
- -

-=

Software Engineering Economics
BARRY W. BOEHM

Manuscript received April 26, 1983 ; revised June 28, 1983.
The author is with the Software Information Systems Division,

TRW Defense Systems Group, Redondo Beach, CA 90278.

Abstruct-This paper summarizes the current state of the art and
recent trends in software engineering economics. It provides an over-
view of economic analysis techniques and their applicability to soft-
ware engineering and management. It surveys the field of software
cost estimation, including the major estimation techniques available,
the state of the art in algorithmic cost models, and the outstanding
research issues in software cost estimation.

Index Terms-Computer programming costs, cost models, manage-
ment decision aids, software cost estimation, software economics,
software engineering, software management.

Definitions

The dictionary defines "economics" as "a social science
concerned chiefly with description and analysis of the produc-
tion, distribution, and consumption of goods and services."
Here is another defmition of economics which I think is more
helpful in explaining how economics relates to software engi-
neering.

Economics is the study of how people make decisions
.in resource-limited situations.
This definition of economics fits the major branches of

classical economics very well.
Macroeconomics is the study of how people make decisions

in resource-limited situations on a national or global scale. It
deals with the effects of decisions that national leaders make
on such issues as tax rates, interest rates, foreign and trade
policy.

Microeconomics is the study of how people make decisions
in resource-limited situations on a more personal scale. It deals
with the decisions that individuals and organizations make on
such issues as how much insurance to buy, which word proc-
essor to buy, or what prices to charge for their products or
services.

Economics and Software Engineering Management

If we look at the discipline of software engineering, we see
that the microeconomics branch of economics deals more with
the types of decisions we need to make as software engineers
or managers.

Clearly, we deal with limited resources. There is never
enough time or money to cover all the good features we would
like to put into our software products. And even in these days
of cheap hardware and virtual memory, our more significant
software products must always operate within a world of lim-
ited computer power and main memory. If you have been in
the software engineering field for any length of time, I am sure
you can think of a number of decision situations in which you
had to determine some key software product feature as a func-
tion of some limiting critical resource.

Throughout the software life cycle,' there are many de-
cision situations involving limited resources in which software
engineering economics techniques provide useful assistance. To
provide a feel for the nature of these economic decision issues,
an example is given below for each of the major phases in the
software life cycle.

Feasibiliw Phase: How much should we invest in in-
formation system analyses (user questionnaires and in-

1 Economic principles underlie the overall structure of the software
Iife cycle, and its primary refinements of prototyping, incremental de-
velopment, and advancemanship. The primary economic driver of the
life-cycle structure is the significantly increasing cost of making a soft-
ware change or fmhg a software problem, as a function of the phase
in which the change or fur is made. See [11, ch. 41.

terviews, current-system analysis, workload characteri-
zations, simulations, scenarios, prototypes) in order
that we converge on an appropriate definition and con-
cept of operation for the system we plan t o imple-
ment?
Plans and Requirements Phase: How rigorously should
we specify requirements? How much should we invest
iri requirements validation activities (automated com-
pleteness, consistency, and traceability checks, analytic
models, simulations, prototypes) before proceeding to
design and develop a software system?
Product Design Phase: Should we organize the software
to make it possible to use a complex piece of existing
software which generally but not completely meets our
requirements?
Programming Phase: Given a choice between three data
storage and retrieval schemes which are primarily exe-
cution time-efficient, storage-efficient, and easy-to-
modify, respectively; which of these should we choose
to implement?
Integration and Test Phase: How much testing and for-
mal verification should we perform on a product be-
fore releasing it to users?
Maintenance Phase: Given an extensive list of suggested
product improvements, which ones should we imple-
ment first?
Phaseout: Given an aging, hard-to-modify software
product, should we replace it with a new product, re-
structure it, or leave it alone?

Outline of This Paper

The economics field has evolved a number of techniques
(cost-benefit analysis, present value analysis, risk analysis, etc.)
for dealing with decision issues such as the ones above. Section

I1 of this paper provides an overview of these techniques and
their applicability to software engineering.

One critical problem which underlies all applications of
economic techniques to software engineering is the problem of
estimating software costs. Section I11 contains three major
sections which summarize this field:

111-A: Major Software Cost Estimation Techniques
111-B: Algorithmic Models for Software Cost Estimation
111-C: Outstanding Research Issues in Software Cost Estima-

tion.
Section IV concludes by summarizing the major benefits of

software engineering economics, and commenting on the
major challenges awaiting the field.

Overview of Relevant Techniques

The microeconomics field provides a number of techniques
for dealing with software life-cycle decision issues such as the
ones given in the previous section. Fig. 1 presents an overall
master key to these techniques and when to use them.*

As indicated in Fig. 1, standard optimization techniques
can be used when we can find a single quantity such as dollars
(or pounds, yen, cruzeiros, etc.) to serve as a "universal sol-
vent" into which all of our decision variables can be converted.
Or, if the nondollar objectives can be expressed as constraints
(system availability must be at least 98 percent; throughput
must be at least 150 transactions per second), then standard
constrained optimization techniques can be used. And if cash
flows occur at different times, then present-value techniques
can be used to normalize them to a common point in time.

2 The chapter numben in Fig. 1 refer to the chapters in [11] , in
which those techniques are discussed in further detail.

MASTER KEY
T O SOFTWARE ENGINEERING ECONOMICS

DECISION ANALYSIS TECHNIQUES

USF STANOARn

NE r VALUE

PRESENT SJ TFCHNIOUFS
ICHAPTTRS 10. 131

USE ZTbNDARO
N t W - SDCr VCS CONSTRAINF~-

EXPUCSSIRLE AS OPTIMIZATION

TkCHNlOUCS
ICHAPTFR 161

USE COST -
W M - S O C : % BENEFIT lCRl

n c c l s l O N MAKING 1
-RF w r I ~ - C R I ~ I RION, TF CHNIOUFS

ICIiAPTFRS 11. 121

USF FIGURE OF -
WN - S OCs

~(IAMTI~ IABLC' CB TFCHNIOUES
ICHAPTF R IS1

RECONCll ING NON-
O U A N I IFIAHLE DCs
ICHAPTER 101

HlGHLV SENSl r lVE
TO ASSUMPTIONS?

HAPTFR I 7 y
FINO.
USE LES.
SENSlTlVF

USE PRESENT VALUE rECHNlWFS TO
CONVERT FUTURF S T 0 PRESENT S
ICHAPTkR 14) I I

I W E N SOME 00 INVOLVE
I UNCE QTAINTIES

I

Fig. 1. laster key to software engineering economics decision analysis
techniques!

LJmanDIoeMnI

,-+niqcp.wn--wnarn

I

Throughput am
lm -

(transutions
sac

1 '"r
140 -
120 -
1m -
m-

u) -
a-

20 40 W m 100 1ZO 140 100 1m 200 210 240 i80 2BO 300

C I C ' U

Fig. 2. Cost-effectiveness comparison, transaction processing system
options.

More frequently, some of the resulting benefits from the
software system are not expressible in dollars. In such situa-
tions, one alternative solution will not necessarily dominate
another s o h tion.

An example situation is shown in Fig. 2, which compares
the cost and benefits (here, in terms of throughput in trans-
actions per second) of two alternative approaches to develop-
ing an operating system for a transaction processing system.

Option A: Accept an availabIe operating system. This
will require only $80K in software costs, but will
achieve a peak performance of 120 transactions per
second, using five $10K minicomputer processors, be-
cause of a high multiprocessor overhead factor.
Option B: Build a new operating system. This system
would be more efficient and would support a higher
peak throughput, but would require $180K in soft-
ware costs.

The cost-versus-performance curve for these two options
are shown in Fig. 2. Here, neither option dominates the
other, and various cost-benefit decision-making techniques
(maximum profit margin, costlbenefit ratio, return on in-
vestments, etc.) must be used to choose between Options
A and B.

In general, software engineering decision problems are
even more complex than Fig. 2, as Options A and B will
have several important criteria on which they differ (e.g.,
robustness, ease of tuning, ease of change, functional
capability). If these criteria are quantifiable, then some type
of figure of merit can be defined to support a comparative
analysis of the preferability of one option over another. If
some of, the criteria are unquantifiable (user goodwill, pro-
grammer morale, etc.), then some techniques for comparing
unquantifiable criteria need to be used. As indicated in Fig. 1,
techniques for each of these situations are available, and
discussed in [1 11 .
Analyzing Risk, Uncertainty, and the Value o f In formation

In software engineering, our decision issues are generally
even more complex than those discussed above. This is be-
cause the outcome of many of our options cannot be deter-
mined in advance. For example, building an operating sys-
tem with a significantly lower multiprocessor overhead may
be achievable, but on the other hand, it may not. In such cir-
cumstances, we are faced .with a problem of decision making
under uncertainty, with a considerable risk of an undesired
outcome.

The main economic analysis techniques available to sup-
port us in resolving such problems are the following.

1) Techniques for decision making under complete un-
certainty, such as the maximax rule, the maximin rule, and
the Laplace rule [38]. These techniques are generally inade-
quate for practical software engineering decisions.

