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Abstract  
Current software cost estimation models, such as the 1981 Constructive Cost Model 

(COCOMO) for software cost estimation and its 1987 Ada COCOMO update, have been 
experiencing increasing difficulties in estimating the costs of software developed to new 
life cycle processes and capabilities. These include non-sequential and rapid-development 
process models; reuse-driven approaches involving commercial off the shelf (COTS) 
packages, reengineering, applications composition, and applications generation 
capabilities; object-oriented approaches supported by distributed middleware; and 
software process maturity initiatives.  

This paper summarizes research in deriving a baseline COCOMO 2.0 model tailored 
to these new forms of software development, including rationales for the model 
decisions. The major new modeling capabilities of COCOMO 2.0 are a tailorable family 
of software sizing models, involving Object Points, Function Points, and Source Lines of 
Code; nonlinear models for software reuse and reengineering; an exponent-driver 
approach for modeling relative software diseconomies of scale; and several additions, 
deletions, and updates to previous COCOMO effort-multiplier cost drivers. This model is 
serving as a framework for an extensive current data collection and analysis effort to 
further refine and calibrate the model’s estimation capabilities.  

1. INTRODUCTION  
 

1.1 Motivation  

                                                 
* To appear in Annals of Software Engineering Special Volume on Software Process and Product 
Measurement, J.D. Arthur and S.M. Henry Eds., J.C. Baltzer AG, Science Publishers, Amsterdam, The 
Netherlands, 1995. 



 

“We are becoming a software company,” is an increasingly-repeated phrase in 
organizations as diverse as finance, transportation, aerospace, electronics, and 
manufacturing firms. Competitive advantage is increasingly dependent on the 
development of smart, tailorable products and services, and on the ability to develop and 
adapt these products and services more rapidly than competitors' adaptation times.  

Dramatic reductions in computer hardware platform costs, and the prevalence of 
commodity software solutions have indirectly put downward pressure on systems 
development costs. This situation makes cost-benefit calculations even more important in 
selecting the correct components for construction and life cycle evolution of a system, 
and in convincing skeptical financial management of the business case for software 
investments. It also highlights the need for concurrent product and process determination, 
and for the ability to conduct trade-off analyses among software and system life cycle 
costs, cycle times, functions, performance, and qualities.  

Concurrently, a new generation of software processes and products is changing the 
way organizations develop software. These new approaches—evolutionary, risk-driven, 
and collaborative software processes; fourth generation languages and application 
generators; commercial off-the-shelf (COTS) and reuse-driven software approaches; fast-
track software development approaches; software process maturity initiatives—lead to 
significant benefits in terms of improved software quality and reduced software cost, risk, 
and cycle time.  

However, although some of the existing software cost models have initiatives 
addressing aspects of these issues, these new approaches have not been strongly matched 
to date by complementary new models for estimating software costs and schedules. This 
makes it difficult for organizations to conduct effective planning, analysis, and control of 
projects using the new approaches.  

These concerns have led the authors to formulate a new version of the Constructive 
Cost Model (COCOMO) for software effort, cost, and schedule estimation. The original 
COCOMO [Boehm 1981] and its specialized Ada COCOMO successor [Boehm and 
Royce 1989] were reasonably well-matched to the classes of software project that they 
modeled: largely custom, build-to-specification software [Miyazaki and Mori 1985, 
Boehm 1985, Goudy 1987]. Although Ada COCOMO added a capability for estimating 
the costs and schedules for incremental software development, COCOMO encountered 
increasing difficulty in estimating the costs of business software [Kemerer 1987, Ruhl 
and Gunn 1991], of object-oriented software [Pfleeger 1991], of software created via 
spiral or evolutionary development models, or of software developed largely via 
commercial-off-the-shelf (COTS) applications-composition capabilities.  

1.2 COCOMO 2.0 Objectives  

The initial definition of COCOMO 2.0 and its rationale are described in this paper. 
The definition will be refined as additional data are collected and analyzed. The primary 
objectives of the COCOMO 2.0 effort are:  



• To develop a software cost and schedule estimation model tuned to the life 
cycle practices of the 1990's and 2000's.  

• To develop software cost database and tool support capabilities for continuous 
model improvement.  

• To provide a quantitative analytic framework, and set of tools and techniques 
for evaluating the effects of software technology improvements on software 
life cycle costs and schedules.  

 

These objectives support the primary needs expressed by software cost estimation 
users in a recent Software Engineering Institute survey [Park et al. 1994]. In priority 
order, these needs were for support of project planning and scheduling, project staffing, 
estimates-to-complete, project preparation, replanning and rescheduling, project tracking, 
contract negotiation, proposal evaluation, resource leveling, concept exploration, design 
evaluation, and bid/no-bid decisions. For each of these needs, COCOMO 2.0 will provide 
more up-to-date support than its COCOMO and Ada COCOMO predecessors.  

