for the drop is the
DragDt·op eYent. Figure 13 .15 shows the objects and events for a drag
and-drop operation.

The Source Object

The item that you wish to drag is commonly referred to as the source object.
With .NET programming you begin a drag-drop operation by setting the source
object using a controls DoDragDrop method.

C II A I• T t: R I :I

Source L----------,> Target

In MouseDown or Mouse More event: AUowOrop property mul>l be sello True.

DoDragOrop method.

In MouseEnter e<ent (Optional): In DragEnter ev•nt:

Set cursor to give feedback Set DragDrop effect (Move or Copy).

that a drag will occur.

In DragDrop e\·ent:

Code to add drugged object to target.

ObjectName.DoDragDrop(DataToDrag, DesiredDragDropEffect)

The DragDrop effect specifies the requested action for the operation.
Choices include DragOropEffects. Copy, OragOropEffects. Move. and
oragoropEffects.None.

'Jbe DoDt·a;!D1·o1> ~letbod-Exruuplo>

545

IF ia(ur e 1 3. 15

The source object is dragged to
the target object in a drag-
a nd-clrop operation.

~ .---. "' !
~ ;;-

With NameTextBox
.oooragorop(.SelectedText, oragoropEffects.Move)

End With

Look at the following MouseDown event procedure. First. an If statement
checks to see if the u.~er pressed I he lefi mouse button. If so. the contents of the
text box are selected and the effect of the drag is set to a move operation.

Pr ivat e Sub NameTextBox_MouseDown(ByVal sender As Ob ject,
ByVal e As System .Wi ndows .Forms .MouseEventArgs
) Handles NameTextBox .MouseDown

' Select cont ents of the text box and invoke the drag/drop.

If e. But ton = Windows . Forms .MouseButtons .Left Then
With NameTextBox

.SelectAll()

. DoDragDrop(.SelectedText . OragDropEffects.Move)
End Wi th

End If
End Sub

546 v S l l ,\ I. C Graphics, Animation, Sowul.
and Drag-and-Drop

T lu.• Tat·get Oh.iec l

The location at which a user releases the mouse. a drop. is the target. A form
may have multiple targets. To set a control to be a target, set its AllowD1·op
propeny to True. The target control needs a DragEnter event procedure that
sets the effect and a DragDrop event procedure that executes the action to take
when t11e drop takes place.

ln the following example program (Figure 13.16), the value in a text box
can be transferred to one of hvo list boxes. Each list box would be a potential
target and must have its Allow Drop property set to True. And each target object
needs a DragEnter event procedure and a DragDrop event procedure.

II'} Assign T~am M~bers

Team A Team B

John lee

16

The DragF.ntcr F.vetll

When the user drags a source object over the target. the target control's
DragEnter event fu·es. Notice in the DragEnter's procedure header that the e
argument is defined as DragEventArgs, which has some special properties for
the drag operation. You assign the desired effect to the e argument.

Private Sub TeamAListBox_DragEnter{ByVal sender As Object,
ByVal e As System.Wi ndows. Forms.DragEventArgs
) Handlos ToamAListBox.DragEntor

' Set the desired DragDrop effect .

e. Effect = DragDropEffects.Move
End Sub

FIJ,! n re 1 3.1 6

The user types a name in the
top text b0:~ and then drags the
name to one of two list boxes.

C II ,\I> 'I' I' R 13

The DragDrop Event

Assume that when the user drops the text value on a list box we want to add
the value to the Items collection for the list and clear the original text box. The
statements to pedorm these actions are entered into the DragDrop event for
the list box.

TI1e data that are being dragged are contained in the Data property of the e
argument of the DragDrop event procedure. You can retrieve the dragged data
using the GetData method of the Data object. You also can format the data
yourself or use a predefined clipboard data format. The predefined format for
text is DataFormats . Text.

Private Sub TeamAListBox_DragDrop(ByVal sender As Object,
ByVal e As System.Windows.Forms . Drag EventArgs
) Handles TeamALi stBox.DragDrop

' Add the item to the list box .

TeamALi st Box . l t ems.Add(e.Data .GetData(Dat aFormats. Text). ToSt ring())
NameTextBox .Clear()

End Sub

Note: .NET actually allows the target to be outside the cunent application.
but that topic is beyond the scope of this text.

T he D1·ag-mui-D•·op P1·og•·am

Following is the completed program that is illustrated in Figure 13.16.

' Program
' Programmer :
'Date :
'Description :
' Folder :

Chapter 13 Drag and Drop
Bradley/Millspaugh
June 2010
Drag a name from the text box and drop on a list .
Ch13DragDropListBoxes

Public Class TeamAssignmentForm

Private Sub NameTextBox_MouseDown(ByVal sender As Object,
ByVal e As System.Windows . Forms . MouseEventArgs
) Handles NameTextBox . MouseDown

' Select contents of the text box and invoKe the drag/drop .
If e.Button = Windows . Forms . MouseButtons.Left Then

With NameTextBox
. SelectAll ()
. DoDragDrop(.SelectedText, DragDropEffects . Move)

End With
End If

End Sub

Private Sub TeamAListBox_DragDrop(ByVal sender As Object,
ByVal e As System.Windows . Forms .DragEventArgs
) Handles TeamAListBox . DragDrop

' Add the item to the list box.

TeamAListBox .Items.Add(e .Data .GetData(DataFormats .Text) .ToString())
NameTextBox .Clear()

End Sub

547

548 v S l l ,\ I. C Graphics, Animation, Sowul.
and Drag-and-Drop

Private Sub TeamAListBox_DragEnter(ByVal sender As Object,
ByVal e As System.Windows.Forms.DragEventArgs
) Handles TeamAListBox .DragEnter

' Set the desired Dragorop effect .

e .Effect = DragDropEffects . Move
End Sub

Private Sub TeamBListBox_DragDrop(ByVal sender As Object,
ByVal e As System.Windows . Forms .DragEventArgs
) Handles TeamBListBox .DragDrop

' Add the item to the list box .

TeamBListBox.Items.Add(e .Data .GetData(DataFormats.Text).ToString())
NameTextBox .Clear()

End Sub

Private Sub TeamBListBox_DragEnter(ByVal sender As Object,
ByVal e As System.Windows.Forms.DragEventArgs
) Handles TeamBListBox.DragEnter

' Set the desired Dragorop effect .

e .Effect = DragDropEffects.Move
End Sub

Private Sub NameTextBox_MouseEnter(ByVal sender As Object,
ByVal e As System.EventArgs} Handles NameTextBox.MouseEnter

' Set the mouse pointer to give feedback that a drag is legal .

With NameTextBox
If . Text <> "" Then

. SelectAll (}

.cursor cursors.Arrow
Else

.cursor cursors.IBeam
End If

End With
End Sub

End Class

D•·agging and Dropping an Image

You also can drag and drop images (Figure 13.17), but with one small differ
ence. The Allow Drop property of a PictureHox is not available at design time.
but you can set it in the Form_Load event procedure.

TargetPictureBox.AllowDrop = True

To make the drop appear like a move. set the original picture box image to
Nothing. To make it a copy. you could leave the original alone.

Private Sub TargetPictureBox_DragDrop(ByVal sender As Object,
ByVal e As System.Windows .Forms.DragEventArgs
) Handles TargetPictureBox .DragDrop

' Assign the image to the target; original is erased.

TargetPictureBox.Image SourcePictureBox. Image
sourcePictureBox . Image = Nothing

End Sub

(; II ,\ 1• 'I' I•: R 1:1

! ,tl Dragging and Dropping an Image ~

.;;; Oraggir)y •nd Droppi119 an ImaQe ~

Sour::rt

Resetlm..:~g::

Ttw IJmgl>wplmage Prug•·am

Ch13DragDropimage
Bradley/Millspaugh
June 2010

Figur e 13.17

The user can drag the ~ource
image and drop it on the
target control.

' Program
'Programmer:
'Date :
'Description : Use a picture box for the source and target in a drag and

drop operation .

Public Class DragoropForm
Private Sub DragDropForm_Load(ByVal sender As System.Object,

ByVal e As System. EventArgs) Handles MyBase . Load
' Set the AllowDrop for the target .
TargetPictureBox .AllowDrop = True

End Sub

549

sso \ S U ·\ I. u " s (' Ctaphico. Animation. Sowul..

Private Sub SourcePictureBox_MouseMove (By~al sender As Object,
ByVal e As System.Windows.Forms.MouseEventArgs
) Handles SourcePictureBox.MouseMove

' Drag the picture.

and Drag-and-Drop

sourcePictureBox.DoDragDrop(SOurcePictureBox.Image, DragDropEffects.Move)
End Sub

Private Sub TargetPictureBox_oragDrop(ByVal sender As Object,
ByVal e As System.Windows.Forms.DragEventArgs
) Handles TargetPictureBox.DragDrop

' Assign the image to the target; original is erased.

TargetPictureBox . Image SourcePictureBox.Image
SourcePictureBox.Image = Nothing

End Sub

Private Sub TargetPictureBox_DragEnter(By~al sender As Object,
ByVal e As system.Windows.Forms.DragEventArgs
) Handles TargetPictureBox.DragEnter

' Set the effect to a move.

e . Effect = oragDropEffects.Move
End Sub

Private Sub ResetButton_Click (By~al sender As system.Object ,
ByVal e As System .EventArgs) Handles ResetButton .Click

' Clear the target image and reset the orginal.

SourcePictureBox.Image = TargetPictureBox . Image
TargetPictureBox.Image = Nothing

End Sub
End Class

l. Code the DragEnter event for TaskList.Box that will copy the value re
ceived in a drag operation.

2. Write the statement for the DragDrop method to add the value to the list
box.

our Hands-On Programming Example _______ ____;

Create a project that will dra~t· a pie chart showing the relative amount of sales
for Books. Periodicals. and Food for R "n R- For Reading and Refreshment.

lnclude text boxes for the user to enter tile sales amow1t for Books. Period
icals. and Food.lncludebuttons for Display Chart. Clear. and Exit.

Calculate the values for the pie chart in the Display Chart button's Click
event procedure and use a Refresh method to force the form's Paint event to
occur. In the form's Paint event procedure. use the CreateGraphics. FillPie
method to draw each of the pie segments.

Me .CreateGraphics.FillPie(Brush, XInteger, Ylnteger, Widthlnteger, Heightlnteger,
BeginAngleinteger, Lengthlnteger)

C ll i\ 1°T t: R 13

l'lannin~ Llu• Pt·ojet·t

Sketch a fonn (Figure 13.18) that your users sign off as meeting their needs.

Flg nr e 13 . 18

A planning sketch of the hands-on programming exam pi~.

Graphics methods

Enter Sales for Each

E_l:rtodlcals

c::::======::}:--t- BooksTextBox

c::::=======j(---1- PerlodlcalsTextBox

c::::======Jc---t- FoodTextBox

:=:=D::Is::pl':ay=Ch::a::rt::::-::,~--t-- DlsplayChartButton

L_ _ __,G"'Ie:.:a::.cr __ __.f---t- ClearButton

L-----=:l~=:.::.. __J~--t---- ExltButton

Books: Blue, Perlodlcals: Yellow, rood: Red ._---t- L~endlal:>el
(VIsll:>illty = False)

Plan the Objt>cts and Properties Plan the property settings for the form and
each control.

O bj .. c t Property Selling

Form Nnmc PieChartForrn
Text R 'n R Sales Pie Chart
Ac,-eptButton DisplayChrutButton
CanceiButton CleurBuuon

Labell Name Labell
Text Enter Sales for Each

Label2 Name Label2
Text &Boob

Boob.TextBox Name Boob Text Box
Text (blank)

Label3 NulllC Label3
Text &Periodical..

Periodica.lsTextBox Na01e PeriodicalsTextBm<
Text (blank)

Label4 Name Label4
Text &Foo.J

SSI

SS2

Object

FoodTexiBox

Legend Label

DisplayCI.artButton

ClearBullon

E:utButton

,.

P rop erl y

Name

Text

Name

Text

Visible

Name

Text

Name

Text

Name

Text

S l \ L

Selling

FoodTe.,.IBox
(blanlc)

LegenciLabel

It \ s t: Graphic.. Animation. So•md.
and lhag-and-lhop

Books: Blue. Periodicals: Yellow. Food: Reel
False

DisplayChartButtoo
&Disploy Churt

ClearButton
&Clear Sale

ExitBulton
E&xit

Plan the E.vent Procedures

DisplayChortButton_Ciick

Fonu_ Paiut

ClearButton_Clict

Exit Button_ Click

Acllom-Pscudoeode

If lexl fie ld• are numeric
Find e<tch category .al,..
Find total .alea.

Force fonn to repaint (Refresh).

If DrawChartBoolean
If total •ales <> 0

Else

Make legend visible.
Calculate ratio of each department to total sales.
Draw portions of the pie for each depat1ment.

Clear chart.

Set each text box and label to blanks.
Set the focus in the first text bu.
Set Dm...ChariBoolean = False.
Force form to repaint (Hefre~h).

Exit the project.

Write thr Project F'ollo1~;ng the sketch in Figure 13.18. create the form. Fig
ure 13.19 shows the completed form.

Set the properties of each of the object~. as you have planned.

Write the code. Working from the pseudocode. write each event procedure.

• When you complete the code. use a variety of lest data to thoroughly test
the project.

C ll i\ 11 T E R 13

o..J R 'n R Sales Pie

Ener Salee for Each

!!oaks 500

Eeriodicals 275

food 150

·nu• P1·ojel'l (~()(ling Solution

Chapter 13 Pie Chart Hands On
Bradley/ Millspaugh
June 2010

Qear

' Program:
'Programmer:
'Date:
' Description:
'Folder:

Draw a chart for relative sales amounts.
Ch13PieChart

Public Class PieChartForm

The f orm f or the hands-on
programming exampk.

Private TotalSalesDecimal, BookSalesOecimal, PeriodicalSalesOecimal,
FoodSalesDecimal As Decimal

Private DrawChartBoolean As Boolean = False

Private Sub OisplayChartButton_Click(ByVal sender As System.Object,
ByVal e As System. EventArgs) Handles DisplayChartButton .Click

' Display a pie chart showing relative sales by department .

SS3

SS4 S l \ L

' Need total sales amount.
Try

n ' "
C !Aaphie&. Animation. SowuJ.

and Drag-and-Drop

BookSalesDecimal "Decimal.Parse(BooksTextBox.Text)
Try

PeriodicalSalesDecimal" Decimal.Parse(PeriodicalsTextBox.Text)
Try

FoodSalesDecimal" Decimal .Parse(FoodTextBox.Text)
TotalSalesDecima1 " BookSalesDecima1 + PeriodicalSalesDecimal +

FoodSalesDecimal
DrawChartBoolean " True

Catch
MessageBox.Show("Invalid Food Sales ')
FoodTextBox.Focus()

End Try
Catch

MessageBox .Show(' Invalid Periodical Sales')
PeriodicalsTextBox . Focus(}

End Try
Catch

MessageBox.Show('Invalid Book Sales')
BooksTextBox.Focus()

End Try

' Force a Paint of the form.
Refresh{}

End Sub

Private Sub ExitButton_Click(ByVa1 sender As System.Object,
ByVal e As System.EventArgs) Handles ExitButton.Click

' End the project .

Me .Close()
End Sub

Private Sub Cl earButton_Click(ByVal sender As System.Object,
ByVal e As System. EventArgs) Handles ClearButton.Click

' Clear the screen controls .

FoodTextBox.Clear()
PeriodicalsTextBox.Clear()
With BooksTextBox

.Clear()

.Focus()
End With
Legendlabel.Visible = False
DrawChartBoolean " False
Refresh()

End Sub

Private Sub PieChartForm_Paint(ByVal sender As Object,
ByVal e As System.Windows .Forms.PaintEventArgs) Handles Me.Paint

Dim xCenterinteger As Integer " 140
Dim yCenterinteger As Integer " 180
Dim ClearBrush As New SolidBrush(PieChartForm .DefaultBackColor)

C IIAI•Tt: R 13

If DrawChartBoolean Then
Create the pie chart .

' Amounts are a portion of the total circle of 360 degrees.
' The pie graphic includes a start angle and end angle.
If TotalSalesDecimal <> 0 Then

Legendlabel.Visible = True
' Find the end of the book portion of 360 degrees .
Dim EndBookslnteger As Integer =

Convert.Tolnt32(BookSalesDecimal I TotalSalesOecimal * 360)
e.Graphics.FillPie(Brushes.Blue, xCenterinteger , yCenterlnteger,

100, 100, 0, EndBookslnteger)
Find the end of the Periodicals portion.
Dim EndPeriodicalslnteger As Integer =

sss

Convert.Tolnt32(PeriodicalSalesDecimal I TotalSalesDecimal * 360)
e .Graphics.FillPie(Brushes.Yellow, xCenterlnteger, yCenterinteger, 100, 100,

EndBooksinteger, EndPeriodicalsinteger)

Else

Dim EndFoodinteger As Integer =
Convert .Toint32(FoodSalesDecimal I TotalSalesDecimal * 360)

e .Graphics . FillPie(Brushes.Red, xCenterlnteger, yCenter!nteger, 100, 100,
EndPeriodical sinteger + EndBooks!nteger, EndFood!nteger)

End If

e .Graphics . FillEllipse(ClearBrush, xCenterinteger, yCenterlnteger , 100, 100)
End If

End Sub
End Class

l. A drawing surface is created with a Graphics object.
2 . The Graphics metJ1ods should appear in the form's Paint event procedure

so iliat ilie graphics are redrawn every time the form is repainted.
3 . Pen objects are used for lines and the outline of shapes; brushes are used

for filled shapes.
4. Measurements in drawings are in pixels.
5 . The coordinate system begins witJ1 (0 . 0) at the upper-left comer of the con

tainer object.
6 . You can declare a Point structure. a Size struc ture. or a Rectangle s tructure

to use as arguments in the Graphics me tJtods.
7 . You can gene rate random numbers using the Random class. Seed the ran

dom number generator when instantiating a variable of the class: use the
Next method to generate a series of numbers.

8 . An animated .gif file can be dis played in a PictureBox control to display
anima tion on a Windows Form or a \'(leb Form.

9 . Animation effects can be created by using s imilar pictures and by control
ling U1e location and vis ibili ty of cont rols.

10. Pictures can be loaded. moved. and resized a t mn time.
11. The Timer component can fire a Tick event that occurs at specified inter

vals. represented in milliseconds.

556 \ S l \ L ll .\ s C Gmphie.. Animation. Sowul.
aml Drag-and-Drop

12. Scroll bar controls are available for both horizontal and vertical directions.
Properties include Minimum. Marimum, SmaiiChange. LargeChange. and
Value. Scroll and ValueChanged events are used to respond to the action.

13. Use My.Computer .Audio . Play for wave (.wav) sound files in theRe
sources folder.

14. Drag-and-drop programming alJows a source object to be dropped on a tar
get object. The target control has its AllowDrop property set to Tme. The
source control calls the DoDragDrop method in its MouseDown event. The
target control sets the effect of the drag in the Drag Enter event and there
sults in the DragOrop event.

AllowDrop property 546
Bmsh object 525
DoDragDrop method 544
DragDrop event 544
DragEnter event 544
DrawLine metJ1od 528
DrawRectangle method 528
FillEllipse method 528
graphics 524
horizontal scroll bar 537
Interval property 536
LargeChange property 538
Maximum property 538
Minimum property 538
MouseD own event 544

l. What is a pixel?

Next method 530
Pen object 525
pixel 525
Point structure 527
Random class 530
Rectangle slnlcture 528
Scroll event 539
SetBounds method 535
Size s tructure 527
Small Change property 538
Tick event 535
Timer component 535
Value property 538
ValueChanged e~ent 539
vertical scroll bar 537

2. What class contains the Graphics methods?
3. Describe two ways to add a Graphics object to a form.
4. Name three methods available for drawing graphics.
5 . How is a pie-s haped wedge created?
6. Differentiate between using a Brush and a Pen object.
7. Which function loads a picture at run time?
8. How can you remove n picture at run time?
9. What steps are necessary to change an image that contains a turned-off

light bulb to a turned-on light bulb?
1.0. What is the purpose of the Timer component?
11. Explain the purpose of these scroll bar properties: Minimum. Maximum.

Small Change. LargeChange, and Value.

C ll i\1'1'EH 13

12. What detennines the me to be played by a Sound Playe r?
13. Explain the purpose of the following events for a drag-and-drop operation:

a. MouseDown
b.DragEnter
c. DragDrop

14. Explain the parameters of the DoDragDrop method.

13 .1 Create a project tlmt contains two buttons labeled "Smile" and "Frown".
TI1e Smile button will display a happy face: Frown will display a sad face.
Use Graphics methods to draw the two faces.
Oplio1Wl: Add sound effects when the faces appear.

13.2 Use Graphics methods to create the background of a form. Draw a picture
of a house , including a front door. a window, and D chimney.

13.3 Use a Pic tureBox control 1~ith a .bmp file from Windows. Set the Size
Mocle property to Stretch Image. Use scroll bars to change the size of the
image.

13.4 Use graphics from any clip art collection to create a project that has a
bull on for each month of the year. Have an appropriate image display in
a Pic tureBox for each month.

13.5 Use the bicycle icon and a Timer component to move the bicycle around
the screen. Add a Start button and a Stop button. The Stop button will re
tum the bicycle to its original position. (The bicycle icon is stored as
Graphics\lcons\lndustry\Bicycle.ico or in the Graphics\Microsoftlcons
folder on the text Web site.)

13.6 Modify the snow1nan project ("Random Numbers") from earlier in the
chapter by adding eyes. a mouth. and buttons. Play an appropriate sound
file: you can play it in the Fonn_lnad. in the Fonn_Activated. or at the
end of the Form_ Paint procedure. Do not place the sound in the middle
of the graphics code in the Form_ Paint procedure.

13.7 Moclify the chapter hands-on example to add two more categories: Drinks
and Gifts. Allow the user to enter the additional values and make the pie
chart reflect all five categories. Make sure to set the legend label at the
bottom of the form to include the new categories.

13.8 Write a projec t that has list boxes for a potluck party: appetizers. salad.
entrl\e. dessert. Have a text box for entering attendees' names and then
drag them to the appropriate list box.
Optional extra: Code a save feature to save the contents of each of the list
boxe$ to a separate file. Then add a feature to load the list boxes when the
progmm begins.

SST

SS8 \ s l .\ I. u .\ s l ' G.-aphic>. Ani100tion. Sowul.
and Drag-and-Drop

VB lUaU Ord~r

Create a logo for VB Mail Order us.ing Graphics meth
ods. Place the logo in the startup form for the project
from Chapter 12. Add appropriate images and graph-

Have the startup screen initially fiU 1\ith random dots
in your choice of colors. Use Graphics methods to
draw an Auto Center advertisement that will appear on

ics to enhance each form. The graphics may come
from .bmp files .. gif files. clip art. or your own creation
from Paintbrush.

the screen. Have various appropriate images (icons)
appear in different locations, remain momentarily. and
then disappear.

\ 'llleo Bonanza

Use the Timer component and the random number
generator to create a promotional game for Video Bo
nanza c ustomers. Create three image controls that ~-ill

display an image selected from five possible choices.
When the user clicks on the Start button. a randomly
selected image wiU display in each of the image con-

trois and continue to change for a few seconds (like a
"slot mac hine") until the user presses the Stop button.
If aU three images are the same. the customer receives
a free video rental.

Display a message that says "Congratulations., or
"Better Luck Next Visit''.

Very Very Boarch I
Modify your Very Very Boards project from Chapter 8
or 12 to add a moving graphic to the About form. Use
the graphic Skateboard.wmf or other graphic of your
choice. Include a Timer component to move the
graphic across the form. When the graphic reaches the
edge of the fmm. reset it so that the graphic appears at

the opposite edge of the fonn and begins the trip
again.

Note: For help in basing a new project on an exist
ing project. see ''Copy and Move Projects" in Appen
dix c.

D A p T E R

Additional Topics in
Visual Basic

I . Validate user input in the Validating event and display messages using

an Error Provider component.

2 . Use code snippets in the editor.

3 . Create a multiple document project with parent and child forms.

-t. Arrange the child forms vertically. horizontally. or cascaded.

5. Adcltoolhars and status bars to your fom1s using tool strip and stat us

strip controls.

6 . Use calendar controls and date functions.

7 . Display a Web page on a Windows Form using a Web Browser control.

8 . Capture and c heck an inruvidual keypress from the user.

9 . Use WPF lnteroperablility to add Windows Presentation Foundation

controls to a Windows Fom1.

Create a WPF application.

560 v S l l ,\ I. C Additional Topics in Visual Basic

This chapter introduces some topics that can make your programs a bit more
professional. You can use an ErrorProvider control to display error messages to
the user and perform field-level validation, rather than validate an entire form.
You can improve the operation of multiple-form applications by using a multi
ple document intetface (MDI). which allows you to set up parent and child
forms. Most professional applications have toolbars and status bars, which you
leam to create in this chapter.

This chapter also introduces the Web Browser control. which you can add
to a Windows application; and creating special effects using Windows Presen
tation Foundation (WPF).

Advanced Validation Techniques

You already know how to validate user input using Try /Catch. If statements,
and message boxes. In addition to these techniques. you can use the Error
Provider components. which share some characteiistics with the Web valida
tion controls. Other useful techniques are to set the Max.Length and/or
CharacterCasing properties of text boxes and to petfonn field-level validation
using the Validating event of input controls.

T he E n ·m·Pr·ovider· Compone nt

Jn Chapters 3 and 4 you learned to validate user input and display message
boxes for invalid data. Now you 1>illleam to display error me.s.sages directly on
the form using an EnorPt•o\'idet• component. rather than popup messages
in message boxes. Using an ErrorProvider component, you can make an error
indication appear next to the field in error. in a manner similar to the validator
controls in Web applications.

Altl10ugh you can add multiple Error Provider components to a fom1, gen
erally you use a single EnorProvider for all controls on a form. Once you add
the ErrorProvider into the component tray. you can validate a control. If the
data value is invalid, the Error Provider component can display a blinking icon
next to the field in enor and display a message in a popup. similar to a TooiTip
(Figure 14.1).

The logic of your program can be unchanged from a MessageBox solution.
When you identify an error, you use the ErrorProvicler SetError method.
which pops up the icon.

EJ'I'ot•l•r·ovider SetEt•t•ot• ~·l ethod-Ceneral Form

ErrorProviderObject .SetError(ControlName, MessageString)

ErrorPro,;der SetEtTot· !\Je thoci-ExamJlles

~ r---~ "' 1:
~ r

ErrorProvider1 .SetError (QuantityTextBox, "Quantity must be numeric .")
ErrorProvider1 . SetError (CreditCardTextBox, "Required field. ")

~------------------------------~

(.; II 1\ I' 'I' 1•: II II

Book Sales

1S.~C~unt

The following example is taken from Chapter 3. The message boxes have been
removed and replaced with ErrorProvider icons and messages. Notice that aJI
messages a1·e cleared at the top of the Calculatellutton_Click procedure so that
no icons appear for fields that have passed valida tion. Figure 14.2 shows the
form in Desigu view.

Chapter 14 Error Provider
June 2010
Bradley/ Millspaugh

561

F l rt u•·'~ 1 4. 1

The ErrorPrcwider displayl a
blinking icon next to the f wld
in error. When the Uiler point.:<
to the icon, IIUI error messa.ge
appear! in a popup.

' Project :
'Date:
'Programmer:
'Descr i ption:
'

'Folder:

This pro ject demonstrates using an ErrorProvider control
for validation. It replaces the message boxes used in the
original version of this program in Chapter 3 .
Ch14ErrorProvider

Public Cl ass BooKSaleForm
Canst DISCOUNT_RATE_Deoimal As Decimal = 0.1 5D

Private Sub Calculat eButton_ClicK(ByVa1 sender As System .Obj ect,
ByVal e As System. EventArgs) Handl.es CalculateButton . ClicK

' Calculate the price and discount .
Dim ouantitylnteger As Integer
Dim PriceDecimal, ExtendedPriceDecimal , DiscountDecimal,

DiscountedPriceDecimal As Decimal

Clear all error messages .
ErrorProvider1 .Cl ear()

Try
' Convert quantity to numeric variables .
Ouantitylnteger = Integer. Parse(OuantityTextBox .Text)
Try

' Convert price if quantity was successful .
PriceDecimal = Decimal. Parse(PriceTextBox.Text)

562 l ' C Additional Topics in Vis!Ull Basic

Figur e 1 4 . 2

8ookSalef orm.vb LDoign] X The calculatu:mformfrom
Chapter 3 with an
ErrorPravider added . .it R 'n R for Reading ·n Refreshment

Book Sales:

Quanti:y

!lit

2rice

Exie nC ed Price

1S% 0~count

Diso~11nt~ ~ice

~slcu!afe J 1 t jesr s~a J 1 ~ J

0 Crro•·Prc~Viderl

' Calculate values f or sale .
ExtendedPriceoecimal = auantitylnteger * Priceoecimal
DiscountDecimal = ExtendedPriceDecimal * DISCOUNT_RATE_Decimal
DiscountedPriceDecimal = ExtendedPriceDecimal - DiscountDecimal

' Format and display answers for the sale .
ExtendedPriceTextBox.Text = ExtendedPriceoecimal .ToString ("C")
DiscountTextBox.Text = DiscountDecimal .ToString("N")
DiscountedPriceTextBox .Text = DiscountedPriceoecimal.ToString("C")

Catch ex As Exception
' Handle a price exception.
ErrorProv ider1 . SetError (PriceTextBox , "Price must be numeric . ")
With PriceTextBox

. Focus()

. SelectAll ()
End With

End Try

Catch ex As Exception
· Handle a quantity exception.
ErrorProvider1 . SetError (QuantityTextBox , "Quantity must be numeric. ")
With auantityTextBox

.Focus()

.SelectAll()
End With

End Try
End Sub

C II A 1• 'I' " ll II

Private Sub ClearButton_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles ClearButton.ClicK

' Clear previous amounts from the form .

TitleTextBox .Clear()
PriceTextBox.Clear()
ExtendedPriceTextBox .Clear()
DiscountTextBox.Clear()
DiscountedPriceTextBox.Clear()
With ouantityTextBox

.Clear()

. Focus()
End With

End Sub

Private Sub ExitButton_Click(ByVal sender As System. Object,
ByVal e As System.EventArgs) Handles ExitButton .Click

' Exit the project .

Me.Close()
End Sub

End Class

T he l\IaxLength and Character Casing Ps·ope s·t ies

You can use the l\faxLengtb and Cbru·act et·Casiug pi'Op m·ties of text boxes
to help the user enter correct input data. If you set the MaxLength property. the
user is unable to enter more characters than the maximum. The user interface
beeps and holds the insertion point in place to indicate the error to the user.
The CharacterCasing property has possible values of Normal. Upper. or Lower.
with a default of Normal. lf you change the setting to Upper. for example, each
character that the user types is automatically converted to uppercase. with no
error message or waming. Figure 14.3 shows a State text box on a fo1m. The
user can enter only two characters, and any characters entered are conveJted to
uppercase.

Note: Although the MaxLength property limits user input. the program can
assign a longer value to the text box in code, if necessary.

F ie ld-Level Valicla tion

So far aU of the validation you have coded is for the entire form. after the user
clicks a button such as OK, Calculate. or Save. If the form has many input fields.
the validation code can be quite long and complex. Also. the user can become
confused or rumoyecl if multiple message boxes appear. one after another. You can
take advantage of the Validating event. the Causes Validation property. and the
ErrorProvider components to perform field-level validation, in which any error
message appears as soon a;; the user attempts to leave a field with invalid data.

Fi g ur• e 14.3

To help the user enter
only good data, the
StateTextBox.il1a.-rLength
property is set to 2 and the
CharacterCasing property i..s
set to Upper.

563

S64 \ S l <\ L R .\ S (' Additional Topia in Vi•ual &.ic

[alu g the \<aUdath Jg Evt•ut ami CausesV:liMatioo Pmt:~er·ty

As the u.ser enters data into input fields and tabs from one control to another.
multiple events occur in the following order:

Enter
Gotfocus
Leave

Validating

Validated
LostFocus

Although you could write event procedures for auy or all of these events. the
Validating event is the best location for validation code. The Validating event
procedure's header includes a CancelEventArgs urgwnenl. which you can use to
cancel the event and return the focus to the control that is being validated.

Each control on the fonn has a C:ausesValidatio n prope rty that is set to
True by default. 't'hen the user finishes an entry and presses Tab or clicks on
auother control. the Validating event occurs for the control just left. That is. the
event occurs if the Cau.sesValidation property of the new control (receiving the
input focus) is set to True. You can leave the Causes Validation property of most
controls set to True. so that validation occurs. Set Causes Validation to False on
a control such as Cancel or Exit to give the user a 1ray to bypass the validation
if he or she doesn't want to complete the transaction.

In the Validating event procedure. you can perform any error checking and
display a message for the user. If the data value does not pass the error check
ing. set the Cancel property for the e argwnent of the event to True. This can
cels the Validating event and returns the focus to the text box. making the text
box "sticky." The user is not allowed to lea1•e the control until the input passes
validation.

Private Sub FirstNameTextBox_Validating(ByVal sender As Object,
ByVal e As system.ComponentModel.CancelEventArgs
) Handles FirstNameTextBox.Validating

' Validate for a required entry .

' Cancel any previous error.
ErrorProvi der1. SetError(Fi rstNameTextBox, "")

' Check for an empty string.
I f FirstNameTextBox .Text = String .Empty Then

' c ancel the event .
e .Cancel = True
ErrorProvider1.SetError (FirstNameTextBox, "Required Fi eld. ")

End If
End Sub

One note of caution: Tf you use the validating event on the field that re
ceives focus when the fonn is first displayed and require an entry, the usen,ill
be unable to close the form without filling in the text box. You can work around
this problem by setting e . Cancel = False in the form's FonnCiosing event
procedure.

C II ,\I'T .:R II

Private Sub ValidationForm_FormClosing(ByVal sender As Object,
ByVal e As System.Windows.Forms. FormClosingEventArgs
) Handles Me.FormClosing

' Do not allow validation to cancel the form's closing.

e.Ca ncel = False
End Sub

A Valitlallou E:~o.aUJ[JI4' l'rog•·am

The following program combines many of the techniques presented in this sec
lion. The form (Figure 14.4) has an Error Provider component. and all controls
have their CausesValidation property set to True. The StateTextBox has its
MaxLength property set to 2 and its CharacterCasing property set to Upper. Al
though it seems oul of place. the AmountTexLBox is included s trictly to show an
example of numeric range validation.

565

r uu rid:t l evel Vahdation
The Validation example form.
which provuu3fudd-kuel
validation.

'Program:
'Programmer:
'Date:
'Description:

'Folder:

~PCode

tf1o.n (1·1D)

Ch14Validation
Bradley{Millspaugh
June 2010
Demonstrate validation using the Validating event
and an Error Provider component.
Ch14Validation

Public Class ValidationForA

Private Sub FirstNameTextBox_Validating(ByVal sender As Object,
ByVal e As System.ComponentModel.CancelEventArgs
) Handles FirstNameTextBox.Validating

' Validate for a required entry.

' Cancel any previous error.
ErrorProvider1. SetError(FirstNameTextBox, "")

566 l ' s u ,, I,

' Check for an empty string .
If FirstNameTextBox .Text = String . Empty Then

' Cancel the event .
e .cancel = True

C AdditioMI Topics in Visual Basic

ErrorProvider1.SetError(FirstNameTextBox, "Required Field .")
End If

End Sub

Private Sub LastNameTextBox_Validating(ByVal sender As Object,
ByVal e As System.ComponentModel .CancelEventArgs
) Handles LastNameTextBox .Validating

' Validate for a required entry .

' Cancel any previous error.
ErrorProvider1 .SetError(LastNameTextBox, "")

If LastNameTextBox .Text.Length = 0 Then
' cancel the event.
e .cancel = True
ErrorProvider1 . SetError (LastNameTextBox, "Required Field. ")

End If
End Sub

Private Sub StateTextBox_Validating(ByVal sender As Object,
ByVal e As System.ComponentModel .CancelEventArgs
) Handles StateTextBox.Validating

' Make sure the state is two characters .
' The control ' s Charactercasing property forces uppercase .

The Maxlength property limits input to 2 characters .

' Cancel any previous error.
ErrorProvider1 . SetError (StateTextBox, "")

If StateTextBox.Text.Length <> 2 Then
' Cancel the event and select the text .
e.cancel = True
StateTextBox.SelectAll()
ErrorProvider1 . Set Error (StateTextBox, "Must be 2 characters . ")

End If
End Sub

Private Sub AmountTextBox_Validating(ByVal sender As Object,
ByVal e As System.ComponentModel.CancelEventArgs

) Handles AmountTextBox.Validating
' Validate a numeric amount for a range of values .
Dim Amountinteger As Integer

' Reset any previous error.
ErrorProvider1. SetError(AmountTextBox, "")

Try
Amountinteger = Integer .Parse(AmountTextBox .Text)
If Amountlnteger < 1 Or Amountinteger > 10 Then

' cancel the event .
e.cancel = True
AmountTextBox .SelectAll()
ErrorProvider1 . SetEn·or(AmountTextBox, _

"Amount Rust be between 1 and 10, inclusive .")
End If

C II ,\I> 'I' I' R II

Catch ex As Exception
' Cancel the event.
e . cancel = True
AmountTextBox .SelectAll()
ErrorProvider1.SetError(AmountTextBox, _

"Enter a numeric amount between 1 and 10, inclusive .")
End Try

End Sub

Private Sub ValidationForm_FormClosing(ByVal sender As Object,
ByVal e As System .Windows.Forms . FormClosingEventArgs
) Handle.s Me . FormClosing

' Do not allow validation to cancel the form's closing.

e . cancel = False
End Sub

End Class

Capturing Keyst1·okes f1·om the Use•·

At times you may want to determine individual keystrokes entered by the
user. You can check for the key that the user entered in a control's Key Down,
KeyPress. or KeyUp event procedure. These events occur in the order listed
for most keyboard keys. But keystrokes that ordinarily cause an action to
occur. such as the Tab key and the Enter key. generate only a Key Up event.

The e argument of the KeyPress event procedure is KeyPressEventArgs.
which has a KeyChar property that holds the character pressed. Another prope1ty
of the KeyPressEventAr~ is the Handled property. which you can set to True to
say."[have already taken care of this keystroke; it doesn't need any fmther pro
cessing." TI1is action effectively "throws away" the keystroke just entered.

[n the following code example. the KeyChar property is checked in the
KeyPress event procedure. lf the character is not a digit or a period. then
e . Handled is set to True. which does not pass the keypress on to the text box.
This means that only digits or a period are allowed through. You can use this
technique in a text box for which you want to allow only numeric data to be en
tered. such as a Quantity or Price text box.

Private Sub PriceTextBox_KeyPress(ByVal sender As Object,
ByVal e As System .Windows.Forms .KeyPressEventArgs
) Handles PriceTextBox.KeyPress

' Accept only a digit or a period .