2) Expected-value techniques, in which we estimate the
probabilities of occurrence of each outcome (successful or
unsuccessful development of the new operating system) and
complete the expected payoff of each option:

These techniques are better than decision making under com-
plete uncertainty, but they still involve a great deal of risk if
the Prob(fai1ure) is considerably higher than our estimate of it.

3) Techniques in which we reduce uncertainty by buying
information. For example, prototyping is a way of buying in-
formation to reduce our uncertainty about the likely success
or failure of a multiprocessor operating system; by developing
a rapid prototype of its high-risk elements, we can get a clearer
picture of our likelihood of successfully developing the full
operating system.

In general, prototyping and other options for buying in-
formation3 are most valuable aids for software engineering de-
cisions. However, they always raise the following question:
"how much information-buying is enough?"

In principle,. this question can be answered via statistical de-
cision theory techniques involving the use of Bayes' Law, which
allows us to calculate the expected payoff from a software
project as a function of our level of investment in a prototype
or other information-buying option. (Some examples, of the
use of Bayes' Law to estimate the appropriate level of invest-
ment in a prototype are given in [l 1, ch. 201 .)

Ln practice, the use of Bayes' Law involves the estimation
of a number of conditional probabilities which are not easy to

3 Other examples of options for buying information to support
software engineering decisions include feasibility studies, user sur-
veys, simulation, testing, and mathematical program verification tech-
niques.

estimate accurately. However, the Bayes' Law approach can be
translated into a number of value-of-in formation guidelines, or
conditions under which it makes good sense to decide on in-
vesting in more information before committing ourselves to a
particular course of action.

Condition 1: There exist attractive alternatives whose pay-
off vanes greatly, depending on some critical states of nature.
I f not, we can commit ourselves to one of the attractive alter-
natives with no risk of significant loss.

Condition 2: The critical states of nature .have an appreci-
able probability of occumng. If not, we can again commit our-
selves without major risk. For situations with extremely high
variations in payoff, the appreciable probability level is lower
than in situations with smaller variations in payoff.

Condition 3: The investigations have a high probability of
accurately identioing the occurrence of the critical states of
nature. If not, the investigations will not do much to reduce
our risk of loss due to making the wrong decision.

Condition 4: The required cost and schedule o f the investi-
gations do not overly curtail their net value. I t does us little
good to obtain results which cost more than they can save us,
or which arrive too late to help us make a decision.

Condition 5: There exist significant side benefits derived
from performing the investigations. Again, we may be able to
justify an investigation solely on the basis of its value in train-
ing, team-building, customer relations, or design validation.

Some Pitfalls Avoided by Using the Value-ofh formation
Approach

The guideline conditions provided by the value-of-informa-
tion approach provide us with a perspective which helps us
avoid some serious software engineering pitfalls. The pitfalls
below are expressed in terms of some frequently expressed but
faulty pieces of software engineering advice.

Pitfall 1: Always use a simulation to investigate the feasibil-
ity of complex realtime software. Simulations are often ex-
tremely valuable in such situations. However, there have been
a good many simulations developed which were largely an ex-
pensive waste of effort, frequently under conditions that would
have been picked up by the guidelines above. Some have been
relatively useless because, once they were built, nobody could
tell whether a given set of inputs was realistic or not (picked
up by Condition 3). Some have been taken so long to develop
that they produced their first results the week after the pro-
posal was sent out, or after the key design review was com-
pleted. (picked up by Condition 4).

Pitfall 2: Always build the software twice. The guidelines
indicate that the prototype (or build-it-twice) approach is often
valuable, but not in all situations. Some prototypes have been
built of software whose aspects were all straightforward and
familiar, in which case nothing much was learned by building
them (picked up by Conditions 1 and 2).

Pitfall 3: Build the sofnvare purely top-down. When inter-
preted too literally, the top-down approach does not concern
itself with the design of low level modules until the higher
levels have been fully developed. If an adverse state of nature
makes such a low level module (automatically forecast sales
volume, automatically discriminate one type of aircraft from
another) impossible to develop, the subsequent redesign will
generally require the expensive rework of much of the higher
level design and code. Conditions 1 and 2 warn us to temper
our top-down approach with a thorough top-to-bottom soft-
ware risk analysis during the requirements and product design
phases.

Pitfall 4: Every piece of code should be proved correct.
Correctness proving is still an expensive way to get informa-
tion on the fault-freedom of software, although it strongly
satisfies Condition 3 by giving a very high assurance of a pro-
gram's correctness. Conditions 1 and 2 recommend that proof

techniques be used in situations where the operational cost of
a software fault is very large, that is, loss of life, compromised
national security, major financial losses. But if the operational
cost of a software fault is small, the added information on
fault-freedom provided by the proof will not be worth the in-
vestment (Condition 4).

Pitfall 5: Nominal-case testing is sufficient. This pitfall is
just the opposite of Pitfall 4. If the operational cost of poten-
tial software faults is large, it is highly imprudent not to per-
form off-nominal testing.

Summary: The Economic Value of lizforrnation

' Let us step back a bit from these guidelines and pitfalls. Put
simply, we are saying that, as software engineers:

"It is often worth paying for information because it
helps us make better decisions."
If we look at the statement in a broader context, we can see

that it is the primary reason why the software engineering field
exists. It is what practicalIy all of our software customers say
when they decide to acquire one of our products: that i t is
worth paying for a management information system, a weather
forecasting system, an air traffic control system, an inventory
controlsystem, etc., because it helps them make better decisions.

Usually, software engineers are producers of management
information to be consumed by other people, but during the
software life cycle we must also be consumers of management
information to support our own decisions. As we come to ap-
preciate the factors which make it attractive for us t o pay for
processed information which helps us make better decisions as
software engineers, we will get a better appreciation for what
our customers and users are looking for in the information
processing systems we develop for them.

Introduction

All of the software engineering economics decision analysis
techniques discussed above are only as good as the input data
we can provide for them. For software decisions, the most
critical and difficult of these inputs to provide are estimates
of the cost of a proposed software project. In this section,
we will summarize:

1) the major software cost estimation techniques avail-
able, and their relative strengths and difficulties;

2) algorithmic models for software cost estimation;
3) outstanding research issues in software cost estimation.

A. Major Software Cost Estimation Techniques

Table I summarizes the relative strengths and difficulties of
the major software cost estimation methods in use today.

1) Algorithmic Models: These methods provide one or
more algorithms which produce a software cost estimate as a
function of a number of variables which are considered to be
the major cost drivers.

2) Expert Judgment: This method involves consulting one
or more experts, perhaps with the aid of an expert-consensus
mechanism such as the Delphi technique.

3) Analogy: This method involves reasoning by analogy
with one or more completed projects to relate their actual
costs to an estimate of the cost of a similar new project.

4) Parkinson: A Parkinson principle ("work expands to
fill the available volume") is invoked to equate the cost esti-
mate to the available resources.

5) Price-to-Win: Here, the cost estimate is equated. to the
price believed necessary to win the job (or the schedule be-
lieved necessary to be first in the market with a new product,
etc.).

6) Top-Down: An overall cost estimate for the project is
derived from global properties of the software product. The
total cost is then split up among the various components.

7) Bott0.m-Up: Each component of the software job is
separately estimated, and the resuits aggregated to produce
an estimate for the overall job.

The main conclusions that we can draw from Table I are
the following.

None of the alternatives is better than the others from
all aspects.

The Parkinson and price-to-win methods are unaccept-
able and do not produce satisfactory cost estimates.

The strengths and weaknesses of the other techniques
are complementary (particularly the algorithmic models versus
expert judgment and top-down versus bottom-up).

Thus, in practice, we should use combinations of the
above techniques, compare their results, and iterate on them
where they differ.

TABLE I
STRENGTHS AND WEAKNESSES OF SOFTWARE

COST-ESTIMATION METHODS

slbPmJeinp*r
Assessment d
drawnstancsr
Calibrated to prrf not
future

NO bener ~h.n p r r c ~ ~ t s
Biases. i- recall

Analogy Based on m t i v e errperierwr,

Parkinson
Pnce to win

Less dewed brPs
Less stable

Fundamental Limitations o f Software Cost Estimution
Techniques

Whatever the strengths of a software cost estimation tech-
nique, there is really no way we can expect the technique to
compensate for our lack of definition or understanding of the
software job to be done. Until a software specification is fully
defined, it actually represents a range of software products,
and a corresponding range of software development costs.

This fundamental limitation of software cost estimation
technology is illustrated in Fig. 3, which shows the accuracy
within which software cost estimates can be made, as a func-
tion of the software lifecycle phase (the horizontal axis), or of
the level of knowledge we have of what the software is in-
tended to do. This level of uncertainty is illustrated in Fig. 3
with respect to a human-machine interface component of
the software.

Product Deuiled
CarcDt of Requirements d-i? *ipn. Accepted
m i m ~pci f iut ions rpecifiut~onr ~ ~ a i t ~ u t ~ o r a softmre

0 A A A A
Feas~blhtv Plans and Product Dcta~led Develoommt and test

requt~rnents d-19" - 8 9 "

Phases md mi latons

Fig. 3. Software cost estimation accuracy versus phase.