1.3 Topics Addressed  

Section 2 describes the future software marketplace model being used to guide the 
development of COCOMO 2.0. Section 3 presents the overall COCOMO 2.0 strategy and 
its rationale. Section 4 summarizes the COCOMO 2.0 software sizing approach, 
involving a tailorable mix of Object Points, Function Points, and Source Lines of Code, 
with new adjustment models for reuse and re-engineering. Section 5 discusses the new 
exponent-driver approach to modeling relative project diseconomies of scale, replacing 
the previous COCOMO development modes. Section 6 summarizes the revisions to the 
COCOMO effort-multiplier cost drivers, including a number of additions, deletions, and 
updates. Section 7 presents the resulting conclusions based on COCOMO 2.0’s current 
state.  

2. FUTURE SOFTWARE PRACTICES MARKETPLACE MODEL  
Figure 1 summarizes the model of the future software practices marketplace that we 

are using to guide the development of COCOMO 2.0. It includes a large upper “end-user 
programming” sector with roughly 55 million practitioners in the U.S. by the year 2005; a 
lower “infrastructure” sector with roughly 0.75 million practitioners; and three 
intermediate sectors, involving the development of applications generators and 
composition aids (0.6 million practitioners), the development of systems by applications 
composition (0.7 million), and system integration of large-scale and/or embedded 
software systems (0.7 million)†.  

                                                 
† These figures are judgement-based extensions of the Bureau of Labor Statistics moderate-growth labor 
distribution scenario for the year 2005 [CSTB 1993; Silvestri and Lukaseiwicz 1991]. The 55 million End-
User programming figure was obtained by applying judgement based extrapolations of the 1989 Bureau of 
the Census data on computer usage fractions by occupation [Kominski 1991] to generate end-user 
programming fractions by occupation category. These were then applied to the 2005 occupation-category 
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Figure 1. Future Software Practices Marketplace Model  

End-User Programming will be driven by increasing computer literacy and 
competitive pressures for rapid, flexible, and user-driven information processing 
solutions. These trends will push the software marketplace toward having users develop 
most information processing applications themselves via application generators. Some 
example application generators are spreadsheets, extended query systems, and simple, 
specialized planning or inventory systems. They enable users to determine their desired 
information processing application via domain-familiar options, parameters, or simple 
rules. Every enterprise from Fortune 100 companies to small businesses and the U.S. 
Department of Defense will be involved in this sector.  

Typical Infrastructure sector products will be in the areas of operating systems, 
database management systems, user interface management systems, and networking 
systems. Increasingly, the Infrastructure sector will address “middleware” solutions for 
such generic problems as distributed processing and transaction processing. 
Representative firms in the Infrastructure sector are Microsoft, NeXT, Oracle, SyBase, 
Novell, and the major computer vendors.  

In contrast to end-user programmers, who will generally know a good deal about their 
applications domain and relatively little about computer science, the infrastructure 
developers will generally know a good deal about computer science and relatively little 
about applications. Their product lines will have many reusable components, but the pace 
of technology (new processor, memory, communications, display, and multimedia 
technology) will require them to build many components and capabilities from scratch.  

Performers in the three intermediate sectors in Figure 1 will need to know a good deal 
about computer science-intensive Infrastructure software and also one or more 
                                                                                                                                                 
populations (e.g., 10% of the 25M people in “Service Occupations”; 40% of the 17M people in “Marketing 
and Sales Occupations”). The 2005 total of 2.75 M software practitioners was obtained by applying a factor 
of 1.6 to the number of people traditionally identified as “Systems Analysts and Computer Scientists” 
(0.829M in 2005) and “Computer Programmers (0.882M). The expansion factor of 1.6 to cover software 
personnel with other job titles is based on the results of a 1983 survey on this topic [Boehm 1983].The 
2005 distribution of the 2.75 M software developers is a judgement-based extrapolation of current trends. 



applications domains. Creating this talent pool is a major national challenge.  

The Application Generators sector will create largely prepackaged capabilities for 
user programming. Typical firms operating in this sector are Microsoft, Lotus, Novell, 
Borland, and vendors of computer-aided planning, engineering, manufacturing, and 
financial analysis systems. Their product lines will have many reusable components, but 
also will require a good deal of new-capability development from scratch. Application 
Composition Aids will be developed both by the firms above and by software product-
line investments of firms in the Application Composition sector.  