If Not Char.IsOigit(e.KeyChar) And e.KeyChar <>
e .Handled = True

End If
End Sub

Using tbe Masked Text Box fm· Validation

Then

Although you leamed about the masked text box in Chapter 2. you may not
have thought about using it to aid data validation. You can set the Mask property

567

568 v S l l ,\ I. C Additional Topics in Visual Basic

of a masked text box to any of the predefined masks or write your own. The eas
iest way to write your own is to modify one of the existing masks, or you can fol
low the syntax rules of a regular expression (see " Regular Expressions (Visual
Studio)" in MSDN Help).

The predefined masks include date, time. phone number. social security
number. and ZIP code fotmats. If the user enters invalid data for the mask. such

as a letter for a numeric month in the date mask. the character is not accepted.

l. What is the purpose of the following code:

ErrorProvider1 .SetError(QuantityTextBox, "Quantity must be numeric .")

2. Name two properties of a TextBox control that help the user enter cor
rect input data. Describe the function of each.

3. What is meant by fzeld-level validation?

Code Snippets and Samples

A great time-saving feature that was added in VB 2005 and expanded in
subsequent versions is the ability to add segments of code for a variety of
topics directly in the editor. You may wonder why this topic wasn't covered
earlier. but it was really necessary for you to understand the code that you
add to your program. Now that you understand the basic concepts, you wiU
find that many of your new tools and techniques come from looking at sam
ple projects. Visual Studio includes many sample projects as well as code
snippets.

Code Snii>J>e ls

Code snippets are small samples of code that can show you how to accomplish
many programming tasks. The Insert Snippet menu option is available on the
context menu (right-click) of the Editor window (Figure 14.5). When you select
a snippet type, the editor places the code right in your program, where you can
study it and/or modify and use it.

You can learn many useful techniques by opening snippets.

Sample P1·ojects

Vlliual Stuo.liu iudutles mauy .sam pit: projects lltat you cau use lu leam uew lt:elt

niques. From the Help menu, select Samples.

The walkthroughs in Help are another avenue for pursuing your study
of VB. These tutorials give step-by-step introduction to many techniques
and controls.

C II A 1• 'I' " ll II

Insert Snippet: :::::---.--::--:-:--::,.---:::--:::-- -----
'[3 ApplicDtion - Compiling, P..esource::, .:md Sd tings

n Code Patterns · Jt For Each, Tl)' Catch, Property, eic
0 Dab - Uf~Q. XML, D.c;gn«, ADO.NET

EJ Fundcmenl~ l s · Colltdicns, Deh Type~, File: Ststc:m, Meth

Cl Office Development
[j: Other - Connecti..,ity, Secw itY: Workflow

u Test
D Win dew~ Forms Applicatons

a. E:3 Windows Sysicm · l ogging, Processes, Registly, Ser.1iccs

Insert Snipptt: Code Pattetns · If, for Each, 1 ry Catch. Propert'f, etc > I

b.

ILl Cond tionals and Loops 1
l
u .En~n·s, Generics, lntei1Cice~ .Struct UI5

0 ... Error -land ling (Exceptio!:'s) ~
ILJ Propui:ies., ProceciUies, Events

Try

Fi na lly

En d Tr·y
c.

Multiple Document Interface

All of the projects so far have been single documeut in terface (SDI). Using
SDI. each form in the project acts independently of the other forms. However. VB
also allows you to create a multiple docllllleut inter face (MDJ). For an exam
ple of MDI, consider an application such as J\llicrosoft Word 2003. Word has a
pal'eut fonu (the main window) and child for·ms (eacb document window). You
can open multiple child windows. and you can maximize. minimize. restore. or
close each child window, which always stays within the boundaries of tl1e parent

J+indow. When you close the parent window. all child windows close automatically.
Figure 14.6 shows an MDI parent window with hvo open child windows.

With MDI. a parent and child relationship exists between the main form
and the child fonns. One of the rules for MDI is that if a parent form closes. all
of its children leave with it. Pretty good rule. Another rule is that children can
not wander out of the parent's area; the child form always appears inside the
parent's area.

VB allows you to have fom1s that act independently of each other. You may
have a parent form and several child forms and some forms that operate inde
pendently. For example. a splash form likely should remain SOl.

One feature of MD I is that you can have several documents open at tl1e same
time. The menu strip generally contains a Window menu that allows you to dis
play a list of open windows and move from one active document to another.

C1·eating a n l\'IDI P 1·oject

You can make any fonn a parent. In fact. a form can be both a parent and a
child fonn Oust as a person can be both a parent and a child). To make a form

569

a. Right-click in the Editor
wind= and select Insert
Snippet tc see the categories of

snippets available: b. Sekct a

category: and c. The code
appears in the Editcr wind=,
where you can modify it for
your own use.

570 v S l l ,\ I. C Additional Topic• in Visual Basic

FiJtnr e 1 4.6

The main form is the parent and the smaUer forms are the child forms in an MDI application.

f ile Qbphy t!indow

Toolhar ----> J~.~
~~----------------------------~------------------~1 p .
1

•-! r i iU - n." '" r-1 I ~ l
Toolhar buttons/ ~ Child 1\\lo.Oo,ument t ~~

-

Status bar/

into a parent, simply change its lsMdiComainer (}I'O()Ct' t y to True in the
Properties window of the designer. One project can have multiple ch.ild forms
and multiple parents.

Creating a child is almost as easy. Of course. your project must contain
more than one form. You make a form into a child aindow in code at run time.
You must declare a new variable for the fonn. instantiate it, set the child's
MdiParent property to the cuJTent (parent) form, and then show it.

Private Sub ChildOneMenuitem_Click(ByVal sender As system.Object ,
ByVal e As System.EventArgs) Handles ChildOneMenuitem.ClicK

' Display Child One form.

Di m AChil dOneForm As New Chil dOneForm
ACh il dOneForm. MdiParent =Me
AChildOneForm .Show()

End Sub

Our example application allows the user to display multiple child windows.
Therefore. the title bar of each child window should be w1ique. We can accom
plish this by appending a number to the title bar before displaying tl1e form. This
is very much like Microsoft Word. with its Documentl. Document2. and so forth.

' Module-level declarations .
Dim ChildOnecountinteger As Integer

Private Sub ChildOneMenuitem_ClicK(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles ChildOneMenuitem.ClicK

' Display Child One form.

2!1812008 PM 12:55:21

v
Status ba1 labels

C II A 1• 'I' " ll II

Dim AChildOneForm As New ChildOneForm
AChildOneForm.MdiParent = Me
ChildOnecounti nteger += 1
AChil dOneForm .Text = " Child One Document " &

Chil dOneCountlnteger .ToSt ring()
AChildOneForm.ShOW()

End Sub

Adding a Will(low Menu

A parent form should have a Window menu (Figure 14.7). The Window menu
lists the open child windows and allows the user to switch between windows
and arrange multiple child windows. Take a look at the Window menu in an ap
plication such as Word or Excel. You will see a list of the open documents as
well as options for arranging the ~tindows.

Eile Qisplay ~~------.
Ti~J:iorizontally
Tile Yotic11lly

s;.ascade

!. Child One: Document 1

G ~ChildlwoOocumem l

After you create the menus for a MenuStrip control. you can make one of
the menus display the list of open child windows. Display the properties of the
MenuStrip (not a menu item) in the Properties window. Drop down the list for
the l\'ldiWindowListlte m p1·ope1-ty. which shows all of the menu items that
belong to the MenuStrip, and select WindowToolStripMenuitem (Figure 14.8).
To actually arrange the windows requires a little code.

·~x

MenuStrlpl System.Windows.forms.Menu~ ...

~., ~ l El ·-' •
t" Maxin1umSize 0, 0
"i$#6ifM§Idi!§)I,S trlpMenultemG
[) M1 Di::playl ooiSt•ipMenultem I

Mo Filc:TooiStripMcnuftcm

~ Pad LJ
Ren eiNIOae l'llanagerr;.Enaenv•oa

RightTold t No

~~wlistltem

Layout Optio ns

Specifics the: ilc:111 whose OropOown will show
the lis! of ML*-Mndows.

Wl1en several child windows are open, the windows may be arranged in several
different layouts: tiled vertically, tiled horizontally. or cascaded. You set the
type of layout in code with an ar~ument of the LayoutMdi met110d.

Me . LayoutMdi(Mdilayout .TileHorizont al)

571

Fi~11r e 14 . 7

The Window menr£i11-an MDI
application lists the open child
windows and allows the user to
select the arrangement of the
windows.

Fi g ure 14.8

Set the MdiWiruk>wListltem

property to make the Window
menu display the list of open
MDI child windows.

512 v S l l ,\ I. C Additional Topics in Visual Basic

You can use one of the three constants: TileHorizontal, TileVenical. and
Cascade.

Private Sub TileHorizontallyToolStripMenultem_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles TileHorizontallyToolStripMenultem.Click

' Arrange the child forms horizontally .

Me. LayoutMdi (Mdi Layout. Ti 1 eHor i zonta 1)
End Sub

Private Sub TileVerticallyToolStripMenultem_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles TileVerticallyToolStripMenultem.Click

' Arrange the child forms vertically .

Me. Layout Mdi (Mdilayout .Ti1 eVerti ca1)
End Sub

Private Sub cascadeToolStripMenultem_Click(ByVal sender As System. Object,
ByVal e As System.EventArgs) Handles cascadeToolStripMenultem.Click

' Cascade the child forms .

Me. LayoutMdi (Mdi l ayout.Cascade)
End Sub

Toolbars and Status Bars

You can enhance the usability of your programs by adding features such as a
toolbar and/or status bar. You probably find that you use the toolbars in appli
cations as an easy shortcut for menu items. Status bars mrmally appear at the
bottom of the screen to display information for the user.

To create a tool bar. you need a Too!Strip coutrol and the images in Re
sources to appear on the Too1Strip buttons.

'1'oolba•·s

You use the TooiStrip control (Figure 14.9} in the Menus & Too/bars tab of
the toolbox to create a TooiStrip object for your project. The new TooiStrip is a
container that does not yet contain any objects. After you add the Too!Strip.
you can add several types of objects. The strip may contain ToolStripButtons.
ToolStripLabels. and several other types of objects.

~ Menus & T oolbars
·~ Pointer

~ ContextMenuStrip

~ MenuStrip

b Statu;Strip

~ TooiStrip

Fi g ur e 1 4. 9

The ToolStrip a.nd StatusStrip
control. in the t<>olbox.

C ll i\l1 '1'1iR II

Seuing U [) the Buttons

The easiest way to set up buttons for a ToolStrip is to click on its Items property
in the Properties window. which opens the Items Collection Editor (Figure 14.10).

573

Fig••••e 14 . 10

Add buttons w a Too/Strip using the Items Col/.ection Editor. which you can openfrotn the Too/Strip's Items property in the
Properties windcrw.

I:ems Collection Edi tor

Sefect item and add to list below:

@ Sutton

Men1bers:
,.j~ ·-·-······--·· ····-··- ····· G

@ ChildOne T coiSttipButtOM r;-1
~ ChildTwo1ooiSbipButton ~

lKl

IooiStr;p TooiStnpl

~~ ~ ~
AllowDrcp
Allow1temRe.order

AtlowMerge

Contex.tMenuStrip

Enabled

lmef·Aod(

Showltemloollips.

Tablndex

TobStcp

ViSible
• Oab

) (Applic,bonSdtin9s)

-> (DaBSindings)

Tag

False
False
1 rue

(none)

Tru~

NoControl

True
4

F"hc

True

4 Design

(fJame) TooiStripl

In the ToolStrip's Items Collection Editor. you can drop down the list of
available types of objects (Figure 14.11). For now you will use only the button.
Click on the Add button, which adds a new ToolStripButton object to the
collection. Then you can set the proper1ies of the new button. such as its
Name and ToolTipText properties. Make sure to give it a meaningful name. For
example, a button that displays the Summary Window might be called
SmmuaryToolStripButton. and one that displays the About box might be called
AboutToolStripButton.

You also can assign an image to the button's Image property in the
Items Collection Editor window. To display only the image and no text. set
DisplayStyle to Image.

Note that with the ToolStrip selected. you can click Insert Standard Items

below the Properties window. You will get New. Open. Save. Print. Cut. Copy.
and Paste buttons with pictures added automatically. However, you must write
the code for each button yourself.

Coding for· tbe TooiSu·ip

OK J l C.•ncd

~

To code the actions for a ToolStrip button you can create a new event procedure
for the button click. However. since most buttons are actually shortcuts for
menu items. you normally only need to add your' looLStripButton.CJick event to
the Handles clause for the menu event procedure.

Set the Too lnp Text property o f each

TooiStrip butto n to aid the user in

case the meaning of each graphic is

not perfectly clear. •

574 v S l l ,\ I. C Additional Topic• in Visual Basic

F i j,! u re 1 4.11

Drop down the list of available objects that can be added to the Items collection of a ToolStrip control.

[tems Collection £ditor 11/ l....a-1

~Eied thm and i!dd to l1~t betO\o\~ l oobtrip TooiStript

Jill Button I· [Add J ~U J I
Jill llillm!!l Allow•Dtop False ~

A l abel ""' I .OIIowttemR.eorder False
IE • Spi~Buncn AlfowMerge True

~ OropOownSution
~

~ Contoctl\.lc:nuStrip (none.)
I Separator ~

Em bled True
~ ComboBox IX lmeMocle NoControl
~ Text:Box

,..,.
S."'l-owlhm 1 oollip:; True

ED Pro~rcs~Bor
Toblndcx 4
Tab Stop False ·-
Visible True

A Dab ""'
• (Applic.)tionSc:tiings)

v (DatllSindiogs)

I
Tag . Design

(f.bm•) TociStripl -
I OK jlcencel I

Private Sub DisplayChildOneMenuitem_Click(ByVal sender As system.Object,
ByVal e As System.EventArgs) _
Handles DisplayChildOneMenultem.Click, Chi l dOneTool StripButton.Cl ick

' Display Child One form .

Dim AChildOneForm As New ChildOneForm
AChildOneForm.MdiParent = Me
ChildOnecountlnteger += 1
AChildOneForm.Text = "Child one Document " &

ChildOnecountlnteger.ToString()
AChildOneForm .Show()

End Sub

S ta tus Bm·s

A status bar is usually located at the bottom of a fonn (refer to Figure 14.6). A
status bar displays information such as date, lime. status of the Caps Lock or
Num Lock key, or error or infonuational messages. If you want a status bar on
your fonn. you need to take two steps : add a StatusStl'ip couu·ol (refe r to
Figure 14.9) to your form and add TooiStl'ipStatusLabel objects to the
StatusStrip.

Just as with Too!Strips, the eas iest way to add items to the StatusStrip ob
ject is to select its Items property in the Properties '"i ndow to open the Items
Collection Editor. Click on the Add button to add a new ToolStripStatusLabel
object. Then set the propetties of the Too!StripStatusLabel, including the ob
ject's Name and ToolTipText properties.

C II 1\ 1• 'I' I' ll II

You can make the labels appear at the right end of the status bar. as in Fig
ure 14.6. by setting the StatusStrip's RightToLeft property to Yes . The default
is No. When you set Right To Left to Yes, the labels will appear in the opposite
order that you define them.

A.'1Signing Values to TooiStt'ipStatusLabels

A ToolStripStatusLabel can hold texi. such as the current date. the time. or er
ror messages. You assign values to the Text property of labels at mn time:

OateToolStripStatusLabel .Text = Now.ToShortDateString()
TimeToolStripStatusLabel .Text = Now.ToLongTimeString()
InformationToolStripLabel.Text =" It's very late ."

Displaying the Date a nd Time

You use the properties and methods of the DateTime su·uctm·e to retrieve
and f01mat the current date and time. The Now pt·opet·ty holds the system
date and time in a numeric format that can be used for calculations. You
can format the date and/or time for display using one of the following
methods: ToShortOateString, ToLongOateString, ToShortTimeString, or
ToLongTimeString. The actual display format of each method depends on the
local system settings.

You can set the display value of status strip labels in any procedure: how
ever. the display does not update automatically. Generally you will set initial
values in the Fonn_Load event procedure and use a Timer component to up
date the tin1e. Or you can skip the Form_Load event. figuring that in just one
second the tinler will fire and the clock will update.

Private Sub ClockTimer_Tick(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles ClockTimer.Tick

' Update the date and time on the status bar.
' Interval = 1000 milliseconds (one second) .

OateToolStripStatusLabel .Text Now.ToShortDateString()
TimeToolStripStatusLabel .Text = Now.TolongTimeString()

End Sub

Private Sub ParentForm_Load(ByVal sender As Object,
ByVal e As System.EventArgs) Handles MyBase.Load

' Display the date and time in the status bar .

ClockTimer_Tick(Sender, e)
End Sub

Don't forget to set t!te Euauleu auu Interval properties uf your timer.

l. Write the statements to display AboutForm as a child form.
2. Assume that you have a ToolStrip called Too!Stripl that has buttons for

Exit and About. How are the buttons coded?
3. Wl1at steps are necessaq to display the current time in a status strip la

bel called CurrentTimeToolStripStatusLabel?

575

576 l ' C AdditioMI Topics in Visual Basic

Some Helpful Date Controls .

There are many other controls in the toolbox. You may want to experiment with
some of them to see how they work. This section demonstrates two more con
trols: the DateTimePicker and Month Calendar controls.

The Calenda1· Controls

The Date Time Picker and the MonthCalendar controls (Figure 14.12) provide the
ability to display calendars on your fonn. One advantage of the DateTimePicker
is that it takes less screen space; it displays only the day and date unless the user
drops down the calendar. You can use either control to allow the user to select a
date. display the current date. or set a date in code and display the calendar with
that date showing.

Fign••e 1 4.l2

The calendar controls: The DateTimePicker drops down a calendar when selected and s/wws the selected day and date when
not dropped down: the MonthCalendar control displays the calendar.

•';} Caler.dar Control!; [c 1011 £31,1

DateTimePicker - -i>l, Mor.doy h.gurl 02. 2010

...!... Augusl, 2010 ..!.!

25 2S 27 ~t 2~ J;) :1 , m ~ 5 ~ 1
s 3 10 11 12 n 14
15 16 ;7 1S 19 20 21
22 2l 2l 2S ~ 27 28
29 30 l l 1 '

I ~Todav: 11/212010

{J ~ Auguct, 2010

25 "" z, ;.g A
I ~3 •
3 3 1C 11 12
15 16 17 1& H
2Z 23 2< 25 z•
23 30 31 1 2
<::l Today: 81212010

..!J
.J!J ~{,

~ 7
13 1•
2{} 21
27 28
3 J

-

The DateTimePicker control contains a Value property for the date. When
t11e control initially displays. ilie Value is set to the current date. You can let the
user select a date and then use the Value property or you can assign a Date
value to the property.

The following example allows ilie user to enter a birthdate in a text box. It
converts the text box entry in a Try /Catch in order to trap for illegal date
fonnats.

I Month Calendar

BirthdateDateTimePicker.Value = Convert .ToDateTime(BirthdateTextBox .Text)

This example program demonstrates the use of the calendar, date func
tions. and some interesting features of Visual Basic. Figure 14.13 shows the
fonn for the project.

(; II '' I' 'I ' 1•: ll II

II

I•

l:

~'*'<>dey Odc:Ca 21 '9n =-:::::I4t! . Oc·cbt•. 1910 .
1oo Moo 1ue -Ned ThJ ft i Sn
27 2&
l 5

11 IZ
lS 19
.lS 26
I ,

Z9 'l I 2 3
6 7 e 9 10

13 14 15 16 17

zo IJ.D 22 23 24
21 zs 29 lO 31
3 4 s 6 7

L_l 1 odo)" 8/l/2010

Chapter 14 Calendar
BradleyfMillspaugh
June 2010

The birthdo.y f orm with
the colendar for the
Date'nme Picker dropped
down.

' Program:
' Programmer:
' Date:
' Description: Entorc and tests a date, displays a calendar, and usee

Date functions .
'Folder: Ch14Calendar

Public Class CalendarForm

Private Sub OisplayButton_Click(ByVal sender As System.Object ,
ByVal e As System.EventArgs) Handles DisplayButton.Click

· If the date is valid set the calendar and display.

Try
With BirthdateDateTimePicker

.Value = Convert.ToDateTirne (BirthdateTextBox.Text)

.Visible =True
End With

catch ex As Exception
MessageBox. Show(· Invalid Date")
BirthdateTextBox.Focus()

End Try
End Sub

Private Sub BirthdateDateTirnePicker_ValueChanged(ByVal sender As System.Object ,
ByVal e As System.EventArgs) Handles BirthdateDateTimePicker.ValueChanged

' Calculate the age when the calendar value changes.
Dim Yearslnteger As Integer

With BirthdateDateTimePicker .Value
' If birthday already passed this year .
If .DayOfYear <= Now. DayOfYear Then

Yearsinteger =Now . Year - .Year
Else

' Birthday yet to come this year.
Yearsinteger Now. Year - .Year

End If
End With

571

578 l '

If Yearslnteger > o Then
AgeTextBox.Text = Yearsinteger .ToString()

End If
End Sub

C AdditioMI Topics in Visual Basic

Private Sub ExitButton_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles ExitButton . Click

' Terminate the project .
Me.Close()

End Sub

Private Sub CalendarForm_Load(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles MyBase . Load

' Set the calendar to today•s date.

BirthdateDateTimePicker.Value = Today
End Sub

End Class

Notice the statements in the ValueChanged event procedure for t11e Date
TimePicker. You can use aU of the properties of the system time on the Value
prope1ty of die control.

vearsinteger = Now . Year - BirthdateDateTimePicker.Value.Year

You can see all of the methods and properties using Visual Studio's
IntelliSense feature.

-

F('Nibaek 14.:1

l. Write die code to assign the date from AppointmentDateTimePicker to
the variable AppointmentDateTime.

2. Use the IntelliSense feature or Help to list five properties of the Value
prope1ty for a DateTimePicker control.

3. Wl1ich of t11e five prope1ties listed in Question 2 are also available for
die Now prope1ty?

Displaying Web Pages on a Windows Fo~_m

You can add a \'\1ebBrowseJ' conu·ol to a Windows Form and display Web
pages on the fonn . The toolbox includes a WebBrowser control (Figure 14.14).
The WebBrowser control can make your form resemble a browser window in
Internet Explorer. or you can use the control to display any HTML page, online
or offiine. Note that you must have a live Internet com1ection to display Web
pages in the Web Browser control.

C II A 1• 'I' " ll II

T he We bB1·owse1· Cont1·ol

When you add a WebBrowser control to an empty Windows Form. by default
the control is set to fill the entire form (Dock = Fill). You can add a ToolStrip
control to provide navigation. Some useful properties. methods. and events of
the WebBrowser control follow:

579

Figar e 14 . 1 4

The Windows WebBrowser
control in the toolbox.

Uri property Set this property to a URL at design time or run time to navigate to the
entered page.

WebBrowser1 . Url = New Uri("http : //www.microsoft . com")
Navigate method Execute this method at run time to navigate to the desired page.

WebBrowser1.Navigate(New Uri("http : //www. microsoft . com"))
OocumentCompleted event A page has finished loading. You can use this event to add the page to the

ItelllS property of the combo box.
ToolStripComboBox1.Items .Add(WebBrowser1.Url)

DocumentTitleChanged event A page '~ith a new title finished loading. Use this event to change the
form's title bar to the Web page's title.
Me . Text = WebBrowser1.DocumentTitle

Document Title propetty Retrieves the title of the current Web page.

Notice the use of"Uri" in the preceding table. A Uniform Resource Identi
fier (URI) is a Web address that is more generic than "URL". The Web Browser
control requires that aU URL-s be instances of the Uri class.

A Wc bB1·owse•· P1·og1·am

The folloning Windows program displays a Web page in a WebBrowser control.
The form has a ToolStrip control 1vith a ToolStripComboBox and a ToolStrip
Button to aid navigation. When the user enters a new URL in the text portion of
the combo box. he or she can either press Enter or click the Go button on the
toolbar. The ToolStripComboBox_KeyUp event procedure checks for the Enter
key, and the ToolStripButton_Click event procedure checks for a click on
the button. Figure 14.15 shows the completed Windows Form 'vith a Web page
displayed.

The Pt·ogram Code

' Program:
'Date :
'Description:
'Note :

Ch14WebBrowser
June 2010
Add Web browser to a Windows Form using t he WebBrowser contr ol.
The computer must have an establi shed l i nk t o the Internet for
this program to work .

sao S L \ 1, C Addilional Topic• in 11..ual Ba.ic

FIJ(nr (" 1 4. 1 ~

This Windows Form di~plays a Web page in a WebBre>wsl'f control. A Toa/Strip contre>l contains a. ToolStripComboBox item
and a ToolStripButton item.

,...J t\1iaosoft Co•poutJoo

http/'www miCr~oft.com/Wu:/d.f~o_u_l._ll:.._px _ ____ _ • Go

Your W1ndows swff goes where you go

• •

Nf\11'. ! n.,., f'- • h,.. • "1 ,.."!,. .. , ~1 filM •nt~•·· ,

Public Class WebBrowserForm
Private Sub WebBrowser1_DooumentCompleted (ByVal sender As Object,

ByVal e As System.Windows.Forms .WebBrowseroocumentCompletedEventArgs
) Handles WebBrowser1.DocumentCompleted

' New document loaded . Add the URL to the combo box.

ToolStripCOmboBox1 .Text = WebBrowser1.Url.ToString()
ToolStripCOmboBox1 . Items .Add(ToolStripComboBox1.Text)

End Sub

Private Sub WebBrowser1_DocumentTitleChanged(ByVal sender As Object,
ByVal e As system.EventArgs) Handles WebBrowser1.DocumentTitleChanged

' Change the form's title bar when the document changes .

Me .Text = WebBrowser1 . DocumentTitle
End Sub

C II A 1• 'I' " ll II

Private Sub ToolStripButton1_Click (ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles ToolStripButton1 .Click

' Go button clicked; navigate to requested page.

Try
If Not ToolStripComboBox1.Text.ToUpper .StartsWith("HTTP : / / ") Then

ToolStripComboBox1 .Text ="HTTP :// " & ToolStripComboBox1 .Text
End If
' WebBrowser1 .Navigate(New Uri(ToolStripComboBox1 .Text))
WebBrowser1 .Url = New Uri(ToolStripComboBox1 .Text)

Catch
MessageBox .Show("Unable to locate the requested page .")

End Try
End Sub

Private Sub ToolStripComboBox1_KeyUp(ByVal sender As Object,
ByVal e As System.Windows.Forms.KeyEventArgs

Handles ToolStripComboBox1.KeyUp
' Check for Enter key and navigate to the requested URL .

If e.KeyCode = Keys.Enter Then
ToolStripButton1_Click(sender , e)

End If
End Sub

End Class

Checking f01· the Ente1· Key

You may have noticed a strange statement in the previous section:

If e . KeyCode = Keys.Enter Then

This statement checks to see if the key pressed is the Enter key.
k. you learned earlier in this chapter, you can check for the key that the

nsP.r P.ntP.rP.Ii in a l'ontrol'"' KP.y Oown. KP.yPrP.>:s, or KP.yllp P.VP.nt pm<"P.rlnrP.. Rut

keystrokes that ordinarily cause an action to occur, such as the Tab key and ihe
Enter key. generate only a KeyUp event.

The e argument of the KeyUp event procedure is KeyEventArgs. which
has a KeyCode and a KeyData property. These properties hold a numeric
representation of the key pressed. but you can use the constants in the Keys
e numeration to call the keys by name. For example. the Enter key has
a KeyCode of 13. You can c heck for the Ente r key with e ither of these
s tatements:

If e . KeyCode 13 Then

or

If e . KeyCode Keys.Enter Then

581

582 v S l l ,\ I. C Additional Topics in Visual Basic

In the program in the previous section. the user is expected to type a URL
into tJ1e combo box and press Enter or click a button. To check for the Enter
key. you need to code the combo box's Key Up event procedure. Notice that the
line of code compares the event argument e with the desired Keys constant.

Private Sub ToolStripComboBox1 _KeyUp(ByVal sender As Object,
ByVal e As System.Windows.Forms.KeyEventArgs
) Handles ToolStripComboBox1 . KeyUp

' Check for Enter key and navigate to entered URL.

If e.KeyCode = Keys.Enter Then
ToolstripButton1_Click(senaer, e)

End If
End Sub

XML Data Files

More and more documents are being stored as XML files. In Chapter 10 we
discussed XML as a part of database files. The same format is also used for
word processing and other types of office files.

There ru·e mru1y advantages to using XML rather than other file formats.
XrrTL is a platform-independent format that is not tied to a specific language or
vendor. Because it is text based. you cru1 view and edit the file contents with
text-edit tools. It is easy to make changes, such as adding fields. XML is Uni
code compliant and can be used intemationally.

Nodes, Elements, and Att1·ihutes

The following section describes the terminology and stmcture of XML files us
ing books.xml. a sample file from Microsoft that also is included in your Stu
dentData folder. Here is a listing of books.xml for reference. TI1e tenninology
follows the file listing.

<?xml version=' 1.0 ' ?>
<!- - This file represents a fragment of a book store inventory database -->
<bookstore>

<book genre=" autobiography " publicationdate=" 1981 " ISBN=" 1-861003-11-0">
<title>The Autobiography of Benjamin Franklin</title>
<author>

<first-name>Benjamin</first-name>
<last -name>Franklin</last -name>

</author>
<price>8.99</price>

</book>
<book genre='' novel" publicationdate=" 1967" ISBN="0-201 -63361 -2">

<title>The Confidence Man</title>
<author>

<first-name>Herman</first -name>
<last -name>Melville</last-name>

</author>
<price>11 .99</price>

</bOOk>

C II ,\I> 'I' I' R II

<book genre="philosophy" publicationdate=" 1991 " ISBN=" 1-861001-57-6 ">
<title>The Gorgias</title>
<author>

<name>Plato<tname>
</author>
<price>9 . 99</price>

<{book>
</bookstore>

The first things you notice when looking at an XML file are the tags. The tags
delineate elements of the file. The basic stntcture is a tree. starting with the root
node (a file can have only one) and branching out in child nodes. A child also can
contain child nodes. Nodes that are at the same level are referred to as siblings.

Within a node there may be several different values assigned to atu-ibutes.
The value may be placed in either single quotes or double quotes. In the fol
lowing line. genre. publicationdate. and ISBN are attributes.

<book genre="autobiography " publicationdate=" 1981 " ISBN=" 1-861003- 11-0">

Table 14.1 describes the elements in the books .xml ftle.

X:M.L File Tet·tuiuology

Term

<>

Eleme nt

Node

Sibling

~feruting

Start-tag and end-tag

Contents within a s et of tags.

A branch on the tree: the root node is the
most outs ide with the child nodes ins ide.

Nodes at lhe same le vel.

1' u bl e 14 . 1

Example fa-om books.xanl

<price></price>

<title>The Gorgias</title>
<author>

<name>Plato</name>
</author>

Root node <bookstore>
Child nodes <book>
<title> and <author> are child nodes of <book>

<title> and <author>

S83

Attribute Name values e mbedded ";thin an element:
the name of the attribute is assigned a value

enclosed in e ither single or double quotes.

<book genre=" autobiography"
publicationdate=" 1981" ISBN=" 1-861003-11- 0 ' >

Text Value placed .. ;thin tags.

Comment Used for remarks only.

<first-name>Benjamin</first-name>

<! -- This file represents a fragment of a
book store inventory database -->

For more infonnation about XJ\'fL and terminology. refer to the W3C rec
onunendations. You can find recommendations at http://www.w3.org/TR/xml/
#sec-terminology.

VB Tools fm· Readjng XML Fj)es

VB includes some tools that simplify working with XML files. In this section
you will see XDocument objects, XE!ement objects. XML literals . and how to
use LINQ TO XML queries.

S84 l ' C Additional Topics in Vis!Ull Basic

Loadiug an X!\1L File illlo au XOocmuenl Object

You can use the Load method of an XDocument to read an Xl\IIL file.

Tl1c XOoc muen 1. Load !\1e tltod-GeneJ·al Forms
""iC"l
~ ~ Dim Identifier = XDocument . Load(Filename)
~ ~ Dim Identifier As XDocument = XDocument.Load(Filename)

For the Filename entry. you can specify a complete path or a URI; othenvise
the Load method looks in the current directory, which is bin\Debug in your VB
project.

Notice in the first fom1at that the data type is not specified. The VB editor's
type inference takes care of determining and assigning a strong data type. even
when Option Strict is turned on.

The XDocmuem .Load !\1e thod-Examplcs

~ ., Dim BookXDocument = XDocument . Load("books .xml ")
,S Private CustomerXDocument As XDocument = XDocument.Load("C: \Data\customers .. xml")
if Dim InventoryDocument = XDocument . Load (curDir () & "inventory . xml ")

The third example uses the CurDir () method to specify the current directory.
You also can use System. 10. Directory . GetCurrentDirectory (), as you
have in previous programs.

The following Sub procedure displays the books.xml file in the Output ~in
dow. which you can view with V7ew /Other Windows/ Output:

Private Sub ReadFileButton_Click(ByVal sender As system.Object,
ByVal e As System. EventArgs) Handles ReadFileButton.Click

' Read the XML file into an XDocument and display the file in
' the Output window.
Dim BookXDocument = XDocument . Load ("books . xml ")
Console .WriteLine(BookXDocument)

End Sub

Output

<!- - This file represents a fragment of a book store inventory database -->
<bookstore>

<book genre=" autobiography " publicationdate=" 1981 " ISBN=" 1-861003 -11-0">
<title>The Autobiography of Benjamin Franklin</title>
<author>

<first · name>Benjamin</first· name>
<last -name>Franklin</last-name>

</author>
<price>8.99</price>

</book>
<book genre=" novel" publicationdate=" 1967" ISBN="0-201-63361-2">

<title>The Confidence Man</title>
<author>

<first -name>Herman</first-nama>
<last -name>Melville</last -name>

</author>
<price>11 .99</price>

</book>

I

C II ,\I> 'I' I' R II

<book genre=" philosophy" publicationdate=" 1991 " ISBN="1-861001 -57-6">
<title>The Gorgias</title>
<author>

<name>Plato<tname>
</authOI'>
<price>9 .99</price>

</bOOk>
</bookstore>

Load ing a u Xl''lL File into :m XE1ement Object

In addition to using an XDocument, you also can load an XML file into an
XElement object. 111e difference between the two is that the XDocument con
tains the infonnation about the document from the top of the file, while the root
node is the first item in an XElement object.

Dim BookData = XElement .Load("books . xml ")

Specifying XUL Elements in VB

In VB you can specify the data elements in an XML file by name. referred to as
XML literals. VB uses a three-axis model to refer to the elements. The axes,
illustrated in Figure 14.16. represent child elements. attributes, and descendants.

~Child element

<book gen re=•a utobi ography• publicati ondate="1981"

<price>B. 99</pri ce>

</book>

Child Elements

/Attribute

IS~"1-Q61003-11-0">

To refer to a child axis member in an XML document, use ObjectName.
<ChildElementName>. Using the BookData XElement object h·om the previous
example. we can refer to the book child element as Book Data . <book>.

A LINQ to XML query for the book element is written as:

Dim Myauery = From book In BookData . <book>

Attribute Elements
The attributes for book are genre. publicationdate. and ISBN. To specify an at
tribute. use the .@notation. The following query accesses the ISBN attribute:

Dim Myauery = From book In BookData . <book>
Select book . ~ISBN ' Gets a list of ISBN attributes.

l'' i f,(ut• e 14.16

The VB three-QA;is model for
referring to elements in an
X/11L docwnent.

S8S

586 ,. S U .\ L R _\ S (' Additional TopiC3 in Jlisual &.ic

Descendant Elements
1l1e third axis is descendant. such as title. author. and price in t11e book.xml
file. The notation that tells VB to search for a descendant is three dots. with the
attribute name enclosed in <> tag brackets.

Dim Myauery = From book In BookData.<book>
Select book ... <price>.Value · Gets the price.

U NQ Quc l'if•s

You can use the axes notation on the In clause of UNQ as well as in the
Select clause.

Dim Myauery = From book In BookData ... <price>
Select book.Value ' Gets the price.

LINQ offers many operators beyond ~-hat we have covered up to this point.
The next two examples demonstrate Order By. which is used for sorting. and
Where, which is used for conditions.

' LINO query that sorts by book title:
Dim Myauery = From book In BookData.<book>

Order By book ... <title>.Value
Select book ... <title>.Value

LINO query that selects books with price > 10.
Dim Myauery = From book In BookData.<book>

Where book . .. <price>. Value> 10
Select book . .. <title>.Value

LJNQ to XJIL P.-ogram Examples

1l1e following program reads the books.xml file. uses a LINQ to XML query.
and loads the resulting list of titles into a list box (Figure 14.17). Extm queries
are included but commented out to illustrate other queries.

~ Rudir.gXM_I.llingUNQ

FI J(nrt> 1 4. 17

The book titles from bookuml
are loaded into a list box u.sing
UNQ to XML and XML
literals.

C II 1\ 11 'I' t: R II

' Project:
' Programmer:
'Date:
' Description:

Ch14Xlnlliterals
Bradley/Millspaugh
June 2010
Read titles from an xml file into a list box.

Public Class XmllistForm

Private Sub ReadFileButton_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles ReadFileButton.Click

' Read the XML file into an XDocument and display t he file in
' the Output window.
' Dim BookXDocument = XDocument.Load("books.xml'}

Console.WriteLine(BookXDocument)

' Read the XML file into an XElement and display the file in
the Output window.

' Dim BookData = XElement .Load('books.xml")
console.WriteLine(BookData)

' Read the XML file into an XElement and use LINQ to query the data.
Dim BookData = XElement.Load(' books .xml")
Dim MyQuery = From book In BookData.<book>

Select book . .. <title>.Value ' Gets the book titles.

'Dim MyQuery = From book In BookData.<book>
Select book . ~ISBN • Gets a list of ISBN attributes

'Dim MyQuery = From book In BookData.Elements()
1 Select book 1 Gets entire node for each book.

'Dim MyQuery =From book In BookData . . . <price>
Select book .Value • Gets the price.

'Dim MyQuery = From book In BookData.<book>
Select book ... <price> .Value 'Gets the price

'Dim Myauery = From book In BookData.<book>
' Select book ... <author>.Value

'Dim MyQuery = From book In BookData.<book>
• Where book ... <price>.Value > 10

Select book . . . <title> .Value

'Dim MyQuery = From book In BookData.<book>
' Order By book ... <title> .Value

Select book . . . <title> .Value

Ti tlesListBox .DataSource = MyQuery .ToLi st
End Sub

End Class

Of course. you can select multiple .fields and display in a control with mul
tiple columns such as a DataGridView (Figure 14.18).