When we first begin to evaluate alternative concepts for a
new software application, the relative range of our software
cost estimates is roughly a factor of four on either the high or
low side? This range stems from the wide range of uncertainty
we have at this time about the actual nature of the product.
For the human-machine interface component, for example,
we do not know at this time what classes of people (clerks,
computer specialists, middle managers, etc.) or what classes of
data (raw or pre-edited, numerical or text, digital or analog) the
system will have to support. Until we pin down such uncer-
tainties, a factor of four in either direction is not surprising as
a range of estimates.

The above uncertainties are indeed pinned down once we
complete the feasibility phase and settle on a particular con-
cept of operation. At this stage, the range of our estimates di-
minishes to a factor of two in either direction. This range is
reasonable because we stiU have not pinned down such issues
as the specific types of user query to be supported, or the spe-
cific functions to be performed within the microprocessor in

!
4

the intelligent terminal. These issues will be resolved by the lj
I

time we have developed a software requirements specification,
at which point, we will be able to estimate the software costs 1 1
within a factor of 1.5 in either direction. i.

By the time we complete and validate a product design
specification, we will have resolved such issues as the internal
data structure of the software product and the specific tech-
niques for handling the buffers between the terminal micro-

[

processor and the central processors on one side, and between i

the microprocessor and the display driver on the other. At this : i
(i

point, our software estimate should be accurate to within a . , , .
factor of 1.25, the discrepancies being caused by some remain- i \ ' .
ing sources of uncertainty such as the specific algorithms to be

4 These ranges have been determined subjectively, and are intended
to represent 80 percent confidence limits, that is, "within a factor of
four on either side, 80 percent of the time."

used for task scheduling, error handling, abort processing, and
the like. These will be resolved by the end of the detailed de-
sign phase, but there will still be a residual uncertainty about
10 percent based on how well the programmers really under-
stand the specifications to which they are to code. (This factor
also includes such consideration as personnel turnover uncer-
tainties during the development and test phases.)

B. Algorithmic Models for Software Cost Estimation

Algorithmic Cost Models: Early Development

Since the earliest days of the software field, people have
been trying to develop algorithmic models to estimate soft-
ware costs. The earliest attempts were simple rules of thumb,
such as:

on a large project, each software performer will provide
an average of one checked-out instruction per man-hour (or
roughly 150 instructions per man-month);

each software maintenance person can maintain four
boxes of cards (a box of cards held 2000 cards, or roughly
2000 instructions in those days of few comment cards).

Somewhat later, some projects began collecting quantita-
tive data on the effort involved in developing a software
product, and its distribution across the software life cycle. One
of the earliest of these analyses was documented in 1956 in [8] .
It indicated that, for very large operational software products on
the order of 100 000 delivered source instructions (100 KDSI),
that the overall productivity was more like 64 DSIJman-month,
that another 100 KDSI of support-software would be required;
that about 15 000 pages of documentation would be produced
and 3000 hours of computer time consumed; and that the dis-
tribution of effort would be as follows:

Program Specs: 10 percent
Coding Specs: 30 percent

Coding: 10 percent
Parameter Testing: 20 percent
Assembly Testing: 30 percent

with an additional 30 percent required to produce operational
specs for the system. Unfortunately, such data did not become
well known, and many subsequent software projects went
through a painful process of rediscovering them.

During the late 1950's and early 1960's, relatively little
progress was made in software cost estimation, while the fre-
quency and magnitude of software cost overruns was becom-
ing critical to many large systems employing computers. In
1964, the U.S. Air Force contracted with System Develop-
ment Corporation for a landmark project in the software cost
estimation field. This project collected 104 attributes of 169
software projects and treated them to extensive statistical anal-
ysis. One result was the 1965 SDC cost model [41] which was
the best possible statistical 13-parameter linear estimation
model for the sample data:

+ 9.15 (Lack of Requirements) (0-2)

+ 10.73 (Stability of Design) (0-3)

+ 0.5 1 (Percent Math Instructions)

+ 0.46 (Percent S toragelRetrieva1 Instructions)

+ 0 -40 (Number of Subprograms)

+ 7.28 (Programming Language) (0-1)

-2 1.45 (Business Application) (0-1)

+ 13.53 (Stand-Alone Program) (0.1)

+ 12-35 (First Program on Computer) (0-1)

+ 58.82 (Concurrent Hardware Development) (0-1)

+ 30.6 1 (Random Access Device Used) (0-1)

+ 29.55 (Difference Host, Target Hardware) (0-1)

+0.54 (Number of Personnel Trips)

-25.20 (Developed by Military Organization) (0-1).

The numbers in parentheses refer to ratings to be made by the
estimator.

When applied to its database of 169 projects, this model
produced a mean estimate of 40 MM and a standard deviation
of 62 MM; not a very accurate predictor. Further, the applica-
tion of the model is counterintuitive; a project with all zero
ratings is estimated at minus 33 MM; changing language from a
higher order language to assembly language adds 7 MM, inde-
pendent of project size. The most conclusive result from the
SDC study was that there were too many nonlinear aspects of
software development for a linear cost-estimation model to
work very well.

Still, the SDC effort provided a valuable base of information
and insight for cost estimation and future models. Its cumula-
tive distribution of productivity for 169 projects was a valu-
able aid for producing or checking cost estimates. The estima-
tion rules of thumb for various phases and activities have been
very helpful, and the data have been a major foundation for
some subsequent cost models.

In the late 1960's and early 1970's, a number of cost models
were developed which worked reasonably well for a certain re-
stricted range of projects to which they were calibrated. Some
of the more notable examples of such models are those de-
scribed in [3], [54], [57].

The essence of the TRW Wolverton model [57] is shown in
Fig. 4, which shows a number of curves of software cost per
object instruction as a function of relative degree of difficulty
(0 to loo), novelty of the application (new or old), and type
of project. The best use of the model involves breaking the
software into components and estimating their cost individu-

Catcgorles
C = Control
I = Inputloutput
P = Relport processor
A = Algor~thm
D = Data management
T = Time cr~tical praessor

Sample range
excludes upper and lower
20 percentiles

New

Old

0
T (all)

Category () .

/-

~ i g . 4. TRW Wolverton model: Cost per object instruction versus rela-
tive degree of difficulty.

10

ally. This, a 1000 object-instruction module of new data man-
agement software of medium (50 percent) difficulty would be
costed at $46/instruction, or $46 000.

This model is well-calibrated to a class of near-real-time
government command and control projects, but is less ac-
curate for some other classes of projects. In addition, the
model provides a good breakdown of project effort by phase
and activity.

Easy Medium Hard

0 m 40 60 80 l (

Relative degree of d~fficulty: percent of total
sample expcrlencmg this rate or less

In the late 1 9 7 0 ' ~ ~ several software cost estimation models
were developed which established a significant advance in the
state of the art. These included the Putnam SLIM Model [44] ,
the Doty Model [27], the RCA PRICE S model [2 2] , the
COCOMO model [I 11, the IBM-FSD model [53], the Boeing
model [9] , and a series of models developed by GRC [15]. A
summary of these models, and the earlier SDC and Wolverton
models, is shown in Table 11, in terms of the size, program,
computer, personnel, and project attributes used by each
model to determine software costs. The first four of these
models are discussed below.

The Pu tnam SLIM Model [44], [45]

The Putnam SLIM Model is a commercially available (from
Quantitative Software Management, Inc.) software product
based on Putnam's analysis of the software life cycle in terms
of the Rayleigh distribution of project personnel level versus
time. The basic effort macro-estimation model used in SLLM
is

where

Ss = number of delivered source instructions
K = life-cycle effort in man-years
td = development time in years
Ck = a "technology constant."

Values of Ck typically range between 6 10 and 57 3 14. The
current version of SLIM allows one to calibrate Ck to past
projects or to past projects'or to estimate it as a function of a
project's use of modern programming practices, hardware con-
straints, personnel experience, interactive development, and
other factors. The required development effort, DE, is esti-
mated as roughly 40 percent of the life-cycle effort for large

-- ., .
TABLE ll . . . - - - . -

FACTORS USED IN VARIOUS COST MODELS .
SDC. TRW. WTNAM. RCA. BOEING. GRC.

GRWP FACTOR 1%5 1971 SLIM DOTY PRICES IBM I977 IS79 COCOMO SOFCOST DSN JENSEI

SIZE SOURCE lNnRuCTlONS x x X X x X X X
ATTRIBUTES OBJECT INSTRUCTIONS X X X X

NUMBER OF ROUTINES x x X

NUMBER OF DATA ITEMS X X X

NUMBER OF OUTPUT FORMATS X X
DOCUMENTATION X X X X

NUMBER OF PERSONNEL X X X X X

PROGRAM TYPE X X X X X X X X

ATTRIBUTES COMPLEXITY X X X X X X X X
UNGUAGE X X X X X X

REUSE X X X X X X X X
REOUIRED RELIABILITY X X X X X

DISPLAY REQUIREMENTS X X X

COMPUTER TIME CONSTRAINT X X X X X X X
x X i I X

X X X
ATTRIBUTES STORAGE CONSTRAINT X X X X X

HARDWARE CONFIGURATION X
CONCURRENT HARDWARE
DEVELOPMENT X X X X X X X X

INTCRFACING EWIPMENT, S M X X

PERSONNEL PERSONNEL CAPABILITV X x X X X X X

I ATlRIBUTES PERSONNEL CONTINUITY X X
HARDWARE EXPERIENCE X X X X X X X X
APPLICATIONS EXPERIENCE X X x x x x x x
CANGUAGE EXPERIENCE X X X X I X X X X

PROJECT TOOLS AND TECHNIQUES X X X X X X X X

ATTRIB~ES CUSTOMER INTERFACE x x x x
REOUIREMENTS DEFINITION X X X X X X
REOUIREMENTS VOLATILITY X X X X X X X X X
SCUEDULE X X X X X X

SECURITV X x X
COMPUTER ACCESS X X X X X X X X
TRAVELIREHOSTINGNULTI~SITE X X X X X X
SUPPORT SOFTWARE MATIJRITY X X

CALIBRATION
FACTOR X X X

EFFORT mNOM ~ c ~ M o ~ , X .
EOUATION

t.0 1.047 0.91 1.0 t .06-I 1 1.0 1.2

SCHEDULE ID c IMMI~. x =
EOUATION

0.35 0.31 - 0.38 0.360 0.333

systems. For smaller systems, the percentage varies as a func-
tion of system size.