The Application Composition sector deals with applications which are too diversified 
to be handled by prepackaged solutions, but which are sufficiently simple to be rapidly 
composable from interoperable components. Typical components will be graphic user 
interface (GUI) builders, database or object managers, middleware for distributed 
processing or transaction processing, hypermedia handlers, smart data finders, and 
domain-specific components such as financial, medical, or industrial process control 
packages.  

Most large firms will have groups to compose such applications, but a great many 
specialized software firms will provide composed applications on contract. These range 
from large, versatile firms such as Andersen Consulting and EDS, to small firms 
specializing in such specialty areas as decision support or transaction processing, or in 
such applications domains as finance or manufacturing.  

The Systems Integration sector deals with large scale, highly embedded, or 
unprecedented systems. Portions of these systems can be developed with Application 
Composition capabilities, but their demands generally require a significant amount of up-
front systems engineering and custom software development. Aerospace firms operate 
within this sector, as do major system integration firms such as EDS and Andersen 
Consulting, large firms developing software-intensive products and services 
(telecommunications, automotive, financial, and electronic products firms), and firms 
developing large-scale corporate information systems or manufacturing support systems.  

3. COCOMO 2.0 STRATEGY AND RATIONALE  
The four main elements of the COCOMO 2.0 strategy are:  

• Preserve the openness of the original COCOMO;  

• Key the structure of COCOMO 2.0 to the future software marketplace sectors 
described above;  

• Key the inputs and outputs of the COCOMO 2.0 submodels to the level of 
information available;  

• Enable the COCOMO 2.0 submodels to be tailored to a project's particular 
process strategy.  

 

COCOMO 2.0 follows the openness principles used in the original COCOMO. Thus, 
all of its relationships and algorithms will be publicly available. Also, all of its interfaces 



are designed to be public, well-defined, and parametrized, so that complementary 
preprocessors (analogy, case-based, or other size estimation models), post-processors 
(project planning and control tools, project dynamics models, risk analyzers), and higher 
level packages (project management packages, product negotiation aids), can be 
combined straightforwardly with COCOMO 2.0.  

To support the software marketplace sectors above, COCOMO 2.0 provides a family 
of increasingly detailed software cost estimation models, each tuned to the sectors' needs 
and type of information available to support software cost estimation.  

3.1 COCOMO 2.0 Models for the Software Marketplace Sectors  

The User Programming sector does not need a COCOMO 2.0 model. Its applications 
are typically developed in hours to days, so a simple activity-based estimate will 
generally be sufficient.  

The COCOMO 2.0 model for the Application Composition sector is based on Object 
Points. Object Points are a count of the screens, reports and third-generation-language 
modules developed in the application, each weighted by a three-level (simple, medium, 
difficult) complexity factor [Banker et al. 1994, Kauffman and Kumar 1993]. This is 
commensurate with the level of information generally known about an Application 
Composition product during its planning stages, and the corresponding level of accuracy 
needed for its software cost estimates (such applications are generally developed by a 
small team in a few weeks to months).  

The COCOMO 2.0 capability for estimation of Application Generator, System 
Integration, or Infrastructure developments is based on a tailorable mix of the Application 
Composition model (for early prototyping efforts) and two increasingly detailed 
estimation models for subsequent portions of the life cycle.  

3.2 COCOMO 2.0 Model Rationale and Elaboration  

The rationale for providing this tailorable mix of models rests on three primary 
premises.  

First, unlike the initial COCOMO situation in the late 1970's, in which there was a 
single, preferred software life cycle model (the waterfall model), current and future 
software projects will be tailoring their processes to their particular process drivers. 
These process drivers include COTS or reusable software availability; degree of 
understanding of architectures and requirements; market window or other schedule 
constraints; size; and required reliability (see [Boehm 1989, pp. 436-37] for an example 
of such tailoring guidelines).  

Second, the granularity of the software cost estimation model used needs to be 
consistent with the granularity of the information available to support software cost 
estimation. In the early stages of a software project, very little may be known about the 
size of the product to be developed, the nature of the target platform, the nature of the 
personnel to be involved in the project, or the detailed specifics of the process to be used.  

Figure 2, extended from [Boehm 1981, p. 311], indicates the effect of project 
uncertainties on the accuracy of software size and cost estimates. In the very early stages, 



one may not know the specific nature of the product to be developed to better than a 
factor of 4. As the life cycle proceeds, and product decisions are made, the nature of the 
products and its consequent size are better known, and the nature of the process and its 
consequent cost drivers are better known. The earlier “completed programs” size and 
effort data points in Figure 2 are the actual sizes and efforts of seven software products 
built to an imprecisely-defined specification [Boehm et al. 1984]‡. The later “USAF/ESD 
proposals” data points are from five proposals submitted to the U.S. Air Force Electronic 
Systems Division in response to a fairly thorough specification [Devenny 1976].  