587

S88 l ' C Additional Topics in Vis!Ull Basic

Go Read Boots.xrnt into a DalaGridVie· .. ,

•

1-
<

_I oulho; ISBN price

HIS1003-IHJ

~~ G-201~33&1-2
IBSS
11.99

IR<to HlSHHll-57-6 1 9.~9

'"

Ch14DataGridView
Bradley/Millspaugh
June 2010

=

tf:le

The #ttr:obiooraphy of Ben}31f4n Frai<lln

The Co:iidence 1113"'1

The Go-gio~

1§1 1.--J

I

l!' i f,! u re 1 4. 18

Child. element. and attribute
il.ems .front books.xml are loaded
into a DataGridl'iew using
UNQ to XML and XML liJerals.

' Project :
' Programmer:
' Date :
' Description: Read book information from the books.xml file into a

data grid view.

Public Class BookForm
Private Sub BookForm_ Load(ByVal sender As System . Object,

ByVal e As System .EventArgs) Handles MyBase . Load
' Read the books .xml file from the current directory .

Dim BookData = XElement . Load("books.xml ")

Dim MyOuery = From book In BookData.<book>
Select book .. . <title>.Value, book ... <author> .Value,
book . .. <price> .Value, book.@ISBN

BooksDataGridView .Datasource = Myauery . Tolist
BooksDataGridView .Columns(3).Width = 250

End Sub
End Class

W1·iting and Reading an XML F ile

You can write an XMt file from a progrnm using an XmlWriter object. The
XmlWtiter has many methods that can write properly fonned XML files. with
the elements and attributes identified by tags.

The following example replaces the text file from ChllHandsOn with an XML
file. The progrnm reads the XML file, loads the CoffeeComboBox when the form
loads. and gives the user the option of saving the list when the list has changed.

Only two procedures from ChllHandsOn have changed: The Fonn_Load and
the SaveFlavorListToolStripMenultem_Click. Also. an I mports System . xml
statement replaces the Imports System. IO statement.

Warning: The XmlWriter class is part of the .NET 3.5 and 4.0 platform. If
you used the Upgrade Wizard to upgrade an older version of the program, it
targets an older version of the platform. Begin a new project in Visual Studio
2010 to target .NET 4.0 when you want to use the XmlWriter.

Th., XJ\'I L Vet•s.iou of th(' ComhoBox Save nml Head Pt·ogram

Add an Imports statement to the top of the file:

Imports System . Xml

C II A 1• 'I' 1•: ll II

Load the Combo Box in the Fonn_Load event procedure:

Private Sub FlavorsForm_Load(ByVal sender As Object,
ByVal e As System.EventArgs) Handles Me . Load

' Load the items in the CoffeecomboBox list.
Dim ResponseDialogResult As DialogResult
Try

' Read the Xml file .
Dim FlavorFile As XElement = XElement.Load("Flavors . xml")
Dim Flavorouery = From Flavor In FlavorFile.<Flavor>

Select Flavor .Val ue

For Each FlavorString As String In Flavorouery
CoffeecomboBox .Items.Add(FlavorString)

Next
IsDirtyBoolean ; False

Catch ex As Exception
' File missing .
ResponseDialogResult = MessageBox . Show("Create a new file? " ,

"File Not Found ", MessageBoxButtons.YesNo,
MessageBoxicon .ouestion)

If ResponseDialogResult = DialogResult . No Then
' Exit the program.
Me. Close()

End If
End Try

End Sub

Save the XML file in the Save menu item's routine:

Private Sub saveFlavorlistToolStripMenuitem_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles saveFlavorListToolStripMenultem.Click

· save the flavor list in an XML file .

Try
Dim AWriter As XmlWriter = XmlWriter.Create("Flavors .xml")
AWri ter . Wri teStartElement ("Coffee")
For Itemlndex As Integer = o To CoffeecomboBox . Items .count

AWriter . WriteElementString ('Flavor",
CoffeecomboBox .Items(Itemindex) .ToString)

Next Itemlndex
AWriter.WriteEndElement()
AWriter. Flush()

Catch
MessageBox .Show("Unable to create the file. ")

End Try
IsDirtyBoolean = False

End Sub

The XM]" File
The F1avors.xml file created by the program:

<?xml version=" 1.0" encoding=" utf -8"?>
<Coffee>

<Flavor>Chocolate Almond</Flavor>
<Flavor>Espresso Roast</Flavor>
<Flavor>Jamaica Blue Mountain</Flavor>
<Flavor>Kona Blend</Flavor>
<Flavor>Vanilla Nut</Flavor>

</Coffee>

S89

590 v S l l ,\ I. C Additional Topics in Visual Basic

Windows Presentation Foundation (WPF)

One of the coolest new features in Visual Studio 2008 and 2010 is \Vin<lows
Pt·eseutatiou Fotmdation. WPF provides the ability to create richer user
interfaces for multiple platform development. Windows Vista and Windows 7
use WPF technology to bring a better multimedia experience to the operating
system. The designing capability of WPF is available in Visual Studio a<> well as
in the Microsoft Expression Studio. which consists of Expression Web. Expres
sion Blend. Expression Design. and Expression Media. !Vlicrosoft Silverlight
(http:l/silverlight.netl) is a scaled-down version of WPF technology for a rich
Web-based interface and works with all leading browsers and on multiple plat
forms. such as Macintosh. These products offer the ability to integrate vector
based graphics. media. text. animation. and overlays into the Web interface.

When you create a Web page. there are essentially two different tasks: the
interface and the code that rw1s the application. Often the person or artist who
creates the interface is referred to as the designer. Making the page useful by
creating the logic for database connection and programming is done by a de
veloper (programmet).

Expression Blend allows a Web page designer to create an interface that can
be turned over to a developer for adding the code. In Visual Studio. you may
have noticed that when you create a new project. there are templates for a WPF
application and for WPF Browser Applications (Figure 14.19).

F i g u1•e 14 . l 9

You can use the WPF Application and WP F Browser Application templates to create applications in Visual Studio.

lnshl!ed T empbte-s

~ VISUal 8 a;.c

Window$

V' .. eb

Office

Clcud

Repo1ting

ShuePoint
Silvedight
Te$t

WCF

Workflow

Other t anguago

Other Project Type$
OaHba:;e
Test Prcjcch

Onfine T emplota:

rn
~
GJ
~~
~~

~

~

. Sort by. I Default

\Vindows Forrns Applicati)fl Visual Basic
Windc.ws Prc:~e.ntclion Foundotion client

WP:= Applio tion 1it£ul8adc
epplicction

Consol~ Applicotion Visuel Bcsic

Cla;s library Visual Ba::ic.

\VPF Browser Appliu tion Visu.,IBosic

Empty ProJeCt VIS Ui!l SasiC

\Vindcws Service. 1/ isu11l Bo~ic

VVPF Custom Control L1br.Jr/ v-ISual Basic

\'1/PF Usc:1 C ontrollibr.~ry Visu11l Sosic

WtndCVIS Forms Control Ubrary Visual Basic

C II A 1• 'I' " ll II

The user interface in WPF applications uses XAML (pronounced "zammel")
code rather U1an HTML. XAML (Extensible Application l\1arkup Langu:l{;e)
is an XML-based language that is much more interactive Ulan ilie traditional
HTML. The term XBAP is used to refer to a XAMJ~ Bt·owset· Application U1at
runs in an lntemet browser. You can check out some of the existing business
applications at http:l/blogs.msdn.com/chabrook/archive/2007/0'2/20/cool-wpf
applications.aspx.

We can still write our programs in VB and Visual Studio or Visual Web De
veloper to supplement the XAML interface. The new technology also allows us
to create hybrid applications. You can add WPF features to your Windows
Form applicaHons, and the Windows controls that you have learned about can
be added to a WPF page.

We ,~;11 examine both a Windows Form with WPF features and a WPF
application.

WPF lntc t•opct·nbility

Using WPF Interoperability you can use WPF controls in a Windows Form
application. The VB toolbox for a Windows project has a category for WPF ln
teroperability (Figure 14.20). The only control in the group that appears by de
fault is the ElementHost. This control is a container that allows you to add
other WPF controls to the Windows Form. Many WPF controls are available,
and the list continues to grow. View the list by right-clicking in the toolbox.
selecting Choose items, and then clicking on the WPF Components tab
(Figure 14.21). You do not need to add the controls to the toolbox, as you add
the controls at run time rather than design time.

Toolbo• .. q. X

t> All Window~ Forms

b Common Controlt

!'> Containers

~ Menus & T oolbar;
~ D;t,

!> Components

p. Printing

~ Dialogs

~WPf lnteroperability

~ Pointer

~ ElemeniHost

t> R.t:porting
f> Vi.;ual Ba-tie PowcrPacks

!l General

To use WPF lnteroperabiltiy, you add the Element Host control to a Windows
Form and then add the WPF controls in code. Your file must include an
Imports statement for System. Windows . Controls .

You may have noticed a control iliat allows a part of the page to show or be
hidden. This is a WPF control called an Expander. 111e Expander's header
property indicates the words to display on U1e form: "More" in Figure 14.22.
\'('hen the user clicks to expand the control, the value of the Content property

displays.

591

Fi ~ u.•• e 1 4. 2 0

The toolbox for a Windows
Form application has an
ElementHost control in the
WPF lnteroperability section.
which allows ' 'OU to add WPF
controls to a Windows
application.

592 l ' S l l \ L II \ S (' Additimwl Topic• in l'i•ual Ba.oic

FIJ(nre J 4.21

See the li~t of a.vai/(lb/e WPF control$ on the WPFComponents t.a.b of th~ Choose Toolbox Items dialog box.

Choose Too,box Items l '11 -ial...j

r-Sil.crlf9ht Componenb Sy~c.m WodCiow Ccmporcr'U -~Syst~m Activrba Co1Tpon::nb

NfT Frame'M)~ C.amponents (COM Compontro jt_ __ ~-----~~-~---~~~~~-_i_~ ·-------~-=-=

Ncmt Nan'lli!SpKif Asstmbly Nam• 011t'ClOI)'

~ Acce!-sTert Systcm.W..ndow$,(ontrols Pr~U:tionFron-.eNOft GtoboiA!sc:~. I I

="" ~ctfvityOesr goer Sysu:mAc!ivi:ies.PreiEruton Synem.ActM'ties.Pres. •• ~lobal Asse~.

AdcrncdEiemtrt,bc .. , Sy:tcrn.Window~.Controh Prcc~:ltfonhomc....,Of .. GIClbiiiA,:oe ...

P.dornerDe:cor1ta Syst.em.WindO\V'S.Oou.me:fats Presen!aionf1ameoNOrl Glob~tiAi~. = BordH SystEm.\h'l.ndows.Control; Pre'>@n:ahonFrame.NOrt Global A~~--

-=- &.!11-:t(hrornc: Miuosd1.Windtw~$. Thcrf\a Prc.scil:Gttonfra rne'M).,. O~bolll•><··

~ & .H .. Chro"" Mlcrosctr.Y'I lndCM·s. ftte"rts Pr~~n·attel"'fr"m~. G~bOI A1SI' ••

_J WJ.a-t(hrom~ MicroicP .. Window~.lheres Pr~eil!ationFramE.<J~oo. .• Global As~-·

r='1 WletDecora:cr Syxem.Windows.Controls.Pr ... Prese,:a.ioofram~ort fi lobaiAsse •.
_ !Mien Sy,t•m.\Nindow,,Controh Pru•.,tJtionFr•m•N«k G~boiA"•··
---l &4-t.onChr~mr: Microu:fl.Window5.lh~r:::s Prr:~'l!aticnfram~NO. .. GlobaiA!5oC:-.

filter

.AccQ.>sTe:>.1

~ Ungu~ lnveri.,nt Lcngu4gr: (lm.·.vi~ntCcuntry)

-~

Figure 14.22

An Expander control on a. Windouu Form. ll$ing WPf lnteroperability. When the II:Ser clickJ on "More''. the additional
information di~pla.ys.

=
•!.' lndvdng • WPF Co•trol .~ lndt. .. d ing o 'NPF Control

' A WGre
Now 'fO'.J xc ;:cdtioool!rblrn:tictJ.

\
Click on More to see the additional information

C II A 1• 'I' " ll II

Adding a WPF Cont•·ol to a Will(lows Fot·m-Ste p-by-Ste p

In the following step-by-step exercise, you will place a WPF Expander control
on a Windows Form.

Set Up the Windows !lt·o,ject

STEP 1, Create a new Windows Forms application called Chl4WPFinterop.
STEP 2 : Name the f01m WPFinteropForm. and set the Text property to

" lududiug a ~'PF Cuutrul".
STEf' 3: Add an Element Host control to the form. keeping the default name

ElementHostl.

Wt·ite the VB Code

STEP 1: [n the Editor window. add an Imports statement to the top of the file:

Imports System.Windows .Controls

STEP 2: Add the following code in the Form_ Load event procedme.

Private Sub WPFinteropForm_Load(ByVal sender As System.Object,
ByVal e As system.EventArgs) Handles MyBase.Load

Dim MoreExpander As New Expander

With MoreExpander
. Header = "More "
.content = "Now you see additional information ."

End With

ElementHost1 .Child MoreExpander
End Sub

Run tbe Pt·ogl'am

STEP 1: Run the program. You can click on either the word " More" or the
arrow icon to see the additional infonnation.

W1·iting a WPF At>plication

To create a WPF application. you select a different template when you create a
new project (refer to Figure 14.19).

After creating a new project. examine the layout of the IDE. You will t1nd that
it resembles the layout for an ASP.NET application for creating a Web site. The
Document wind01r is split. showing the XAML and the design (Figure 14.23).
Since you are not going to write in XAML. you can collapse the XAML screen; it
doesn't really close; instead it appears as a tab at the bottom of the Design
window. You can control the size of the '\l'PF fonn using the adjuster bar on the
left of the Design window.

593

594 S l ,\ L IJ \ s (' Addil.icrwl Topia in Jr.,ual &.ic

Fi~ure 1 4.23

The IDE for a WPF Application. To design the u.ser interface visually. close the XA111L windom

00 Wr:fAPCIIiatOI'Il ~tCl'O:.:~ m Jol Stv<to

q~ Edt ..,tOo\l PrCJ'ct ::\I'd Oebuq lu., 0;~1~ F~ loot:> t::t '11indo-tt ~

• Corrm~ ,\pr- Ccn•rol1.

It P<w;!irte~

0 s. d~
(ill S..tn:n

E Chad<Box

r.1 .,oonbo9o:.:

• J [\•b\• ri

t1 Gh:f

li! Jno·~

II "*•
I•~ ... :183<

0 RtdoiJL1ttJn

D !i!--<l•n..,J.,

ll StldoPI'"ltl

I I Jab .. o 'ltrol

:A Tot£1cc<

I·" Tr.tPc..
" All #Cf (-Cif'ttc.b

It ~lr:te~

0 ~.d

(") B4.tt(:n

0 Cikn:k;t

ED (o!n~

~ r'~ .. ~A ·~

0~7 tJ 8)'..\\J)L

:oo... •

ln ~t'o"":"tl"' /tchtrat.eiC!"'toft to~ ~nh:/.:wo/XMS1J
)'.1\ln::x-•httr: //)Ctkllc; ,.ti<ro;ott t::o-el ... if'ltx/lo.;C.tx•l'
1 th·:::::,. <t!ftk'indON" !'1~J~t =•Jo;'l}" A t <="'e;2"i'">

<G"'i..:f>

Grid o/Jf"'CO'H/Gri.:l

Click here to minimize the XAML window to a tab

Designing the layout of a WPF window is s imilar to a Web page-both
use flow layout. and you must take steps to place controls -..-here you want
t11em. For Web pages. you probably use a table to lay out the controls on the
page . For a WPF window. you do not need to set up a table: if you wish you
can use the grid container that is automatically added to a new window. The
grid container displays with a blue border on the left and the top.lf you place
your cursor inside the blue border. the mouse pointer changes to a cross-hair
(Figure 14.24), and you can click to set gridlines of whatever height and
width that you nish.

-"' .31..!] 0 J
rl So.ut•OI'\ Wp'"Applio lionl'(l

• ~ Wpf~obonl
~ Mo; :reJeCt

~ ! ppf,c, bon.cdml

~ Mi:fl"\\ ir'dOWJCol.vnl

'!! "-l.'lllnWindow••'l '1.b

C II A 1• 'I' " ll II 595

FiJ! u r e 14 . 2 4

Click in the blue borders w create grid lines in the grid container. You also can drag the grid lines to new locations and drag
thent off the window to remove them.

Click cross-hair pointer
to place a grid line

MainWindcw.>:aml X

Next look at the toolbox. You will notice many familiar-sow1ding controls.
The controls have the same functionality and feel as the equivalent Windows
Form controls but have many extra. properties.

You also will find that some of the terminology is different. WPF creates a
Window rather than a Form. There is no Text property; instead the window has
a Title prope1ty and the other controls have a Content property.

C1·eatin g a WPF Hd Jo Wm·ld A [JplicaLion-SLeiJ-by-Stt:>p

We will create a Hello World application to give you a brief ovenriew of some of
the features of WPF.

Note: Although you can create this application in Windows XP. the great
effects do not appear. You need to be running in Windows Vista or Windows 7
to see the special effects.

Se1 Up 1he P1·ojecl

STEP 1: Create a new project using the WPF Application template.
STEI' 2: Click the down-an-ow in the upper-right comer of the XAML window

to minimize it into a tab at the bottom of the Document window.
STEI' 3: Make sure that "Window" appears at the top of the Properties window

and change the Title to "A Hello World Example". Note: H the prop
erties do not appear in the Properties window. click on one of the Sort
buttons to make them display.

STEP ,~: Save the project as Chl4WpfHelloWorld.

1.

596 v S l l ,\ I. C Additional Topic• in Visual Basic

Add C01mols

STEP 1: Add a Label control from the A/1 WPF Controls section of the toolbox.
Set the Name propetty to MessageLabel. which you set in a text box at
the top of the Properties window (Figure 14.25).

Set the Nam-e property of controls in the text box at the top of the Properties wind-ow.

Fi " nr e 1 4 . Z5

~mVIindow.>omtvb Sok.rbon bplorcr • I

' l
------~l.o~l

"'~.!1 '11 :::1
r:d So!ut1on 'ChlJWp'HeJ!o Wolld' (l

• 3) 0.14WpfH•IIoWorld
~ My Projcd
~ App!i~tion.xDml

• ;!. M.:~inWtndo•/\',:«~m l
'tJ Mai•WAndow.xernl,..,b

Set the Name property in this text box

STEP 2: Click on the AZ button in the Properties window to make sure that
the propetties are sorted in alphabetic order. Then set the Border
Thickness of the label to 3.

STEP 3: Drop down the list for Border Brush. select the icon for a solid brush.
and select a color. You can use the eyedropper icon to select a color
and make the color settings.

STEP 4 : Delete the Contents property of the label.
STEP 5 : Add two buttons. naming them Display Button and Exit Button. with

the Content property set to Display and Exit.
STEP 6: Select both button controls and select Hand from the Cursor property

drop-down list. Note that the Cursor drop-down list is not in alphabetic
order; you must search the list to find Hand.

Code the Huttous

STEP t : Write the code for the Display button. You can double-click the control
to access the xaml.vb Code Editor window. just as you do in a
Windows application.

Private Sub OisplayButton_Click(ByVal sender As Object 1
ByVal e As System.Windows.RoutedEventArgs) Handles OisplayButton.Click

' Di spl ay Hell o Wor l d i n t he l abe l.

Message l abel .Content = "Hell o Wo rl d"
End Sub

C II r\ 1• 1' E R II

STEI' 2: Write the code for the Exit button.

Private Sub ExitButton_Click(ByVal sender As system.Object,
ByVal e As system.Windows . RoutedEventArgs) Handles ExitButton.Cl ick

' End the program.

Me. Close()
End Sub

STEP 3: Write the remarks at the top of the file.

'Program:
'Programmer :
' Date:
' Description:

l::un tlw Prognm t

Chl4WPFHelloWorld
Bradley/Millspaugh
June 2010
Display Hello World in a label .

As you move your cursor over the buttons. the color changes. Also notice the
cursor tltat we set. You can easily add a TooiTip to the button. There is no need
to drag any extra components: each control already has a ToolTip property.

Problem$? lf you are running in Windows XP. you may receive an error
message that Option Strict is on and a conversion cannot be made. Double
click the error message to open the MyWpfExtension.vb file. scroll to the top of
the nle. and add Option Strict Off. Then rerun the program.

Th~ Roll' of Ex (ll"<>s:oio n B14>nd

Earlier we mentioned that the XAML code is the same for developers in Visual
Studio and for designers in Expression. The project that 11·e just created could
be opened in Expression. for a designer to add even more dramatic features.
Check http://channel9.msdn.com for more information and instructive videos.

l. An ErrorProvider component can provide an icon and popup error message
next to the field that does not pass validation. Specify the text box and the
message in the ErrorProvider Set Error method.

2. A text box Max.Lengtlt property limits tlte number of characters t11e user is

allowed to enter into the control.
3. The CharacterCasing property of a text box can automatically convett user

input to uppercase or lowercase.
4. You can validate individual fields in tl1e Validating event procedure for the

controls. The Validating event occurs when tlte user attempts to move the
focus to another control that has its Causes Validation property set to True.

5. VB code snippets are small samples of code that illustrate coding tech
niques. You can add code snippets in the editor.

6. Visual Studio includes many sample programs and quick-start tutorials.
7. A multiple document interface (MDI) contains parent and child forms.

Closing the parent also closes all child forms. The child forms stay within
the bounds of the parent form.

597

598 \ s l .\ I. u .\ s l ' Additional'lbpicJ in V.wal B,..ic

8 . To create an MDT parent fom1. set a form's lsMdiConlainer properly to
True. To create a child follll. instantiate a new form object and set its Mdi
Parent property to the parent follll in code.

9 . MDI applications generally have a Window menu. which displays a list of
open c hild windows and provides c hoices for arranging the child ~indows.

10. To create a tool bar. add a ToolS trip control and add buttons to the Items
collection.

L l. A loolbar provides shortcuts to menu options.
12. A s tatus bar contains infonnation for the user along the bottom of a form. Af

ter adding a StatusStrip control to a form. add labels to its Items collection.
L3. The date can be assigned to the Text properly of a ToolStripStatusLabel

during the Form_Load event procedure. but the lime display requires an
update routine using a Timer component.

14 . The DateTimePicker and MonthCalendar controls have accu.rate calendars
for displaying and inpulling dates.

15. The Web Browser control provides the ability to display \l'eb pages from a
Windows Fonn.

16. You can check tJ1e e (Ke yEventArgs) argument of a control's KeyUp event
procedure to determine which key was pressed. The e.KeyCode and
e .KeyData properties hold a numeric code for the key. whic h you can
check using the constants in U1e Keys enumeration.

17 . XM L files are used to s tore data as text identified by tags. The files are
platform independent and extremely flexible.

18. XM L files consist of nodes. elements. and attributes. Each flle can have
one root node and many child nodes. Child nodes at the same level are
called siblings.

19. Two objects that you can use to read an X:ML file are XDocumenl and
XElement. You can use a UNQ to XML query lo select data elements us
ing a three-axis model to specify tbe individual items. The axes are child
elements. attribute elements. and descendent elements.

20 . You can save data into an XML file using an XmlWriter object. which in
serts the correct tags into the me.

21. Windows Presentation Fow1dation (WPF) can be used to create rich user
inte1faces. such as those in Windows Vista and Windo~-s 7.

22. A WPF user interface is coded in XAML: a XAML browser application is
called XBAP.

23. Using \VPF lnteroperability you can add an Element Host control and WPF
controls to a Windows Form. WPF' controls are added to the F.:lementHost
at run time.

24 . WPF applications are similar to Web applications in that they are created
as two files : one for the user interface and one for t11e programming logic.

attribute 583
Causes Validation property 564
Charac terCasing property 563
child form 569
code snippets 568
Date Time structure 575

element 583
Error Provider component 560
field-level validation 563
lsMdiContainer property 570
LayoutMdi method 571
MaxLength property 563

C ll i\ I'T E I& II

MdiWindowListltem property 571
multiple document interface

(MDI) 569
node 583
Now property 575
parent fonn 569
SetError method 560
s ibling 583
single document interface (SDl) 569
status bar 574

StatusSIIip control 574
toolbar 572
TooiStrip control 572
TooiStripStatusLabeJ object 574
WebBrowser conlrol 578
Windows Presentation Foundation

(\VPF) 590
XAML (Extensible Application

Markup Language) 591
XBAP (XAML) 591

l. Expla in how to use an ErrorProvider component when validating the value
in a text box.

2. What properties of a text box determine the number of characters a user
can enter and the case (upper or lower) of the input?

3. What are code snippets? How might they be used?
4. What is meant by M Dl?
5. What are the advantages of having parent and child foiTIIs?
6. What are the layouts available for arranging child windows?
7. How can a child form be created? a parent form?
8. What steps are necessary to create a toolbar and have its buttons execute

menu procedures?
9. What must be done to c reate a status bar? to display the current time on

U1e status bar? to keep the time display current?
10. Describe two conlrols that you can use for displaying dates on a form.
11. What property is used to navigate to a Web page at design time using the

WebBrowser control? How is this task accomplishe(i at run lime?
12. What is the advantage of using XML files over other file types?
13. What is ll' PF? How does it apply to Windows applications?

14 .1 Convert any of your earlier programs that use mes~e boxes for error mes
sages to use an Error Provider component. Remove all error message boxes
from the program and display meaningful messll!\es in the popup Error
Text.

14 .2 Write an MDI project tha t is a s imple text editor. Allo~' the user to open
multiple documents. each in a separate child fotm. For the text editor. use
one big TextBox control with its Multiline property set to True or a Rich
TextBox control. Set the control's Anchor property to all four edges so the
control fills its form.

The user should be able to load and save a Hie in each form. Use the
file handling that you leamed about in Chapter 11 and display the name
of the file in the fonn's title bar.

14 .3 Add a toolbar and a status bar to a previous project to provide shortcuts
to the menu items .

14 .4 Add a tool bar and a status bar to the calendar program from this chapter.

S99

600 S l ' \ I. ll \ s C Additional Topic' in Vi.!ltal Ba.sic

14.5 Create an application for displaying movie lis tings. Add a WebBrowser
control that navigates to a page showing the movies.

14 .6 Convert your text file project from Chapter 11 to use an Xl\1 L file.
14.7 Write Project 1.5. the diner features of the day. as a WPF Application.

Add features for the buttons. Note that some of the features will not work
in WPF. s uch as keyboard access and printing.

Note: For help in basing a new project on an existing project. see "Basing a New Project on an Existing Project"
in Chapter 5 or "Copy and Move Projects"' in Appendix C.

Convert any of your earlier VB Mail Order programs
that use message boxes for error messages to use an
ErrorProvider component. Remove nll error message
boxes from the program and display meaningful mes
sages in the popup EITOr Text.

Add a toolbar and a status bar to t11e project to
provide shortcuts to the menu items.

VB Auto (;enter I
Convert any of your earlier VB Auto Center programs
that use message boxes for error messages to use an
.ErrorProvide r component. Remove alJ error message
boxes from the program and display meaningful mes
sages in the popup Error Text.

Add a toolbar and a status bar to the project to
provide shortcuts to the menu items .

VIdeo Bonanza I
Convert any of your earlier Video Bonanza programs
tha t use message boxes for error messages to use an
EnorProvide r component. Remove all e rror message
boxes from U1e progrnm and d isplay meaningful mes
sages in the popup Error Text.

Add a toolbar and a status bar to the project to
provide shortcuts to t11e menu items.

Ver y \ 1ery Boartls I
Convert any of your earlier Very Very Boards programs
tha t use message boxes for error messages to use an
.ErrorProvider component. Remove all error message
boxes from the program and display meaningful mes
sages in the popup Error Text.

Add a toolba r and a status bar to the project to
provide shortcuts to the menu items .

A
Answers to Feedback
Questions

602 l ' C A11swers lo Feedback QuestioiiS

>- Feedback 1.1

These exercises are designed to help users become familiar with the Help
.sysleut. Tit~re art: uu "correct" aJI:swens.

>- Feedback 2 .1

Po·o t>erty Selling

Name lconPictureBox

BorderS tyle Fixed30

SizeMode Stretch Image

Visible True

>- Feedback 2 .2

1. With CompanyTextBox
. Clear()
. Focus()

End With
2. customerlabel . Clear()

OrderTextBox.Focus()
3. (a) Places a check in the check box.

(b) Radio button is selected.
(c) Makes the picture invisible.
(d) Makes the label appear sunken.
(e) Assigns the text value in CityTextBox.Text to the text value of

City Label. Text.
(f) Makes RedRadioButton usable; that is not dimmed.

>- Feedback 3 . I

l. The name is valid; however, the data type should be specified.
2. Invalid. Identifiers cannot contain special characters such as"#''.
3. Invalid. An identifier cannot contain blank spaces.
4. Invalid. Periods are used to separate items such as Object. Property.
5. Invalid. Identifiers cannot contain embedded special characters such as''$".
6. Invalid. Sub is a reserved word.
7. The name is valid; however. it does not indicate anything about what the

variable is used for.
8. Invalid. Text is a prope1ty name and should not be used as a variable name.

Also. it does not specify a data type.
9. The name is valid; however, the data type should be specified.

10. Valid.
11. Valid.
12. Valid.

A I0 J>I\N I) X .\

')-- Feedback 3.2

Note: Answers may vary: make sure that the data type is included in each name.

1. (a) Dim HoursDecimal As Decimal
(b) Dim EmployeeNameString As String
~) Dim DepartmentNumberString As String

2. (a) Dim auant ityinteger As I nt eger
(b) Dim DescriptionString As String
{c) Dim PartNumberString As String
(d) Dim costDec imal As Decimal
(e) Dim SellingPriceDecimal As Decimal

')-- Feedback 3.3

>-

Note: Ans~·ers may vary; make sure the data type is included in each name.

l. Private TotalPayrollDecimal As Decimal
Declared at the module level.

2. Const SALES_TAX_Decimal As De cimal = .080
Declared at the module level.

3. Pr i vate Partic ipantCountintege r As Integer
Declared at the module le vel.

Feedback 3.4

l. 18
2. 1
3. 6
4. 5
5. 22
6. 2048
7. 22
8. 38

')-- Feedback 3.5

l. (a) Countlnteger = Countlnteger + 5
(b) Countlnteger += 5

2. (a) BalanceDecimal = BalanceDecimal - WithdrawalDecimal
(b) BalanceDecimal -= WithdrawalDecimal

3. (a) Priceoecimal = PriceDecimal * Countlnteger
(b) PriceDecimal *= Countlnteger

603

604 ,. S U .\ L G .\ S

~ Feedback 3.6

l. AveragePayTextBox. Text = AveragePayDecirnal. ToString ("C")
.~123.46

2. OuantityTextBox.Text = auantitylnteger.ToString ()
176123

3. Total TextBox. Text = TotalCollectedDecimal. ToString ("N")

~ Feedback 4 .1

1. True
2. True
3. True
4 . False
5. False
6. Tnte
7. True
8. Fa.lse
9. True

10. True

~ Feedback 4·.2

1. FrogsRadioButton ll'ill be checked.
2. ".It's the toads and the polliwogs''
3. "It's true"
4. If Integer.Parse(OrangesTextBox.Text) >

Integer.Parse(ApplesTextBox.Text) Then
MostTextBox.Text = ' Oranges•

Elseif Integer.Parse(ApplesTextBox.Text) >

Integer . Parse(OrangesTextBox.Text) Then
MostTextBox.Text ' Apples•

Else
MostTextBox.Text ' They ' re equal"

End If
5. If BalanceDecimal > o Then

FundsCheckBox .Checked = True
BalanceDecimal = 0
Countlnteger += 1

Else
FundsCheckBox .Checked False

End If

(' .4ns~eer• to Feedback Que>tions

)-- Feedback 4 .3

l. Select Case Tempinteger
case Is <= 32

CommentTextBox.Text
case Is > 80

CommentTextBox.Text
Case Else

CommentTextBox. Text
End Select

2. Select case Countlnteger
Case o

\

"Freezing•

"Hot"

"Moderate•

MessageBox.Show("No items were entered. ")
Case 1 To 10

MessageBox. Show (" 1 - 10 i terns were entered. ")
Case 11 To 20

MessageBox. Show(" 11 - 20 items were entered . ")
case Else

MessageBox.Show("More than 20 items were entered. ")
End Select

)-- Feedback 5 . 1

1. F'unclion p rocedure: a value will be retumed.
2. Private Function Average(ByVal Valueoneinteger As Integer,

ByVal ValueTwointeger As Integer,
ByVal ValueThreeinteger As Integer) As Integer

Note: ByVal is optional: the editor will add it for you.
3. Return (ValueOnelnteger + ValueTwolnteger +ValueThreelnteger) /3
4. The answer appears on a Retur n statement or is assigned to lhe variable

with the same name as the function.

)-- Feedb ack 6 . 1

l. Const FAT_CALORIES_Integer As Integer = 9
Declared at the module level.

2. Friend HighestNameString As String
Declared at the module level.

3. Friend Const COMPANY_NAME_String As String
Declared at the module level.

4. Friend TotalAmountDecimal As Decimal
Declared at the module level.

"Bab ' s Bowling Service•

60S

606 ,. S U .\ L

S. Friend Personcountlnteger As Integer
Declared at the module level.

6. Dim TotalString As String
Declared at the local level.

)--- Feeclhack 7.1

l. Alphabetizes the items in a lis t box or combo box.

G .\ S (' .4ns~eer• to Feedback Que>tions

2. Stores the index number of t11e currently selected Q1ighlighted} item: has a
value of - 1 if nothing is selected.

3. Is a collection that holds tlle objects. usually text. of nlllist elements in a
list box or combo box.

4 . Determines whether or not a combo box will also have a text box for user
input. It a lso determines whethe r or not the list will drop down.

S. Stores the number of elements in a list box or combo l:ox.
6. Adds an element to a list at run time.
7. Adds an e lement to a list and inserts the element in the chosen pos ition

(index).
8. Clears all elements from a list box or combo box.
9. Removes an element from t11e list by referring to its index.

10. Removes an element from a list by looking for a given string.

)--- Feedback 7.2

ItemFoundBoolean = False ' Set the initial value of the found switch to False.
Itemindexinteger = 0 ' Initialize the counter for the item index.
• Loop through the items until the requested item is found
• or the end of the list is reached.
Do until ItemFoundBoolean or Itemlndexlnteger = ItemsListBox.Items.Count

' Check if the text box entry matches the item in the list .
If NewitemTextBox.Text =

ItemsListBox.Items(Itemlndexlnteger).ToString() Then
ItemFoundBoolean = True ' Set the found switch to True .

Else 'Otherwise .. .
Itemlndexlnteger += 1 ' Increment the counter for the item index.

End If
Loop

> Feedback 7.3

I. (a) There should not be a comma after the test value.
(b) The variable named on the Next statement must match tl1e one on the

For sfllfl'ml'nf. Tnrll'xlntP.gP.r in this""""·

X J\

(c) 111e item following the word For must be a vaiiable, and the same vari
able must be used on the Next statement. 4 is not a proper variable
name. and For is a reserved word.

(d) Valid.
(e) Valid.
(f) This loop will never be executed: it needs to have a negative Step

argument.
2. (a) Will be executed 3 times; Cow1tlnteger will have an ending value of 4.

(b) Will be executed 4 times: Count Integer will have an ending value of 14.
(c) Will be executed 10 Limes; Count integer will have an ending value of 0.
(d) Will be executed 7 times; CounterDecimal will have an ending value

of6.5.
(e) Will never be executed because the starting value is already greater

than the test value; Countlnteger will have an ending value of 5.

> Feedback 7.4

l. A component used to set up output for the printer. Add the component to
the fonn's component tray at design time. Begin the printing process by ex
ecuting the Print method of the component: the component's PrintPage
event occurs.

2. Starts the printing process. Belongs in the Click event procedure for the
Print button or menu item.

3. The PrintPage event is a callback that occurs once for each page to print.
The Print Page event procedure contains all the logic for printing the page.

4. Sends a line of text to the graphics object. The DrawString method is used
in the Print Page event procedure.

5. An argument passed to the PrintPage event proce::lure. Holds items of in
formation such as the page margins.

6. MarginBounds.Left is one of the properties of the PrintPageEventArgs ar
gument passed to the PrintPage event procedure. TI1e property holds the
left margin and can be used to set the X coordinate to the left margin.

7. A component that allows the user to view the document in Print Preview.

The component is added to the component tray at design time. In the event
procedure where the user selects Print Preview. the print document is as
signed to this component.

>- Feedback 8 .1

l. Valid.
2. Valid.
3. Valid.
4. Invalid; beyond the range of the array.
5. Valid.
6. lnvalid: negative number.
7. Gives a decimal number. but Visual Basic will round U1e fraction and use

that integer.
8. Valid.

607

608 \

>- Feedback 3.2

1. Structure Student
Dim LastNameString As String
Dim FirstNamestring As String
Dim StudentNumberString As String
Dim UnitsCompletedDecimal As Decimal
Dim GpaDecimal As Decimal

End Structure
2. Dim Intostudent(99) As student
~ Structure Project

Dim ProjectNameString As String
Dim FormNameString As String
Dim FolderNameString As String

End Structure
4. Dim MyProj ect As Project
5. Dim ourProj ects (99) As Project

>- Feedback 3.3

1. Dim TemperatureDecimal(2, 4) As Decimal
2. For Col umnlnteger = o To 4

TemperatureDecimal(O, Columnlnteger) = 0
Next Columnlnteger

IC \ S

3. For Col umnlnteger = o To 4
TemperatureDecimal (1, Columninteger) = 75

Next Columnlnteger
4. For Col umnlnteger = 0 To 4

(' Atl.l'""""' to Feedback QIM!•Iiotl!l

TemperatureDecimal(2, Columnlnteger) = TemperatureDecimal(O, Columnlnteger) +

TemperatureDecimal(1, Columninteger)
Next Columninteger

5. For Rowlndexinteger = 0 To 2
For Columnindexlnteger = 0 To 4

e .Graphics .DrawString(TemperatureDecimal(Rowlndexlnteger,
Columnlndexlnteger) .ToString(), PrintFont, Brushes.Black,
Pri ntXSingle, PrintYSingle)

Print XSingle += 200
Next Col umnlndexlnteger

· Begin a new line .
Pri ntXSi ngle = e .MarginBounds.Left
Pri ntYSi ngle += lineHeightSi ngl e

Next Rowlndexlnteger

1\ 1• 1• 1·: N I) X

~ Feedback 8 .4

l. A collection is a type of object used for storing multiple .instances.
2. Collections are more sophisticated than arrays and define more methods

for data management.
3. Add(). Clear(), RemoveAt ().Other possibilities from the table: Capacity.

Count.Contains.ContainsValue.Item().andRemove().

~ Feedback 9 .1

l. The .aspx ftle holds the specifications for the user interface that are used
by the server to render the page. The .aspx.vb file holds the Visual Basic
code that you write to respond to events.