The SLIM model includes a number of useful extensions to
estimate such quantities as manpower distribution, cash flow,
major-milestone schedules, reliability levels, computer time,
and documentation costs.

The most controversial aspect of the SLIM model is its
tradeoff relationship between development effort K and be-
tween development time td . For a software product of a given
size, the SLIM software equation above gives

constant
K =

C
For example, this relationship says that one can cut the

cost of a software project in half, simply by increasing its de-
velopment time by 19 percent (e.g., from 10 months to 12
months). Fig. 5 shows how the SLIM tradeoff relationship com-
pares with those of other models; see [l l , ch. 271 for further
discussion of this issue.

On balance, the SLIM approach has provided a number
of useful insights into software cost estimation, such as the
Rayleigh-curve distribution for one-shot software efforts, the
explicit treatment of estimation risk and uncertainty, and the
cube-root relationship defining the minimum development time
achievable for a project requiring a given amount of effort.

The Doty Model [2 71

This model is the result of an extensive data analysis activ-
ity, including many of the data points from the SDC sample.
A number of models of similar form were developed for dif-
ferent application areas. As an example, the model for general
application is

RELATIVE
EFFORT
MM -
MMNOM

1.1 -

114

RELATIVE SCHEDULE
TDESIREDI~NOM

0.0 -

0.8 - \ \ '\
a7 - \ \.

Fig. 5. Comparative effort-schedule tradeoff relationships.

MM = 5.288 (K D s I) ' . ~ ~ ~ , for KDSI 2 10

MM = 2.060 (K D S I) ~ - O ~ ~ (n f i) , for KDSI < lo .
j= 1

The effort multipliers fi are shown in Table 111. This model has
a much more appropriate functional form than the SDC
model, but it has some problems with stability, as it exhibits a
discontinuity at KDSI = 10, and produces widely varying esti-
mates via the f factors (answering "yes" to "first software de-
veloped on CPU" adds 92 percent to the estimated cost).

The R CA PRICE S Model [22]

PRICE S is a commercially available (from RCA, Inc.)
macro cost-estimation model developed primarily for embed-

TABLE I11
DOTY MODEL FOR SMALL PROGRAMS*

PI*
MM = 2.060 P" A'1

Factor '1 Yes No

sg.oj.l-' A 1-11 1 .00
~.t~ddomliond-- 6 1.00 1.11
c-wtO'Jp--='- 4 1.05 1.00
-m 4 1.33 1.00
w m w n a ~ m 4 1.43 1.00
Wcine- 4 1.33 1.00
F i . 1 ~ d m b P . d m W ir 1.02 1.00
Cawumtdwdopmtd~~~- 1 1 s 1.00
T i w m s h W p r o e a r h g h
6nb9mml 6 0.83 1.00

~ u i p c a r p r r C r . t ~ i . a l t y 6 1 .a 1.00
D.nbpm(.t-.k &a 1 s 1 .00
-compuar-mntrg.t - 6 s 125 1.00
Dmbemc.tmonamon* fu 115 1 .00

ded system applications. It has improved steadily with experi-
ence; earlier versions with a widely varying subjective complex-
ity factor have been replaced by versions in which a number of
computer, personnel, and project attributes are used to modu-
late the complexity rating.

PRICE S has extended a number of costiestimating relation-
ships developed in the early 1970's such as the hardware con-
straint function shown in Fig. 6 [lo] . It was primarily devel-
oped to handle military software projects, but now also in-
cludes rating levels to cover business applications.

PRICE S also provides a wide range of useful outputs on
gross phase and activity distributions analyses, and monthly
project cost-schedule-expected progress forecasts. Price S uses
a two-parameter beta distribution rather than a Rayleigh curve
to calculate development effort distribution versus calendar
time.

'PRICE S has recently added a softwae life-cycle support
cost estimation capability called PRICE SL [34]. It involves
the definition of three categories of support activities.

I Utiliratmn Nomulued Normalized
can schedule

L..
0 0.4 0.5 0.6 0.7 0.8 0.9

Utilizat~on of mailable speed and memory

Fig. 6 . RCA PRICE S model: Effect of hardware constraints.

Growth: The estimator specifies the amount of code to
be added to the product. PRICE SL then uses its standard
techniques to estimate the resulting life-cycle-effort distribu-
tion.

Enhancement: PRICE SL estimates the fraction of the
existing product which will be momed (the estimator may
provide his own fraction), and uses its standard techniques to
estimate the resulting life-cycle effort distribution.

Maintenance: The estimator provides a parameter indi-
cating the quality level of the developed code. PRICE SL uses
this to estimate the effort required to eliminate remaining er-
rors.

The Constnative Cost Model (COCOMO) [I I]

The primary motivation for the COCOMO model has been
to help people understand the cost consequences of the de-
cisions they will make in commissioning, developing, and sup-
porting a software product. Besides providing a software cost
estimation capability, COCOMO therefore provides a great

deal of material which explains exactly what costs the model
is estimating, and why it comes up with the estimates it does.
Further, it provides capabilities for sensitivity analysis and
tradeoff analysis of many of the common software engineering
decision issues.

COCOMO is actually a hierarchy of three increasingly de-
tailed models which range from a single macroestimation
scaling model as a function of product size to a microestirna-
tion model with a three-level work breakdown structure and
a set of phase-sensitive multipliers for each cost driver attri-
bute. To provide a reasonably concise example of a current
state of the art cost estimation model, the intermediate level
of COCOMO is described below.

Intermediate COCOMO estimates the cost of a proposed
software product in the following way.

1) A nominal development effort is estimated as a func-
tion of the product's size in delivered source instructions in
thousands (KDSI) and the project's development mode.

2) A set of effort multipliers are determined from the
product's ratings on a set of 15 cost driver attributes.

3) The estimated development effort is obtained by mul-
tiplying the nominal effort estimate by all of the product?^
effort multipliers.

4) Additional factors can be used to determine dollar
costs, development schedules, phase and activity distributions,
computer costs, annual maintenance costs, and other elements
from the development effort estimate.

Step I-Nominal Effort Estimation: First, Table IV is used
to determine the project's development mode. Organic-mode
projects typically come from stable, familiar, forgiving, rela-
tively unconstrained environments, and were found in the
COCOMO data analysis of 63 projects have a different scaling
equation from the more ambitious, unfamiliar, unforgiving,
tightly constrained embedded mode. The resulting scaling
equations for each mode are given in Table V; these are used

determine the nominal development effort for the project
man-months as a function of the project's size in KDSI

and the project's development mode.
For example, suppose we are estimating the cost to develop

the microprocessor-based communications processing software
for a highly ambitious new electronic funds transfer network
with high reliability, performance, development schedule, and
interface requirements. From Table IV, we determine
that these characteristics best fit the profile of an
embedded-mode project.

We next estimate the size of the product as 10 000 delivered
source instructions, or 10 KDSI. From Table V, we then deter-
mine that the nominal development effort for this Embedded-
mode project is

TABLE IV
COCOMO SOFTWARE DEVELOPMENT MODES

Mode

Feature Organtc Semdetached Embedded

Oganizational understanding of
product objectives

in worktng with related
som~are systems

Need for software conformance
with preestablished require-
ments

Need tor software conformance
rrim external ~nterface specifics-
Wns

Concunent development of associ-
ated new hardware and opera-
tional procedures

Need tor innovative data processing
architectures. algorithms

Premium on early completion
Roducl sae range
-@es

Thorough

Extensive

Basic

Basic

Minimal
Low
<SO KDSI
Batch data

reduct~on
Scientific

models
Busmess

models
Famil~ar

OS, compler
S~mple inven-

tory. produc-
tton control

Sari
Medrun
QM) KDSl
Moa wansaction

pmcesvng SYS-
tenu

Ne- OS. DBMS
Amhbous tnven-

t u y . wuct lon
m u d

Smote command-
m u d

General

Moderate

Full

Extensive

Cons~derable
High
All wzes
Large. complex

transaction
processing

systems
Amb~t~ous, very

large OS
Avtoncs
Amb~tlous com-

mand-control

TABLE V
COCOMO NOMINAL EFFORT AND SCHEDULE EQUATIONS

DEVELOPMENT htODE NOMINAL EFFORT SCHEDULE

Organic (?dhl) NO,! = 3.2(KDSI) TDEV = 2.5(hlh1DEv)038

Semidetached = 3. OIKDSI) ' . I2 TDEV = 2.S(MMDE,,) 0.35
(h'hl) NOU

Embedded = : . ~ (K D s I) TDEV = 2. 5(hlhlDEy) 0. 32
(t\h\! Nc,,,

(K D S I = thousands o f delivered source instructions)

2.8(10)' -2 O = 44 man-months (MM).