 

Figure 2. Software Costing and Sizing Accuracy vs. Phase 

Third, given the situation in premises 1 and 2, COCOMO 2.0 enables projects to 
furnish coarse grained cost driver information in the early project stages, and increasingly 
fine-grained information in later stages. Consequently, COCOMO 2.0 does not produce 
point estimates of software cost and effort, but rather range estimates tied to the degree of 
definition of the estimation inputs. The uncertainty ranges in Figure 2 are used as starting 
points for these estimation ranges.  

With respect to process strategy, Application Generator, System Integration, and 
Infrastructure software projects will involve a mix of three major process models. The 
appropriate sequencing of these models will depend on the project’s marketplace drivers 
                                                 
‡ These seven projects implemented the same algorithmic version of the Intermediate COCOMO cost 
model, but with the use of different interpretations of the other product specifications: produce a “friendly 
user inter-face” with a “single-user file system.” 



and degree of product understanding.  

The Application Composition model involves prototyping efforts to resolve potential 
high-risk issues such as user interfaces, software/system interaction, performance, or 
technology maturity. The costs of this type of effort are best estimated by the 
Applications Composition model.  

The Early Design model involves exploration of alternative software/system 
architectures and concepts of operation. At this stage, not enough is generally known to 
support fine-grain cost estimation. The corresponding COCOMO 2.0 capability involves 
the use of function points and a small number of additional cost drivers.  

The Post-Architecture model involves the actual development and maintenance of a 
software product. This model proceeds most cost-effectively if a software life-cycle 
architecture has been developed; validated with respect to the system's mission, concept 
of operation, and risk; and established as the framework for the product. The 
corresponding COCOMO 2.0 model has about the same granularity as the previous 
COCOMO and Ada COCOMO models. It uses source instructions and / or function 
points for sizing, with modifiers for reuse and software breakage; a set of 17 
multiplicative cost drivers; and a set of 5 factors determining the project's scaling 
exponent. These factors replace the development modes (Organic, Semidetached, or 
Embedded) in the original COCOMO model, and refine the four exponent-scaling factors 
in Ada COCOMO.  

To summarize, COCOMO 2.0 provides the following three-model series for 
estimation of Application Generator, System Integration, and Infrastructure software 
projects:  

1. The earliest phases or spiral cycles will generally involve prototyping, using 
Application Composition capabilities. The COCOMO 2.0 Application 
Composition model supports these phases, and any other prototyping activities 
occurring later in the life cycle.  

2. The next phases or spiral cycles will generally involve exploration of 
architectural alternatives or incremental development strategies. To support 
these activities, COCOMO 2.0 provides an early estimation model. This uses 
function points for sizing, and a coarse-grained set of 5 cost drivers (e.g., two 
cost drivers for Personnel Capability and Personnel Experience in place of the 
6 current Post-Architecture model cost drivers covering various aspects of 
personnel capability, continuity and experience). Again, this level of detail is 
consistent with the general level of information available and the general level 
of estimation accuracy needed at this stage.  

3. Once the project is ready to develop and sustain a fielded system, it should 
have a life-cycle architecture, which provides more accurate information on 
cost driver inputs, and enables more accurate cost estimates. To support this 
stage of development, COCOMO 2.0 provides a model whose granularity is 
roughly equivalent to the current COCOMO and Ada COCOMO models. It 
can use either source lines of code or function points for a sizing parameter, a 
refinement of the COCOMO development modes as a scaling factor, and 17 



multiplicative cost drivers.  

The above should be considered as current working hypotheses about the most 
effective forms for COCOMO 2.0. They will be subject to revision based on subsequent 
data analysis. Data analysis should also enable the further calibration of the relationships 
between object points, function points, and source lines of code for various languages and 
composition systems, enabling flexibility in the choice of sizing parameters.  

3.3 Other Major Differences Between COCOMO and COCOMO 2.0  

The tailorable mix of models and variable-granularity cost model inputs and outputs 
are not the only differences between the original COCOMO and COCOMO 2.0. The 
other major differences involve size-related effects involving reuse and re-engineering, 
changes in scaling effects, and changes in cost drivers. These are summarized in Table 1, 
and elaborated in Sections 4, 5, and 6 below. Explanations of the acronyms and 
abbreviations in Table 1 are provided in Section 9.  