2. Right-click on the .aspx file or on the page in the Document window and
select View in Browser.

3. Web server controls do not directly correspond to HTML controls but are
rendered differently for different browsers in order to achieve the desired
look and feel. You carmot wlite any server-side programming logic for
HTML controls. As you submit forms to the sener. any HTML controls
pass to the server and back as static text. You might want to use HTML
controls if you have existing HTML pages that are working and you want to
conve1t to ASP.NET for additional capabilities.

~ Feedhack 9 .2

l. Manually move to the bottom of the page using the Enter key or create a
table and add the button to a cell. Absolute positioning could also be used.

2. An HTML control doesn't need any server-side programming. The Web
server Table control is generally used when you want to write code to add
rows, columns. or controls at mn time.

3. Store images in the Web site folder.

~ Feedback 9 .3

l. The NavigateUd property.
2. Add a HyperLink control to both pages. Set the NavigateUrl of each to

point to the other page.

~ Feedback 9 .4

Attach a RequiredFieldValidator control so that the field cam1ot be left blank.
Attach a Range Validator to check if the input falls within the specified range
by setting the MinimumValue = 0 and the MaximumValue = 1000. Set the
Range Valida tor Type property to Integer, to validate that the entry can be con

verted to a numelic integer.

609

61 0 ,. S U ,\ L B .\ S (' Answers to Feedback Questions

>- Feedback 9.5

The Page_Load event occurs and the page is red is played for every round-trip
to the server. If you have initialization code in the Page_ Load event procedure.
you don't 11·ru1t to perfonn the initialization each time the procedure executes.

>- Feedback 10.1

I. The .file is the database.
The table contains the rows and columns, which hold the information about
your friends.
Each row/record contains information about an individual friend.
A column or field contains an element of data. such as the name or phone
number.
The key field is the field used to organize the f1le: it contains a unique value
that identifies a particular record. for example. the telephone number field.

2. XML is stored as text. which can pass through lntemet firewalls and CaJ1 be
edited using any text editor.

>- Feedback 10.2

TI1e binding source object creates a link between the original data source and
the program. The table adapter passes infom1ation back and forth between the
data source and the dataset. The dataset holds a copy of the data retrieved from
the data source and is used in your program to access the data. either field by
field (for labels and text boxes) or by connecting it to a grid.

>- Feedback 10.3

1. The drop-down Hst in the Data Sources window allows you to select Data
Grid View or Details view.

2. In the Data Sources window. select Details on the smart tag and drag the
table to the form. To change to a label. open the smart tag on the text box
and select Label.

3. Set the DataSource property of the combo box to the binding source used
by the other controls. Set the Display Member property to the data field to
display in the combo box.

4. To sort the list. modify the SQL SELECT statement used by the table
adapter to include an Order By clause.

X J\

~ Feedback 10.4

l. Language integrated query; allows the programmer to write queries in the
program code.

2. LINQ can be used to query databases, XML files. or any data defined as an
object.

3. TI1e VB compiler supplies (or infers) the data type for a variable that does
not have a type declared.

~ Feedback 11 .1

l. Dim InventoryStreamWriter As New Streaml'triter("Inventory .txt ")
2. InventoryStreamwriter .Writeline(DescriptionTextBox .Text)
3. The declaration for the Stream Reader object needs to be in a Try /Catch

block in case the file does not exist. The declaration for the Stream Writer

object does not need to be in a Try /Catch block because. in this case. the
program is generating a file. not trying to locate one; however. if you are us
ing a full qualifying pathname. then you should put the Stream Writer dec
laration in a Try /Catch block.

4. If InventoryStreamReader.Peek <> - 1 Then
Descriptionlabel .Text = InventoryStreamReader .Readline()
ProductNumberlabel .Text = InventoryStreamReader.Readline()

End If

~ Feedback 11.2

l. Text Files (* .txt) l*.txt
2. OpenFileDialog1 . InitialDirectory = Directory.GetcurrentDirectory()
3. If Phonestreamwriter IsNot Nothing Then

PhoneStreamWriter .Close()
End If

~ Feedback 11.3

l. With NameslistBox
For Indexinteger As Integer = o To .Items.count - 1

NamesStreamWriter .Writeline(.Items(£ndexlnteger))
Next Indexinteger

End With
2. The above code should be placed in a Save procedure that should be called

from the form's FormClosing event procedure.
3. Try

Dim NamesStreamReader As New StreamReader("Names .txt ")
Do Until NamesStreamReader.Peek = - 1

Namesl istBox. Items .Add(NamesStreamReader . Readline())
Loop
NamesstreamR~aoer.crose()

Catch

611

612 ,. s U .\ L R \ S l ' AnsweTs to F eedbaclr Quest ions

~ Feedback 12.1

l. An object is an instance of a class. A class defmes an item type (like the
cookie culler defines the shape). whereas the object is an actual instance
of the class (as the cookie made from the cookie c uller).

2. TheProduct is an object. an instance of the Product class.
3. The numeric value ofQuantityTextBox is assigned to the Quantity property

of The Product.
4. Private LastNameString As String

Private FirstNameString As String
Private StuaentiDNumberString As String
Private GpaDecimal As Decimal
These s tatements appear at the module level.

5. Property LastName() As String
Get

Return LastNameString
End Get
Set(ByVal value As String)

LastNameString = value
End Set

End Property
6. ReadOnly Property GPA() As Decimal

Get
Return GpaDecimal

End Get
End Property

~ Feedback 13. 1

1. Dim xlnteger As Integer
Dim ylnteger As Integer
ylnteger = Convert.Tolnt32(Me.Height)
xinteger = Convert .Toint32(Me.Width 1 2)
e.Graphics.DrawLine(Pens.Green, xlnteger, o, xlnteger, ylnteger)

2. e.Graphics.DrawEllipse(Pens.Green, xinteger, ylnteger , 100F, 100F)
e.Graphics.OrawEllipse(Pens.Blue, xlnteger + 25, ylnteger + 25, SOF , SOF)

3. Dim FirstPoint As New Point(20, 20)
Dim SecondPoint As New Point(100, 100)
Dim ThirdPoint As New Point(200, SO)
e .Graphics.DrawLine(Pens.Green, FirstPoint, SecondPoint)
e .Graphics .DrawLine(Pens .Green, SecondPoint, ThirdPoint)
e.Graphics .DrawLine(Pens.Green, ThirdPoint, FirstPoint)

t\11 PiiN U \

>- Feedback 13.2

l. Static xinteger As Integer = CommandButton.Left - 10
Static yinteger As Integer= CommandButton.Top
Static Widthlnteger As Integer = commandButton.Width
Static Heightinteger As Integer = CommandButton .Height
commandButton.SetBounds(xlnteger, ylnteger, Widthlnteger, Heightinteger)
or
With CommandButton

.SetBounds(.Left - 10, .Top, .Width, .Height)
End With

2. A little less than half a second.
3. The Tick event fires each time the specified inteiVal has elapsed.

>- Feedback 13.3

l. Private Sub TasklistBox_DragEnter(ByVal sender As Object,
ByVal e As System.Windows.Forms.DragEventArgs
) Handles TaskListBox.DragEnter

' Set the desired Dragorop effect.
e.Effect = DragDropEffects.Copy

End Sub
2. Private Sub TasklistBox_DragDrop(ByVal sender As Object,

ByVal e As System.Windows.Forms.DragEventArgs
) Handles TasklistBox.DragDrop

' Add the item to the list box.

TasklistBox.Items.Add(e.Data.GetData(DataFormats.Text).ToString()
TaskTextBox .Clear()

End Sub

>- Feedback 14 . 1

l. When the code is placed inside a Catch block. it will place an icon next to
the QuantityTextBox control when the user inputs invalid data. The mes
sage appears as a TooiTip when the user places the pointer over the icon.

2. The MaxLength and CharacterCasing properties.
• MaxLength: Sets a maximum number of characters that may be entered

into a text box. A beep occurs if the user attempts to exceed the
maximum.

• CharacterCasing: Automatically converts data entry to uppercase.
lowercase. or normal.

3. With field-level validation the user is notified uf an error as the focus
leaves a field. rather than waiting until a button's Click event occurs.

613

61 4 ,. s U .\ L

... Feedback 14.2

l. Dim AboutChildForm As New AboutForm()
AboutChildForm.MdiParent = Me
AboutChildForm.Show()

R \ S

2. Add an event to the Handles clause for the Exit and About menu items.

l ' AnsweTs to F eedbaclr Quest ions

3. Add a timer component: set the Interval property and include the foUo11ing
statement in the timer's Tick event procedure and the Fonn_Load event
procedure.

currentTimeToolStripStatuslabel.Text = Now.TolongTimeString()

... Feedback 14 .3

l. AppointmentDateTime = AppointmentDateTimePicker .Value
2. Hour: Millisecond: Minute: Second: Month: Day: Year: Now
3. All of the above properties are available for the Now property.

Methods and Functions
for Working with Dates,
Financial Calculations,
Mathematics, and String
Operations

61 6 v S l l ,\ I. C Dates, Financial Calculaticns, Mathematics.
and Slr ing Opermicns

Visual Basic and the .NET Framework include many ftmctions and methods
that you can use in your projects. This appendix introduces some functions and
methods for handling dates, for perfom1ing financial calculations and mathe
matical operations. for converting between data types, and for performing string
operations.

Working with Dates

Chapter 14 has a section introducing dates and the Calendar control. You can
use the date functions and the methods of the Date Time structure to retrieve the
system date. break down a date into component parts. test whether the contents
of a tleld are compatible with the Date data type. and convert other data types
to a Date.

The D ateTime Stmctm·e

When you declare a variable of Date data type in VB. the .NET Common Lan
guage Runtime uses the DateTime structure. which has an extensive list of
properties and methods. You can use the shared members of the DateTime
structure (identified by a yellowS in the MSDN Help lists) without declaring an
instance of Date or Date Time. For example. to use the Now propetty:

TodayOateTime = Now

Following is a partial list of some useful properties and methods of the
Date Time structure:

Propet-ty or Jll e thod

Add

Date

Day

DayO£Week

DayOfYear

Hour

Minute

Secon<l

Month

Now

Purpo.o;e

Add the specified number to an instance of a date/time.
Variations include AddOays, AddHours.
AddMilliseconds , AddMinutes.AddMonths.
Add Seconds, AddTicKs, and.ll.ddYears.

Date component.

Integer day of month: 1- 31

Integer day; Enum expression for each clay in the form of

DayO!Week.Sunday.

Integer day: 1-366

Integer hour: 0--23

Integer minutes; 0--59

Integer seconds: 0--59

Integer month; 1 = January.

Retrieve system date and time.

Property or Ale lbod

Subtract

Today

Year

ToLongDat eString

ToLongTimeString

X

Finds the difference beh.,·een date/time values; returns a

TimeSpan object.

Retcieve system date.

Year component.

Dale formatted as long date.
(U.S. default: Wednesday. May 04. 2005)

Dale formatted as long time.
(U.S. default: 12:00:00 AM)

ToShortDateStri ng Dale formatted as short date.

(U.S. default: 5/4t200S)

ToShortTimeString Date formatted as short time.
(U.S. default: 12:00 AM)

R e 11·ieving the Syste m Dal.e and Tim£>

You can retrieve the system date and time from your computer's clock using the
Now property or the Today proper1y. Now retrieves both the date and time;
'loday retrieves only the date.

Examples

Dim DateAndTimeDate As Date
DateAndTimeDate = Now

Dim TodaysDate As Date = Today

To display the values formatted:

DateAndTimeTextBox .Text = DateAndTimeDate.ToLongDateString()
Dat eTextBox .Text = TodaysDate.ToShortDateString()
NowTextBox .Text = Now.ToShortDateString()

In addition to the date fonnatting methods. you also can fonnat dates and
times with the ToString method by us ing an appropriate fonnat specifier. The
table below lists some of the format specifiers. See " Date and Time Format
Strings" in MSDN for a complete list. The actual format depends on the local
format for the s ystem.

Format S J:.ecifier D ese•--ipt.io n Exnm1•le foo· U.S. De fault SeUiu;-

d Short date pattern 5/5/2008

D Long date pattern Thursday. May 5 , 2008

Shoot time pattern 12:00AM

T Long time pattern 12:00:00AM

Full date/time (short) Thursday, May 05. 2008 12:00 AM

F Full date/time (long) Timrsday. May 05. 2008 12:00:00 AM

617

618 \ ' s l l \ • • IC ·\ S

Examples offonnatting using ToString:

DateAndTimeTextBox. Text = DateAndTimeDate. ToString ("D")
TodayTextBox . Text = Today . ToString ("d " }

I I~•' • ·-n•'fim·d Oat•' Fonn:•ttiu~

l ' Dat.,, Financitu CaJctdalion~ Maslll!!lwdct,
arnJ SIJ ing OperaJionJ

Visual Basic provides formal characters that you can use to create custom for
matting for dates. Note thai the fonnat characters are case sensitive.

Cl~tti'Utll(•f"'

d

dd

ddd

dddd

MM

MMM

MMMM

y

yy

YYY or YYYY

Separator.. the actual charac ter to print is de termine<! by the

date separator specified for your locale.

Day: displuyo without u leutling zero.

Day: displays -.i th a leading zero.

Day; uses a tit..,... letter abbreviatio11 f01· the day, such as Mon

for Mondt~y.

Day: •peUed ouL such as Monday.

Montl1; displays without a leading zero.

Month: di• playo with a leading zero.

Month: use8 a three-letter abbre,•iat ion for the month name.
such as Jan for January.

Month: •pel led out. su<:h "" .Junuury.

Year; displays as two characters witl10ut a leading zero.

Year: displa.y~ as two d1aracters \vill1 a leading zero.

Ycur: JispJo.ys WI foul' chuructcl'l!.

Examples using January l. 2008:

fo1·mut

M/d/yy

MM/dd/yy

MMMM d, yyyy

Date Var·iablcs

n ult

1/1108

01101108

January 1. 2008

The Date data type may hold values of many forms that represent a date. Ex
amples could be May 25. 2010. 5/25/10. or 5-25-2010. When you assign. a lit
eral value to a Date variable. enclose it in # signs:

Dim TheDate As Date
TheDat e = #5 / 25/2010#

X

Con, r•·Liug Value:; Lo a Dale Fol'lna t

If you want to store values in a Date data type. you need to convert the value to
a Date type. The Date. Parse method and the Convert. ToDateTime method
convert a value to Dale type but tJuow an exception if they are unable to create
a valid date from t11e argument. Use a Try block to make sure you have a valid
date value and catch the exception.

Try
TheDate = Date.Parse(OateTextBox .Text)

Catch
MessageBox. Show("Invalid date. ")

End Try

F imliug: 1be Difle •·encc between D ates

You can use the Subtract rnel110d to find the difference between two Date ob
jects. The result is in the format of days. hours. minutes, and seconds. Perhaps
you only want the number of days behveen two dates. The .NET Frame~>·ork in
cludes the Time pan c lass that stores the Lime differences with the properties
that you need.

Dim EnteredDate As Date

EnteredDate = Date .Parse(DateTextBox .Text)
Di m DaysTimeSpan As TimeSpan = EnteredDate.Subtract(Today)
DateDifferenceTextBox .Text = DaysTimeSpan . Days.ToString()

The user enters a date into a text box. That Date object uses its Subtract
method to compare to today's date.

A similar Add method allows you to set a date at a specified time in the
future.

Dim NextWeekOate As Date

' Add methods require Double arguments.
NextWeekDate = Today.AddDays{7D)
NextWeekTextBox.Text = "Next week is : • & NextWeekDate.ToString{"D')

Checking fo r the Day of Lilt> \'('eek

Sometimes a program may need to check for the day of the week. Maybe you
have a set day for a meeting or perhaps t11e rates differ on weekends compared
to weekdays.

If EnteredDate.DayOfWeek = DayOfWeek . Saturday or
EnteredDate.DayOfWeek = DayOfWeek . Sunday Then

weekendCheckBox .Checked = True
Else

WeekendCheckBox .Checked = False
End If

619

620 \ '

Financial Functions

S L .\ L B .\ S C Daln. Financial ColaJJatwru, Mathmlmics,

and SlJ ing Op<ratiDtu

Visual Basic provides functions for many types of financial and accounting cal
cula tions. such as payment amount. depreciation. future value . and present
value. When you use U1ese ftmclions. you eliminate the need to know and code
the actual formulas yourself. Each financial function returns a value iliat you
can assign to a variable. or to a prope1t y of a control. The functions belong to
the Microsoft. Visual Basic Financial module namespace.

Calegory Purpose Func tion

Deprec iation Double-declining balance. DDB
Straighlline. SLN
Sum-oC-the-ye""'' digits. SYD

Payments Payment. Pmt
lnlerest payment. IPmt
Principal poyn>enL PPmt

Return lntentaJ m te of return. IRR
Rule of relum wheJ> payment• ond MIRR

ruceipts lire at d ifferent rate&.

fule Interest rate. Rate

F ulure \'aJu~ future value of an annuity. FV

Present \'lllue Pl\'oent value. PV
Preoent value wben values NPV

are not constant.

Number of period• Number of period. for an a nnuity. NPer
(Number of payments)

You must supply each function with the necessary arguments. You specify
Ute name of the function. followed by parentheses that enclose the arguments.

lntelliSense helps you type the ru·guments of ftmc lions. When you type the
parentheses. the arguments appear in order. The one to be ente red next is in
bold. The order of the a rguments is important because the fw1ction uses the
values in the formula based on their position in the argument list. For example,
tJ1e folloll;ng Pmt function has three arguments: the interest rate. the number of
periods. and the amount of the loan. If you supply the values in a different or
der, the Pmt function will calculate with the wrong nwnbers.

The Pmt Func tion

You can use the Pmt function to find the amount of each payment on a loan if
U1e interest rate. the number of periods. ru1d the anJOWll borrowed are known.

1\ I' I' 1•: N ll X. II

Tlu· rmt l<' un•·tiuu-Cf'twt·:tl Fm·u1

Pmt(InterestRatePerPeriod, NumberOfPeriods, AmountOfLoan)

The interest mte must be specified as Double and adjusted to the inte rest rate
per period. For example, if the loan is made with an annual rate of 12 percent
and monthly payments. the interest rate must be converted to the mon1hly rate
of 1 percent. Convert the annual rate to the monthly mte by dividing by the
number of months in a year (Annual PercentageHate I 12).

The number of periods for the Joan is the total nwnber of payments. Lf you
want to know the montWy payment for a five-year loan. you must convert the
number of years to the number of months. Multiply the number of years by 12
months per year (NumberOtYears * 12).

The Pmt function requires Double arguments and returns a Double value.

Tlw rmL l'mtf'tiou-Ex:uupl••

Try
MonthlyRateDouble = Double .Parse(RateTextBox.Text) 1 12
MonthsDouble = Double .Parse(YearsTextBox .Text) • 12
AmountDouble = Double.Parse(AmountTextBox.Text)
MonthlyPay~entDouble = -Pmt(MonthlyRateDouble, MonthsDouble, AmountOouble)
MonthlyPaymentTextBox.Text = MonthlyPaymentDouble. ToString()

Cat ell
MessageBox . Show(" Invalid data .")

End Try

Notice in the example that the fields used in the payment function are from text
box.es that the user can enter. and t.he alll!wer is displayed formatted in a text box.

Also notice the minus sign when us ing the Pmt function. When an amount
is botTowed or payments made. that is considered a negative amount. You need
the minus sign to reverse the sign and make a positive answer.

T he Rate Function

You can use the Rate function to determine the interest rate per period when
the number of periods. the payment per period. and the original amount of the
loan are known.

The HaLe Function- CciJCI'ai F'ot·m

Rate(NumberOfPeriods, PaymentPerPeriod, LoanAmount)

The Rate function requires Double arguments and retuTill! a Double value.

621

622 l '

The Ra te ~'unctiou-Ex:uuple

C Dates, Financial Calculalihns, Mathemalics,
and Siring Operatihns

~.--. ~ Try
8 MonthsDouble = Double . Parse(YearsTextBox. Text) • 12
~ PaymentDouble = Double . Parse(PaymentTextBox .Text)

AmountDouble = Double . Parse(LoanAmountTextBox .Text)
PeriodicRateOouble = Rate(MonthsOouble. -PaymentOouble. AmountDouble)
AnnualRateDouble = PeriodicRateDouble • 12
YearlyRateTextBox .Text = AnnualRateDouble . ToString("P")

Catch
MessageBox .Show("Invalid data .")

End Try

Notice that the Rate function. like the Pmt function. needs a minus sign for the
payment amount to produce a positive result.

F unction!' to Calcula te De pt·ecia tio n

If you need to calculate the depreciation of an asset in a business. Visual Basic
provides tluee functions: the double-declining-balance (DDB) method. the
straight-Une (SLN) method. and the sum-of-the-years' digits (SYD) method.

The DDB function calculates the depreciation for a specific period within
the life uf the HS:Set. usiug lite uuuble-uediu.iug-balauce JJJethuol funuula. Ouce
again. you do not need to know the formula but only in what order to enter the
arguments. Incidentally. the salvage value is the value of the item when it is
worn out.

The ODB (Oouble-Dl'cliuing-Balanct~) Ftmctiou-Gt'net·al •' ot•m

~r
~ c DDB(OriginalCost, SalvageValue, LiteOtTheAsset, Period)
=~ e..

The DDB function returns a Double value and requires Double arguments.

The ODB Function- Example

~ .--. >< e
{
~

CostDouble = Double . Parse(CostTextBox . Text)
SalvageDouble = Double . Parse(SalvageTextBox .Text)
Yearsoouble = Double . Parse(YearsTextBox.Text)
PeriodDouble = Double . Parse(PeriodTextBox .Text)
DepreciationTextBox .Text = DDB(CostDouble, SalvageDouble, Yearsoouble,

PeriodDouble) . ToString("C")

The other financial functions work in a similar mrumer. You can use Help to
find the argument list, an explanation. and an example.

Mathematical Functions

In Visual Studio. the mathematical functions are included as methods in the
System.Math class. To use the methods, you must either import System. Math or
refer to each method with the Math namespace.

1\ 1• 1• 1·: N I) X ·~

For example, to use the Abs (absolute value) method. you can use either of
these techniques:

Answeroouble = Math.Abs(Argumentoouble)

or

' At the top of the file.
Imports System.Math

' In a procedure.
Answeroouble = Abs(Argumentoouble)

A few functions are not methods of the Math class but are Visual Basic
functions. These functions, such as Fix and Int, cannot specify the Math
namespace.

A good way to see the list of math functions is to type "Math." in the Edi
tor; lntelliSense will pop up with the complete list. The following table presents
a partial list of the Math methods:

Method

Abs(x)

Atan(x)

Cos(x)

Exp(x)

Log(x)

Max(xl, x2)

Min(xl, x2)

Pow(xl, x2)

Round(x)
Round(x,
OecimalPlaces)

Sign(x)

Sin(x)

Sqrt(X}

Tan (x)

Re hu'll.o

The absolute value of...
lxl = xifx2o0
l:cl = - x if x S 0

The angle in radians M-·hose tangent is x.

'111e cosine of x where x is in radians.

The value of e raised to the power of x.

TI1e naturalJoga.ithm of X, where X 2o 0.

Tile larger of the two arguments.

The smaller of the tl<'O argume nts.

The value o(xl raise<! to the power of x2.

Tile rounded value of x. rounded to the
specified number of decimal positions.
Note; .5 rounds to the neare&t even

number.

Tile sign of.~.
- lifx<O
Oiix = 0
lifx>O

n1e si ne of X where X is in radians.

The square root of x .. ·here x must be 2o 0.

'111e tangent of;" where x is in radians.

Overloaded: All numeric
types allowed.

Double

Double

Double

Double

Overloade<l: All types allo,..ed.
Both arguments must be the
same type.

Overloade<l: All types al]o,.·ed .
Both argume nts must be the
same type.

Double

Overloaded: Double or Decimal:
Integer Decimal Places

Overloade<i: All numeric
types allowed

Double

Double

Double

623

Re tuo·o Data Type

Return matches

argwnent type.

Double

Double

Double

Double

Return matches
arp;ument type.

Return matches
argument type.

Douhle

Retw·n matches

argument type.

Return matches
argument type.

Double

Double

Double

624 ' !- l \ I . II \ S l ' Doln. Financial CDkuJatim~:<. Mathmontic1.
and String Operwioru

Here are some useful VB mathematical functions:

Ar{:Um cnl R c iiU"II

F unc tion 1\etuMI!! Da tu Type Onto 'frl>c

Fix(x) The integer portion of x (truncated). Any numeric Integer
e.xprest!ion.

Int{X) The 1argest integer S x. Any numeric Integer

expressioo.

And() A random number in the range 0--1 Single
(exclusi\'e).

Working with Strings

Visual Basic provides many methods for working with text s trings. Although
several of the methods are covered in th is text. many more are available.

Strings in Visual S tudio are iummLRhle. which means that once a s tring is
created. it crumot be changed. Although many programs in this text seem to
modify a s tring. ac tually o ne11· s tring is c reated und the old s tring is discarded.

For string handling. you can use any of the many methods of the String
class. You also can use the StringBuilder class. which is more efficient if you
are building or extensively modifying strings. since the s tring can be changed
in memory. In other 1.-ords. a SlringBuilder is 11Wlable (changeable) and a String
is i mm.utable.

Following is a partial lis t of the properties and methods in the String class.
For shared methods. you don't need to specify a String instance; for nonshared
methods. you must attach the method to the String instance. Examples of
s hared methods and nonsharecl methods follow:

If Compare (AString, BStr ing) > 0 Then
· Code to execute if true.

1\ou~ha•·ed .\le t.bod

If AString . EndsWith("ed") Then
' Code t o execute if t rue.

1\lctbod

Compare(ASt r i ng, BStri ng)
(Shared)

R e turns

Integer:
Negative if AString < BString
Zero if ASITing = BString

Positive if AString > BString

1\PI"I\N U IC 625

Method R e ttu"JL'>

Compare(AString, BString, IgnoreCaseBoolean) Case inseusiti ve if lgnoreCaseBooleaJ~ is Ttue.
(Share<!) Integer:

Negative if AString < BString
Zero if AString = BString
Posith•e if AString > BString

Compare(AString, StartAString, DString1 Cou • .,ttt~ :-sul.r.stJ·iug:s; ~tart ~iti.ou iuJ.il:ttlc::s l.x::gi J wiu~
StartBString 1 Length Integer) character to compare for a length of Lengthlnteger.
(Shared) Integer:

Negative if AString < BString
Zero if AString = BString
Positive if AString > BString

Compare(AString, StartAString, BString, Case insensitive if lgnoreCa.JeBoolean is True.
Start8String1 Lengthinteger 1 IgnoreCaseBoolean) Compare substrings: start position indicates beginning
(Share<!) character to compare for a length of Lengthlnteger.

Integer:
Negative if AString < BString
Zero if AString = BString
Positive if AString > BString

EndsWith(AnyString) Boolean. Tme if the String instance ends with AnyStri ng.
Case sensitive.

Equals(AnyString) Boolean. True if the Su·ing instance has the same value as
AnyString.
Case sensitive.

I ndexOf(AnyString) Integer. lndex position in String instance that Any String
is found.

Positive: String found at this position.
Negative: String not found.

I ndexOf(AnyString1 StartPositioninteger) Integer. lndex position in String instance that Any String
is found, starting at StartPosition./nteger.

Positive: String found at this position.
Negative: String not found.

IndexOf(AnyString1 StartPositioninteger1 Integer. lndex position in String instance that anyString
NumberCharactersinteger) is found. starting at StartPositionlnteger. for a length of

NrtmberCharacterslnteger.
Positive: String found at this position.

Negative: String not found.

Insert(Startindexinteger, AnyString) New string 14-ith An,String inserted in the String instance.
beginning at Startlndexlnteger.

LastindexOf(AnyString) lntep;er. Index position of AnyStrinK 14-ilhin String
instance. searching from the right end.

LastindexOf (AnyString, StartPositioninteger) Integer. Index position of An,·String 14-ithin String
instance. searching leftward. beginni ng at
StartPositionlnteger.

LastindexOf (AString1 StartPositioninteger1 Integer. Index position of AString trithin String instm1ce.

NumberCharactersinteger) searching leftward, beginning at StartPositi.onlnteger, for a

length of NumberCharacterslnreger.

PadLeft(TotalLengthinteger) New Stling with Str ing instance right justified: padded on
left ".;I], spaces for a totallengUl of Totall.engthlnreger.

626 \ S l l <\ L

Me thod

PadLeft (TotalLengthlnteger, PadCharacter)

PadRight(Totallengthlnteger)

PadRight(Totallengthlnteger, PadCharacter)

Remove(StartPositionlnteger,
NumberCharactersinteger)

Replace(OldValueString, NeWValueString)

StartsWith(AnyString)

Subst ring(StartPositioninteger)

Substring(StartPositionlnteger,
NumberCharactersl nteger)

AnyString.ToLower ()

AnyString.ToUpper()

AnyString. Trim()

AnyString.TrimEnd ()

AnyString.TrimStart()

H \ S

R N UI' Il8

(' DoJn. Financial CalcuJatioru. Jlalhmwics,
and Sa ing Op<ralioru

New String ..-ith String instance right jm<ti!ietl: padded on
left ";th the specified character for a total length of

To/a ILengthl nleger.

New String with String instance left justified: padded on
right with spaces for a total length of Tola/Lengthlnt<gu.

New Strin11 ..-ith String i""tance le ft justified: padded on
right ~;th the s pecified character for a total length of

T01a/Lengthlnugrr.

New String with characters removed !rom String instance,
beginning with S tnrtPositionlnteger for a length of
NumberChartu:u:,../nteger.

New String ,.; th all occurrences of the old value replaced

by the new vnlue.

Boolean. True if the String instance starts ~·ith AnyString.
CalM!! ~nsitin~.

New String !hat is a substring of String instance:
beginning at StartP011itionlnteger, including all c haractero

to the right.

New String.: a substring of String ins tance. beginning al

Star!Pruitionlnteg.r for the •pedlied length.

New String: the String instance converted. to lowercase.

New String: the String inst:snce converted to uppe...,..,.

New String: the String instance with all white-space

cho.mctelll reo1ov<..J frum the le ft and right end...

New String: the String instance ",;th all M-hite-spaoe

chomctcn~ removed from the right end.

New String: the String instance with all ~·bite-space
characters removed from the left e nd.

Methods for Conversion between Data trP.es

Each of the following methods converts an expression to the named data type.

Func tio n Re turn T~-pe

Convert.ToBoolean(Expression) Boolean

Convert.ToDateTime(Expression) Date

Convert.ToDecimal(Expression) Decimal

Convert .ToDouble(Expression) Double

1\ 1• 1• 1·: N I) X ·~

Function

Convert.Tolnt16(Expression)

Convert .Tolnt32(Expression)

Convert .Tolnt64(Expression)

Convert .ToSingle(Expression)

Convert .ToString(Expression)

convert .ToUint16(Expression)

Convert .ToUint32(Expression)

Convert.ToUint64(Expression)

Reuu·u Type

Shoct

Integer

Long

Single

String

Umigned Shott

Un•igned Integer

Umigned Long

You also can use functions from the Visual Basic namespace for conver
sion. Note that the Convert methods shown above are used in all .NET lan
guages: the follm~ing functions are for Visual Basic only and are included in
Visual Studio to make it compatible with early versiom of Visual Basic.

Funt•lion l:euu·n TytJe

CBool(Expression) Boolean

CDate(Expression) Date

CDbl(Expression) Docble

CDec(Expression) Decimal

Cint(Expression) Integer

CLng(Expression) Long

CObj (Expression) Object

CShort(Expression) Shoct

csng (Expression) Single

CStr(Expression) String

CT e Ex ression yp (p NewT e yp) S ecified tv p _pe

Functions for Checking Validity

The Visual Basic namespace also contains fw1etions that you can use to check
for validity or type. These functions were used extensively in earlier versions of
VB. but the preferred technique is to use the methods in the .NET Framework.

627

628 \ '

Fmwtiou

IsNumeric(Expression)

IsDate (Expression)

IsNothing(ObjectExpression)

S U .\ L G .\ S

ltNut'll."t

Boolean: True if the expression evaluates

u a valid numeric vnluc.

Boolean: True if the expression evaluates

as • volid dote value.

Boolean: True if the object expression

currently does not have an instance

asoigned to it.

(' Datn, Financial Calt:uJalioru, Mathmaatics,
and Sh ing Op<ralioru

Functions for Formatting Output '

ln Chapter 3 you leamed to formal data using specifier codes 1\~lh the
ToString mel hod. Visual Basic also has some formatting functions. which are
included in the Visual Basic namespace. Using the ToString method. rather
than the Visual Basic functions. is the prefened technique for compalibilily
among .NET languages.

Fmwtion

FormatCurrency(EXpressionToFormat [,
NumberOfDecimalPositions [, LeadingDigit [,
UseParenthesesForNegative [,
GroupingForDigits)JJ J)

FormatDateTime(EXpressionToFormat[,
NM~edFonnat])

FormatNumber(fxpressionToFormat [,
NumberOfDecimalPositions [, LeadingDigit
[, UseParenthesesForNegative [,
GroupingForDigits)]]])

FormatPercent(fxpressionToFormat [,
NumberOfDecimalPositions [, LeadingDigit [,
UseParenthesesForNegative [,
GroupingForDigits]]]])

FonnalcurrencyfCJI'
output.

Fonnal dates and
time for output.

Format numben< with
decimals. rounding as
needed.

Format percents for

output.

Tips and Shortcuts for
Mastering the Environment

630 v s t \ •• II \ S C 7lp• and Slr.orlcuJJ for Ma.w in&

Set Up the Screen for Your Convenienc~

As you work in the Visual Studio integrated development e nvironment (JDE).
you will find many ways to save time. Here are some tips and shortcuts that you
can use to become more profic ient in us ing the IDE to d esign. code. and run
your projects.

Clmw or Hid<• Exu·a Windows

Arrange your screen for best advantage. While you are entering and editing
code in the Editor window. you don't need the toolbox. the Solution Explorer
window. the Properties window. or any other extra windows. You can hide or
close the extra windows and quickly and easily redisplay each ~indow when
you need it.

llidinf! and rlil'(lla)ill;! Wimlow:<

You can use AutoHide on each of the windows in the l DE. Each ~indow except
the Document window in the center of the screen has a pushpin icon UJat you
can use to AutoHide the window or "tack" it into place.

od box

:E AI W'..down: Forrns

You can AutoHide each ~-indow separately. or select Window I Auto Hide AI/.
Jn this screen. aU extra windows are hidden.

Tech Test \"fr®w
--...,

VG•,. U.~• (I 1:11 yo11,. C\••" "~"• .,.,.,... ~

Fill in tMa.y' '> dat~.)
- Hs p .. ojPct ""ill display a tiE>llo WOrld"
MC:Ufr' i,. fW'I rl\T•I'I"'f'nt' ht'1£11118llt~
and prin• tt-Eo -to,...

lhB Enrironmenl

p .. i vate 5.Jb PushButt on_Click(ByVel ~ender As Sy$tem.!biu"t, BtVa l e As. S.y~tem.E~n

Cisplay the He.:.!c ~ld 'l.i:~s.age

t.tes :;aaeLabe-1. Te~tt = "'Hell o lt.cr ld"
&lrl S~.ob

Private Sub Ex:itSutton_Click(ByVal ;;ende,- As System.Ooject~ Byva: e As Sy s.t E:!r:.E,.,;:;n
Exit: the proj ect .

f~< .Clo:;e ()
End Sub

X ('

Point to the icon for one o(the hidden windows to display it. In the next ex
ample. notice tl1e mouse pointer on the Solution Explorer icon. which opens the
Solution Explorer ll"indow temporarily. When you move the mouse pointer out
of the window. it hides again.

TE:c:m Odta Toob Test Vi"nd;,w Hdp

'lour- 1\...,C!: (IJ$1. your own ~ h
{F~ll in tod~f ~date- .)

rh:.:3o project :.:~ displot :3

KUO~C in b cfi-4'-ferc:nt i.J,&U
•"d J»d!ll lie f

IPuDLc CloSS r-to:::H r

H Prlute: ~uo Pushlliunon_ClLck<eyval ser"tlitr
• Displa/ !:he hello .-.10"' ~d ~ss.ag~.

~ssaeo!~abtl. Text • '"lit Lo WOrlrl ...
fo"d ~l..lb

Pr::.\. ate Su:o E.x.:..tButton_Click(B.yVql se."lder
' E)(it t:'\4t P"Ojt?ct

~ {Jly ProJed
::J HeEoForm \.b

To undo tl1e AutoHide feature. display a !'·indo!'· and click its pushpin
icon .

.Each of the LDE windows that has an AutoHide feature also has a drop
down menu from l'·hich you can choose to float. dock. Auto Hide. hide. or make
into a tabbed window. The tabbed window option is interesting: It makes the
M;ndow tabbed in tlle center Documetll window.

Closing Windows

hbbcd 0:-:<t..II"W.ftt

E ~utoH"Id~
~ide

You can close any l\indow by clicking its Close button. You also can close any
extra tabs in the Document window: click on the Oose button to the right of the
tabs to close the active document.

Mouse
pointer

631

632 v S U i\ I, G .\ S C Tips and Shortcuts for Maswing

Displaying Windows

You can quickly and easily open each window when you need it. Each window
is listed on the View menu. or use the buttons on the Standard toolbar.

Display Windows Using Keyhoal'd Shor·tcuts

Solution Explorer ~-indo,.. Ctrl + Alt + L

Properties window F'4

Toolbox Ctrl + Alt + X

Switch between Oocumeuls

When you have several tabs open in the Document window, you can switch by
clicking on their tabs or use keyboard shortcuts.

Switch from a foo·m~s Design View window to

its Editor ~;ndow

Switch from a fonn's Editor window to its

Design View window

Cycle through open document tabs

Cycle through all open windows

f7

Shift+ F7

Ctrl + F6

Ctrl +Tab

Visual Studio displays only as many tabs as fit in the current size of the
Document window. If you have more documents open than displayed tabs. you
can use the drop-down list of open documents.

Si ll ingfolnl.V~ I Design I X SUmmaryfoliTI.Vb SummaryForm.vb !Oes1gnl

w'=J R 'n R. fc1 Redding 'n R~freshmeAt

file f dit !idp

the Environmeru

A.boutBo:<l.vb- !Oesign]

BillingForm.vb

BtllingForm.vb [Design]

Spla,bScreenl.vb (Design)

Order lnfo~ion E!!J Su01moryforn1.Yb
Quanl:i!y

C ra~eout?

Use the FuJJ Sct·een

Coffee Selections

0 (a)puccno

{) &pres~

:' ta:te
3 !ccd Ld.te

t!j SunvnaryForm:vb (Oe~ign]

When you are designing a form or editing code. you can work in full-screen
mode. T his gives you maximum screen s pace by getting rid of nll cxtm win
dows. Unfortunately. it also hides all toolbars (the Text Editor toolbar can be a

X ('

great timesaver while editing code). Select View I Full Screen to display in full
screen mode. A small Full Screen bulton appears. which you can use to switch
back to regular display. You also can press Shift + Alt + Enter or select View I

Full Screen a second time to toggle back. 1f you want to display the Text Editor
toolbar while in full-screen mode. select View / Too/bars / Text Editor.

l\lo1lir) th<· S('l '<'t' n Layout.