Step 2-Detemine Effort Multipliers: Each of the 15 cost
driver attributes in COCOMO has a rating scale and a-set of ef-
fort multipliers which indicate b y how much the nominal ef-
fort estimate must be multiplied to account for the project's
having to work at its rating level for the attribute.

These cost driver attributes and their corresponding effort
multipliers are shown in Table VI. The summary rating scales
for each cost driver attribute are shown in Table VII, except
for the complexity rating scale which is shown in Table VIII
(expanded rating scales for the other attributes are provided
in [I l l) .

The results of applying these tables t o our microprocessor
communications software example are shown in Table IX. The
effect of a software fault in the electronic fund transfer system
could be a serious financial loss; therefore, the project's RELY
rating from Table VII is High. Then, from Table VI, the effort
multiplier for achieving a High level of required reliability is
1.15, or 15 percent more effort than it would take to develop
the software to a nominal level of required reliability.

TABLE VI
TERMEDIATE COCOMO SOFTWARE DEVELOPMENT EFFORT

MULTIPLIERS

--

Ralucl Atmbutes
RELY Requred r d t w u e rekabilily
DATA Data base sue
CPLX Producl complexity

Computer Attribrtes
TIME Exeartcon twne ~ l r n i n t
STOR Mam storage constraint
VlRT Vwtual maclune vdelYtp
TURN Complier lwnaround tlme

Personnel Allribules
ACAP Analyst capalnlity 1.46 1.19 1.00 .86 .71
AEXP Applicel~ons expcwience 1.29 1.13 1.00 9 1 .82
PCAP Pro~amrner capebtllty 142 1.17 1.00 .86 .70
VEXP V~flual machlne experiencrr 1.21 1-10 1.00 .90
LEXP Programm~ng language e x p e r m 1.14 1.07 1.00 .95

Prop3 Atlnbules
MOOP Use of modern programrmng practices 124 1.10 1.00 .91 .82
TOOL Use of software tools 1.24 1.10 1.00 9 1 .83
SCED Required development scbdule 1.n 1.00 $1.00 1.04 1.10

F a a gwm soflwwa product, hs ~ n d m)rr mlh. oFplu d nd .O))r~e (0s.
DBMS. etc) 11 calls on IO .ccompksh as hrhr

The effort multipliers for the other cost driver attributes
are obtained similarly, except for the Complexity attribute,
which is obtained via Table VIII. Here, we first determine that
communications processing is best classified under device-de-
pendent operations (column 3 in Table VIII). From this col-
umn, we determine that communication line handling typi-
cally has a complexity rating of Very High; from Table VI,
then, we determine that its corresponding effort multiplier is
1.30.

Step 3-Estimate Development Effort: We then compute
the estimated development effort for the microprocessor com-
munications software as the nominal development effort (44
MM) times the product of the effort multipliers for the 15 cost

I
TABLE VIII

COCOMO MODULE COMPLEXXY RATINGS VERSUS TYPE OF
MODULE

i.
; - Data

Connot Commtanmal k l ccda~enden t Managemn!

Shqtmim code
rnth a few non-
rla8I.d sp*o#r-
atom DOs.
US&
IlTHENRSEs.
Simple
Utes

SbUghfforWVd
nesting of SP op.
uators. MosUy
vmpk

MuInoIe resource
scheduling wrn
bF.m-lly
dangtng pnon-
nos. Mrrocoda
Ieve~ control

mticult and un-
RNCMd N.A.:
tngnly -te
.Mlvos of rony.
ROCnasDt dam

No cogmame
needed of par-
ticular pro-
cessor or 110
6.na chuu-
tamka. I10
dona at GET/
PUT Iwd. No
c w " ' w - o f
w=m

R o u a m for mtw-
ruot dpgnoJs.
semcmg. mask-
tng. Communc
cam line
handing

W R k inRlt uld
sngle M. art-
w Simgle
suucwal
dlmws.
edits

S g s c l . 1 ' ~
urtnuuanes ac-
mated by data
sueam con-
tents. Comolex
aata resw. y-
mg at mmru
Iewl

A p o m l m d w -
~ t w ~
file sauctwmg
rwnne. Fib
lnnldlng. com-
mand praeu-
trig. -
OD-rn

nishs -.
mmr rota-
nonal s m .
mas. Nacunl
lurgruge aata
management

Cost
D r i v e r S i tuat ion R a t i n g

E f f o r t
M u l t i p l i e r

RELY

D A T A

CPLX

TIME

STOR

V l R T

TURN

ACAP

4EXP

PCAP

VEXP

LE X P

h10DP

TOOL

SCED

Ser ious f inancial consequences o f sof tware fau l ts

20,000 by tes

Communications process ing

Wi ! l use 70; o f available t ime

45K o f 64K store (70%)

Based o n commercial microprocessor hardware

Two- -hou r average t u r n a r o u n d time

Cood senior analysts

T h r e e years

Cood senior programmers

S ix months

Twelve months

Most techniques in use ove r one yea r

A t basic minicomputer tool leve l

N ine months

H i g h

Low

V e r y H i g h

H i g h

H i g h

Nominal

Nominal

H i g h

Nominal

H i g h

Low

Nominal

H i g h

Low

Nominal

E f f o r t adjustment factor (p r o d u c t o f e f f o r t mu l t i p l i e rs) 1 . 35
- . -

133

er attributes in Table D< (1.3 5, in Table IX). The resulting
dte&effort for the project is then

(44 MM) (1.35) = 59 MM.
- Step 4-Estimate Related Project Factors: COCOMO has
, Mditional cost estimating relationships for computing the re-
8dting dollar cost of the project and for the breakdown of

: coost and effort by life-cycle phase (requirements, design, etc.)
md by type of project activity (programming, test planning,
management, etc.). Further relationships support the estima-
tion of the project's schedule and its phase distribution. For
example, the recommended development schedule can be ob-
tained from the estimated development man-months via the
embedded-mode schedule equation in Table V:

TDEv = 2.5(59)0.32 = 9 months.

As mentioned above, COCOMO also supports the most com-
mon types of sensitivity analysis and tradeoff analysis involved
in scoping a software project. For example, from Tables VI
and VII, we can see that providing the software developers
with an interactive computer access capability (Low turn-
around time) reduces the TURN effort multiplier from 1.00 to
0.87, and thus reduces the estimated project effort from 59
MM to

(59 MM) (0.87) = 51 MM.

The COCOMO model has been validated with respect to a
sample of 63 projects representing a wide variety of business,
scientific, systems, real-time, and support software projects.
For this sample, Intermediate COCOMO estimates come
within 20 percent of the actuals about 68 percent of the time
(see Fig. 7). Since the residuals roughly follow a normal
distribution, this is equivalent to a standard deviation of
roughly 20 percent of the project actuals. This level of accu-
racy is representative of the current state of the art in soft-
ware cost models. One can do somewhat better with the- aid

Imrmdm COCOMO aumm mnmanh

Fig. 7. Intermediate COCOMO estimates versus project actuals.

of a calibration coefficient (also a COCOMO option), or within
a limited applications context, but it is difficult to improve
significantly on this level of accwacy while the accuracy of
software data collection remains in the "+20 percent" range.

A Pascal version of COCOMO is available for a nominal dis-
tribution charge from the Wang Institute, under the name WI-
COMO [18].

Recent Software Cost Estimation Models

Most of the recent software cost estimation.models tend to
f d o w the Doty and COCOMO models in having a nominal
scaling equation of the form MMNoM = c (KDSI)X and a set
of multiplicative effort adjustment factors determined by a
number of cost driver attribute ratings. Some of them use the
Rayleigh curve approach to estimate distribution across the

software life-cycle, but most use a more conservative effort/
schedule tradeoff relation than the SLIM model. These aspects
have been summarized for the various models in Table I1 and
Fig. 5.

The Bailey-Basili meta-model [4] derived the scaling equa-
tion

and used two additional cost driver attributes (methodology
level and complexity) to model the development effort of 18
projects in the NASA-Goddard Software Engineering Labora-
tory to within a standard deviation of 15 percent. Its accuracy
for other project situations has not been determined.

The Grumrnan SOFCOSTModel [19] uses a similar but un-
published nominal effort scaling equation, modified by 30
multiplicative cost driver variables rated on a scale of 0 to 10.
Table I1 includes a summary of these variables.

The Tausworthe Deep Space Network (DSNj model [SO]
uses a linear scaling equation (MMNOM = ~ (K D S I) ~ .') and a
similar set of cost driver attributes, also summarized in Table
11. It also has a well-considered approach for determining the
equivalent KDSI involved in adapting existing software within
a new product. It uses the Rayleigh curve to determine the
phase distribution of effort, but uses a considerably more con-
servative version of the SLIM effort-schedule tradeoff relation-
ship (see Fig. 5).