Each of the windows in the IDE is considered either a Tool window or a
Doc ument window. The Docwnenl windows generally display in the center
of the screen with tabs. The rest of the 11indows--Solution Explorer. Properties
window. Task List. Output. Server Explorer. and others-are Tool11indows and
share many chamcteristics. You can Ooat each of the Tool "indows. tab-dock
them in groups. and move and res ize individual "indows or groups of llindows.

Dof'k Wiudo\\S l ~iug Lht' Guide Diamonds

Guide diamonds are an improvement added to VS 2005. When you start dmgging
a dockable tool11•indow. the diamonds appear to give you visual cues to help
dock to the desired location. As you dmg over the arrow. the corresponding area
darkens. To tab-dock a window. you need to make the center of the diamond
da1ken. Experiment!

oo (NlOH~ndsOn-M.crosoft Vi!Ui!l Studio

fH• E.dlf V·e.,.. PrQjftl BHJd Of'bu!) JP"~m Oi!h ~t

..J,~ J· ~ .1. ~-

= ICl

!:li Re:fe1ences
_ j bin
_l ob)

.2) Abo•tSo><l...t>
d) Batn3fol'l'n.vb

"':! lplashS<re•nhb

::l Summol)form.vb O
. .J Upg~dt:log.xML , ~

633

634 ,. C 1lps and Shortcut! for Mast<ring

SpliL the Sn(•(' ll Vt•J·Lit•all y

You can view the Editor window and the forn1 design at the same time. '\lfith at
least two tabs open, select Window I New Vertical Tab Group. You may want to
close the extra windows to allow more room for the two large windows.

Tec11-n Dote TooiJ ..,

Pdvate <;;ub Clllc:u l.i'l teButton_Click(eyval s@nd! ~

ByVa l e As System.hE"nt-Ares) "tandles Calcul
Ca leu l ateSe 1 ect i<m TooL St r ip~lenultem. C J ic!<.
I' lalculit.e and display the curre'lt arrour1
Di.n PriceOeci~n~tl , Taxo-ecirr.al , ltefiWIClunt o;
OU. Quantj t~IntE:ic:r A> l tllt::llcr

' fird the: pri.~:e.

If Cappucc inoRodioButtQn . Ch~cked Thc:r~

Pr iceDeciiY!Ia l - CAPPUCCIJJO PRI CE Decim
Else If Espre~t:olhdioBut:ton . Ch;cked 1nen

PrictOtc:itr.~d • ESPRESSO PRICE Oecitrt~L
Flult LUhRAdioButtorL Ch•~lr:Ad Th11n

PricoO.CiiT'o l • lATTE_PR lCE_OecU.ol
::lself IcedCappuccinoRadioButton.Chec:ked •

Pr iceoecimal == HEil'_PR!CE_Deciflal
!nd If

' CCilt.ul•lc U1c: cJ~.lendc:d 1J h.t a!IJ adl.l t.u
Try

Quantityi nteger - Integer . Pa~e {Qu<.lnt
Ite,r..}.rtOuntDecitral - Pr i ceO"ecimal * Qu
SubTotalDeciatal -1-= ltemA.nountDed.ltal •

]

s..bTotol

T ex {M T .:keoLI.)

' L "'
r:;'lcolotOalogl

To reset the DJE windows to their default locations. select Window I Reset
Window Layout.

Set Options fot· Your Work

You can change many options in the VS IDE. Choose Tools I Options to display
the Options dialog box. To see all the options that may be changed, make sure
Show all settings is checked. You may want to click on each of the categories to
see the options that you can select.

Note: If you are working in a shared lab, check i>ith the instructor or lab
technician before changing options.

Projects and Solutions. Set the default folder for your projects. lt's best to leave
the Build and Run options to automatically save changes but you may prefer
to have a prompt or save them yourself.

'he EnvironlTU!nl

1\ 1• 1• 1·: N I) X c

Text Editor. You can set options for all languages or for Basic, which is Visual
Basic. The following presume that you first select and expand the entry for
Basic.

• General. Make sure that Auto list members is selected and Hide advanced
members is deselected. You may want to tum on Word wrap so that long
lines wrap to the next line instead of extending beyond the right edge of
the screen. You can tm11 on Line numbers to make it easier to find specific
lines in the text editor.

• Tabs. Choose Smart indenting; Tab size and Indent size should both be
set to 4.

• VB Specific. All options should be selected.

Use Shortcuts in the Form Designer

You can save time while creating the user interface in the Form Designer by us
ing shortcuts.

Use the Layout Toolbat·

The Layout toolbar is great for wolking with multiple controls. You must have
more than one control selected to enable many of the buttons. The same options
are available from the Fom1at menu.

Nudge Contt·ols into Place

Sometimes it is difficult to place controls exactly where you want them. Of
course, you can use the alignment options of the Fom1at menu or the Layout
toolbar. You also can nudge controls in any direction by selecting them and
pressing one of the arrow keys. Nudging moves a control one pixel in the di
rection you specify. For example, the right arrow key moves a selected control
one pixel to the right. You can also use Ctrl + an arrow key to align a control to
the snap line of a nearby control.

Use Sna1> Lines to He lp Align Contr·ols

As you create or move controls on a form, snap lines pop up to help you align
the controls, wllich can be a great help in creating professional-looking fonns.
Blue snap lines appear to align tops, bottoms, lefts, or rights of controls.

635

636 \ ' S Ll \ I , It .\ s

Sooi<SJ!oform.•b IDes1gnl l(.
=~~ ' . ~·n RforP .. adlng n~<frtsh'l'<nt

Book Sales

-- -

~ ---
I

Exenjed Prce

ls-L Discount

o..c...ntcd P1loo

C Tip> and Shoncrru for •If rum i"'!

llw!EnWr>nnll!nl

When you see a red line toward the lower edge of controls. that means that
the baselines of the text within the controls are aligned.

Booi<SJI•Form.•b IOeslgn~!);x:J············~

BoOk Sales

1~ OisCO!Xl

The snap lines also can help you to standardize the vertical spacing between
controls. As you drag a conlrol up or down near another control. a small dotted
line appears to indicate that the controls are the recommended distance apart.

~~ity
~itle

Dolt~-d line

Use Shortcuts in the Editor ,'

Several features of the Editor can save you time while editing code. These are
swnmarized in the following sections.

1\ 1• 1• 1·: N I) X c

Use the Te xt Ed ito1· Toolba1·

By default the Text Editor toolbar displays when the Editor window is open. If
it does not display. select View /Too/bars /Text Editor.

You can save yourself considerable time and trouble if you become familiar
with and use some of these shortcuts.

• Comment Selected Lines. Use this command when you want to convert some
code to comments. especially while you are testing and debugging projects.
You can remove some lines from execution to test the effect without actu
ally removing them. Select the lines and click the Comment Selected Lines

button on the Standard toolbar (or type Ctrl + K, Ctrl + C); each line '~ill
have an apostrophe appended at the left end.

• Uncomment Selected Lines. This command undoes the Comment Selected

Lines command. Select some comment lines and click the button on the
Standard toolbar (or press Ctrl + K. Ctrl + U); the apostrophes at the
beginning of the lines are deleted.

Toggle Bookmark. This button sets and unsets individual bookmarks. Book
marks are useful when you are jumping arow1d in the Editor window. Set a
bookmark on any line by clicking in the line and clicking the Toggle Book

mark button (or type Ch·l + K. T); you will see a mark in the gray margin
area to the left of the marked line. You may want to set bookmarks in sev
eral procedures where you are editing and testing code.

• Move To Next Bookmark (Ctrl + K. N) and Move To Previous Bookmark (Ctrl +
K. P). Use these buttons to quickly jump to the next or previous bookmark
in the code.

• Clear All Bookmarks. You can clear individual bookmarks with the Toggle

Bookmark button or clear all bookmarks (Ctrl + K. Ctrl + L) using this button.

Use Keybom·d Shm·tcuts Whe n Editing Code

While you are editing code. save yourself time by using keyboard shortcuts. Note
that these shortcuts are based on the default Visual Basic keyboard mapping.
See Tools I Options and select Show all settings. Then select Environment I Key·
board I Keyboard mapping scheme. Urop down the list and select Visual Basic 6, if
it isn't already selected. Note that Show all settings does not appear in all versions
of Visual Studio.

637

638 v S l l A I, G .\ S (' Tips and Shortcuts for Mastering

Task

Delete from the iJlsertion point lefl to the beginning of the word.

Delete from the insertion point right to the end of the word.

Complete the word.

Create an empty line above the cun-entline. Insertion point
can be any,.·here in the line.

Create an empty line belo,.· the cu,Tentline. Insertion point
can be any~·here in the line.

Swap the two characters on either side of the insertion point
(transpose character). Note that this shortcut does not work in

VBExpreS8.

Swap ihe cu.rrent wot·d with the n·ord on its right (transpose

word). Insertion point can be any..•here in the M'ord.

Swap the current line with the next line (transpose line).
Insertion point can be !Ul}~vhere irn the line.

Cut the current line to the clipboard with the insertion point

anywhere in the line.

Jump to a procedure (insertion point on proce<lure name).
Use this shortcut while working on the sub procedures and
functions that you ... Ti.te. For example. when writing a call to a

functioot, you might want to check the coding in the function.
Point to the procedure name in the Call and press 1'12. If
you want to return to ~1e original position. set a bookmark
before the j ump.

Jump to the top of the current code file.

Jump to the bottom of the current file.

View the iOrm's Designer window.

Return to the Editor window

Sl1orte ut

Ctrl + Backspace

Ctrl + .Delete

Ctrl + Spacebar

or Alt + right arrow

Ctrl + Enter

Ctrl + Shift + Enter

Ctrl + T

Ctrl + Shift + T

Ctri + Ah + T

Ctrl + Y (VS Proj:
default keyboard)
Ctrl + L (VB Express
defa~<lt keyboard)

Fl2

Ctrl + Home

Ctrl + End

Shift + F7

F7

You will find that most of the editing and selecting keyboard shortcuts for
Microsoft Word also work in the Editor window.

Split the Editos· Windo w

You can view more than one section of code at a time by splitting the Editor
window. Point to the Split bar at the top of the vertical scroll bar and drag the
bar down to the desired location. To remove the split. you can either drag the
split bar back to the top or double-click the split bar.

the Environmcnl

X

Helloform.vb X

C !Genera!l

c

· IDWe<Jarat OO<l
Hello World
Your tfartle (Use your O'Hn naon:e here ,)
(Fill in tod;~y 's date .)
Thi~ f""'Vj~c..L wlll •.H.:.t~loy "" "H~llu \o..u'·tJ•
n~es;cage in two diff:,rgnt languages
and print the -fcrm~

8Pub] ic ClaH ... eua~nrB

! Private Sub Pu;:.h8utton_Click(ByVal sende "' ~s Systetn.ObJPct, ByVal e !l.s

'le ssagel abel.Text = "Hello World"
~ End SUb

1: <--- Split bar

~

~
' 01Splay the f-'ello World me;:.;:.age .

H Private ':lub Exi c:Button Cli.c~l sender 1\s Systen.f}h1f'Ct, l:lyVa] e As -
100% ..- . fll _j

Use D1·ag-and-D•·op Editing

You can use drag-and-drop to move or copy text to another location in the Edi
tor ~tindow or to another project. To move code. select the text. point to these
lection. and drag it to a new location. You can copy text (rather than move it) by
holding down the Ctrl key as you drag.

D1·ag Commonly Used Code to the Toolbox

When you have some lines of code that you use frequently. you can select the
text and drag it to the toolbox. Then when you need tu insert the code, drag it
from the toolbox to the Editor window. The text appears in the toolbox when the
Editor window is open but not when a form is in design mode.

Caution: This shortcut should not be used on shared computers in a class
room or lab. as the text remains in the toolbox. Use it only on your own com
puter. You can delete previously stored text from the toolbox by light-clicking
and selecting Delete from the context menu.

Re nam e Va1·iables and Objec ts

Use the rename feature to automatically rename variables and objects. In the
Editor window, light-click on a valiable name or an object name and select Re

name. In the Rename dialog box. you can enter the new name and the item is
reua111eu evety wltere iu tltat funu. Fur a multifurut prujecl. the Rename uialug
box offers the choice ofrenaming in only the current form or all forms. This fea
ture. called SymboL Rename. is part of a more robust feature called r·efactm·
ing. which is available in some of the .NET languages. Refactoring allows the
programmer to modify the name and class of variables and objects.

Use Context-Sensitive Help

The quickest way to get Help is to use context-sensitive Help. Click on a con
trol or a line of code and press Fl; Help displays the closest matching item it
can locate. You also can get help on the IDE elements: Click in any area of the
IDE and press Shift + Fl: the Help explanation will be about using the cun-ent
window or IDE element, rather than about the objects and language.

639

640 l ' C Tips and SlwrtculS for Mastering

Copy and Move Projects

In a programming class. you often must move projects from one computer to an
other and must base one project on another one. To create a new project based
on a previous one, you should copy the project folder. Then you can move and
rename it as necessary.

Co py and :!\love a P 1·oject

You can copy an entire solution folder from one location to another using the
Windows Explorer. Make sure that the solution is not open in Visual Studio and
copy the entire folder.

To base one project on a previous project. take the foUowing steps:

• Make sure the project is not open. Note: This is extremely important.

• Copy the folder to a new location using the Windows Explorer.

• Rename the new folder for the new project name, still using the Explorer.

• Open the new project (the copy) in the Visual Studio IDE.

• In the IDE's Solution Explorer, rename the solution and the project. The
best way to do this is to right-click on the name and choose the Rename
command from the shortcut menu. To rename the solution, you must dis
play solution names: Tools I Options I Projects and Solutions I General/ Always

show solutions.

11ename the forms. if desired. If you rename the .stattup form. you must

open the Project Designer (Project I ProjectName Properties or double-click
on My Project in the Solution Explorer) and set the Stattup Object.

• Open the Project Designer and change the assembly name to match your
new project name.

Warning: Do not try to copy a project that is open using the Save As com
mand, attempting to place a copy in a new location.

Deploy Applications

When you are ready to distribute your programs to other computers. you use a
process called deployment .. You can choose to use either Windows Installer or

cUck-o nce deployment.
To use Windows Installer. open the Build menu and select Publish Solution

Name. Selecting the Publish option launches the Publish Wizard. which gives
you the option of specifying a file path, a Web site. or an FTP server. Media
options for distribution are CD-ROM or DVD, file share (nehvork), or the Web.
You also can have the program check for updates online.

If you deploy to a folder on your system. you will find a Setup.exe applica
tion inside of the folder. Try copying the folder to a CD and then install your
program on another machine.

For a discussion of the various strategies for deployment. see "Deploying
Applications and Components" in Help.

the Environment

Security

642 s u ,, •. It A S (' Security

As a programmer, you must be aware of many aspects of security. You must not
allow any unauthorized access to programs or data, but yc•u must be able to ac
cess all needed resources while you are developing applications. For both sides
of the security issue you need a basic understanding of security topics.

The .NET Framework includes many features for implementing security.
And as time passes and hackers and virus writers discover ways to circumvent
the security, Microsoft is forced to tighten security. Because of this fact. you
may sometimes find that programs or procedures that worked previously no
longer work after you apply updates to Windows. which include updates to the
.NET Framework and CLR.

For programmers. security means infor m ation assm·ance. The .NET
Framework provides many object-oriented features to assist in the process. TI1e
topic of security can fill multiple books and courses: this appendix is intended
as an introductory overview for programmers.

Authentication and Authorization

The two topics of authentication and authorization are frequently lumped to
gRthP.r hPr.::tu~P.thP.y am !<O do~P.Iy rP.llltP..-1 . Ant:hmu ir.:nion r!P.tP.rminP.!< who thP.

user is and autbor·izatiou decides if the user has the proper authority to ac
cess information.

Authentication is based on credentials. When you are working with a Win
dows application, you only need to be concerned ~tith Windows authentication.
However. if your application is Web Fonns-based (ASPNET). authentication
might be liS Authentication. Forms-based (not recommended: it is an HTML
request for credentials). or it might use .Microsoft Passport. which is a central
ized profile service for member sites. It is also possible to create a custom au
thentication method or use none at all. The settings in the Web.Config file
determine the method of authentication.

The following is an excerpt from the automatically generated Web.Config
file for an ASP. NET application:

<!-
The <authenticat ion> section enables configuration of the security authentication
mode used by ASP . NET to identify an incoming user.
- >
<authentication mode="Windows " />

For no authentication. you can change the last line in the Web.Conflg file
above to

<authentication mode "None " />

Authot·jzatjon and ImiJet'sonatjo n

After the user is authenticated. another step checks for authorization. If
ASP.NET does not use impersonation. the ASP.NET user. which is created
when the Framework is installed. runs without any privileges. If impersonation
is turned on, ASP. NET takes on the identity from llS. If anonymous access is

X D

turned off. ASP. NET takes on the credentials of the authenticated user; other
wise it impersonates the account that ITS uses.

This is where the following code applies:

<identity impersonate = "true "/>

For a specific user you can use

<identity impersonate = "true " name "Domaintusername" password

Writing Secure Code

Programmers need to be aware of how hackers are able to gain access to a data
base or a network through code. Two primary areas of importance are string in
jections and error messages that may give away important information about a
data source.

SQL lujecLion

Proper validation of the code is extremely important. A system vulnerability oc
cms when code is "injected" into a string. A text box or a combo box control al
lows the user to type in information. It is the responsibility of the programmer
to make sure that the input does not contain any scripting code or disruptive
characters. When a program is working witJ1 a database, there must be no way
for the user to inject code into that database.

It is wise to validate the keystrokes to be sure that the input text contains
only valid characters.

El' t'O I ' M.es!'ages

Another technique that hackers use to find information about a database is to
input wrong data hoping that the error message '~ill give significant informa
tion. The default error messages indicate the nan1e of the field containing an er
ror. Plan your error messages so that you don't allow someone to determine
valid field names or values. You also can create custom error pages and denote
the link in the Web.config file. This technique is covered in the authors' Ad
vanced VB Programming text.

Code Access Security

Basically. code access security determines what code i~ allowed to do on a com
puter. specifically what resources, such as hardware or files, the code can ac
cess. The settings of the computer ultimately determine if the code can execute
or if a resource can be used by the code.

643

"password"/>

644 ,. S U .\ I . 8 .\ s C Securit,.

Code access security is based on several Permission classes. The Permis
sion classes are organized into three types: code access. identity. and role
based. Examples of the code access type include the PrintingPerm.ission class
and the RegistryPermission class: the SiteldentityPerm.ission and the
Url ldentityPermission classes fall into the identity pennission type. The
Principal Pennission class is the role-based type for user credentials.

If your program has an OpenFileDialog component. it may be necessary to
request permission to access the files from a given system. The following code
would appear at the lop of the file:

Imports System.Security .Permissions
<Assembly: FileDialogPermissionAttribute(SecurityAction .RequestMinimum, Unrestric~ed : = True) >

Glossary

A
About hox A n·indow that

displays information about the
program; usually d isplayed from

the HBipl About menu item.

ab!!olmc positionin~ Placing

an element on a Web page by X
and Y coordinates.

ak.LJ'act c la"s A class that
cannot be instantiated but instead

is used for inheritance.

a bs tnwt mf't1wd An empty

method declared with the
t.lustoverride keyword: must be
overriden in the derived class.

Ac(•eptHutlo n proJwrty Fom1

property that sets the default
bull on. which is activated l4ith the
Enter key.

acc{'SS key Underlined
charncter that allows the user to

select using the keyboard ruther
than the mouse: also called a hot
key.

access lcvd pacification of the
permission required to access an
element. Examples: Private.

Public. Friend. and Protected.

ac•·e:-so r method The Get and
Set methods 14Tillen to allow
external objects to access the

private properties of a class.

AJAX Asynchronous JavaScript
and XML: method of speeding Web
page d isplay by updating only the

part of the page that has changes.

AllowOI'Op Jli'O JJe l' tY A
property of a form or control used
for a drag-and-drop operation.

ANSl code A coding method

used to represent characters on a

microcomputer (American
National Standards Ins titute).

:wgumeut The expression to

operate upon in a function or
method. A value being passed to

or from a procedure.

array A series of variables:

each individual element can be
referenced by its index position.

Also called a list.

assi:;nmeut ope r a tor Au equaJ

sign(=): assigns a value to the
variable or property named on the

left side of the sign.

assi:;nment s tateme nt Assigns
a value to a variable or property

using an assignment operator.

atu·ihute Supplies additional

information about an XML

element: must appear within single
or double quotes.

authentication The policies

used to determine l4'ho the user is:
may be Windows-based. forms

based. Passport-based. or none (no

authentication performed).

authorization Determination of

the rights allowed for a particular
user. For ASP. ET applications.
can allol4· access from any user by

turning on impersonation.

;\utoCor'J' I'Ct Popup
suggestions for corrections of
misspelled words in the Editor.

anw-impll'nte nted p•·op«>•·ty
A new property added to a class
that does not require writing the
Get and Set procedures.

Autos wimlow Window that
opens in IDE during execution;
automatically displays all variables
and control contents that are
referenced in the current statement
and three s tatements on either side
of the current one.

B
hal'<' d a.,., Class that is inherited
from: also called a l!tper class or
parent clas.s.

binding -.om·c<• Object that
establishes a link to a data source.

hiO<·k-lt•vd variable A variable
declared inside a block of code; onJy
accessible within that block.

Hoolcm1 CX(II'C!<sion An
ex:pression that el'aluates to True
or False. May be referred to as a
condition.

Hordc1·St yle JU'OJWI'I Y

Property of a control that allows
the control to appear flat or three
dimensional.

bound conu·ol A control that
automatically displays the contents
of database fields.

breakpoint Indicated point in
project code where execution
should break; used for debugging.

645

646

browset· An application used to
render and display HTML code;
used to display Web pages; in VB
used to execute Web Forms.

Brush object Graphical object
for drawing filled shapes.

Button Control used to activate
a procedure.

ByRef Declares that an argument
passed to a procedure should be
passed as the address of the data
so that both calling ru1d called
procedures have access to the
same memory location.

ByVal Declares that an argument
passed to a procedure should be
passed as a copy of the data. The
calling and called procedures do
not have access to each other's
variables.

c
Call (procedm·e call) Execute
a procedure.

callback An object notifies the
program that it needs to do
something or that a situation exists
t11at t11e program needs to handle.
The object notifies the program of
the situation by firing an event.

Can cel Button propet"ty Form
property that sets tlle Cancel
button. which is activated with the
Esc key.

cascading style sheet (CSS)
A set of styles for fom1atting
elements of Web pages.

Case stt·uctm·e Selection
structure; can be used in place of
an If statement.

cast.iug Converting from one
data type to another.

CausesValidatiou propet·ty
Property of a conb·ol that forces
validation to occur on the control

that just lost focus when this
control receives the focus.

Charactet·Casiug (WOpet·ty
Property of text boxes that specifies
whether input should be left as
entered or converted to uppercase
or lowercase.

check box A control used to
indicate a value that may be True or
False. In any group of check boxes.
any number may be selected.

checked A check mark next
to a menu item indicates that the
option is currently selected.

Checked (ll"opet·ty Determines
if a check box is checked or not.

child class A class inherited
from another class. called the
parent. Also called a derived class
or subclass.

child fot·m Multiple Document
Interface. A child form belongs to
a parent form. is displayed inside
the parent. and closes when the
parent does.

class A prototype or blueprint for
an object; includes specifications
for the properties and methods.

class-level variable A variable
that is available to all procedures
in the class and exists as long as
the class is loaded.

clean compile Code compiles
to Common Language Runtime
without errors.

click-once d eployment New
simplified method of deploying VB
applications to another computer.
Provides for installation and
automatic updates via the Web.

Close me thod Closes forms or
files: releases resources used by
the object.

code Programming statements in
the Basic language.

Glossary

code separation model A style
of Web Fonn in which the VB code
is in a separate file from the HTML
code.

cod e snippet Small sample
of code that illustrates coding
techniques: can be added to a
program in the editor.

collection A series of objects or
an object that can contain a series of
objects; ha'S properties and methods .

color constant Values assigned
in the Color class. Examples:
Color. Red and Color . .Blue.

colmnn A vertical section of a
grid control.

ComhoBox conu·ol A control
that is a combination of a list box
and a text box.

common dialog A set of
Windows dialog boxes available to
Visual Basic programmers for Open.
Save, Fonts, Print, and Color.

comparison operatot· See
relational operator.

compone nt tt·ay Area across
the lower edge of a form designer
window; used to store components
that are not visible on the form.

compound Boolean expression
Multiple conditions combined with
the use of t11e logical operators And

or Or.

concatenation Joining string
(text) fields. The ampersand (&) is
used to concatenate text.

condition An expression that
will evaluate True or False. May
be a comparison of two values
(variables. properties. constants)
using relational operators.

constant A value that cannot
change during program execution.

G L 0 S S A R Y

consu ·uctot· A procedure that
runs automatically when an object
is instantiated from that class. ln
VB. a constructor is coded with
Sub New.

cont ainer' An object that can
hold other objects.

context me nu A popup menu.
sometimes referred to as a slwrtcu.t
men n or a right-mouse menzt.

context-sensitive Help Use of
the Fl function key to directly
access the Help topic related to
the code or object containing the
cursor.

ContextMc nuStl'ip component
A container control used to create
context menus.

conu·ol An object used on a
graphical inte1face. such as a radio
button. text box. button. or label.

CType fnn ctiou Converts from
one object type to another: used
11·i th a shared event procedure to
access the Sender object.

D
data binding Connecting a
control or property to one or more
data elements.

data-hound couu·ols Controls
that can be set up to display the
data from a database.

Data Desig:uet· A window of
the VS IDE that shows a visual
representation of the schema of a
database; allows modification of
the schema.

data file A file used to store
small amounts of infonnation such
as the contents of a list box.

data som·ce The original source
of database data: may be a file. a
server. or an array or other object.

da La 1 ype pecifies the type
of data a variable or constant can
hold. such as Integer. Decimal.
or String.

DataCt·idView control A
control used to display database
data in a grid format.

datase t. A temporary set of data
stored in the memory of the
computer.

DateTime su·uctm·e Used to
retrieve and format d1e current
date and time.

de bug t ime Temporary break in
program execution: used for
debugging.

Debug. Wri teLine method
Statement to write a line in the
Debug window: used to write a
message for debugging.

dehu~ing: Finding and
eliminating computer program
errors.

d eclm·atiou Statements to
establish a project's variables and
constants. give them names. and
specify the type of data they will
hold.

Dcrlm·:lliuus section Code
outside of a procedure. used to
declare module-level variables.

de limited OJe A file in which
the data elements are separated
by a predefined character or
characters. such as a comma. tab.
or carriage return.

deployment Distribution of a
compiled application to another
computer; norrnaHy done through a
setup.exe file. See click~once
deploymenJ.

det·ived class A subclass
inherited from a base class: also
called a child class.

647

de~ig:u time The status of the
Visual tudio enviromnent while a
project is being developed. as
opposed to run time or break time.

dcstt·uctot· A method that is
called as an object goes out of
scope.

DialogRc,..uh object Used to
check to determine which button
the user clicked on a message box.

Dictionary A collection type
that contains a pair of items
consisting of a key and a value.

direct •·efe1·euce Accessing an
element of an an'lly by a subscript
when the value of the subscript is
known.

disabled Enabled property set to
False: user can see the control but
cannot access it.

Do and Loop statemellls
Statements to indicate the
beginning and ending of a loop. A
condition can appear on the Do or
on the Loop.

Do I Loop A loop constructed wjth
the Do and Loop statements.

Document window IDE
window that displays the Form
Designer. the Code Editor. and the
Object Browser.

DoDragDrop method A method
to begin a drag-drop operation for
a source object.

Dt·agD1·up e,·eut The event
that occurs when the user drags an
object and drops it on a form or
control that has its AllowDrop
property set to True.

Dr·ng:Entc r· event The event that
occurs when the user drags an
object over a form or control that bas
its AJJowOrop property set to True;
occurs before the DragDrop event.

DrawLine m ethod Method of
the Graphics object.

648

DrawRectangle mt'lhod
Method of the Gruphks object
used to draw S<luares and
rectangles.

DrawString me thod Method of
the Graphics object: eends 8 line of
text to the graphics page.

drop-do"""TI combo box A
combo box control w11h a do\\n
pointing arrow that allows the
user to drop down thr list. Allows
efficient use of space on a fonn.

d•·o1Hlown lis t A list box with 8
down-pointing arrow that allows the
user to drop d01111 the list. Allows
efficient use of space on o form.

E
element ingle item within a
table. array. list. or grid.

elem elll (~\IL) An itcrn in 011
XML file surrounded by tags.

emr•ty .. triu:.: A string that
contains no character.: also called
a null string or ::em-length string.

Enabled p•·ope t'l) Boolean
property of a controltl:al detennines
1\helher it is available or disabled
(grayed).

eJH' :tll"nl:uion OOP f€'8lure
that specifies that aJI methods 011d
properties of a class be coded within
the class. '!'he class can hide or
expose the methods and properties.
as needed.

End If Terminates a block If
s tatement.

entry test A loop that has its
test condition at the lop. See
pretest.

EnOI'Pl·o,;de •· compo ne nt
A component that can display an
error icon and messa&e when a
validation rule is violated for the
specified text box.

f'\<'111 An action that may be
caused by the user. such as a clict.
drag. key press. or scroll. Events
also c011 be tr~ered by 011 intern.tl
action. such as repainting the form
or validating user input.

I'\ en I l'•·oredure A procedure
Mlillen to execute when an event
occurs.

l'Xception An error that occurs
at run time.

exit test A loop that has its te;t
condition at the bottom. See
posttest.

I'XIllir it f'om·ersiou Writing the
code to convert from one data type
to another: as opposed to implicit

converswn.

Exp•·css Edition A "light"
version of Visual Basic. Available
for download at rnsdn.microsofl.com/
express.

K\.tNI" ihl" AJ'I'lkntiou lltn·kup
Lan; u .. 'lge (XA..,LL) Extension of
HTML used to create the visual
elements of a Windows Presentation
Foundation (WPF) 11mdow.

F
lirld A group of related
characters used to represent one
characteristic or attribute of an
entity in a data me or database.

licld-level ,·aJidatiou Checking
the validity of input data in each
control as it is entered. rather than
waiting until the user clicks a
button.

lile A collection of related
records.

FillEllipse method Method
of the Graphics object: used to
draw circles and ovals.

focu s The currently selected
control on the user interface. For

controls such as buttons. the focus

appears as 11 light dotted line. For
text boxes. the insert ion point (also

called the cur$or) appears inside
the box.

Focus lllf'lhOtl Sets the focus lo
a control. which makes it the
active control.

For :1ntl Next .. t:ltl'mf'nt' A

loop structure: usuaiJy used when

the number of iterations ib kno ... n.

For Each ::md Next A looping
construct for stepping th rough w1

array: each e lement of the array is

accessed without the necessity of
manipulating subscripts.

For / Next lon11 A loop structure:

usual I y used when the number of
iterations is known.

Fot'eColur· J'I'UI'"''ty Property
that determines the color of the text.

for•nt An object thutaC'Is a.' a
container for the controls in a
graphical interface.

Fonu Designe r The IDE
11indow for creating the user
interface.

format A specification for the
way infonnation will be displayed.

including dollar signs. percent
signs. and the number of decimal
positions.

fo1·mat s pecifien. Codes used
as arguments for the ToString
method: used to make the output
easier to read. Can specify dollar
signs. commas. decimal positions.
percents. and date formats.

FormOosing e,·e m Occurs
before a form unloads. A good
location to place the code to
prompt the users if they wish to
save any changes.

G I , 0 S S .\ ll V

Fr i end The ttccess level
specifier that limits access to the
forms in the current project.

FromFile me thod Retrieves an

image from a file.

fmtctiou Petforms an action and
returns a value.

fwJctlo u procedw·e A
procedure that returns a value.

G
gm·hngc colle t:tio 11 Automatic
deletion of objects from memory
after they are out of scope.

geue ml pt·ocedw·e A procedure
not attached to an event; may be a
sub procedure or a function
procedure.

!;I'::I Jihic:tJ usct• inle t·facc (GUI)
Program application containing
icons. buttons. and menu bars.

g t·apl1ics Lines. shapes. and
images. An image file assigned
to a Picture Box control; methods
of the Graphics class . such as
OrawString.OrawLine.and
DrawEllipse.

Gt·ou)tBox ronu·ol A control
used as a container for other
controls. such as a group of radio
buttons.

H
h nndle A small square on a

selected control at design time:
used to resize a control. Also
called a resizing handle.

Help The collection of reference
pages about programming in VB
and using the Visual Studio IDE.

Hide me thod Method of a fonn
or a control that males it invisible
but does not unload it from
memory.

ho rizouta l Sl' ro ll bm· A
Windows control that provides a
scroll bar that appears hori7..ontally
on the form.

I
LDE Integrated del'elopment
environment. See Visual Sttulio
environment.

identifiet· A name for a variable.
procedure. class. or named constant:
supplied by the programmer.

If /Then/ Else Statement block
for testing a condition and taking
alternate actions based on the
outcome of the test.

hua,!;e prore t·ty A graphic file
Kith an extension of .bmp •. gif.
.jpg .. png . . ico •. emf. or xmf.

immutable The inability of a
string to be modified once it is
created. A new string must be
created for any modifications.

implicit con vet·sio n A
conversion (rom one data type to
another that occurs automatically
or by default according to specified
rules.

index Position witl1in a list or
array.

infot·mation a5sm·rutce Secure
programming measure to provide
accurate and timely transfer of
information.

inbe t'itauce Ability to create a
new class based on an existing
class.

instance An object created from
a class.

instance propet·ty See instance
variable.

instance vru'iable Each object
created from t11e class has a
separate occurrence of the variable.

ius tau tiat•• Create an object
using the New keyword.

649

iutegra ted tlm·e lo llmcnt
e nviroUlllenl (IDE) Tool for
writing projects and solutions:
includes an editor. tools. debugger.
and other features for faster
development.

TnterYal pt·ore rty Determines

the amount of lime until a Tuner
component fires a Tick event;
measured in milliseconds.

iutt·anet Network within a

company.

intt·insic constant Constant

supplied with a language or
application such as Color. Blue.

lsl\'lcliCont ainc t· pro pe rty Used
to create a parent fonn for MDI.

Items JH'OJWt·ty Collection of
elements for a list box or combo
box control.

Items .Add m e thod Adds
elements to the Items collection of
a list box.

Items. Cl ear method Clears all

elements from a list box.

Ite ms . Count)l i'O)l("l 'l Y

Property that holds the number of
elements in a list box.

It11ms. Ins11rt me thod Inserts

an element in a list for a list box.

I terns . Remove me thod
Removes the currently selected
item from a list.

I terns. RemoveAt method
Removes the specified item from a
list.

iteratio n A single pass through
the statements in a loop.

650

K
key field The field (or fields) on
which a data file is organized; used
to search for a record.

L
La bel A control that displays
text: cannot be altered by the user.

Language lntegrated Quer·y
(U:NQ) .NET feature that allows
SQL-Iike queries to be written in
VB code.

LargeCbange pro(Jer"t.y A
property of a scroll bar that
determines how far to scroll for a
click in the gray area of the scroll
bar.

late binding Program elements
cannot be detennined at compile
time. but must be determined at
run time. Should be avoided. if
possible, for performance reasons.

layoutMdi me thod Arranges
MOl child windows vertically.
horizontally. or cascaded.

lifetime The period of time that
a variable exists.

line-continuation character
A space and underscore; used in
program code to indicate that a
Basic statement continues on the
next line; not required under
certain rules.

ListBox couu·ol A control that
holds a list of values: the user
cannot add new values at run time.

local TI1e scope of a variable or
constant that limits its visibility to
the current procedure.

local var iable A variable that is
declared within a procedure and
may be used only in that procedure.

Locals windo w Window that
opens in IDE during execution;
displays all objects and variables
that are ~tithin scope at break time.

logic enor An error in a project
that does not halt execution but
causes erroneous results in the
output.

logical oper-ator· The operators
And. or. Not. AndAlso and
OrElse; used to construct
compow1d conditions and to
reverse the truth of a condition.

loop A control structme that
provides for the repetition of
statements.

loop index A counter variable
used in a For/Next loop.

M
l\:[a<>kedTextBox A specialized
form of text box that includes a
Mask property. which can indicate
to the user the format of data
expected and require the correct
data type and format of input.

Maxinmm pro pe rty Scroll bar
property for highest possible value.

l'i axLe ugtb pr·oper·ty Properly
of text boxes that limits the number
of characters the user can enter as

input.

l\:LdiWindowListltem pr·o(Jer·ty
Detennines whether the menu will
display a list of open MDI child
windows: used on the Window

menu.

m enu A list of choices; the
available commands displayed in a
menu bar.

J\f euu Designe r· Feature of the
development environment for
creating menus; accessed by
adding a Main Menu component to
the component tray.

J\f enuSu·ip component A
control used to create menus for
forms.

J\'lessageBox A dialog box that
displays a message to the user.

Glossary

me thod Predefined actions
(procedures) provided ,~; th objects.

Minimum proper-ty Scroll bar
property for lowest possible value.

modal A dialog box that
requires a user response before
continuing program execution.

modeless A dialog box that does
not require a user response before
continuing program execution.

module-level varial>le A

variable that can be used in any
procedure within the current code
module.

Mo useDom1 event The event
of a form or control that occurs
when the user presses the mouse
button.

M ultili:ue propel't y Boolean
property of many controls.
including labels and text boxes.
that allows text to appear on
multiple lines. WordWrap must
also be set to True.

multiple docmuent inte rface
(MDO Multiple form project that
has parent and child forms.

mu.ltitie t· a pplication A
program designed in components
or services. where each segment
performs part of the necessary
actions. Each of the functions of a
multitier application can be coded
in a separate component and the
components may be stored and run
on different machines.

~tustlnherit Modifier on a
class definition. The class cannot
be instantiated. but instead must
be used for inheritance.

Mustoverride Modifier on a
procedure defmition; requires that
the procedure be overridden in an
inherited class.

My. Computer·.FileSystem VB
specific objects for accessing files.

GJ, OS SA RV

N
Name pt·operty The property of
an object that is used to reference
the object in code.

nam ed constant Constant
created and named by the
developer.

nruuespace Used to organize a
group of classes in the language
libraty: the hierarchy used to locate
the class. No hvo classes may have
the same name within a namespace.

nruuespace-level variable A
variable that can be used in any
procedure within the cutTent
namespace, which is generally the
current project.

nested If An If statement
completely contained within
another If statement.

neste d Try/ Catch block A
Try I Catch block completely
contained within another
Try /Catch block.