The Jensen model [30] , [3 11 is a commercially available
model with a similar nominal scaling equation, and a set of cost
driver attributes very similar to the Doty and COCOMO models
(but with different effort multiplier ranges); see Table 11. Some
of the multiplier ranges in the Jensen model vary as functions
of other factors; e.g., increasing access to computer resources
widens the multiplier ranges on such cost drivers as personnel
capability and use of software tools. It uses the Rayleigh curve
for effort distribution, and a somewhat more conservative ef-

fort-schedule tradeoff relation than SLIM (see Fig. 5). As with
the other commercial models, the Jensen model produces a
number of useful outputs on resource expenditure rates, prob-
ability distributions on costs and schedules, etc.

C Outstanding Research Issues in Software Cost Estimation

Although a good deal of progress has been made in software
cost estimation, a great deal remains to be done. This section
updates the state-of-the-art review published in [1 1] , and sum-
marizes the outstanding issues needing further research:

1) Software size estimation;
2) Software size and complexity metrics;
3) Software cost driver attributes and their effects;
4) Software cost model analysis and refinement;
5) Quantitative models of software project dynamics;
6) Quantitative models of software life-cycle evolution;
7) Software data collection.

1) Software Size Estimation: The biggest difficulty in us-
ing today's algorithmic software cost models is the problem of
providing sound sizing estimates. Virtually every model re-
quires an estimate of the number of source or object instruc-
tions to be developed, and this is an extremely difficult quan-
tity to determine in advance. It would be most useful to have
some formula for determining the size of a software product in
terms of quantities known early the software life cycle, such
as the number and/or size of the files, input formats, reports,
displays, requirements specification elements, or design specifi-
cation elements.

Some useful steps in this direction are the function-point
approach in [2] and the sizing estimation model of [29] , both
of which have given reasonably good results for small-to-medium
sized business programs within a single data processing organiza-
tion. Another more general approach is given by DeMarco in
[17]-. It has the advantage of basing its sizing estimates on the
properties of specifications developed in conformance with

137

'hMarco's paradigm models for software specifications and de-
dgns: number of functional primitives, data elements, input

- elements, output elements, states, transitions between states,
-.relations, modules, data tokens, control tokens, etc. To date,
.however, there has been relatively little calibration of the for-
;mulas to project data. -4 recent IBM study [14] shows some
..correlation between the number of variables defined in a state-
:machine design representation and the product size in source
instructions.

Although some useful results can be obtained on the soft-
ware sizing problem, one should not expect too much. A wide
range of functionality can be implemented beneath any given
specification element or 110 element, leading to a wide range
of sizes (recall the uncertainty ranges of this nature in Fig. 3).
For example, two experiments, involving the use of several
teams developing a software program to the same overall
functional specification, yielded size ranges of factors of 3 t o
5 between programs (see Table X).

TABLE X
SIZE RANGES OF SOFTWARE PRODUCTS PERFORMING

SAME FUNCTION

No. of Size Range
Experirnen t Product Teams (source-instr.)
- -

Weinberg Simultaneous 6 33-1 65
& Schulman [55] linear equations

Boehrn, Gray, Interactive 7 15 14-4606
& Seewaldt [131 cost model

The primary implication of this situation for practical soft-
ware sizing and cost estimation is that there is no royal road to
software sizing. This is no magic formula that will provide an
easy and accurate substitute for the process of thinking
through and fully understanding the nature of the software
product to be developed. There are still a number of useful

things that one can do to improve the situation, including the
following.

Use techniques which explicitly recognize the ranges 01'
variability in software sizing. The PERT estimation technique
[56] is a good example.

Understand the primary sources of bias in software
sizing estimates. See [l l , ch. 211 .

Develop and use a corporate memory on the nature and
size of previous software products.

2) Software Size and Complexity Metrics: Delivered source
instructions (DSI) can be faulted for being too low-level a
metric for use in early sizing estimation. On the other hand,
DSI can also be faulted for being too high-level a metric for
precise software cost estimation. Various complexity metrics
have been formulated to more accurately capture the relative
information content of a program's instructions, such as the
Halstead Software Science metrics 1241 , or to capture the rela-
tive control complexity of a program, such as the metrics for-
mulated by McCabe in [39]. A number of variations of these
metrics have been developed; a good recent survey of them is
given in [26] .

However, these metrics have yet to exhibit any practical
superiority t o DSI as a predictor of the relative effort required
t o develop software. Most recent studies [48], [32] show a
reasonable correlation be tween these complexity me trics and
development effort, but no better a correlation than that be-
tween DSI and development effort.

Further, the recent [25] analysis of the software science re-
sults indicates that many of the published software science
"successes" were not as successful as they were previously con-
sidered. It indicates that much of the apparent agreement be-
tween software science formulas and project data was due to
factors overlooked in the data analysis: inconsistent defini-
tions and interpretations of software science quantities, unreal-
istic or inconsistent assumptions about the nature of the proj-

acts analyzed, overinterpretation of the significance of statisti-
cal measures such as the correlation coefficient, and lack of in-
vestigation of alternative explanations for the data. The software
science use of psychological concepts such as the Stroud num-
ber have also been seriously questioned in [16] .

The overall strengths and difficulties of software science are
summarized in [47]. Despite the difficulties, some of the soft-
ware science metrics have been useful in such areas as identify-
ing error-prone modules. In general, there is a strong intuitive
argument that more definitive complexity metrics will eventu-
dy serve as better bases for definitive software cost estimation
than will DSI. Thus, the area continues to be an attractive one
for further research.

3) Software Cost Driver Attributes and Their Effects: Most
of the software cost models discussed above contain a selec-
tion of cost driver attributes and a set of coefficients, func-
tions, or tables representing the effect of the attribute on soft-
ware cost (see Table II). Chapters 24-28 of [l l] contain
summaries of the research to date on about 20 of the most
significant cost driver attributes, plus statements of nearly 100
outstanding research issues in the area.

Since the publication of [l 11 in 1981, a few new results
have appeared. Lawrence [35] provides an analysis of 278
business data processing programs which indicate a fairly uni-
form development rate in procedure lines of code per hour,
some significant effects on programming rate due to batch
turnaround time and level of experience, and relatively little
effect due to use of interactive operation and modern pro-
gramming practices (due, perhaps, to the relatively repetitive'
nature of the software jobs sampled). Okada and Azuma [42]
analyzed 30 CAD/CAM programs and found some significant
effects due to type of software, complexity, personnel skill
level, and requirements volatility.

4) Sofn~are Cost Model Analysis and Refinement: The
most useful comparative analysis of software cost models to

date is the Thibodeau [52] study performed for the US . Alr

Force. This study compared the results of several models (t h t t

Wolverton, Doty, PRICE S, and SLIM models discussed earlier.
plus models from the Boeing, SDC, Tecolote, and Aerospace
corporations) with respect to 45 project data points from
three sources.

Some generally useful comparative results were obtained,
but the results were not definitive, as models were evaluated
with respect to larger and smaller subsets of the data. Not too
surprisingly, the best results were generally obtained using
models with calibration coefficients against data sets with few
points. In general, the study concluded that the models with
calibration coefficients achieved better results, but that none
of the models evaluated were sufficiently accurate to be used
as a definitive Air Force software cost estimation model.

Some further comparative analyses are currently being con-
ducted by various organizations, using the database of 63 soft-
ware projects in [l l] , but to date none of these have been
published.

In general, such evaluations play a useful role in model re-
finement. As certain models are found to be inaccurate in cer-
tain situations, efforts are made to determine the causes, and
to refine the model to eliminate the sources of inaccuracy.

Relatively less activity has been devoted to the formulation,
evaluation, and refinement of models to cover the effects of
more advanced methods of software development (prototyp-
ing, incremental development, use of application generators,
etc.) or to estimate other software-related life-cycle costs (con-
version, maintenance, installation, training, etc.). An exception
is the excellent work on software conversion cost estimation
performed by the Federal Conversion Support Center [28] .
An extensive model to estimate avionics software support
costs using a weighted-multiplier technique has recently been
developed [49]. Also, some initial experimental results have
been obtained on the quantitative impact of prototyping in

141

] and on the impact of very high level nonprocedural lan-
ages in [58]. In both studies, projects using prototyping and
HLL's were completed with significantly less effort.
5) Quantitative Models of Software hoject Dynamics: Cur-

- Wnt software cost estimation models are limited in their abil-
' i t y to represent the internal dynamics of a software project,
md to estimate how the project's phase distribution of effort
and schedule will be affected by environmental or project a

management factors. For example, it would be valuable to
have a model which would accurately predict the effort and
schedule distribution effects of investing in more thorough

! design verification, of pursuing an incremental development -
(strategy, of varying the staffing rate or experience mix, of re-

ducing module size, etc.
Some current models assume a universal effort distribution,

such as the Rayleigh curve [44] or the activity distributions in
[57], which are assumed to hold for any type of project situa-
tion. Somewhat more realistic, but still limited are models
with phase-sensitive effort multipliers such as PRICE S [22]
and Detailed COCOMO [l 11 .