NewLiue char·acter TI1e Visual
Studio constant Environment .
NewLine or ControlChars .
Newline: used to detennine line
endings.

Next metllod Ketums the next
in a series ofrandom numbers for
an object of the Random class.

node (Xl\JlL) A branch of the
tree. The ftle can have only one
root node and multiple child
nodes.

Nothing An object variable that
does not have an instance of an
object assigned. Formerly used to
destroy an object.

Now propet·t y Current date and
time from the Date Time structure.

0
object An occurrence of a class
type that has properties and

methods: a specific instance of a
control type. fotm, or other class.

object-ot'icnte d pi'Ogt·rullllliug
(OOP) An approach to
programming that uses classes to
define the properties and methods
for objects. Classes may inherit
from other classes.

Opeu F ile Dialog Common
dialog component used to display
the Windows Open File dialog box;
allows the user to view files and
select the file to open.

Option Explicit Setting this
option On forces variables and
objects to be declared before they
can be used.

Option Strict Setting this
option On enforces strong data
typing.

ot•der of pt·ecedence
Hierarchy of mathematical
operations; the order in which
operations are perfonned.

overload ing Allows a method
to act differently for different
arguments. Multiple procedures in
the same class with the same name
but '~ith different argument lists.

overriding A method in a
derived (inherited) class with the
same name and argument list as a
method in the parent (base) class.
TI1e method in the derived class
overrides (supersedes) the one in
the parent class for objects of the
derived class.

p
pat·arnete r·ized cousu·uctor A

consttuctor (Sub New) that
contains an argument list: as
opposed to an empty constructor.

)lll l'll lllP.lfWi 7.N I fJliP. l'Y A
database query that allows a value
to be supplied at nm time.

6Sl

parent class The base class for
inheritance. also called a super
class.

par·ent fo1·m MDI container for
child fom1s.

Pascal casing The naming
convention that specifies mixed
case names; the first character
must be uppercase and the first
character of each word within the
name must be uppercase; tl1e rest
of ilie characters must be
lowercase.

Peek m ethod Used to look
ahead to determine if records

remain in a file stream.

l'en object Graphical object for
drawing lines and shapes.

Picun·eBox cou tt·ol A control
used to display an image.

p ixel Picture element: a single
dot on the screen; a unit of
measurement for displaying
graphics.

Poiut su·ucuu·e Holds X and Y
coordinates as a single unit.

polytnorphism OOP feature
that allows methods to take
different actions depending on the
situation. Methods may have the
same name but different argument
lists. Also refers to the naming
convention of naming methods
with similar actions the same in
each class.

post back A round-trip to the
Web server.

posttest A loop that has its test
condition after the body of the
loop: the statements within the
loop will always be executed at
least once; also called an exit test.

pretest A loop that has its test
condition at the top; the statements

inside the loop may never be
executed: also called an entry test.

652

Print method A method of the
PrintDocurnent class to begin
executing code for printing.

l>riu t J>l'eview View the printer's

output on the screen and then
choose to print or cancel.

PrintOocument component
Contains methods and events to set
up output for the printer.

PrintFot·m A method of a form
that prints the form in its current
state; can be set to print on the
printer or the Print Preview
window.

Pr int.Page event pt·ocedm·e
Contains the logic for printing.

Print Pt·eviewOialog component
Used to allow print previews for an
application.

Private Variable or procedure
declared with the Private
keyword; available only inside the
current class.

pro cedm·e A unit of code: may
be a sub procedure, function
procedure, or propetty procedure.

Professional E<Utiou A version
of Visual Basic that includes fewer
features than the Team System
edition but more features than the
Standard and Express editions.

Project Designer· A tabbed
window of the IDE used to view
and set the project's properties.
Displayed from Project I

ProjectName Properties.

pt·oj ect m e A text file that
contains infonnation about the
current project. Displays in the
Solution Explorer and can be
viewed and edited in a text editor.

P t·ulU:lJ·tim; wituluw A wiuJuw

iJ1 the IDE used to set values for
propet1ies at design tilne.

proper-ty Characteristic or
attribute of an object; control
properties may be set at design
time or nm time dependiJ1g on the
specific property.

pt·operty procedure Procedure
1nitten with Set and Get keywords
to pass values to and from private
variables iJ1 a class.

Protected Access modifier for a
variable or procedure; behaves as
private but allows iJ1heritance.

pseudocode Planning tool for
code using an English expression
or comment that describes the
action.

Public The access level
specifier that allows access from
all classes.

R
t·adio button A control used
to indicate a value that may be
True or False (selected or not
selected). In any group of radio
buttons. only one button may be
selected.

Rando m class Used to create
Random numbers.

ReadAllText rne tl10d A simple
method to read an entire text file
into a variable. The method opens
a file. reads the data. and closes
the file automatically.

Readline me tJ1od Reads one
record from a file: reads to the end
of the line.

ReadOnly A property that can be
retrieved but not set by extemal
classes; indicates that only a Get
method exists for the property.

•·cc unl A group uJ relateJ fields;

relates to data files and database
tables.

Clo.sary

Rectan gle su·uctm·e Defines a
rectangular region. specified by its
upper-left comer and its size.

t•cfaetoriug Fcntw'C of some .NET
languages that can automatically
change the name and class of
variables and objects. VB provides
only for renaming variables.

r·elatioual O)Jer·ator Used to
compare two fields for greater
than >, less than <. or equal to =.

t•emark A Basic statement used
for documentation; not interpreted
by the compiler; also called a
comment.

t·esiziug baudJe See handle.

t•etm·u value Value returned
from a function.

r eusability Code modules
that can be used in multiple
projects.

RicbTextBox A specialized
form of a text box that allows
formatting of the Text property. lf
an .rtf tile is loaded into a
RichTextBox, the text appears
properly formatted.

t·o w A horizontal section of a
grid control.

run time During the time a
project is executing.

nm-Lime eJ-rot· An error that
occurs as a program executes;
causes execution to break.

s
scope TI1e extent of visibility of
a variable or constant. The scope
may be namespace. module-level.
block, or local.

Sct·uU C\'Clll Staull Lar eveut

that occurs as the user moves the
scroll box.

G L 0 S S A H V

Select case Selection
structure: can be used in place of
an If statement.

Select Resource dia log box A
dialog box in which the image and
sound files of a project can be
added and selected.

Selected Judex pt·opet·t y Index
of the item currently selected in a
list box or combo box.

separatm· h:tt• A horizontal line
used to separate groups of menu
commands.

SetBounds me tJ10d Sets the
location of a control: used to move
a control.

SetError m ethod Defines the
message and tums on the error
message for 11n ErrorProvider
control: used for validating input
data.

sh ar ed pt·opcrty A property
that can be used by all objects of
the class; generally used for totals
and counts. Only one copy exists
for all objects of the class.

sh~u·ed vnl"inhle One variable
that can be used by all objects of
the class: generally used for totals
and counts.

shor·t cin •nit Skipping the
evaluation of parts of a compound
condition tl1at are not required to
determine the result.

shortc ut me nu The menu that
pops up when the right mouse
button is clicked. Also cnllcd n
popup menu, cont~t menu. or
right-mouse mem~.

Show "'''' hn<l [);,.play!< a fonn
or message box. A form displayed
... -ith the Show method is modeless.

ShowDialog method Displays a
common dialog box or a form: the
form is displayed modally.

siblings (XML) Elements at the
same level as each other.

siguatm·e The name and
argument list of a method or
procedure.

simple com ho hox Fixed-size
combo box.

siluJ>Ie lis t hox Fixed-size list
box.

single do1•umcnt interface
(SOl) Forms act independently
in a multiple-form project.

srngle-Oic model A style of
Web Form in which the VB code
and HTM L are contained in the
same fil e.

Slzc su·uctm·e A size specified
by width and height; measured in
pixels.

SizcModc Jli"O(lCI"LY Allolt'S the
size of an image in a picture box to
stretch.

SmaiJChanl,!C pt·oper"ty Scroll
bar properly for amount of move by
a click on an arrow.

snap liucs Guidelines that pop
up on a form during design time lo
help align the controls.

sulppct. See code snippet.

s olution A Visual Basic
application: can consist of one or
more projects.

SoluLion Explorer "'indow
An IDE window that holds the
filenames for the files included in
your project and a list of the
classes it references.

solutlon fil e A text ftle that
holds information about the solution
and the projects it contains.

SortedList A collection type
that is based on a Dictionary;
contains an automatically sorted
list of elements . each consisting of
a key and a value.

6S3

Sorte<l pr·opct·ty Property
of a list box and combo box that
specifies that the Jist items should
be sorted.

SomnlLoc:t tion pi"Operty The
path of the sound file played by the
Sound Player component.

So1U1dPiayer· COili (JOueut A
component that allows the user to
play a sound file.

spla,;h sct·ccn A MindoM· that
appears before the main application
windon·: generally displays
program information and gives
the appearance of quicker
application loading.

S lan(hll"d Edilion A version of
Visual Basic with fewer features
than the Pr·ofessional and Team
System versions.

St:u·tPo>'ition pt·opet·ty
Determines the screen location of
the first form in a project M·hen
execution begins.

st:ll'tup fo rm The main form:
the first form to display after the
splash screen.

statt>l(•i<S Does not store any
information about its contents from
one invocation to the next.

Static A local variable uith a
lifetime that matches the moclule.
The variable retains its value as
long as the form is loaded.

status har An area along tl1e
lower edge of a window used to
display information for the user.

S t:ttu:<Su ·l p couu·ol A
container control that creates a
status bar across the lower edge
of a form.

Step Into Debugging colllJDand:
executes each statement. including
those in called procedures.

Step OVer Debugging command:
executes each statement in the

654

main procedure but does not show
statements in called procedures.

su·eam An object used to
transfer a series of bytes from one
location to another.

Su ·eamRe ader Object used to
iJ1put small amounts of uuormation
stored iJ1 a disk file.

Su ·eam W r·ite r· Object used to
write small amounts of uuormation

to disk.

Stretch/mage Setting for the
value of the SizeMode property of a
PictureBox control.

string lite r·al A constant
enclosed in quotation marks.

s u·ongly typed A feature of
VB that requires the programmer to
always be aware of the data type.
If you assign data to a wider type.
VB can implicitly (automatically)
convert for you; if you are
assigning data to a nan-ower type.
where precision or accuracy might
be lost. VB will generate a
compiler en-or.

str·uctm·e A grouping that
combines multiple fields of related
data.

sub procedm·e A procedure
that performs actions but does not
retum a value.

s ubclass A derived class; also
called a child cla.ss.

submenu A menu within a

menu.

s uhscr·ipt The position of an
element within an array: also
called an index.

subsct·ipted variable An
element of an array.

super·class A base class for
inheritance. also called a parent
class.

s yntax error An error caused
by failure to follow the syntax rules
of the language; often caused by
typographical errors. The E ditor
iruonns you of syntax errors.

System .[O uamespace Holds
the stream objects for reading and
writmg data files.

T
Tablndex pr·operty Determines
lite on.ler the focus move::; as lite

Tab key is pressed.

table A two-dimensional array.

table adapte r· An object that
handles retrieving and updating of
the data in a dataset.

table lookup Logic to find an
element within an array.

TabStop property Determines
if a control can receive focus.

Te am System Edition The
version of Visual Studio with the
most features.

rext box A control for d ata
entry: its value can be entered and
changed by the user.

Text pt•operty The value that
displays on a control such as the
words in a text box or label.

1'extAlign propet·ty Used to
change the alignment of text within
the control.

1'extFieldl'm·ser· Object used to
read a delimited file and separate
it into its individual fields.

Tick event One firmg of a
Tilner component; each time the
interval passes. another Tick event

occurs.

Glo3Sary

T·nue r· component Fires Tick
events at a specified time interval.

To lower metbod Converts text
to lowercase letters.

toolbar The bar beneath the
menu bar that holds buttons; used
as shortcuts for menu commands.

tooU>Ox A window that holds
icons for tools; used to create
controls and components on a form.

TooLStriJl cont.rol A container
control that creates a toolbar on a
form.

TooiSu·ipStatusLabel object
Individual item on a StatusStrip
control.

TooiTip Small label that pops
up when the mouse pointer pauses
over a toolbar button or control.

TooiTip component Placed on a
form to allow the individual controls
to display ToolTips. A ToolTip
property is added to each oontrol.

TooiTip ou TooiTipl prope r·ty
TI1e new property added to each
contml when a Tool Tip componen t
is added to the form.

To Upper mP.r.hofl C:onvP.rtf' I.P.JCI

to all uppercase.

Try / Catch block Traps user
errors or progr8111 errors.

u
user inte rface TI1e display and
commands seen by a user: how the
user interacts with an application.
ln Windows. the graphical display
of an application containmg
controls and menus.

Using block A group of
statements bounded by Using and
End Usi ng; any variables declal'ed
inside the block are not available

outside the block.

GJ, OS S ARV

v
validation Checking to vedfy
that appropriate values have been
entered.

validato•· conu·ols Controls
that can automatically validate
input data; used on Web Forms.

value keyword Incoming value
for a Set clause in a property
procedure.

Value pt·operty Holds the
cm'fent setting of a scroll bar
control.

ValueChauged event Event
that occurs when a scroll bar
control is scrolled.

varia ble Memory location that
holds data that can be changed
during project execution.

vm·tical sct·oll bar· A Windows
control that provides a scroll bar
that appears vertically on the form.

Visible pt·ope•·ty DetermiJ1es if
a control can be seen or not.

visual inhe l'itance Inheritance
of the visual elements of a form.

Visual Smdio en vironment
The development environment
including tools for designing the
intertace, editing program code,

and runnmg and debuggiJ1g
applications; also called the IDE.

w
Web }' onn Form in Visual
Studio for creatillg pages that
display m a browser.

Web p age A sialic page
consistiJ1g of HTML elements:
displayed m a browser application.

WehBt·o wsm· control Displays
Web pages on a Wu1dows form.

Windows Presenta tion
Fotmdation (WPl') Technology
for creatillg rich user interfaces.
such as those used in Windows
Vista. Can use WPF interoperability
to include WTF controls on a
Windows Form, use a WPF
Application template to write a
WPF application. or use a WPF
Browser template to create a
browser application.

With and End With state meuts
A block of code that refere to the
same object. The object name
appears in the With statement; all
subsequent statements until the
End With relate to that object.

With block The lines of code
between a With and End With

statement.

655

Wo1:dWrap prope1'ty Boolean
property that allows text to wrap to
a second line. MultiliJ1e propet1y
must also be set to True.

Write m ethod Writes one
record to a stream object; does not
include a caniage return.

WriteAllTe xt me thod A
siJnple method to write a text file.
The method opens a file. writes the
data, and closes the file
automatically.

Wri teline method Writes one
record to a stream object; includes
a carriage return character at
the end.

X
XAJ\fL Extensible Application
Markup Language.

XAML Browse•· Application
(XBAP) A WPF application
that runs in a browser. The user
interface is created usiJ1g XAML.
See Extensihle Application Markup
Language.

XML Extensible markup
language. A fonnat for data;
popular for data storage and
transfer on tbe Internet.

Index

SYMBOLS
- (subtmc tion) operator. 118

- = •••igunent operator. 120. 121
. (comma). opecifying two dimcn•i0011 to on

nrray.338
I (divioion) operolor.) 18
I= •••ignonent operator. 120. 12'1
:(colon). •• olatemenlle m>inalor. 158
I (integer division) operator. 118
I= asoignme nt operator, 120
+(addition) opemtor. 118
+ operutor. concutenution ,.; th. 89
+= ... sign men! opemtor. 120. 121
= (equol •ijy>). meaning of. 159
= (equal to) c"Ompanson operator. 159

·• ... :• in o <liolotr; box. 218
oiw>"' enclooing loter.U vnluco for

d31eo. 6 18
& (wnpei'IWld). See Amperound (&)
&= a,.,iplment operotor. 120. 121
• (multiplicalion) openotor. 118
•= """ignnoenl operator. 120. 121
"(e•ponenti31ion). 118
< (le .. than) comparison opemlor, 159
<= (1.,.. tbon or equal to) comparison

operator. 159
<>(not equal to) con>parioon

operator. 159
< > (otart-1118 ond end-tal!). in XML 583
> {l!reater than) compartiom operator. 159
>= (8fealer than or equal to) comparioon

operator. 159

A
Ahottt box. 216. 253
About Box lemp1ate. 253-256
Abs (abi!Oiute value) method. 623
Abi!Oiute pooitioning. 373. 374
Abstract cl 491.496

A bstroct onelhod•. 491
Abstraction. Ui9
Ac~"epl button. 79
Accept Button property. 79
Acceoo.o leJ11. 78-79. 21 1
AC<:e<s level. 261.
Ae<:el<OIIlj!. properto..,.-192
A.,._,·Je,..,J leywonds. 261

Aceeuor melhodo. <174

656

Accumulators. 331-333
Acronyms. Web. 386
Activated event. of a fonn. 26()...261
Active control. alil!lling to. 77
Active Files button. in Document " 'indow.

251. 252
ActiveX Oala objects (ADO). 398
Add ASP.NET Folder. 421
Add Claso. from the Project menu. 477

Add Connection dialog box, 405
Add Existing item command. 252
Add method

of DateTime. 616
of lteD1!0. ~287. 455
oett.ing a dale. 619

Add New Item dialog box. 250. 257. 258.
365. 380.381.477

Ad<! property. ofSortedList. 344
Add WHERE Clause dialog box.

424. -126
Add 1r.ndo..-. Form. 250. 251. 253. 25.1
Addition (+) operator. 118

ADO.NET. 398
AJAX (AsynchrollOUS JavoScnpt and

XML). 384-386
AJAX Exten.ions controL.. 369
Algellr.Uc comparison• . 159
Alijy>ment

of controls . 7~77
of decimal colwnns. 306

Alijy>ment apt ions. of Format menu, 635

AIJo,.·Orop property. 546. :.48
Alphabetic order. sorting properli""

ill.23. 25
All + right arrow editi"l! .hortcut. 638
A It key. viewing access keys. 78
American National Standards Institute. &t!

ANSI code
Amper"""d(&)

in concatenation. 89
in front of access key character. 78
specifying key for keyboord

access.2ll
And logical opernlor. 163. 165

AndAlso logical opendor. 163. 165
Animation. 532-535
ANSI code. 160. 16 1
APL .. NET version of. 5

Apootroploeo
add ins to tloe besinning of code

lines. 199
l>ej!inning rema rks. 30

App_Oata folcler. 421
Application tab. list for Icon. 268
Application•

adding context menus to. 222
adding oound to. 541-542

compommt~ of. 7
deployins. 61{)

deoigning for'"''" com·enience. 77-$
matching other Windowo

opJ>Iications. 77
multitier. 471-472
~Tiling Visual Basic. 6

Apply S ty!., •;ndow. 376. 377
Arpml<"nls

of the Poroe met hod. 116
psoaing By\'al or ByRe{. 227
pu&lng to prooodurett. 226-227

Arithn1elic operatioos. performing. 118

ArithmeticE.ceplion d 135
Array elements . referencing indirectly. 333
Array progamo. debui!Sin8. 333
ArrayGroup array. 335

Arroyo. 326
declaration otalemenls for. 327
including in 1tructureo.. 33()...331
• ith list boxeo. 3.36-337
multid imen•ional. 337-339
oununio'lg both directions. 3<10

AoTow keyo. nudging controlo. 635
A• Ootalype entry. 296
AocenJing. selecting for Sort Type. 418

ASCII characters. 160
ASP. NET

cre"tin15 \te b applications . 363
impenoonation by. 6.12-643
model. for matutj!ing controls and

code. 365
oerver cootrol~. 368. 369
validotor control.. 382-383

ASP.NET 1-. 363
ASP.NET Empty \leb Applicatioo

template. 36-L
.oopx el<lenoion. 363
asp~.d..,igner.•b file . 370

N D t: X

..asp.x.vb extension~ 363

uspx.vb !ile. 370
As>embly. friend access and. 2M
Assembly Information button. 255
Assembly lnfonnution dialog box.

255.256
Assignment operators. 120--121

Asoignmenl olale ments. 30-31.

33. 89. L20
Asynchronous JavaScripl and XML. See

AJAX (Asynchronous JovaScript
andXML)

Alan method. 623

Attribute elements, in an XML r.Je, 585
Attributes. in"" XML node. 583
Authentication. M2
Authorization. 642-643
AutoCurrect box fcuture. IS. 46
AutoHide. IDE windows. 63()..{i31
AutoHide pushpin icon. 17

Auto-implemented properties. 482
Automatic context menus.. 223
AutoPostBack. enabling. 423
Autos window. 194.198.333

AutoSize property. 2L 25.73.129

Average, calculating, 140

Axes. in an XML document. 585

B
Back constant. 173

BockColor property. 77. 86
Backgroundlmage property. of a form. 74
BackgroundlmageLayoul property. of a

fom1. 74

BackStyle property, of OvaiShape and
Rect:mgleShape. 73

Base clu ... <170. 496
calling the constructor of. 492

creating fo.r inheritance. 496

dcoigning. 496
inheriting from. 470

Base-class constructor. calling, 491

Ba.se-cluso properties. in the derived

class,492
Basic code. 6. 7
bin\Debug folder. 267.441
Binding souree. 401.402

Binding source objects. 40'2. 405
BindingNa,;gator component. 412. 413
BindingSource componenL 407. 4 12. 413
Birtbdate. entering in a text box, 576

Blank data. checking for. 176
Blank fields. validating, 38'2- 383
Blank line. creating. 42
Blinking icoo. displayed by

ErrorProvider. 561

Block-level declarations. 116
Block-level ,.,.,-iables. 113. 296
BookS...!e class. 477-481

BookSale example project. 13'2-133

booluuml. 582-583
Boolean data type. 108. 294
Boolean expressions

compound. 163-165
in lf statements. 159
viewing contents of, 196--197

Boolean vnriobles. in loop._ 294,

Border • .ell i ng. 7 4
Borde.<:olor property, 73

BorderStyle property
of labels. 129
of labels. textl><ues. and picture

bo-.. ... 74,

of • Jjnc. 73
of OvalShape and RectangleShape. 73

BorderW.clt.h properly, 73

Bowvl cont rols. 401. 409-<llO. 412-413
Break Alltoolbar button. 191
Break tin>e. entering. 298

Breakpoints

clearing. 199
inserting in code, 191- 19'2

placing. 486
retnO\'ing. 192
setting, 195

Breau. forcing during debugging.
1.91-192

Bro,.-.ers. 362
displaying Help in. 49

te>ti ng other. 3 70
Brush objects . 525. 526, 528-530
Buffer. copying data to, 445
Buoinet!l! ru1CI!. enforcing. 472

Busin""" Services tier. 471.472.473.484
Button too.l. 21. 2'2

Bullon~

adding. 40
adding event procedures. 40.41

cl1ongi ng location a.nd text of. 39
displaying multiple. 17~175

in a form~ 65
for a mes~~<Jge box. 137

performing o,·erlapping functions. 182
placing on fonns, 21
oetting properties for. 27- 29
specifying default. 174-175

for a Too!Strip. 5 73
By Ref key,.·ord. 227
Byte data type. 108
By Val keyword. 227

c
C (currency) code. 126. 127
C++. elements ofOOP. 3
Calculation error. 135

Calculations
breaking into smaller un.its. 231- 233
performing. 116-126

placing in a separate dass, 484

progromming emmplc. 129-133
with unlike data type•. 124-125
using in code. 120-121

in Viou11l Bn•ic. 106
Calendar controls. 576-578
CaU keyword. 181

Coli statement•, example. 181

Cullbock. 302

657

Called procedures. not displaying lines of

code in, 193
Culling

event procedures. 181- 182

procedure•. 226
Cancel buuou. selecting. 79
Cancel properly. for thee argument of an

event. 564

CancclButton property. 79
Capacity property. of Sorte<ll..ist. 344
Carriage return character~ choioes

for. 440
Cascade constant. in LayoutMdi. 572
"Cascading." in cascading style

oheets,376

Cuscnding style •heel ... Su CSS (c.w:ac:liug
style sheets)

Case Else clause.. 178
Cu.e •talemenl. testing. l 78
Ca.., slnlcture, 177- 178
Casting. 116. 124, 1 80
Cutch bloch. 134. 135
Causes Validation property. of controls., 5M
Cells. merging in HTI\1L tables. 372

CcnterScreen. setting StortP<>!ition

property to. 81
ChOlHandsOn project. 55-56

Ch02l·lands0n project. 94-95
Ch03BookSale project. 132-133

Ch03 Hand sOn project. 14:>-14 7

Ch04Hnnds0n projecL I 86-189
Ch05Bo .. ·l ing project. 232-233
Ch05Hando0n project. 23&-242

Ch061iands0n program. 274-277

Ch07Hands0n projecL 314.-317
Ch08Collection program. 345-347
Ch08Hands0n progrnm. 350-353
Ch09Hands0n progrnm. 392- 393

Ch10DataGridVie,.· project, 403
ChlODetails View project. 4ll-413
ChiOI..inqFileSystem project. 429-430
ChlOWebSelection project, 420-426

ChllHandsOn projecL 460-463
ChllStreamReaderReadFile program. 4.49
Chl2 BookSale Hands-On program.

5 1:h518
Ch12PassProperties project, 501-50"2

Chl2SBS project. 477-481
Chi2Visuallnheritance project. 498-500
Ch13 Drag and Drop program, 547-548

6S8

Ch13 Pie Chart Hands-On program.
553- 5S5

Chl3 Random Numbers program.
531--532

Ch13 Tm>er Animation program, 536--537
Ch 13Drag0roplmage program. 549--550
Ch13Scrol1Bars program, 5~41
Ch14 Calendar program, 577--578
Ch14 Error Provider program. 561--563
Ch14DataGridView project, 588
Ch14Validation program, 565--567
Chl4WpfHello\l'orld project, 595--597
Chl4XmlLiterals program. 587
Char data type, 108
CharacterCasing property, 563, 613
Check boxes, 69

c hecking the stale of multiple, 171

in a fo rm. 65
setting. 84
testing the value of, 170

Check marks . toggling on and off. 217--218
Checked property

of a check box, 69
of a menu items, 217- 218
of a radio button. 69
for Radio buttons and Check boxes, 84

CheckedChanged event. 69
CheckFileE:cists property. 450
<.:heckPathexists property, 4.50

Child class. 4 70
Child elements. 58S
Child forms, 569,570
Child nodes. 583
Child windoM'S, displaying multiple, 570
Choose Data Source dialog box, 405
Choose Default Environment Settings

dialog box, 9
Choose Toolbox Items dialog box, 592
Circle. drawing, 528, 529
Clasa files, adding exi5Ling to projects. 503
Class icon, in Object Browser. 504. 505
Class Name list, in the Editor windoM'. 43
Class variables, 486
Class-base<\ s tyle, 376
Classes

adding,493
creating. 468. 477-<Ul1

c reating objects, 4
defining properties of. 477478
derived, 49"2--493
designing. 4 73

exami.J1.ing, 504-506
hierarchy of. 470
instances of. 468
methods of, 475
ohjects usi11g, 483-490

planning, 6
properties in. 473475
reusable. 471

Class- level variables. See Module- level
variable(s)

Clean compile. 48
Clear All Bookmarks button, 637
Clear n1e thod

from Graphics, 529
ofltems, 290--291
ofSortedList. 344

Click event procedure, for the Print

bulton. 302
Clientiserver Web applications. 362--363
Client-side lffML controls. 369
Close button. of an IDE ~·indo,.·. 631
Close method. 31, 260

of StreamReader, 447
of Stream Writer, 44S, 447

COBOL, .NET version of, 5

Code
adding for a Web applications,

367--368
calculations in. 120--121
commenting out, 199--200
containing program logic for \l'eb

Forms, 363
dragging to the toolhox. 639
keyboard shortcuts for editing,

637-638
printing. 4344-
s tepping through. 192- 193
~·riling, 29--30
"Titing secure. Ma

Code access security, 643-644
Code Editor

e ntering If statements, 158
M..-iting event procedw-es. 261- 262

Code seporation model, 365
Code -.tippets, in Visual Studio, 568
Code-hehind file. for Web Forms. 363
Coding

for controls, 83--90
menu items, 216--218

Collating sequence. of ANSI code.
160,161

Collection types. examples of, 344
Collections. 285. 343--344
Collections names pace. 344
Colon [:), as s tate ment terminator. 158
Color cons tants . 86. 525, 526
Color dialog box. 220--221
Color keyword, 86
Color property. 220-221
Colors

radio huttons selecting, 86-88
specifyiitg a large number of, 86
in the user interface, 77

Columns
adding, removing, reordering, 407
adding or deleting in Web Fonns. 372

data arranged in, 337
setting properties of. 408
in tables. 398

Combined assignment operators.

120--121

lnde.•

Combo box selection, converting to.
414416

Combo boxes
behavior at design time, 28S

styles of. 284
types of. 284, 285

ComboBox control
selecting as a type of menu item. 214
selecting for a field. 4 1.4

ComboBox Save and Read program. XML
version of, 588--589

ComboBox tool, 284-
Comma (,), specifying two dimens ions to

an array, 338
ConunandText property, 417
Comment out the selected lines button,

199.200
Comment Se lected Lines command, 637
Commenting out code. 199--200
Comments, 583. See also Re mark

statements

Conurussion fuJtction. 229
Common controls tab, in the toolbox. 64
Common dialog components, 219--220
Common Language Rw>time (CLR). 5,

134-,616
Compare method, of String, 624-625
CompareValidator control. 382
Comparison operators. 15\1. 17ll

Comparisons. sample. 160
Compile error, 45
Compiling, 48
Component tray. 40, 41, 81. 8'2
Compone nts, examining in a fonu, 407
Compound Boolean expressions, 163--165
Concatenation. 68. 89
Conditions. See Boolean expressions
Configure tl1e Select Statement page. 4.22,

423.424
Connection objecl5. See BindingSource

compone nt

Cons t keyword, 109. 266
Const statement. 110. 114
Cons tant list. in a Case structure. 178
Cons tants, 106

adding,494
assigning values to. 110--111

comparing, 159--160
declaration s ummary for, 266
declaring at module level, 114
example. 111
guidelines for declaring. 266-267
from the MessageBox class, 137
for Me,..ageBoxlcon. 137
named. 109--110
numeric. 110

Constructors, 4 75, 4 76
adding for subclasses, 493
in inheritance. 490491
overload ing, 476

~Titing. 4 79480

N D t: X

Containers, for other controls. 68
Containers tab. in the toolbox. 64,

Contains method. 344
Contains Value method. 34*
Context n1enus

automatic, 223
creating. 222- 224
rusplaying, 23

ContextMenuStrip, adding. 222.
223 224

Context-sensitive Help, 50. 639
Continue buuon. clicking on. 47
Conti nue command. 193, 197
Continue statement.. 299

Control type, choosing forfields. 418--419
Control Chars constants, 113
Contl"ols, 3

adding to ne"' Web pages. 380
a<lding to \VPF applications. 596
aligning. 76-77
c hanging multiple properties of.

88-89
c hoosing for program output, 128-129
coding for, 83- 90
creating multiple. 40
deleting, 21
deselecting, 75
disabling, 85
entering in HTML tables, 372- 373
introducing more, 64-74
moving, 21.76
Name property of. 27
naming. 48
nudging into place, 635
as objects, 4
placing on forms. 19- 23. 72
positioning on a Web page. 373,374
properties for multiple, 76
resizing, 21
retaining contents of for Web

applications. 383
selecting. 21, 75
snap lines aligning, 635
spaci ng between. 77
tab order for. 7~1
for Web Forms. 368
working .. ·ith multiple. 74-77

Convention~ \1ariables and named

constants. See Narniug
conventions

Conversion operation. failure of. 13S

Convert class. methods of. 124
Convert methods. 626-621
Convett .ToDateTime method. 619
Cookies. storing, 363
Coordinate system, 527-S28

ComerRadius property, 73
Cos method, 623
Count property

of Items, 288

of SottedList. 344.

Counter-controlled loop. elements of. 296
Counting. module-level variable for. 140
Cr constant , 173
CreateGraphics me thod, 525

Credentials. authentication based
on. 642

CrLf constant. 173
Crossbai r pointer,19. 20
Crystal reports, 30 I
CSS (eMending ntylc shccto). 375 379
.css file. auaching an external, 375
CSS Properties windo,.·, 376. 377. 379

Ctrl + A. 75
Ctrl + Alt + L. 632
Ctrl + Alt + T, 638
C:trl + Alt + X, 632
Ctrl + Backspace. 638
Ctrl + Break, 298
Ctrl + Delete, 638
Ctrl + End, 638
Ctrl + Enter. 638
Ctrl + F6. 632
Ctrl + Home, 42, 638
Ctrl + Shift + l!:nter. 638
Ctrl + Shift + T. 638
Ctrl + Spacebar, 638
Ctrl + T,638
Ctrl + Tab, 252. 632
Ctrl + Y.638
Ctrl key, selecting multiple controls , 75
CType function, 180
CurDir method, 584
Cursor. for text boxes. 79

D
D {long date) code. 128. 617
d (short date) code. 128. 617.618
D or d (digits) code, 127

Data
checking for blank or

no nnumeric. 176
formalling for<lisplay, 126-129
writing,445

Data access. in Visual Studio. <W 1-402
Data applications, running, 407
Data bi nrung

for a comho box. 414-4.15
setting up, 401

Data controls, for Web Forms. 368
Data Desijmer. open in~(. 409
Data fields. binding individual. 409-413
Data files, s toring and retrieving. 4.38
Data hiding. implementing. 469
Data property, in DragDrop event

procedure. 54 7
Data source

passing data from, 402
setting to an SQL database, 422

Data Source Configuration Wizard.
410-411. 412

activating, 403-404

Choose a Data Source page, 425
Choose a Data Source Type page,

404,422
Choose Yom Database Objects

page,406
Configure the Select Statement

page, 422, 423
selecting fields, 416,417

Data Source Update Mode, 415,416
Ootn Sources window. 410 411

adding a new data source, 410
opening. 412
selecting control type for a hound

control.413
Data tie r. 472

659

Data type(s), 107- 108. See also VB data
types

declaring for a variable. 111
declaring for an atTay. 327
methods for conversion between,

626-627
perfomting calculations with

unlike,l25
Data type conversions. performing

implic itly. 123-124
Database applications~ creating~

403-409
Database file. copying in the current

folder.406
Database management systems

(DBMS•), 398
Database objects, overview of. 401-40'2
Database schema file. 409
Database tables, selectiJ1g fields

from. 416
Databases. terminology of. 398-.399
Data-hound controls. See Bound

controls

Data-bound te'i boxes. form with. 410
DataGridView control

adrung a new data source, 404.
adding to a form, 403
displaying data, 427

displaying fields. 403
formatting. 407-409
UNQ query filling. 429
selecting in multiple fields.

587-SSS
on a \l'indo-..'S Fonn, 401

DataSet component, 407. 412, 413
Dataset schema. 417

Datasets. 402, 416
DataTip, 192. 369
Date(s)

custom formalling for. 618
finding difference between, 619

formatting. 617,618
working with , 616-619

Date and time, displaying, 575
Date codes, as case sensitive, 128

Date controls. 576-578

660

Date <lulu type. 108. 616. 619
Date format. converting ,-alues to. 619
Date properly. of D .. te1ime,616

Date vmiablea. 618

DateTi me structure, 128.575.616-{;17

Date Time values. formatting. 128
DateTi mePicker control. 576
Day of the weel:. checking for. 619

Day property. of DateTime. 616

DayOfWeek properly. of DuteTime. 616
DayOfYear prope11y. of Datenme, 616
DBMS.. (database management

oyl'lem•). 398
DDB (douhle-declining·balll.lloo)

function. 622
Deactivate e,·ent. of a fom1, 261

Dehug menu.l90. 193

Debug mode . entering. 1~196
Debug output. writing, 190-191

Debug time. 14
Debuwng.47

array programs, 333
forcing breaks. 191-192
projects. 189-194. 486
tutoriaL 19f>-200

Debugging mode. 189. 199
Debuwng ..-indow•. 194
Decimal (D) type-declaratio~

chDrncter. 110
Decimal class. Pan<e method. 117

Decimal columns, aligning. 306-307

Decimal data type. 45. 107. 106
Decimal fraction._ rounding. 1.25
Decimal positions. for format specifier

codes. 127
Decimal. Round method. 125
Decision symbol. 158
Deci~ions. made by a computer. 156

Declo.ration statement•. 107
for arrays. 327
entering for variables. 112-113

for two dimensional array•. 338
for variables. 111-112

Declarations. for variables and constants_

266-267
Declarations section. 42. 114
Default button. specifying. 174-175

Default constn.tclor, 476
Default names. assigned by Visual

B35ic. 49
Delete All Breakpoints. from the Debug

menu. 199
Delimited files. 439-444
Delimiters. 4<W. 442
Deployment. of applications. 640
Depreciation. functions calculating, 622

Depreciation function. 620
Derived classes, 470, 491,492--493
Descendant elements . of an XML ftle. 586
Description pane. in Object Browser. 504

D~•ign tab. of Viroul Weh Developer
IDE.366

Design time. 14

Dc•ign view, table in. 372. 373

Designer M'indo..-. 11
designer.vb file. 470

Deot nu:t ""'· 4.75. 489
Details. 401

Details view. 411--413.419

DctailaView control. 423.425. 426
DetectUrl p roperly. 67
Dialog boxes. 219-221

DiologResult oonl'lants. comparing to. 174
DialogResult object. Show method

returning. 173
DialogResult type. 174

Dial<>glO t<1b. of the toolbox. 219
DictionaryEntry data type. 345
Dim keyword. 266. 327
Dim ret~erved .. -ord. 112

Dim state ment. 111. 112. 114
Direct reference. 332. 341

Diouhled itmno. in • menu. 217
Disconnected datasets. 4m
Display. formatting data for. 126-129

Dispo11e method. from Cr•phie11. 529

Di,·ision (/) operntor. 118
Do loop. 299

Document(s). 632
Document w:indows.ll, 12-13.

17. 19.633

Documentotion. oC projects. 42
Document Completed event. 579
DocnmentTitle property, 579

DocumentTitleChanged event. 579
DoDragOrop method. 544--5115
Do/Loop

fom1s of. 29'2-294

.. ;th" list box. 294-295

for a table lookup. 334
using, 297

Donble (R) type-dednrotioo charocter. llO
Double data type. 108

Double spacing, in a message box.