Recently, some more realistic models of software project
dynamics have begun to appear, although to date none of
them have been calibrated to software project data. The Phister
phase-by-phase model in [43] estimates the effort and schedule
required to design, code, and test a software product as a func-
tion of such variables as the staffing level during each phase,
the size of the average module to be developed, and such
factors as interpersonal communications overhead rates and
error detection rates. The Abdel Hamid-Madnick model [I] ,
based on Forrester's System Dynamics world-view, estimates
the time distribution of effort, schedule, and residual defects
as a function of such factors as staffing rates, experience mix,
training rates, personnel turnover, defect introduction rates,
and initial estimation errors. Tausworthe [51] derives and
calibrates alternative versions of the SLIM effort-schedule

tradeoff relationship, using an intercommunication-overhead
model of project dynamics. Some other recent models of
software project dynamics are the Mitre SWAP model and
the Duclos [2 11 total software life-cycle model.

6) Quantitative Models of Software Life-Cycle Evolution:
Although most of the software effort is devoted t o the soft-
ware maintenance (or life-cycle support) phase, only a few sig-
nificant results have been obtained to date in formulating
quantitative models of the software life-cycle evolution proc-
ess. Some basic studies by Belady and Lehman analyzed data
on several projects and derived a set of fairly general "laws of
program evolution" [7] , [37] . For example, the first of these
laws states:

"A program that is used and that as an implementation
of its specification reflects some other reality, undergoes
continual change or becomes progressively less useful.
The change or decay process continues until it is judged
more cost effective to replace the system with a re-
created version."

Some general quantitative support for these laws was obtained
in several studies during the 1 9 7 0 ' ~ ~ and in more recent studies
such as [33]. However, efforts to refine these general laws into
a set of testable hypotheses have met with mixed results. For
example, the Lawrence [36] statistical analysis of the Belady-
Lahman data showed that the data supported an even stronger
form of the first law ("systems grow in size over their useful
life"); that one of the laws could not be formulated precisely
enough to be tested by the data; and that the other three laws
did not lead to hypotheses that were supported by the data.

However, it is likely that variant hypotheses can be found
that are supported by the data (for example, the operating
system data supports some of the hypotheses better than does
the applications data). Further research is needed to clarify
this important area.

I?
I 143
1
< I

! 7) Software Data Collection: A fundamental limitation t o
rlgnificant progress in software cost estimation is the lack of
unambiguous, widely-used standard definitions for software
data. For example, if an organization reports its "software
development man-months," do these include the effort de-
voted to requirements analysis, to training, t o secretaries, to
quality assurance, to technical writers, t o uncompensated
overtime? Depending on one's interpretations, one can easily
cause variations of over 20 percent (and often over a factort
of 2) in the meaning of reported "software development man-
months" between organizations (and similarly for "delivered
instructions," "complexity," "storage constraint," etc.) Given
such uncertainties in the ground data, it is not surprising that
software cost estimation models cannot do much better than
"within 20 percent of the actuals, 70 percent of the time."

Some progress towards clear software data definitions has
been made. The LBM FSD database used in [53] was carefully
collected using thorough data definitions, but the detailed
data and definitions are not generally available. The NASA-
Goddard Software Engineering Laboratory database [5] , [6],
[40] and the COCOMO database [l l] provide both clear
data definitions and an associated project database which are
available for general use (and reasonably compatible). The re-
cent Mitre SARE report [59] provides a good set of data defi-
nitions.

But there is still no commitment across organizations to
establish and use a set of clear and uniform software data defi-
nitions. Until this happens, our progress in developing more
precise software cost estimation methods will be severely lim-
ited.

IV. SOFTWARE ENGINEERING ECONOMICS BENEFITS AND

CHALLENGES
This final section summarizes the benefits to software engi-

neering and software management provided by a software engi-
needng economics perspective in general and by software cost

estimation technology in particular. It concludes with son I c ,

observations on the major challenges awaiting the field.

Benefits of a Software Engineering Economics Perspective

The major benefit of an economic perspective on softwan,
engineering is that it provides a balanced view of candidate
software engineering solutions, and an evaluation framework
which takes account not only of the programming aspects of
a situation, but also of the human problems of providing the
best possible information processing service within a resource-
limited environment. Thus, for example, the software engi-
neering economics approach does not say, "we should use
these structured structures because they are mathematically
elegant" or "because they run like the wind" or "because
they are part of the structured revolution." Instead, it says
"we should use these structured structures because they pro-
vide people with more benefits in relation to their costs
than do other approaches." And besides the framework, of
course, i t also provides the techniques which help us to arrive
a t this conclusion.

Benefits of Software Cost Estimation Technology

The major benefit of a good software cost estimation model
is that it provides a clear and consistent universe of discourse
within which t o address a good many of the software engineer-
ing issues which arise throughout the software life cycle. It can
help people get together to discuss such issues as the following.

Which and how many features should we put into the
software product?

0 Which features should we put in first?
How much hardware should we acquire to support the

software product's development, operation, and maintenance?
0 How much money and how much calendar time should

we allow for software development?

145

How much of the product should we adapt from exist-

f How much should we invest in tools and training?
Further, a well-defined software cost estimation model can

kelp avoid the frequent misinterpretations, underestimates,
sverexpectations, and outright buy-ins which still plague the
software field. In a good cost-estimation model, there is no
way of reducing the estimated software cost without changing
some objectively verifiable property of the software project.
This does not make it impossible to create an unachievable
buy-in, but it significantly raises the threshold of credibility.

A related benefit of software cost estimation technology
is that it provides a powerful set of insights on how a software
organization can improve its productivity. Many of a software
cost model's cost-driver attributes are management control-
lable~: use of software tools and modem programming prac-
tices, personnel capability and experience, available computer
speed, memory, and turnaround time, software reuse. The cost
model helps us determine how to adjust these management
controllables to increase productivity, and further provides an
estimate of how much of a productivity increase we are likely
to achieve with a given level of investment. For more informa-
tion on this topic, see [l l, ch. 333 , [12] and the recent plan
for the U.S. Department of Defense Software Initiative [20].

Finally, software cost estimation technology provides an
absolutely essential foundation for software project planning
and control. Unless a software project has clear definitions of
its key milestones and realistic estimates of the time and
money it will take to achieve them, there is no way that a
project manager can tell whether his project is under control
or not. A good set of cost and schedule estimates can provide
realistic data for the PERT charts, work breakdown structures,
manpower schedules, earned value increments, etc., necessary
to establish management visibility and control.

Note that this opportunity to improve management visibil-
ity and control requires a complementary management com-
mitment to define and control the reporting of data on software
progress and expenditures. The resulting data are therefore
worth collecting simply for their management value in compar-
ing plans versus achievements, but they can serve another valu-
able function as well: they provide a continuing stream of cali-
bration data for evolving a more accurate and refined software
cost estimation models.

Software Engineering Economics Challenges

The opportunity t o improve software project management
decision making through improved software cost estimation,
planning, data collection, and control brings us back full-circle
to the original objectives of software engineering economics:
to provide a better quantitative understanding of how software
people make decisions in resource-limited situations.

The more clearly we as software engineers can understand
the quantitative and economic aspects of our decision situa-
tions, the more quickly we can progress from a pure seat-of-
the-pants approach on software decisions to a more rational
approach which puts all of the human and economic decision
variables into clear perspective. Once these decision situations
are more clearly illuminated, we can then study them in more
detail to address the deeper challenge: achieving a quantitative
understanding of how people work together in the software
engineering process.

Given the rather scattered and imprecise data currently
available in the software engineering field, it is remarkable how
much progress has been made on the software cost estimation
problem so far. But, there is not much further we can go until
better data becomes available. The software field cannot hope
to have its Kepler or its Newton until it has had its army of
Tycho Brahes, carefully preparing the well-defined observa-
tional data from which a deeper set of scientific insights may
be derived.

T. K. Abdel-Hamid and S. E. Madnick, "A model of software
project management dynamics," in Proc. IEEE COMPSAC 82.
NOV. 1982, pp. 539-554.
A. J. Albrecht, "Measuring Application Development Productiv-
ity," in SHARE-GUIDE. 1979, pp. 83-92.
J. D. Aron, "Estimating resources for large programming sys-
tems." NATO Sci. Committee, Rome, Italy, Oct. 1969.
J. J. Bailey and V. R. Basili, "A meta-model for software devel-
opment resource expenditures," in Proc. 5th Int. Conf. Sofrware
Eng.. IEEE/ACM/NBS, Mar. 1981, pp. 107-1 16.
V. R. Basili,. "Tutorial on models and metrics for software and
engineering," IEEE Cat. EHO- 167-7, Oct. 1980.
V. R. Basili and D. M. Weiss, "A methodology for collecting valid
software engineering data," Univ.. Maryland Technol. Rep. TR-
1235, Dec. 1982.
L. A. Belady and M. M. Lehman, "Characteristics of large sys-
tems," in Research Directions in Sofnvare Technology, P. Wegner,
Ed. Cambridge, MA: MIT Press,. 1979.
H. D. Benington, "Production of large computer programs," in
Proc. ONR Symp. Advanced Programming Methods for Digital
Computers, June 1956, pp. 15-27.
R. K. D. Black, R. P. Curnow, R. Katz, and M. D. Gray, "BCS
software production data," Boeing Comput. Services, Inc., Final
Tech. Rep., RADC-TR-77-116, NTIS AD-A039852, Mar. 1977.
B. W. Boehm, "Software and its impact: A quantitative assess-
ment," Datamation. pp. 48-59, May 1973.
- , Software Engineering Economics. Englewood Cliffs, NJ:
Prentice-Hall, 198 1.
B. W. Boehm, I. F. Elwell, A. B. Pyster, E. D. Stuckle, and R. D.
Williams, "The TRW software productivity system," in Proc.
IEEE 6th Int. Conf. Sofnvare Eng., Sept. 1982.
B. W. Boehm, T. E. Gray, and T. Seewaldt, "Prototyping vs.
specifying: A multi-project experiment," IEEE Trans. Sofrware
Eng., to be published.
R. N. Britcher and J. E. Gaffney, "Estimates of software size from
state machine designs," in Proc. NASA-Goddard Sofrware Eng.
Workshop, Dec. 1982.
W . M. Carriere and R. Thibodeau, "Development of a logistics
software cost estimating technique for foreign military sales,"
General Res. Corp., Rep. CR-3-839, June 1979.
N. S. Coulter, "Software science and cognitive psychology,"
IEEE Trans. Sofnvare Eng.. pp. 166-171, Mar. 1983.
T. DeMarco, Controlling Sofnvare Projects. New York: Your- - -

don, 1982.

M. Demshki, D. Ligett, B. Linn, G. McCluskey, and R. Miller,
"Wang Institute cost model (WICOMO) tool user's manual,"
Wang Inst. Graduate Studies, Tyngsboro, MA, June 1982.
H. F. Dircks, "SOFCOST: Grumman's software cost eliminating
model," in IEEE NAECON 1981, May 198 1.
L. E. Druffel, "Strategy for DoD software initiative," RADCI
DACS, Griffiss AFB, NY, Oct. 1982.
L. C. Duclos, "Simulation model for the life-cycle of a software
product: A quality assurance approach," Ph.D. dissertation, Dep.
Industrial and Syst. Eng., Univ. Southern California, Dec. 1982.
F. R. Freiman and R. D. Park, "PRICE software model-Version
3: An overview," in Proc. IEEE-PINY Workshop on Quantitative
Software Models, IEEE Cat. TH0067-9, Oct. 1979, pp. 3 2 4 1.
R. Goldberg and H. Lorin, The Economics of Information Process-
ing. New York: Wiley, 1982.
M. H. Halstead, Elements of Sofnvare Science. New York: Else-
vier, 1977.
P. G. Hamer and G. D. Frewin, "M. H. Halstead's software
science-A critical examination," in Proc. IEEE 6th Int. Conf.
Sofnvare Eng., Sept. 1982, pp. 197-205.
W. Harrison, K. Magel, R. Kluczney, and A. DeKock, "Applying
software complexity metrics to program maintenance," Computer.
pp. 65-79, Sept. 1982.
J. R. Herd, J. N. Postak, W. E. Russell, and K. R. Stewart,
"Software cost estimation study-Study results," Doty Associates,
Inc., Rockville, MD, Final Tech. Rep. RADC-TR-77-220, vol. I
(of two), June 1977.
C. Houtz and T. Buschbach, "Review and analysis of conversion
cost-estimating techniques," GSA Federal Conversion Support
Center, Falls Church, VA, Rep. GSAIFCSC-8 1/00 1, Mar. 198 1 .
M. Itakura and A. Takayanagi, " A model for estimating program
size and its evaluation," in Proc. IEEE 6th Sofrware Eng.. Sept.
1982, pp. 104-109.
R. W. Jensen, "An improved macrolevel software development
resource estimation model," in Proc. 5th ISPA Conf.. Apr. 1983,
pp. 88-92.
R. W. Jensen and S. Lucas, "Sensitivity analysis of the Jensen
software model," in Proc. 5th ISPA Conf.. Apr. 1983, pp. 384-
389.
B. A. Kitchenham, "Measures of programming complexity," ICL
Tech. J.. pp. 298-316, May 1981.
-, "Systems evolution dynamics of VMEIB," ICL Tech. J., pp.
43-57, May 1982.
W. W. Kuhn, "A software lifecycle case study using the PRICE
model," in Proc. IEEE NAECON. May 1982.
M . J. Lawrence, "Programming methodology, organizational en-
vironment,and programming productivity," J. Syst. Software. pp.
257-270, Sept. I98 1.

- , "An ekimination of evolution dynamics," in Proc. IEEE 6th
Int. Conf. Software Eng., Sept. 1982, pp. 188-196.
M. M. Lehman, "Programs, life cycles, and laws of software
evolution," Proc. IEEE, pp. 1060-1076, Sept. 1980.
R. D. Luce and H. Raiffa, Games and Decisions. New York:
Wiley, 1957.
T. J. McCabe, "A complexity measure," IEEE Trans. Sojiware
Eng., pp. 308-320, Dec. 1976.
F. E. McGarry; "Measuring software development technology:
What have we learned in six years," in Proc. NASA-Goddard
Software Eng. Workshop, Dec. 1982.
E. A. Nelson, "Management handbook for the estimation of com-
puter programming costs," Syst. Develop. C o p , AD-A648750,
0ct. 31, 1966.
M. Okada and M. Azuma, "Software development estimation
study-A model from CAD/CAM system development experi-
ences," in Proc. IEEE COMPSAC 82, Nov. 1982, pp. 555-564.
M. Phister, Jr., "A model of the software development process,"
J. Syst. Software, pp, 237-256, Sept. 1981.
L. H. Putnam, "A general empirical soluticin to the macro software
sizing and estimating problem," IEEE Truns. Sqtiwure Eng., pp.
345-361, July 1978.
L. H. Putnam and A. Fitzsimmons, "Estimating software costs,"
Datamation, pp. 189-198, Sept. 1979; continued in Dcrtamution,
pp. 171-178, Oct. 1979 and pp. 137-140, Nov. 1979.
L.H. Putnam, "The real economics of software development," in
The Economics of Information Processing, R. Goldberg and H.
Lorin. New York: Wiley, 1982.
V. Y. Shen, S. D. Conte, and H. E. Dunsmore, "Software science
revisited: A critical analysis of the theory and its empirical sup-
port," IEEE Trans. Sofnvare Eng., pp. 155-165, Mar. 1983.
T. Sunohara, A. Takano, K. Uehara, and T. Ohkawa, "Program
complexity measure for software development management," in
Proc. IEEE 5th Int. Conf. Software Eng., Mar. 198 1, pp. 100-106.
SYSCON Corp., "Avionics software support cost model," USAF
Avionics Lab., AFWAL-TR-I 173, Feb. 1, 1983.
R. C. Tausworthe, "Deep space network software cost estimation
model," Jet Propulsion Lab., Pasadena, CA, I98 1. - , "Staffing implications of softwurc pmduclivity mcklels," i n
Proc. 7th Annu. Soft wure Eng. Workshop, N ASA/Goddard, Green-
belt, MD, Dec. 1982.
R. Thibodeau, "An evaluation of software cost estimating mod-
els," General Res. Corp., Rep. Tl0-2670, Apr. 198 1.
C. E. Walston and C. P. Felix, "A method of programming meas-
urement and estimation," ISM Sysr. J . , vol. 16, no. I , pp. 54-73,
1977.

G. F. Weinwurm, Ed., On the Management of Computer Progmrtl
ming. New York: Auerbach, 1970.
G. M. Weinberg and E. L. Schulman, "Goals and performance I I I

computer programming," Human Factors, vol. 16, no. I , pl)
70-77, 1974.
J. D. Wiest and F. K. Levy, A Management Guide to PERTICPM
Englewood Cliffs, NJ: Prentice-Hall, 1977.
R . W. Wolverton, "The cost of developing large-scale software,"
IEEE 'f'rutts. Cornput., pp. 615-636, June 1974.
E. Harel and E. R . McLean, "The effects of using a nonprocedural
computer language on programmer productivity," UCLA Inform
Sci. Working Paper 3-83, Nov. 1982.
R. L. Dumas, "Final report: Software acquisition resource ex-
penditure (SARE) data collection methodology," MITRfi Corp..
MTR 903 1, Sept. 1983.

Barry W. Boehm received the B.A. degree in
mathematics from Harvard University, Cam-
bridge, MA, in 1957 and the M.A. and Ph.D.
degrees from the University of California, Los
~ n ~ e l e s , in 196 1 and 1964, respectively.

From 1978 to 1979 be was a Visiting Professor
of Computer Science at the University bf South-
ern California. He is currently a Visitiqg Profes-
sor at the University of Culiforniu. Los Angeles,
and Chief Engineer of TRW's Software I formu- r tion Systems Division. He was previous y Head

of the Information Sciences Department at The Rqnd Corporation, and
Director of the 1971 Air Force CCIB-85 study. His responsibilities at
TRW include direction of TRW's internal software R&D program, of
contract software technology projects. of the TRW software development
policy and standards program, of the TRW Software Cost Methodology
Program, ,.and the TRW Software Productivity Program. His most recent
book is Software Engineering Economics, by Prentice-Hall.

Dr. Boehm is a member of the IEEE Computer Society and the
Association for Computing Machinery, and an ~ssociate Fellow of the
American Institute of Aeronautics and Astronautics.