172- 173
Double-declining-balance (DDB)

method. 622

Drag-and-drop editing, 639
Drag-and-drop programming. 544--550
DragDrop event. 544. 545. 546. 54 7
DragDroplmage program, 549-6..50
DragEnter event. 5.14, 545. 546

Drawn g. group of selected c<llltrols. 76
DrawArc methods. 529
DrawEllipse methods. 529
DrawLine methods. 528, 529

DrawPie methods. 529
DrawRectangle methods. 528. 529
DrawString methods, 304-305.529
Drop-<lo"'ll list. selling up, 421--423

/nde<

DropDownhem• collection. of u
menu. 212

DropDownList control. 421

DropDownStylc J>mperly. 2114
~duplicate- error message. 415

E
e argume:nl

defining as DragEventArgs. 546
of KeyPrcso event procedure. 567
of Key Up e vent procedure. 581

Edit Columns dialog box. 407

Edit-and-continue feature. 47. 193
Editor

displaying remarks. 32
identifying syntax error. 45

shorlcu111 in. 636-639

Editor tab. 33

Ed.itor """dow, 11
exploring. 4.3
splitting, 638-639

switching to. 251

e.Craphico obj«t. in Painting event
procedure, 525

Element-based style. 376

Elemcntliosl control. 591
Elements

of an array. 326

in a otructure variable. 330
in an XML file . 583. 585

Else clause
executing in on U slatement, 157

nc•ted l.f statement• in. 166-167
ElseU key,.·ord. 157

Empty event procedure. cre"ting. 262
E111pty otring

comparing text box value to. l 7f>-176
setting properly to. 83

Enol.le AutoPostBack. 42.3. 425
Enabled prope11 y

of a control. 85
of menu i t~rus. 217
of the Timer control. 536

EnableVi.,..>Stale properly. 383
Encupoulation, 469
End If clause. 157
End Structure statement. 329

End Sub. 29. 225
End Witb statements. B8
Endless loops. 298
EndOIDa!a method. 443

Ends "'th method. of String, 625
Enter (carriage return). placing ,.;th

WriteLine. 446
Enter event. of a control. 291
Enter key. checking for. 581-582

Entry. selecting, 300-301
Entry lest. 29-2
Environment. setting up, 17- 18
Environment constants. 173

Equal •ign (=).meaning oC. J 59
Equal to(=) comparison operator. 159
Equals method. of String. 625
Error List ,.;ndow. 45. 48
Error messages. giving information to

hackers. 643
Error Message properly. oft he vo.lidator

control .. 383
Error Provider component. 560--563

Errors. finding and fuing. 44-48
Event procedure•

adding for bullous . 40.41

ca lling. 181-182
eo<ling for Hello World. 32-34
naming. 30
opening. 261
planning. 5<h55. 9"2-93. 131.

144.. 185
sharing. 179-181
•Tiling for ,.,)ectt.J e><nt•. 261-263

Event-dri,·en programming language. 3

Event-handling methods. 30
Event•

cau~ing to occur at eel intervals. 535
compared to methods. 469

rc•i>On""" to. 29
triggering. 4
of Web controls . 370
"Tiling e,·enl procedures for.

261-263
Events button. in the Properties windo-.·.

262.291

E.•ocptioro d"""""· 13-~. 135
Exception handling. 134. 199
Exceptions. 13~135. Sn al..o

RWl-time errof8
Exclude from project command, 252
Executable file. copying lo another

•ystem. 267
Execution

pausing with Break All. 191
• topping during dcbuuing. '193

Exit bullon. Click event f<JF. 3~4
Exit Do statement. 298-299
Ex.il For 1\lateo>ent, 298-299. 329
Exit statement. 298-299
Exit lest, 29"2-293
E.'<P method. 623
Expander WPF controL 591. 592
Explicit con,-ersions. 124
Explic it line continuatiorL 89,90
Exponentiation operator("). 118
Express Edition. of VB. 5
Expression. opening a project in, 5W
Expression Blend, 590
Expression Design. 590
Expression Media. 590
Expression Web. 590
E..'(pressions. checking current

values of. 19'2

Extensible Nyperte>:t Markup Lunguuge
(XHTML). 362

Extemal.css ftle. creating. 377
External otyl.e ohects. 375

F
P (full date/time) code. 128. 617
f (full date/time) code. 128. 617
P#. 3
f'1.50.639
F4.632
F7. 632.638

F9. 191
Fl2. 638
False. testing for. 162
Field names. multiple·,.·ord. 412
Field-lev.,) v.,)jdaJion. 563-567

Fields. See al..o Data fields
binding lo Text Box controls. 411
blank. 382-383
checking for required. 175-176
choosing control type for. 418-419
in d•tabaseo. 398
selecting from the table. 416
testing multiple. 139-140

Fil(' exlensiom!. displaying. 8
File handling. using •u·eam•. 445
File input and output (1/0). 438
Pile menu

Clooc Project. 35
DropDownltems collection for.

212. 213
Print.43
Sa,-., AU option. 35

File Read program. 449
Pile otream. 452-453
FileName property. of OpenFileDialog. 450
File-open procedure. 452

Fil 438. See t~l.o Text fil..,: XML fi les
checking for already open. 452-453
checking for existe nce of. 455-456
closing. 447
oaving. 456-45 7
system created.. 8
''iewing contentl! of, 4,41
in a Web application. 370
"-riling to. 438

FileSystem LINQ example, 428430
Fill command. properties of. 417
Fill methods. 409. 528-530
Fill Query. vie,.;og properties of. 4ll9

FillColor property. 73
Filled triangle. on a menu item. 214
FillEllipse method. 528, 529
FillGrad.ientColor property. 73
FillGradientStyle properly, 73
FillPie methods. 529. 550
FillRectangle methods. 529
FillStyle pi'Operty. 73
Filter property. 450.451,541

661

Finulize l>rOWdure. 489. 490
Finally statement. in a Try/Catch

block.134
Financial functions. 62~22
Fire .. ·alL blocking the Web Server. 368
First button (Button 1). 2 7
Fix function. 623. 624
}'lags. &e Boolean ,-ariahle•
Focus

form hoving. 79
re.etting. 81.
setting on a form. 261

Focus onethod. 84
Font dialog bmo.. 37-38.22.1
font object. properties of. 37
Font properties

of dialog box object._ 221
in the Properties window. 37

Font styles. applying to selected te:xl. 67
for Each 11nd Next Statemento. 328-329
For Each loop

array elements in. 328
executing. 329
in SortedList program. 345

For Each!N ext loop. 339
For f (fixed-point) code. 127
For loop. coml>ured to Do. 299
For Next loops. 295. 339
For statement. in a for/Next loop.

29~296.297

ForeColor propeo1y. of a control. 86
Form(s).3

adding unci renooving. 252
adding ConlextMenuSLrip to.

22.3-224
udding to projecll!. 251-252
changing color of. 86. 87-38
changing properties of, 2 7- 29

creating for a uoer interfoce. 48~
creating new. 250-252
displaying lists on. 284
hiding or cl< .. ing. 260
inheritance for. 470
method and events of. 258-263
modifying to use inherited ciW!IIes,

494-495
multiple. 250-252
as objects, 4
passing properties beh~'een~

500-503
placing controls on, 19- 23. 72- 73
remo~wg from projects, 252
setting position on the screen.. 81
setting up, 19
sho,.ing, 258-260
sn;tching bet~·een. 251

Form classes. inheriting. 496-500
Form Designer, 13. 262-263, 63~6
Form Designer tab. 33
Form Designer ,.-indo..-. 82, 251

662

Fonn events. 260-261
Fonn files

adding to a project. 252
remarks at the top of. 42

F onn inheritance, example. 498-500
Fonn layout. displaying. 36
Form obje.:ts. declaring and

instantiating. 260
Fon11J,oad proce<lur•. 333-3~~.

adding code to. 593
containing code. 407
reading a file into a liot. 455

Fonuat specifier codeo.l26-128
Format specifiel13. for dates and

times. 617
FornmtCurreuc-y functjoo. 628
FonnatDateTime function. 628

Fom1at Except ion cla1!8. 135
FonnatNumber function. 628
FonnatPercent function. 628
Fonnatting and Advanced Binding dialog

box. 415.416
FonnCiosed e,·ent. 261
Fom1Ciooingevent, 261.457
Fom1Fe.-d con!<tant. 173
FORTRAN .. NET version of. 5
Found Boolean variable. 336
Fri•nd Cor10t keyword. 266
Friend ke}~•·ord. 2(i(i. 469

aUo~·ing other fom1s to access a

vwiablc. 26~
declaring a form as. 263
declaring an an·ay. 327

Friend level V3riablc, 267

From keywonL gi"ing a coUection initial
values.. 344

Full screen. using. 632
Full Screen button. 633
Functio n parameters. 228

Function procedure•. 225. 227-230
Function ... End Function otatomenll!. 228
Functions

calculating depreciation. 622

cu lling. 229.231
checking ,.aJidity. 627~28
financial. 62~22
formatting output, 628
mathematical., 126. 622~24
returning the result of. 228--229
l+Titing. 229, 230-231

Future value function. 620

G
g (general) code, 128
G (general) oode, 128
Garbage collection, 490
GDI + ,for dnming grap!Ucs.. 524
General procedures. 22.>-233
Get accessor method, 474
Get blocks. in property procedures. 478

GetData method

of D11ta object. 54.7
ofTahleAdapter. 409

.gi! file. 532. 536
Global variableB. Su Namespace-level

variable
Graphic shapes . creating. 72
Graphical user interface (GUI). 3
GraphiCil. 524. S« aLw lma~: Pictures

controlling at run time. 533-535
displaying animat.ed. 532--S33
met hods, 528-530
moving. 535
steps for drawing. 524-525

Graphics Device Interface {GDI). 524,
GraphiCI! methods. in Windo...,. Forms. 524
Graphjcs object. declaring. 525
Graphics pages. 303-305
Greater than (>) c:omparii!On operator. 159
Greater tlm1 or equal to (>=)comparison

operator, 159

Croup boxeo. 65. 68
Group nwnbers

entere<l into Group Text&.;. 331-332
a.o inde., to tiD array. 332
loading into a table. 333

GroupBox controls. 68
CUI {graphical user interface). 3
Guide diamonds. docking windo11-.

using, 633

H
Handled property. of

KeyPre .. •EventArp. 567

Handleo clause. 179-180.224
HasMorePages property. 309
lieUo World application

creating with WPF. 595-597
files in. 7

Hello World fomt. 15
llelp

context-sensitive. 639
,.·alkthroughs in. 568

Nelp feature. in Visual Studio. 13. 15
Help ubrary Manager. opening. 50
Help text, fo= ,.;tb. 260
Help topics, viewing, 50-52

Help Viewer, 49-52
Hidden field. assigning a module-level

variable to, 383
Hide method, using a form's. 260
Hierarchy, of classes, 470
Horizontal scroll bars. 537.540
Hot keys. See Access keys
Hour prope11y. of Date Time. 616
HScroliBar control. 538-539
ffi'ML {hypertext markup language),

tags in, 399
HThlL oode. vier.-ing. 368
HTML controls. 369. 609

lntkr

fffML pages, dynarrucally generating. 363
IITM L tables. See Tables (HTML)
1·11·1'1' (HyJ>"rto.xt Trans(..,. Protocol). 386
HyperLink control. 379.380
Hyperlinks. 379-382
Hyp.,rtext biarkup language. S« HTML

{hypertext ma.rlmp language)

I
.ico e;dension. 70. 268
Icons

changing for a program. 268
~witching lo create animation. 533

ID property. of a te:d box. 367

JD-based otyle. 376
IDE {integrated development

envirom nent}. 7
component • of. 8
der<Wh profile rorl!electing. 8-9
initial screen. 9. 10
running p1'0grmns outside, 267-268
working in Visual Studio'•· 630-6.35
Cor WPF applications, 594

IDE layout. resetting. 634.
IDE window•

AutoHide feature of each. 631
S\\;tcl1ing to running application. 197

ld~ntifiers. 107. l08
If statements. 156--159

charting, 158
Continue •lutement• in. 299
examples of. 170
logic with<>ut an Else action. 156
nested. 166-168

,.·ith radio buttons and check boxeo.
1~171

11/floen/Else st'ltement, 156. 157
LIS Autlrenticalion. 642
Illegal S)'Dlax. in an If statement.

158--159
lmage c:onlrol

adding graphics to a Web page. 373
adding to a cell. 374
on a \l'eb Fonn. 532

Image ftJes. stGring in project
resources. 534

Image property. of a picture box. 69.70
Images. See also Graphics; Pictures

dragging and dropping. 548-550
for fonns and controls. 74
including on Web pages. 373- 375
placing inside containers. 539
selecting, 69, iO
~m.;tching, 533-534

lmageUrl property. of an Image
control, 373

lmmedjate ~;ndow, clearing, 191
Immutable strings.. 624
Impersonation, in ASP.NET, 642~3
Implicit convel13ions . 122. 123--124

N D t: X

Implicit line continuati011. 89. 165
lmplie<l operations. in Basic versus

muthemntico, 120
lmpcr1 button. of the Seled Re•ource

dialog box. 70
lmpcr1.• statement, fo.r

System.Wi ndowo.Controls . 591
Indentation. in a With block. 88
Index. See Sub&cripts
index Of method.. of Skin@. 625
lndexOutOfRaoge exception. 290
Information a88Urnnce~ 642
Inheritance. 469-1.70

adding. 490-500
constructors in. 490-491
Cf<!nting o b..,e clo•• for. 496
visual. 496

Inherited class
cooing for event~ of. 5o)()
modifying a form to use. 4~95

Inherited controls, 4,97

lnhcrito clowoe. 498
Inherits statement, 490. 49S
Initial values. setting for d:alog

boxes. 222
lnitiaiDirectcry property. ci

OpenFileDialog. 450
In line style. 375. 376
Input

from a me. 438

validation of. 175-176
Input data. helping uoen< enter. 563
Input Mask dialog box. 66
Input text bo.xes. with whit~

bockground. 128
lnser1method

of Items. 287-288
oi' S trin11- 625

lnser1 Table dialog box. 371
Insertion poinl

Cor a breakpoint. 191
for text boxes. 79

Instance. of a claM, 4 . 468

Instance membe.n. 4.86
instance propertieK, 502. &e al.,o Instance

variables
Instance variables, 486--488

Instantiating, an object. 4(8
lnstmct ions

form with. 260
repeating a series of. 292

lot function. 623. 624
Integer (I) type-declaratio<

charncter, no
Integer class. Parse method, 117
Integer data type, 107, 100
Integer di.-ision operator (\). 118
integrated dexelopment environmenL See

IDE (integrated development
en\';ronment)

lntelliSense. 32-33. 112- 113
setting PrintAction property. 41
&ignalureo for the Show method. 138
typing argumento of functions. 620

Interest rate. determining. 621-{;22
Internet lnfonnation Sen •ices (OS). 362
Interval property. of a timer. 536
lntraneL 363

Intrinsic cons tants. 109. 111
lnvalidCaotE.•ceptjon c b s•. 135
lnvisible control. s toring a picture in_ 533

Invisible lahe l. 383
Is . in a Cu.., •Lructure. 178
lsDate function. 628
Is MdiContainer property. changing to

lruc. 570
lsNot key11·ord. 452
lsNothing function. 628
!•Numeric function. 628
laPostBac k property. of a Web page. 384
Item (Key) method. of SonedList. 34.4.

Item& colk-ction. 285
filling. 285-286
of MenuStrip. 212
rderenoing. 288-289

Item~ Collection Editor
adding buttons to a TooiStrip, 573
for the DropDownltc m• collection.

212.213
of MenuStrip. 212. 213

objects f<>r a TooiStrip control. 574
opening. 574.

Items proper1y
of a li• t box. 286

of TooiStoip in the Propertie•
windo'"· 573

ltems.Add method. 4.55
Iteration. 292. 2%. 299

J
Java . • NET ven~ion of. 5

K
Key lield. 610
Keyboard mapping.._ resetting. 196
Keyboard shortcuts

for displaying "indows. 632
for eruting code. 637~38
setting for menu items . 218
for stepping commands. 193

KeyChar property. 567
KeyCode property, 581
KeyData proper1y. 581
KeyDmm event procedure. 567
KeyEvenL.\rgs. 581
KeyPress event procedure . 567

KeyPressEven~.567

Keys enumeration. constants . 581
Keystrokes, capturing from tbe

user. 567

663

KeyU p .,,-enl procedure. 567, 582
Keywords. l 08

L
Label control. 52. 73
Label tool. in the toolbox. 19, 20. 38
Labe ls

AutoSize property. 26

clearing. 83
creating. 38-39
default background color. 129
displaying output in. 129
in u fonn. 65
le.-;r.g with default names. 49
ne wly created. 20

Languoge lnteHmted Query. Su U NQ
{Language Integrated Query)

LargeChange proper1y. of a scroll
bur. 5~8

LastlndexOf methods. of String. 625
Late bindir.g. 180

Laynul loolbar. 12 . 76. 635
LayoutMru method. 571
Leave event. of a control. 291
Leo• than (<) compari""n opera tor. 159
Le•s than or equal to(<=) conrpariooo

operator. 159

Lf conotant. 17.3
Lifetime. I L3. 264
Line and s hape controls. 72- 73

Line numbers. dioplaying on oource
code. 45. <16

Line-continuation character. 90
Lines

comme nting oelectt<d. 637
continuing long program, 89-90
creating blank, 42
di~playing text on multiple. 67
drawing. 73. 528. 529
printing multiple. 305

UNQ (Language lnt<~gmted Query).
4-27.586

U NQ project, creating. 428

U NQ query. 4.28. 429
U NQ to SQL component. 427
UNQ to XAIL component. 4.27
UNQ to XM.L query. 586
List{s)

clearing, 290-291
determining number of items in. 288
displaying on a fom>. 284.
filling. 285-286
printing selected items from. 306
removing jtems from. 289--290
selecting records from. 413-419

List boxes
,;th arrays, 336-337
behalior al design time. 285
DoiLoops .. ·ith . 294--295
loarung. 455

664

Li.t hoxe.,._C011t.

printing contents of. 306
oaving contents of. 454-4.57
selecling enlrie6 in. 300-301
in a hn>-c::limensional array. 342

types of. 264-. 285

Li•t dnto. oorting. 4,16-418
LislBox tool 284.
Literal. 31. &< al•o String literak

XMLiitcru6

Load event. of a form. 260-261

Load method. of XDocument. 584
Lo..dFile rnethod. of rich le~t boll. 67
Local declarations. 114. 266

Local help. selecting. 49--50

Local variable .. 113
location• for- coding. 115
s howing values of. 194

in Web applications. 383

Local• M'indow. 194
Location property, of any control. 527
Lock Controls. from the conte>1 menu. 23

Log ln<thod. 623

Logic errors. 47
Logica l operators. 163-165

Login control•. for Web f onus. 369
Long (L) lype-<leclarnlion character. 110

Long data type. 108

Lookup operntion
for tM·o-<limensional tables. 341- 343
UM.L action diagam. 335

Loop control variable•. altering value• ul.
297- 298

Loop index. 295. 297. 298

Loop1ndexlnteger. 295-296
Looping, 292

Loops, 292

Boolean voriableo in. 294
endleM. 298
exiting. ~299

•aliofying conditions before
entry.297

s kipping to next iteration of. 299
Lowercase dta.rncten;. comparing.

162-163

M
M (month) code. 128
M date format character. 618

Main 1\;ndow~ in Visual Studio
en\-ironment. 11

Manage Styles ,.-indow. 376. 377. 378
Managed code. 5

Markup languages, 362
Mask property. 66,567-568
Masked text bo.,es. 66. 567-568
MaskedTextBox control. 66
Masks, predefmed. 568

Matching entry. selecting. 301
Mathematical functions. 622-624

Mathematical operations . fuoctions
for.l26

Max method. 623
Maximum property. of 11 ocroU bar. 538

MaxLength property. 563. 613

.mdb extension. 396

.uxlf el<leJL• ion. 398
MDI (multiple docwnent interface). 560.

569-572

MdiWindowLi~tltem prot>crty. 571
Me entry. expanding, 194
Me keyM·ord. 3 1

MeuureString method. of the Crophico
class . 306-307

Members list. in Object Bro,.-ser. 504

Menu De•igner. 210
adding ContextMenuStrip. 222. 223

creating submenus. 214

deactivating. 211
Menu items. 214

Checked property, 217-218

coding for. 21&-218

a.o controls. 210
creating. 215-216
Enable<! property. 217

keyboord shortcuts for. 218
toggling check marks on and off.

217- 218

Menus. 210
adding to other compnnents. 214

creating. 215-216

delining. 210-215
separator bars in. 214. 215
standards for Windows. 218

Menus & Toolbal'll tab. 210
MenuStrip compnnenl

adding to a form. 210. 215. 216

in the component tray. 210.211

MenuStrip Items coUectioo. 212
Message boxes

avoiding dis1>laying multiple. 176
di•playing meosnges ;,,, 1~140
e nhancing. 111- 175

M""""ge property. 135
M..,Mge •Iring. 137.171.- 173
MessageBox class. message boxes created

,.·ith.136

MessageBox object. Show method, 136
MessageBoxButtons, 136, 137

constants. 173-175. 504. 505
MessageBoxlcon. 136, 137

Messages
changing size and alignment of. 36-38
displaying in message boxes. 136-140

Method icon, in Object BroM-.er. 504. 505
Method Name list. 43. 261. 262

Methods
associated ..-ith objects. 4
of classes. 475
coding,480

lnda

<:orupare<lto properties. 31
executing to end progams. 31

gaphics. 528-530

from the Craphiet~ cl"""· 529
inheriting. 490

of object-oriented programming. 225
of object.. 468. 469
ovedoaded. 136

overriding. 491. 494.

pmc<:du re• ""· 29
relum type of. 174

using overloaded. 138
Mic roooft Acade mic Allianc~ prcgam. 6

Microooft Developer.< Net,.·ork {1\!S.DN)
lihrary,49

MicrOI!Ofl Expression Studio. 590
Mic r080fi lnlermed.iale Language

(MSIL). 5
Mic r"""ft Passport. M2
Microt!Oft Silvt:rligk 590
Microooft S QL Server Database file . 405

Mic roooft \Vindmvs. &e Wi ndo"" progam
Millisecond pro1>erty. oeeding Random

class.532
~iin method. 623

Minimum property. cia scroll bar. 538

Minute property. of DateTime. 616
Mod operator. 118

Mod:1l fonn .. 259. 260
Modal ,.ifidows. ve1'1!Us mode le 220

Modeless forms. 259. 260

ModeleM windoWI!. '"'"'"" modal. 220
Modes. 14
Module- level declarations. 114-115

Module-level voriable(s). 1 13
assigning to an im•i&ible control. 383
for class properties. 478

declaring'" friend or Public. 263
declaring for a shared e vent

procedure. 180--181

declaring for the total. 14.0
lifetime of. 113
locations for coding. 115

setting the access level. 264

in 'lteb application•. 383
Month property, of DateTime. 616
Month Calendar control, 576

Mouse pointer. pausing over an error. 45
MouseDown event. beginning drag-drop.

544.545
Move To Next Bookmark button. 637
Move To Previons Bookmark button, 637

Moving. controls as a group. 76
MSIL (Microsoft lntem1ediate

Language). 5
Multiclass projects. managing. 503

Multidimensional arrays. 337- 339
1\~lultiform projects. variables and

constants in. 263-267
Multiline property. 67..{)8

N D 11 X

multiple document interface (MDI). 560.
569-572

Multipl ication(*) operator. 118

Multitior •pplicntions. 471-172

Mustlnherit modifier. 496

Must Override keywon:l. 49L 496
Mutable otrinf!!!. 624
My keywon:l. 71
My.Com puter.Audio.Piay. ~41--542

My.Com puter.FileSystem. 439
My.FileSyotem object. 428

N
N (munber) code. 126. 127
Name property

changing for a nmv buttm1. 40

compared to Text. 27

of list boxes. 285
of a menu ile m, 212
of OpenFileDinlog. 450
in Properties window . .!4. 596

selecting. 23

Nan><.-d oonstants. 107. 109-110.266-267
Namespace{s). 23. 265
Namespace and class. of selected

object. 24
Natnespace icon. in Object BroM'l!er. 504
Namespa~le~el declarntion._ 116

Namespo~le,•el variable. 113
Naming conventions

for constants, 110
for objects . 43-49
sta ndards for. 48
for variables, 4 78

variables and named constants.
108-109

Naming rules
for object3. 48

v•riables and name-d constant._ 108
Navigate method. of Web Browser

control, 579

Navigate Uri propct1y. in a HyperLink. 379
Navigation bar. deleting from a form. 414

Navigation controls. for "\{"eb Forms. 369

Negative increment. 297
Nested For/Nert loop"- 339
Nested If statements, 166-168. 176

Nested parentheses, 119
Nested Try/Catch blocks. 139-14.0
.NET class names. integer data types. 124
.NET Common Language Runtime. See

Cornroon Language Runtime (CLR.)
.NET data types. 124. 125
.NET Framework. 5 , 642
.NET languages, file handling in, 445-449
New keyword

creating a TextFieldParser object. 442
c reating instances of a class. 468
creating ne,.· objects. 483

instantiating objects. 472

New Project Jiolog box. 9-11. 16-17.364
New Project option. in Visual Studio file

menu. 364
New • t.ateuwnl. inside of u procedure. 11S3
New S tyle dialog box. defining styles in.

377- 378

Newline clwructe r. 68. 172
Newline constants . 173. 440

Next method. of Random object. 530
Next lllntement. in a to r/Next loor.

296. 297
Nodes. of a n XML file. 583
Nonnumeric data. checking for. 176
Nontd.>o.red meti>O<L.. 624
Not equal to (<>) comparison operator, 159
Not logical operator. 163

Not operator. toggling a Boolean value . 218
Nothing constant. 533. 548
Nothing VB keywon:l. 452

No" property. 575.616.617
n-tier application. 472

Nudging, controls into place. 635
Nttll s tring. See Empty string
Nui!Char cons tant.173
Number of periods function. 620
Numbers

random. 530--532
rounding. 1~126

Numeric conotants. rules for. I 10
Numeric conve,..ion. failure of. 135

Numeric data. ,,.lidating in a text box. 567

Numeric dato type1'

converting bet .. ·een, 123-124
converting strin&< to. llfr.l17

conve>·t ing to a string value . 117
Nwneric variable .. COlliJ>ari•l8· 159-160

0
Object box. in the Propcrlieo window. 26
Object Browser. 503-506
Object date type. 108

Object-oriented programming
{OOP). 3. 468

Object-oriented programming. metl10ds

of. 225
Object-oriented terminology. 469-471
0 bjects, 4, 468

code instantiating, 485
creating using classes. 483--490
declaring at module level. 483
defining and using new. 484--486

naming rules :rnd conventions for,

48-49
pa3sing as properties, 502--503
planning. 54.91-92. 13~131.

142- 144. 183-185

recommended naming conventions

for. 49
renaming . 639

as things. 468

typing names of. 32
viewing in a form. 43

Objects lil!l. in Object Browser. 504
OJbc. ADO.NET . ,.., • .,.ing, 398
OleOb. ADO.NET acce,..ing. 398
On]jne help. selecting. 49- 50

665

001~ &~ Object-oriente-d progrumming
(OOP)

Open and Write F ile program. 453--454

Open dialog box. for image file._ 70, 7 1
Open F'ile dialog box. 450.451-453
OpenFileDialog common dialog

component. 450. 451. 541
Opcraltng •y•lem data. querying.

427-428
Option Explicit, 121. 122. 123

Option Strict • . 121. 122- 123

Option._ setting in the VS IDE . 634--635
Options dialog box. 634
Or logical opcr!llor. 163
Oracle . ADO .NET accessing. 398

ORDER BY button. clicking on. 422. 423

ORDER BY clause. 418.424
Order By operator. ol UNQ. 586
Order of evaluation. for logical

operat.o.-. 164
Order of operations. 119-120
Order of precedence. 119

Or Else logical operator. 164.165
OutOfMe woryExceptjon cia 135

Output

creating multiple lines of. 172-173
loa file. 438
functions for formatting, 628

Output text. gray b.ockground. 128-129
Output ,.·indo••. dio1Jaying booko.xml file

in. 584--585
Oval ohape, drawing. 529

OvaiShape control. pro1>erties of. 73
Overloaded methods. 136. 138
Overloading.l38.471,476

Overridablc kcywonl. 491
Overrides keywon:l. 491.496

Overriding. methods. 471.491, 494

p
P or p (percent) code. 127

PadLeft methods. of String, 625-626
PadRigltt methods. of String. 626
Page counter. declaring static. 310
Page style. 375

Page_Load event, 370. 384
Pages. printing. 303. 309- 310
Paint e ,·ent. 261, 525
Parameter properties group box. 424
Parameterized constructor, 4 76. 483
Parameterized query. 424
Parame ters

of functions, 228
functions wit h multiple. 23~231

666

Parent cia ~70
Parent fonn. 569.571-572
Parentheses. 31. 119

Pan~e method!!. I 16. 117. 139

P3nling. 117
Pascal casing. for n aming controls . 48
Payment• function. 620
Peek method. ofStreumRmder. <148
Pen class. 526
Pen objects. 525, 528
PERL .. NET version of. 5
Pennissioo classes. code access security

based on. 644

Picture boxes. 65, 69-72
Picture elements. 525
PictureBox controls. 69. 71. 532
Picture~. Sa aL•o Gmphic.: Image•

controlling at run time. 533-535
moving. 535
replacing to ohow anir~otion, 533

Pie clwt. drawing. 550-555
Pixels, 525
Plonnins

uppHcationo in Vi•ual 8118ic. 6
projects. 18., 53-SS. 90--91. 129--131.

141-144-. 183-185
Playing

sounds. 541- 542
videos. 542-544.

Pmt function. 620-621

Point structure. 527
Polymorphism. 471

Port able lleb opplicnt ions. 427
Postback. 384. 419

Posttest, 29"2-293

Pow method. 623
PowerPacs controls. 72. 73
Precedence. order of. 119
Pre<lcfined mask•. 568
Present value fwtction. 620
Presentation tier. 47l. 472.473.484
Preleot. 29"2
Prin1ary key field. in database tal.le~~. 398
Print button

adding. ' l0
Click e\·ent. 30'2
writing code for , 303

Print dialog box. 168-169
Print method • .t1. 302
Print operation. initiating. 302
Print output. setting up. 3(<2- 303

Print preview. displaying. 307-308
PrintDocument componenL 301-303. 307

Printer, sending infonnatic:n to. 301-310
Printer reports. utility program. 301
PrintFonn component, 40.41

Printing
code,43-44
getting started with. 3~305
multiple lines. 305

multiple pages. 309-310
ownmary of. 306
h.-o-dimensiooal tables. 339

Printing lab. of the toolbox. 301

Printout. sample. 44.
PrintPage event handler. 303

PrintPage event proce<lure. 30'2-.~0.1. 306
PrintPageEventArgs argument. 303. 305
PrintPreviewDialog componenL 307-308
Private. variables declared as. 264
Private occe• .. for proce<lure ... 226
Private key,.·ord. 266.469

declaring an array, 327

decloring method!!. 4.75
Cor module-level variabler.. 114
for sub procedures and functions. 4ID

Priwte module-le,·el variables. 267
Private Sub. 29
Private variables.. declaring, 4 73. 477, 4.78

Procedural languages. 3
Procedure header. 228
Procedures

calling, 226
converting to fu1tclion procedureo. 230
declaring variables inside . 14()
passing argumenll! to. 22~227

planning. 6
sharing using context menus. 224
writing code in. 29

Program "xccution

breaking and stepping. 1%-196
continuing. 197
stopping. 196
tracing line by line, 192

Program lines. continuing long. 165
Program output. choosing controlo for.

128-129
Progrnnuuing, a Visual Basic

applicolion. 7
Progrnnuuing e.....,.,.. tYI"'" of. 44.
Programming languages, types of. 3
Programo. ending. 31
Project Designer

Application tab. 268
changing a root namespace in. 265
Re~cestab. 72.534.535

Project folder. copying. 233

Project user option file, 8
Projects

adding existing class files to. 503
adding form files to. 252
adding forms to. 251- 252
basing on e:cisting projects. 233- 231
closing. 35
copying and moving, 6<W
creating for printing, 303
debugging. 47.189--194.486
forms in. 7
modifying. 36-43
opening sa\..d. 36

lnde.t

plonning. 18. 53-SS. ~91. 129-131.
14.1-144.. 183-185

removing forms from, 252
running. 34-35

savirtt; and running. 42
..-riling. 14-43. 132. 14S. 186

Proje<:to and Solutions category. of
optiono. 634

Properties

accessing. 492
adding ohured to a druoo. 488-489
assigning values to. 473--474
auto-implemented. 48'2
changing for a fonn. 27-29
changing multiple f<K controL.. 88-89
compared lo methods. 31

for controlo. M
creating in clllSses. 4 73-475
defining for classes. 4 77-478

deleting. 27
inheriting. 490
as objects. 4
of objootA. 468
po.,.inf! between fom1•. 50{}-503
passing objects as. 50'2-503
planning. 6 . 54.91-92. 1~131,

L42-J44.. 183-185
read~nly. 475

setting. 7. 23-29
~tt.ing booed on user actiono. 85-86
selling for HTML tables. 372
typing names of. 32
vieto•ing conte nll! of during debugging.

1~197

of Windows Media Player

cnntrol. 543
~-rite-only, 4 75

Properties button . 37. 68. 69, 70. 262

Prop<.•rtieo "indo 13. 28

dJanging the Text property in. 212
currently selected control. 24
defining lle m11 collection in. 285
in the Designer. 262-263

Enabled and Checked properties oC a

menu,217
for a form. 29
Items property. 286
making active. 23
in Visual Studio IDE. 17
of Visual Web De,-eloper IDE. 366

Property icon. in Object Browser. 504.
Property procedures

accessor methods itL 474

adding. 47&-479. 494
~;th mixed access levels, 482

Property statement, as Public. 48'2

Proportional fonts . alignment of. 306
Protected keyword. 469.480,490
Protected variables. declaring, 473
Pseudocode. 6. 54-SS

N D I~ X

Public
nllowing other programs to aeceu. 261
declaring a form as. 263
declaring variables as, 473

Public keyword. 266. 469
declaring an array. 327
for module-level variables, 114
for sub proce<lures and functiono. 480

Publish Wizard. launching. 640
PushButton_C]jck event procedure. 32. 33
Pushpin icon. in the Toolbox

~·indow. 17. 18

Q
Query Bui Icier. opening. 417-418
Querying

operating •)'!Item data. 427-4.28

"""'"to ... ve. 457
Quotation marks. in string]jterals. 110
Quote constant. 173

R
R (GIIIT pattern) code. 128
Radio bullon color chrutge project. 169
Radio button group. checling the state.

17~171

Radio buttons. 69
behavior io the tab sequence. 79-ro
checked property. 84
in o fomt. 65
testing the slate of. 170
using to select colors. 88-86

Random class. 530
Random numbers. 53~2
Range Validator control. 38'2
Rate function. 620.621-022
ReadAIIText metltod. 439
ReadField:. method, of TextFielciParseL 443

Reading. from a lile. 4.'J.8
ReadLine method. of Sln>amReader.

447.448
ReadOnly modilier. 475
Read-only propertk>s. <n5

adding. 50'2
of text boxes, 129

Reasonableness. checking input foL 175
Records

selecting from a list. 413-419
selecting usiog \l~b Forms. 419-427
in tables. 398

Rectangle. dra,.;ttg. 528. 529

Rectattgle structure, 528
RectangleShape controL 73
Red dol. in the margin indicator. 191. 19'2
ReDim statement. 33~331
Refacloring. 639
Refresh button. io Solution Explorer. 421.

441.442
Regular Expression Edi1oL 382
Regular Expression Va]jd ator control. 382

Relational datoba. ... o. 398-399
Relational operatOI'II. 159. 178
Relationships. beh•-eett database

tables. 398
Remark •wtemettts. 30. 33
Remarks. 32. 42
Remo\·e (Key) method, of SortedList. 344
Remove method

of hems. 289. 290
of Siring. 626

RemovcAI method
of Ite ms. 289-290
ofSorted.Lisl. 344

Rename command. from the ol1ortcul
menu. 234

Renante dialog box. 639
Rename feature. 112. 6..'19
Replace u1a thod. ol String. 626
Required lields. checking for. 175-176
RequiredFieldValidotor control 382
Reserved wordo. 48. 108
Reset buuon. 196
Resell-ing, focus. 84

Reoizing handles
for a bullon. 21
for controls. 75

Re-.rce lite. for the form. 7
R"""""'es folder. a..,igning a graphic

from. 7l
Re-.rceo lob. of Project Designer.

72,534.535
.res:x file, 7
Return function. 620
Return statement. in a function. 229
Retttm value, of a function prooedure. 225
Remahility. as purpose of inherilnnc~. 470
Reusable clas..,... 471
Reusable code. 225

Rich text boxeo. 67
Rnd fUttCtion. 624
RnRBooks.mdf database lile. 403, 412
Root namespace. in the Project

Dcoigner. 265
Root node. of att XML lile. 583
Round methods. 125. 623
Rounding. numbers. 125-126
Rows

data arranged in. 337
in tables. 398

RPG . . NET ve,.ion of. 5
.rtf lile, displaymg text from a

formatted. 67
Run lime. 14. 84--&
Run-time errors, 47, 199-200

s
SafeFileName property. of

OpenFileDialog. 450
Sample projects. in Visual Studio.

568-569

Sans serif font. on fonns. 78
Sa\•e AU toolbar button. 35

667

Save As command. copying projects. 234
Save As dialog box. displa)ing. 453
Saved projec!S. opening. 36
SaveFileDialog component, 453
Saving. files, 456-45 7
Schema. for XML. 400
Scope

defining. 263
of" Vllriablc. 113. 226
of variables and constants. 267

Screen

!!elling for convenience, 630-635
spliuing ve•tically. 634
ttSing full. 632

Screen la)'OUI. modif,;ng. 6.33
ScriplManager component. for AJAX. 385
Scripts. in \leb pages. 363
ScroU bal{s)

events for. 539
for list boxes and combo boxes. 284
programming example. 5.39-541
properties for. 538

ScroU bar controls. 537--541
Search box

in Belp. 50
in Object Browser. 504.

Second properly. of Dale Time. 616
Secure code. ~·ri t i ng. 643
Secu_rity

awareness of. 642
in Web dolo base applicoli<>n&, 420

Seeding. raodom number generator. 530
Select All option. on the Edit menu. 75
Select c...., oloternenl. 177
S..lect Image dialog box. 374
Select methods, for classes. 4 71

Select Reoource dialog box. 69, 70
S..lect URL tlialog box.. 379.380. 381
SelecL<\11 method, of the text box. 139
SeleclColor procedure

convening to a function
procedure. 230

expanding capabi]jties of, 226-227
writing. 225- 226

Selectedlndex properly
ca:nhining ~-ith Items property. 289
determining array subscript. 336. 337
of a]js1 box, 288

Selection border. of a form, 13
Selection bo){.. clrawog around

controls, 75
Selection handles. for controls. 75
sender argument. 180
Separator bars, in menus, 214. 215
Ser"er. delivering Web pages to a

client, 362
Sener-side controls. 369
S..l accessor method. 474

668

Set blocks. in property procedures. 478
Set Bound• method. 535
SetEm>r method. of ErrorProvider. 560
Setup.exe application. 6W
Share<l event procedures. 179-181
Shared keyword. 487. 488
Shared members, <Ul6--487
Share<l methoda. 624
Sh~~.re.:l properties. See al..o Shared

variables
adding. 494
odtHng to a cia ... 488-489
ma king read-only. 487

Shared variables, 4-86
Shift + Ail + Enter. 633
Shift + fl. 639
Shift + F7. 632.638

Shift key. •electing multiple controls. 75
Shipping rate table. in a two-dimensional

army. 341
Short (S) type-declaration charocter. I 10
Short data type. 108
Short-circuit operations. 165
Shortcut a,.ignment operators. 12~121
Shortcut menU>l. 222
ShortcutKeys property. 218
Shortcuts

in the Editor. 6.%-<>39
in f orm Designer. 635-636

Show All fj).,. bullon. in Solution

E.•plore r. 441. 442
Sho,.· Data Sources, from Data menu. 410
Show keyword. pausing mouse pointer

over. 17<1.

Sho"' method
as•igning retum value of. l74
displaying a f01m ao modeleos. 259
displaying a new form. 258
of the MessageBox object, 136
returning DialogReo<Uh object. 173
s ignatures of. 138

Sho,.·Dialog methcxl, 219-220

di•playing • fol'll> •• mod" I. 259
displaying a ne,.· form. 258
displaying Vie .. •Form. 50'2
executing. 307

Sho,.·ShortcutKeys property. 218
Siblings, in an XML file. 583
Sign method. 623
Signatures. of the Show method, 138
Simple animation, 532--535
Simple Delimited File Read program.

443-444
Simple Delimited File Write program. 4<1.1
Simple VB file 1/0. 438-444
Sin method. 623
Single (F) type-declara!ion character. 110
Single data type. 108. 305
Single document interface (SDI). 569
Single-file model. 365

Single-step program execution. 486

Size prope11ty. of a control. 527
Size structu re. 527
SizeF struct ure. 3~307
SizeMode property. 71
Sizing l.andle. of a fonn, 13
.sin file. 7. 36
Smoll Change property, of a 11<:1'0.11

hut·. 538
Smart editor. See Editor
Smart indenting. 6..'\5
Smart tag ao-ro"'· 73. 74. 407.408
Smart tags

popping up a fonn'•, 403
uoing. 73-74. 409

Snap lines. 21. 635
SOAP (Simple Object Access

Protocol). 386
SolidBrush class. constmct<><S. 526
Solution, 7
Solution (.sin) file. 13
Solution Explocer

Refresh button, <1.21
renumi11g projects. 234
renarni"g 80lution and project. 640
selectin g files in. 441. 442

showing filename of ne w form. 251
in Visual Studio WE. 17
for a Web appHcation. 370

Solution Explorer windo~·. 13. 36. 631
Solution file . 7
Solution user options file, 7
Sorted property. setting the control's. 287
SortedLi•t collection. 344
SortedList collection program. 345-34 7
Sound-playing program, 541-542
Sounds. playing. 541--54-2
Source object. 544-545
Source property. of the Exception

cia ... 135
Source tab, seeing static HTML code, 368
Splash forllll, displaying first. 257- 258
Spb~h screen. 256
Splash screen droj>-down lis!. 257. 258
Splash screen template. 257
Split bar. at top of ,·ertical scroll bar.

638.639
SQL (Stmctured Query Language). <1.01
SQL Database option. selecting. 421-422
SQL injection. 64.3
SQL SELECf command. mcxlif);ng, 418
SQLSELECf statement, ORDER BY

clause added to, 424
SQL statements. table adapter

gen erating. 401
SQLCHent for SQL Server. ADO. NET

accessing. 398
Sqrt method, 623
Stack· Trace property. of the Exception

class. 135

lnde<

Standard controls. for \leb Fonns.
368.369

Standard toolbar. 12.632
Start Page. of Visual Studio IDE. 9. 10

Stan.P08ition po-operty. of a form. 81
StartsUith method. of String. 626
Startup fonu. 250
Stale. maintaining. 383-384,
St.teles~ \l"e l.. page._ 363
Static keyword, 266
Static local variable. 310
Static olatemenl. 2~1-265
Static va.riables, 264--265. 267. 486

Status bars. 572.574-575
Statu.Strip control. 572.574
Step increment. negative number

for, 297

Step into button. 197
Step Into command. on the Debug

menu. 193
Step Over command. 193
Stepping through. code.l92-193
Stop Debugging. from the Debug

menu • . 193
Stop Debugging toolbar button,

clicking. 198
Straight-line (SLN) method. 622
StrcmnReader class. 447-449
Stream Reader objects. 445. 4<1.7--448
Streams. 445

Stream Writer object. 445-4A6
String(s)

comparing. 160-162
eon\'erting to. 117
converting to a numeric data type.

L16-17
joining. 89
,.·orbng ~-ith. 624-626

String class. 624
String Collection .Editor. typing list

items,286
String constants. See String literals
Stl'ing data type. 107. 108
String injection., 643
String literals. 110. 1 II
String of text. dra,.;ng. 529
String value. testing for in a Case

statement. I 78
StringBuilder class. 624
Strongly typed languages. 122
Structure(s)

creating. 329--331
declaring variables based on. 330
including arrays in. 330-331

Stru cture and End Structure

slatements. 329
Stmcture declaration. 329
Structured exception handling, 134
Student Data files. on the text \leb

site. 71

N D E X

Style(s)
applying. 378
t!eGning. 377-378
locations for defining. 375

managing. 378
modifying. 379
setting. 74
types o(376
using. 375-376

Style Application toolhar. 376. 377
Style rules. onler of precedence of, 376
Stylet~ sheet file. add in~ to a •olution. 376
Sub procedures. 29. 225

adding. 480
calling. 226
cre ating in tl1e Editor window. 225
displaying for an o!.ject. 43

Sub ... End Sub state ments. encl<.,ing code
•·it.hin. 225-226

Subclasses. 4 70
oclding. 493
tt<lding a con•t•·uctor for. 49.3
creating.. 496

Subme nus . 214
Subroutine. 29
Subscripted variables. See Arrays
Su bscri pis. 326-327
Substring method fl. of String. 626
Subtract method. 617. 6 I 9
Subtraction(-) operator. 118

Summury fonn. l'"""ing values to, 5()()...6()'2
Summing. hn,-dimensional tables. 340
Sum-of-the-years' digits (SYD)

method. 622
Sums, counting :s.nd accumulating.

14(}..141
-"UO r.lc. 7
Supercla88. 470
Sw·itches. See Boolean v·ariables
Symbol Rename, 6.'!9
Syntax. illegal in un If statement. 158-159
Syntax errors. 45-46
System date and time. r~trieving,

617-618
System processes, retrieving.. 428

System-<lefmed constants. 111
Syslem.I 0 names pace. stream

objects in, 445
System.! O.EndOfStreamL,ception

class. 135
System. Math class, 622

T
T (long time) code. 128. 617
I (short time) cocle, 128. 617
Tab constant. 173
Tab order. setting, 8(}..81
Tablndex property

determining order of focus, 79-80
setting automatically. 80--81

Table adapters. 401. 402
Table cello. inserting graphic• into. 375
Table lookup. 333. 334

coding. 334. 336
in two-dimensional tables. 34.1

Table menu. for 'll'eb Fonu•. 372
Table of contents (TO C), in He lp Vie,.·er

window. 50
T~ble rowo. oJding Of' deleting in \tl>b

Forms. 372
Table tool. from toolbox HTI\IL

!K.-'Ctjon. 371
TableAdapter component. 407. 409.

412.413
Tables. Sett at..o Arr•r•

in dstal.asefl. 398
resizing in Web Forms , 372

Tables (HTML)
entering control~ or text in. 372-373
using for layout of Web F omts,

371--373

Tabe. selling. 635
TabStop property. 79, 80. 129
Tags. in XML Ciles. 583
Tan method. 623
Target object. 546--54 7
Target Rul.e drop-down li•t. 377
Text

changing color of. 86. 87---88
changing the color. 86

collCIItcnating. 89
displaying in text hoxes. 67-68
e ntering in HTI\tL tables. 3 72-373
fom1alling. 67
in an XML fde. 583

Text Align property. 38
Text box control. 65--66
Text boxes, 65--66

adding contents to a list box, 287
clearing. 83. 18'2
default baclcg-ouncl color. 129
events of, 291
in a form, 65
mnking •ticky. 564
selecting entries in~ 300

in a two-dimensional array.

342--343
using for output, 129

Text Editor
setting options for. 635
,;ewing rtle contents. 441

Text Edito1· too!har, 12, 637
Te.n r.les. "Tiling and reading, 439
Text property

assigning a literal to, 33
assigning the resul t of a

calculation. 120
c hanging for a form, 28
changing for a new buuon. 40

of a check box, 69

of combo boxes. 285
compared to Name. 27
of n control. 25
deleting the value of. 25----26
e<litor for entering. 68
of n group bt>x. 68
of a label, 39
of list box or combo box. 306
of Iiiii boxofl. 285
for a menu item. 211- 212
of a multiline text box. 68
of a mdio buttoo. 69
retrieving • selected list item. 289
of a text box. 65

Text 'll'eb •ite . 71
TextA1ign prope11y. of text boxes. 65
TextBox. selecting as a type of menu

item. 214.
TextBox control. adding to a Ueb

page,367

669

TextC hanged event. of a combo box. 291
T.,xtFieldPlll'!!er object. reading delimited

files. 441
Te~<tFieldType property. of

TextFieldPa,.,r. 442
TextM.,..age. 136. 137
Then clause~ executing in an If

statement. 15 7
Then pottion. nested If stotement in.

166--168

" !'here ,.·ere bui ld""""'· Continue?''
message. 48

Three-axis model. 585
Three-tier application. 471-4.72

Throwin~. exceptiol18. 134
Thu rub. of a scroll bar. 538
'lick event, of Timer compone nt,

535-536
'lileHori:zontal constant.. in

U.youtMd i. 572
'IileVertical co,.lanL in LnyoutMdi. 572
lime

displaying. 575
fol'llllltling. 6 17
retrieving, 617-618

limer component. 535-537
1i me r example. 536--53 7
1imeSpan class, in .NET Framework, 619
'Iitle property. of OpenFileDialog. 450
1itlebarText. 136. 137
To. in a Case structure. 178

Today property, 617
Toggle Bookmark botton. 637
ToList method, of an enumerable

collection. 428
ToL.ongOateString method, 575. 617
ToL.ong'limeString method. 5 75. 617
ToLower methods. of String, 162- 163. 626
Tool .. -indo,.·s, ll. 633
Toolbars. 12. 572----5 74

670

Toolbox, 13. 14

dragging code to. 639
Printing tab. 301.
tabs io.M
in Visual Studio IDE. 17

WPf lnteropernbility ...,ction. 591
Toolbox tools. for creating controls . 284
Toolbox window. 17, 18

Tools. in an IDE. 8
TooiSt1ip button. coding for. 573-S74
TooiStrip control. 572

adding bullono to. 573

ad,ling to a WebBrow11er <:onlrol. 579
TooiSt.ipStatusLabel objects. adding to

StatusStrip, 574

ToolStripStatu~Label•. assigning
values to, 575

ToolTif"'
udding muJtjlina . 82
creating. 81-83
defining. 77

ToShortDateSiriug method. 575.617
ToSh01tTimeSlring method. 575. 617
ToString method.ll7. 617.628

with 11n empty •rgument. 126

formatted value retumed by. 128
with formatting codes. 126

Total accumulatOI'l<, 331-333

Totals
adding to correct. 331-332

protected procedure for cnlculnting.
488-489

ToUpper method. of String. 162-163. 626
Trim method. of String. 626

TrimEnd ntetl•od. of String. 626
TrimStart method. of String. 626
True. testing for. 162

Try block. 1~.

Try/Catch blocks. 134-135
nesting. 139-14.0

New •tnlement in. 433
ReadAUText method in. 439
Stream Reader object in. 448

Two-dimcn.ional orrny or table. 338
Two-dimensional a_rrays. initializing.. 339
Two-dimensiooaltables

applications of, 337

lookup operation for. 341- 343
printing, 339
summing. 340

.txt extension.. 446
Type. functions for c hecking, 627-628
Type inference. 428
Type-declanttion character. for numeric

constants, 110

u
UI\-IL action diagrams . 156. 158

If statement logic in. 157
indicating an inherited class. 49'2. 493

of a lookup operation. 334.335

of forfNext loop. 296
of prct~'!<l and posHest loopo. 293
symbols used for. 158

Ul\ll specification~ types of diagrams
in. 158

Uncomrnent Selected Lines
command. 637

Uncommcntthe oelccted lin.,.
bullon. 200

Unde rline, gray squiggle, 114

Underlined cha.rocter. defining an ncce"'
key. 78

Underscore. in a line~ontinuation
character. 90

Unicode. 160
Unified Modeling Language activity

diagram. &e UML action

diagrun:l!
Uniform Resource ldentifler (URI), 579
Uniform resource locator. &e URL

Until. in Do loop<~. 293
UpdatePnnel. placing controls inside,

385-386

Uppercaoe charncten<. cmnporing.

162-163
URL (Uniform resource locator). 363

URL addrct~seo. displaying. 67
Uri property

of a coni roL 543

ofWehBrow-.er control. 579

User actiono. oetting propertiell based on.
85-86

User error. problems caused by. 175

U•er interface
creating for Web applications, 367
defining, 7. 19-23

designing. 6. 18. 77-78

form for. 484
Presentation tier referring to. 4.72
in WPf' applications. 591

Users
capturing keystrokes from. 567

querying to, chang..,. 457

Using block. 309

v
Valid subscripts. 327
Validating e•'ent. validation codes. 564
Validation(s). 175

example program, 56.'>-567

field-level. 563-567
of group muuhers. 336
masked text box for. 567-568
perfonning multiple, 176

Validation controls . for Web f onns. 368

ValidationSummary control. 38'2
Validator controls. using, 382-383
Validity. fw1ctions for checking. 627-628
value key"·ord.. in a Set statement. 4 74

Index

Value property
for the date in OateTimePicker. 576

of o ocroll l><~r. 538
ValueCb.ange<l event. 539. 578

Values

Msigning to c001!tant~. Ll~lll
d,ecking for a range. 175
passing to a summa-ry form-.

SOCh<;0'2
•toeing mult iple. 326

Variables.. 106

declaration •ummary for, 266

declared as Private . 4 78
declaring.106. 107. 111. 473

declaring as local. 226
deciMing b<t!!ed ou a olructu"'. 330
declaring inside a Using block, 309

guideline• for declaring, 26&-267

iMtance versus shared. 4&)....<188
lifetime of. 113
local. 267

renaming. 639
retaining values of. 383- 384
scope of. 113

for ~ubscripto. 326

testing for multiple values. 177
vieM-ing contents of. 19'2. 196-197

VB. s,, V',.ual B .. ic (VB)
VB d<ll!SeS. See CIM!<!A
Vl3 code. See Code

VB data types . .107. lOB. 124. 125. s,,
olJo Data type(,.)

.vb file. 7. 8
VB file UO. simple. 438-444

VB inlriuic con•tanla. •pecifying
delimiters. 442

VB project. See Projects

VB •tandard toulbur. dehulll!ing bullons

on, 190
v6Crl1 intrinsic constant. 440

. vbJ>roj file. 8

.vbproj.user file. 8
Vertical scroll bars. 537. 54.()

VerlicaiTab con•tant. 173
Videoo. playing, 542-S44
Vie..- Code butlon. 36. 251
View Designer button. 36. 251

Vie~- menu. displa};ng or hiding
windows. 11

Visibility
setting at run time. 84-85

of a variable. 113
Visible property, 71
Visual Basic {VB)

creating ~lob applications . 363
databases and. 398

modes. 14
tools for reading XM_L files. 583-588
in Visual Studio 2010. S
~Titing appl ications.. 6--8

N b t: X

Visual Busic 10. 6
Vis ual Bnsic 20'10. 6
Vis ua I Basic Exprcso. 6
Visual Basic .NET. as object o riented. 468
Visual Basic PowerPacks, 40. 64
Visua.l inheritance. 496
VisuuJ interface. inh.,riling to new

forms. 497
Visual Studio

running~ 14. 16
s~mple projects and coJe snippet•.

568-569
'"' truly object oriented. 3

Visual Studio 2010
components of, 5
~lclp oyotem. 49-52

Visua I Studio 2010 Premiuru, 5
Visua I Studio 2010 Professional. 5. 6
Visual Studio 2010 Ultimate. 5. 6
Visual Studio Data Sources window, 401

Visual Studin environment. 8
Visuu I StuJio IDE

HTML generated by. 363
initial screen. 9, 10
nJain windowt ll
,..;tlr new He llo World project, 17
oek-cting de fau lt environlliOIIt

settings. 8-9
Solution Explorer. 234
\l'eb Forms, 366

Vis ua I Studio Menu Designer. See Monu
Oeoigne r

Visua.l Studio We b sen ·er. 362
Visual Studio Windm-.·s Fom1s, toolbox

for,]4,

Visual Web Developer ExprcM, 6
Vioual Web Developer IDE, Dc•igrr taL. 366
Visua I Web Developer (V\I'D), 362
VScrollBar control. 538-.539

w
W3C. Sec World Wide Web Con110rtiurn

(W3C)
"'ave files (.wav), 541
We b. t~cronyms, 386
web applications

client/server. 362- 363
creating. 364-370
files in. 370
making portahle, 427
product for developing, 362
running, 368

Web clients. 362- 363
Web database applications,

security in, 420
'U1eb Form application. example. 2 . 3
\l'eb Form template, selecting, 365
Web FomlS, 362

a<lding to projects. 380
controls for. 368

cre ating. 366-368
di~plnying gruphic• filco 011. 52<~
events of. 370
laying out. 371-379
selecting recon:ls fi'Om, 419-427
in the Visual Studio IDE. 366

\lob p .. ge•
adding. 365. 379-382
ad.d.ing e leme nts to. 367
creating, 590
cre ating: animation on. 532
diaploying 0 11 \VindoWil F"ormo.

578--.582
incllKling images on, 373- 375
navigating. 379-382
reloading only t><>•1iono of. 384.-385

"" otntc iCll•. 363. 4,)9
Web pmject•

beginning new. 364-365
user intel'face for. 362

lleb Sele~;tion opplic ation. ore~ting,
420-<126

\leb server controls. 368. 369
\leb server Table control. 371
\l·eb servers, 362

\lob Service. 386
ll·ebBru,.·•er control. 578. 579
llebBro,..,.er program. 5 79-581
\leb.Config file. detfrn1ining

authentication method, 64.2

llcbPnrt• controlo. for Web t'omll!. 369
\leek. c heeking ror Jay of. 619
Where operator. or UNQ. 586
While, in Do loops. 293
Windmv me nu, adding to a parent form.

571-572
1~1ndowll

closing, 631
closing or hiding extra. 630-632
displaying. 6.n
docking u11ing guide diamond•. 633
hiding or di.playing, 630
m~naging. 52

ll1ndows applications, file 1/0 for. 438
\l1nd<nvs common dialog IX>xClO. See

Common dialog comJX:ments

Windows E.,plocer, 233, 640
Windo"'S Form application, WPF controls

in, 591- 592
Windo·ws Form template~ 250

Wi ndo·ws Forms

adding WPF controls to. 593
compared to Web F ornlS, 366
displaying graphics files on. 524
displaying Web pages on. 578--.582
drawing graphics shapes. 524
with Web pages displayed. 579,580

WindO'\vs Forms Application, choosing, 16
Windows Forms Application template .

10-11

\Vindo"'S Media Player control. 542.
54.3--544

\VinJow• 11Mlu8. stnndan:lo. 218

671

Windows Presentation Foundation (WPF).
2, 8, 590-597

\Vintlows program. s~unple user
intorfucc.2

\Vindo .. -. project folder. copying. 233
\Vindo,.'S standards. for applications. 218
WindoM-'S-standard keys~ using. 78
\VindowToolStripMenultem. 571
With and End \Viti. statemento. 88
With block. 88
With statement. 88, 89. 290
Word wrap. turning on, 635
Word Wrap propet1y, 67

Work. •aving. 35
Workspace, setting up.l4-18
World Wide Web Consortium (\l'3C)

recommendations on XM"L 583

site for, 399
WPF Applictrt ion template. CI'Coting

applications. 590
WPF applications. 593-595
WPF Browser Application template, 590

\Vl't' control.s. 59'2. 593
WPF' ll.,llo World opplicntion. 595~~97
\VPt' lnteroperahility. 591-592
\l'PF window. designing layout of.

594-.595
Write method. of S trcum\Vriler. 446
WrilcAilText method. 439
WriteLine method

of Dehug, 189. 190-191
saving file eleme nts. 456-457
of Streum Writer. 4.<15. 446

Wri te Li.1e methodo. pl11ciug in H
stateme nts, 191

\Vrite-only properties. 475
WSDL (Web Sen•ices Descriptjon

l,.,nguuge). 386

X
X and Y coordinates. 305. 527
X coord innte, 303. 527
XAML (Extensible Application MarkuJ>

Language). 591
XAML screen. collapsing, 593, 594
xaml.vh Code Editor window.

accessing~ 596

XBAP. 591
XDocun1ent object.loading an XML file

into. 584
X Element object. loading an XML file

into, 585--586

XHTML (e.uensible hypertext markup
language), 362

Xl'I'!L (Extensible Markup Language}. 386
in ADO. NET, 398
data stored in. 399

672

XML (Extensible M:uk•Jp Language}-Conl.
platfonn-indepenclent and

text-based, 582
s pecifications for. 399
tags in,399
viewing in Visual Studio XML

e<litor. 40~
XML data. treating as objects, 4.UU
XML data files • .WO.

582-589
XML eleme nts. specifying in VB,

585-586

XMLfiles
loading into an XEle ment object,

585-586
terminology and structure of.

582-583
VB tools for reading. 583- 588
14Titing and reading, 58S-589

XML lite rals. 5ll5. 51!0
XML schema definition, 40~
XML schema file. 400
XmlWriter class. 588
Xm!Write r object. 588

lnde.<

Xor logical operator, 164
.xsd extension, 409
.xsd £ile. 400. 401. 409

y
Y coordinate. 303.305. 527
y date format character. 618
Year properly, of Uate'llme . 617
YesNo constant, 173

z
Zero-length string. See Empty string

	combined1_Page_001
	combined1_Page_002
	combined1_Page_003
	combined1_Page_004
	combined1_Page_005
	combined1_Page_006
	combined1_Page_007
	combined1_Page_008
	combined1_Page_009
	combined1_Page_010
	combined1_Page_011
	combined1_Page_012
	combined1_Page_013
	combined1_Page_014
	combined1_Page_015
	combined1_Page_016
	combined1_Page_017
	combined1_Page_018
	combined1_Page_019
	combined1_Page_020
	combined1_Page_021
	combined1_Page_022
	combined1_Page_023
	combined1_Page_024
	combined1_Page_025
	combined1_Page_026
	combined1_Page_027
	combined1_Page_028
	combined1_Page_029
	combined1_Page_030
	combined1_Page_031
	combined1_Page_032
	combined1_Page_033
	combined1_Page_034
	combined1_Page_035
	combined1_Page_036
	combined1_Page_037
	combined1_Page_038
	combined1_Page_039
	combined1_Page_040
	combined1_Page_041
	combined1_Page_042
	combined1_Page_043
	combined1_Page_044
	combined1_Page_045
	combined1_Page_046
	combined1_Page_047
	combined1_Page_048
	combined1_Page_049
	combined1_Page_050
	combined1_Page_051
	combined1_Page_052
	combined1_Page_053
	combined1_Page_054
	combined1_Page_055
	combined1_Page_056
	combined1_Page_057
	combined1_Page_058
	combined1_Page_059
	combined1_Page_060
	combined1_Page_061
	combined1_Page_062
	combined1_Page_063
	combined1_Page_064
	combined1_Page_065
	combined1_Page_066
	combined1_Page_067
	combined1_Page_068
	combined1_Page_069
	combined1_Page_070
	combined1_Page_071
	combined1_Page_072
	combined1_Page_073
	combined1_Page_074
	combined1_Page_075
	combined1_Page_076
	combined1_Page_077
	combined1_Page_078
	combined1_Page_079
	combined1_Page_080
	combined1_Page_081
	combined1_Page_082
	combined1_Page_083
	combined1_Page_084
	combined1_Page_085
	combined1_Page_086
	combined1_Page_087
	combined1_Page_088
	combined1_Page_089
	combined1_Page_090
	combined1_Page_091
	combined1_Page_092
	combined1_Page_093
	combined1_Page_094
	combined1_Page_095
	combined1_Page_096
	combined1_Page_097
	combined1_Page_098
	combined1_Page_099
	combined1_Page_100
	combined1_Page_101
	combined1_Page_102
	combined1_Page_103
	combined1_Page_104
	combined1_Page_105
	combined1_Page_106
	combined1_Page_107
	combined1_Page_108
	combined1_Page_109
	combined1_Page_110
	combined1_Page_111
	combined1_Page_112
	combined1_Page_113
	combined1_Page_114
	combined1_Page_115
	combined1_Page_116
	combined1_Page_117
	combined1_Page_118
	combined1_Page_119
	combined1_Page_120
	combined1_Page_121
	combined1_Page_122
	combined1_Page_123
	combined1_Page_124
	combined1_Page_125
	combined1_Page_126
	combined1_Page_127
	combined1_Page_128
	combined1_Page_129
	combined1_Page_130
	combined1_Page_131
	combined1_Page_132
	combined1_Page_133
	combined1_Page_134
	combined1_Page_135
	combined1_Page_136
	combined1_Page_137
	combined1_Page_138
	combined1_Page_139
	combined1_Page_140
	combined1_Page_141
	combined1_Page_142
	combined1_Page_143
	combined1_Page_144
	combined1_Page_145
	combined1_Page_146
	combined1_Page_147
	combined1_Page_148
	combined1_Page_149
	combined1_Page_150
	combined1_Page_151
	combined1_Page_152
	combined1_Page_153
	combined1_Page_154
	combined1_Page_155
	combined1_Page_156
	combined1_Page_157
	combined1_Page_158
	combined1_Page_159
	combined1_Page_160
	combined1_Page_161
	combined1_Page_162
	combined1_Page_163
	combined1_Page_164
	combined1_Page_165
	combined1_Page_166
	combined1_Page_167
	combined1_Page_168
	combined1_Page_169
	combined1_Page_170
	combined1_Page_171
	combined1_Page_172
	combined1_Page_173
	combined1_Page_174
	combined1_Page_175
	combined1_Page_176
	combined1_Page_177
	combined1_Page_178
	combined1_Page_179
	combined1_Page_180
	combined1_Page_181
	combined1_Page_182
	combined1_Page_183
	combined1_Page_184
	combined1_Page_185
	combined1_Page_186
	combined1_Page_187
	combined1_Page_188
	combined1_Page_189
	combined1_Page_190
	combined1_Page_191
	combined1_Page_192
	combined1_Page_193
	combined1_Page_194
	combined1_Page_195
	combined1_Page_196
	combined1_Page_197
	combined1_Page_198
	combined1_Page_199
	combined1_Page_200
	combined1_Page_201
	combined1_Page_202
	combined1_Page_203
	combined1_Page_204
	combined1_Page_205
	combined1_Page_206
	combined1_Page_207
	combined1_Page_208
	combined1_Page_209
	combined1_Page_210
	combined1_Page_211
	combined1_Page_212
	combined1_Page_213
	combined1_Page_214
	combined1_Page_215
	combined1_Page_216
	combined1_Page_217
	combined1_Page_218
	combined1_Page_219
	combined1_Page_220
	combined1_Page_221
	combined1_Page_222
	combined1_Page_223
	combined1_Page_224
	combined1_Page_225
	combined1_Page_226
	combined1_Page_227
	combined1_Page_228
	combined1_Page_229
	combined1_Page_230
	combined1_Page_231
	combined1_Page_232
	combined1_Page_233
	combined1_Page_234
	combined1_Page_235
	combined1_Page_236
	combined1_Page_237
	combined1_Page_238
	combined1_Page_239
	combined1_Page_240
	combined1_Page_241
	combined1_Page_242
	combined1_Page_243
	combined1_Page_244
	combined1_Page_245
	combined1_Page_246
	combined1_Page_247
	combined1_Page_248
	combined1_Page_249
	combined1_Page_250
	combined1_Page_251
	combined1_Page_252
	combined1_Page_253
	combined1_Page_254
	combined1_Page_255
	combined1_Page_256
	combined1_Page_257
	combined1_Page_258
	combined1_Page_259
	combined1_Page_260
	combined1_Page_261
	combined1_Page_262
	combined1_Page_263
	combined1_Page_264
	combined1_Page_265
	combined1_Page_266
	combined1_Page_267
	combined1_Page_268
	combined1_Page_269
	combined1_Page_270
	combined1_Page_271
	combined1_Page_272
	combined1_Page_273
	combined1_Page_274
	combined1_Page_275
	combined1_Page_276
	combined1_Page_277
	combined1_Page_278
	combined1_Page_279
	combined1_Page_280
	combined1_Page_281
	combined1_Page_282
	combined1_Page_283
	combined1_Page_284
	combined1_Page_285
	combined1_Page_286
	combined1_Page_287
	combined1_Page_288
	combined1_Page_289
	combined1_Page_290
	combined1_Page_291
	combined1_Page_292
	combined1_Page_293
	combined1_Page_294
	combined1_Page_295
	combined1_Page_296
	combined1_Page_297
	combined1_Page_298
	combined1_Page_299
	combined1_Page_300
	combined1_Page_301
	combined1_Page_302
	combined1_Page_303
	combined1_Page_304
	combined1_Page_305
	combined1_Page_306
	combined1_Page_307
	combined1_Page_308
	combined1_Page_309
	combined1_Page_310
	combined1_Page_311
	combined1_Page_312
	combined1_Page_313
	combined1_Page_314
	combined1_Page_315
	combined1_Page_316
	combined1_Page_317
	combined1_Page_318
	combined1_Page_319
	combined1_Page_320
	combined1_Page_321
	combined1_Page_322
	combined1_Page_323
	combined1_Page_324
	combined1_Page_325
	combined1_Page_326
	combined1_Page_327
	combined1_Page_328
	combined1_Page_329
	combined1_Page_330
	combined1_Page_331
	combined1_Page_332
	combined1_Page_333
	combined1_Page_334
	combined1_Page_335
	combined1_Page_336
	combined1_Page_337
	combined1_Page_338
	combined1_Page_339
	combined1_Page_340
	combined1_Page_341
	combined1_Page_342
	combined1_Page_343
	combined1_Page_344
	combined1_Page_345
	combined1_Page_346
	combined1_Page_347
	combined1_Page_348
	combined1_Page_349
	combined1_Page_350
	combined1_Page_351
	combined1_Page_352
	combined1_Page_353
	combined1_Page_354
	combined1_Page_355
	combined1_Page_356
	combined1_Page_357
	combined1_Page_358
	combined1_Page_359
	combined1_Page_360
	combined1_Page_361
	combined1_Page_362
	combined1_Page_363
	combined1_Page_364
	combined1_Page_365
	combined1_Page_366
	combined1_Page_367
	combined1_Page_368
	combined1_Page_369
	combined1_Page_370
	combined1_Page_371
	combined1_Page_372
	combined1_Page_373
	combined1_Page_374
	combined1_Page_375
	combined1_Page_376
	combined1_Page_377
	combined1_Page_378
	combined1_Page_379
	combined1_Page_380
	combined1_Page_381
	combined1_Page_382
	combined1_Page_383
	combined1_Page_384
	combined1_Page_385
	combined1_Page_386
	combined1_Page_387
	combined1_Page_388
	combined1_Page_389
	combined1_Page_390
	combined1_Page_391
	combined1_Page_392
	combined1_Page_393
	combined1_Page_394
	combined1_Page_395
	combined1_Page_396
	combined1_Page_397
	combined1_Page_398
	combined1_Page_399
	combined1_Page_400
	combined1_Page_401
	combined1_Page_402
	combined1_Page_403
	combined1_Page_404
	combined1_Page_405
	combined1_Page_406
	combined1_Page_407
	combined1_Page_408
	combined1_Page_409
	combined1_Page_410
	combined1_Page_411
	combined1_Page_412
	combined1_Page_413
	combined1_Page_414
	combined1_Page_415
	combined1_Page_416
	combined1_Page_417
	combined1_Page_418
	combined1_Page_419
	combined1_Page_420
	combined1_Page_421
	combined1_Page_422
	combined1_Page_423
	combined1_Page_424
	combined1_Page_425
	combined1_Page_426
	combined1_Page_427
	combined1_Page_428
	combined1_Page_429
	combined1_Page_430
	combined1_Page_431
	combined1_Page_432
	combined1_Page_433
	combined1_Page_434
	combined1_Page_435
	combined1_Page_436
	combined1_Page_437
	combined1_Page_438
	combined1_Page_439
	combined1_Page_440
	combined1_Page_441
	combined1_Page_442
	combined1_Page_443
	combined1_Page_444
	combined1_Page_445
	combined1_Page_446
	combined1_Page_447
	combined1_Page_448
	combined1_Page_449
	combined1_Page_450
	combined1_Page_451
	combined1_Page_452
	combined1_Page_453
	combined1_Page_454
	combined1_Page_455
	combined1_Page_456
	combined1_Page_457
	combined1_Page_458
	combined1_Page_459
	combined1_Page_460
	combined1_Page_461
	combined1_Page_462
	combined1_Page_463
	combined1_Page_464
	combined1_Page_465
	combined1_Page_466
	combined1_Page_467
	combined1_Page_468
	combined1_Page_469
	combined1_Page_470
	combined1_Page_471
	combined1_Page_472
	combined1_Page_473
	combined1_Page_474
	combined1_Page_475
	combined1_Page_476
	combined1_Page_477
	combined1_Page_478
	combined1_Page_479
	combined1_Page_480
	combined1_Page_481
	combined1_Page_482
	combined1_Page_483
	combined1_Page_484
	combined1_Page_485
	combined1_Page_486
	combined1_Page_487
	combined1_Page_488
	combined1_Page_489
	combined1_Page_490
	combined1_Page_491
	combined1_Page_492
	combined1_Page_493
	combined1_Page_494
	combined1_Page_495
	combined1_Page_496
	combined1_Page_497
	combined1_Page_498
	combined1_Page_499
	combined1_Page_500
	combined1_Page_501
	combined1_Page_502
	combined1_Page_503
	combined1_Page_504
	combined1_Page_505
	combined1_Page_506
	combined1_Page_507
	combined1_Page_508
	combined1_Page_509
	combined1_Page_510
	combined1_Page_511
	combined1_Page_512
	combined1_Page_513
	combined1_Page_514
	combined1_Page_515
	combined1_Page_516
	combined1_Page_517
	combined1_Page_518
	combined1_Page_519
	combined1_Page_520
	combined1_Page_521
	combined1_Page_522
	combined1_Page_523
	combined1_Page_524
	combined1_Page_525
	combined1_Page_526
	combined1_Page_527
	combined1_Page_528
	combined1_Page_529
	combined1_Page_530
	combined1_Page_531
	combined1_Page_532
	combined1_Page_533
	combined1_Page_534
	combined1_Page_535
	combined1_Page_536
	combined1_Page_537
	combined1_Page_538
	combined1_Page_539
	combined1_Page_540
	combined1_Page_541
	combined1_Page_542
	combined1_Page_543
	combined1_Page_544
	combined1_Page_545
	combined1_Page_546
	combined1_Page_547
	combined1_Page_548
	combined1_Page_549
	combined1_Page_550
	combined1_Page_551
	combined1_Page_552
	combined1_Page_553
	combined1_Page_554
	combined1_Page_555
	combined1_Page_556
	combined1_Page_557
	combined1_Page_558
	combined1_Page_559
	combined1_Page_560
	combined1_Page_561
	combined1_Page_562
	combined1_Page_563
	combined1_Page_564
	combined1_Page_565
	combined1_Page_566
	combined1_Page_567
	combined1_Page_568
	combined1_Page_569
	combined1_Page_570
	combined1_Page_571
	combined1_Page_572
	combined1_Page_573
	combined1_Page_574
	combined1_Page_575
	combined1_Page_576
	combined1_Page_577
	combined1_Page_578
	combined1_Page_579
	combined1_Page_580
	combined1_Page_581
	combined1_Page_582
	combined1_Page_583
	combined1_Page_584
	combined1_Page_585
	combined1_Page_586
	combined1_Page_587
	combined1_Page_588
	combined1_Page_589
	combined1_Page_590
	combined1_Page_591
	combined1_Page_592
	combined1_Page_593
	combined1_Page_594
	combined1_Page_595
	combined1_Page_596
	combined1_Page_597
	combined1_Page_598
	combined1_Page_599
	combined1_Page_600
	combined1_Page_601
	combined1_Page_602
	combined1_Page_603
	combined1_Page_604
	combined1_Page_605
	combined1_Page_606
	combined1_Page_607
	combined1_Page_608
	combined1_Page_609
	combined1_Page_610
	combined1_Page_611
	combined1_Page_612
	combined1_Page_613
	combined1_Page_614
	combined1_Page_615
	combined1_Page_616
	combined1_Page_617
	combined1_Page_618
	combined1_Page_619
	combined1_Page_620
	combined1_Page_621
	combined1_Page_622
	combined1_Page_623
	combined1_Page_624
	combined1_Page_625
	combined1_Page_626
	combined1_Page_627
	combined1_Page_628
	combined1_Page_629
	combined1_Page_630
	combined1_Page_631
	combined1_Page_632
	combined1_Page_633
	combined1_Page_634
	combined1_Page_635
	combined1_Page_636
	combined1_Page_637
	combined1_Page_638
	combined1_Page_639
	combined1_Page_640
	combined1_Page_641
	combined1_Page_642
	combined1_Page_643
	combined1_Page_644
	combined1_Page_645
	combined1_Page_646
	combined1_Page_647
	combined1_Page_648
	combined1_Page_649
	combined1_Page_650
	combined1_Page_651
	combined1_Page_652
	combined1_Page_653
	combined1_Page_654
	combined1_Page_655
	combined1_Page_656
	combined1_Page_657
	combined1_Page_658
	combined1_Page_659
	combined1_Page_660
	combined1_Page_661
	combined1_Page_662
	combined1_Page_663
	combined1_Page_664
	combined1_Page_665
	combined1_Page_666
	combined1_Page_667
	combined1_Page_668
	combined1_Page_669
	combined1_Page_670
	combined1_Page_671
	combined1_Page_672
	combined1_Page_673
	combined1_Page_674
	combined1_Page_675
	combined1_Page_676
	combined1_Page_677
	combined1_Page_678
	combined1_Page_679
	combined1_Page_680
	combined1_Page_681
	combined1_Page_682
	combined1_Page_683
	combined1_Page_684
	combined1_Page_685
	combined1_Page_686
	combined1_Page_687
	combined1_Page_688
	combined1_Page_689
	combined1_Page_690