4. Cost Factors: Sizing  
This Section provides the definitions and rationale for the three sizing quantities used 

in COCOMO 2.0: Object Points, Unadjusted Function Points, and Source Lines of Code. 
It then discusses the COCOMO 2.0 size-related parameters used in dealing with software 
reuse, re-engineering, conversion, and maintenance.  

4.1 Applications Composition: Object Points  

Object Point estimation is a relatively new software sizing approach, but it is well-
matched to the practices in the Applications Composition sector. It is also a good match 
to associated prototyping efforts, based on the use of a rapid-composition Integrated 
Computer Aided Software Environment (ICASE) providing graphic user interface 
builders, software development tools, and large, composable infrastructure and 
applications components. In these areas, it has compared well to Function Point 
estimation on a nontrivial (but still limited) set of applications.  

The [Banker et al. 1994] comparative study of Object Point vs. Function Point 
estimation analyzed a sample of 19 investment banking software projects from a single 
organization, developed using ICASE applications composition capabilities, and ranging 
from 4.7 to 71.9 person-months of effort. The study found that the Object Points 
approach explained 73% of the variance (R

2
) in person-months adjusted for reuse, as 

compared to 76% for Function Points. 

A subsequent statistically-designed experiment [Kaufman and Kumar 1993] involved 
four experienced project managers using Object Points and Function Points to estimate 
the effort required on two completed projects (3.5 and 6 actual person-months), based on 
project descriptions of the type available at the beginning of such projects. The 
experiment found that Object Points and Function Points produced comparably accurate 
results (slightly more accurate with Object Points, but not statistically significant). From 
a usage standpoint, the average time to produce an Object Point estimate was about 47% 
of the corresponding average time for Function Point estimates. Also, the managers 
considered the Object Point method easier to use (both of these results were statistically 



significant).  

Thus, although these results are not yet broadly-based, their match to Applications 
Composition software development appears promising enough to justify selecting Object 
Points as the starting point for the COCOMO 2.0 Applications Composition estimation 
model.



Table 1: Comparison of COCOMO, Ada COCOMO, and COCOMO 2.0  
 COCOMO  Ada COCOMO  COCOMO 2.0: Stage 1 COCOMO 2.0:  Stage 2 COCOMO 2.0: Stage 3 

Size  Delivered Source Instructions 
(DSI) or Source Lines Of Code 
(SLOC)  

DSI or SLOC  Object Points  Function Points (FP) and 
Language  

FP and Language or SLOC  

Reuse  Equivalent SLOC =  

Linear f(DM, CM, IM)  

Equivalent SLOC =  

Linear f(DM, CM, IM)  

Implicit in model  % unmodified reuse: SR 
% modified reuse: 
nonlinear 
f(AA,SU,DM,CM,IM)  

Equivalent SLOC = 
nonlinear 
f(AA,SU,DM,CM,IM)  

Breakage  Requirements Volatility rating: 
(RVOL)  

RVOL rating  Implicit in model  Breakage %: BRAK  BRAK  

Maintenance  Annual Change Traffic (ACT) = 
%added + %modified  

ACT  Object Point Reuse 
Model 

Reuse model  Reuse model  

Scale (b) in  

MM NOM = a(Size)b  

Organic: 1.05  

Semidetached: 1.12  

Embedded: 1.20  

Embedded: 1.04 -1.24 
depending on degree of:  

• early risk elimination  

• solid architecture  

• stable requirements  

• Ada process maturity  

1.0  

1.01 - 1.26 depending on 
the degree of:  

• precedentedness 

• conformity  

• early architecture, 

  risk resolution  

• team cohesion  

• process maturity (SEI)  

1.01 -1.26 depending on the 
degree of: 

• precedentedness  

• conformity  

• early architecture, risk 
resolution 

• team cohesion  

• process maturity (SEI)  

Product Cost Drivers  RELY, DATA, CPLX  RELY * , DATA, CPLX * 
, RUSE  

None  RCPX *† , RUSE *†  RELY, DATA, DOCU *† 
CPLX †, RUSE *†  

Platform Cost Drivers  TIME, STOR, VIRT,TURN  TIME, STOR, VMVH, 
VMVT, TURN  

None  Platform difficulty: PDIF 
*†  

TIME, STOR, 
PVOL(=VIRT)  

Personnel Cost Drivers  ACAP, AEXP, PCAP, VEXP, 
LEXP  

ACAP * , AEXP, PCAP *, 
VEXP, LEXP *  

None  Personnel capability and 
experience: PERS *†, 
PREX *†  

ACAP * , AEXP † , PCAP * 
, PEXP *†, LTEX *† , 
PCON *†  

Project Cost Drivers  MODP, TOOL, SCED  MODP * , TOOL * , 
SCED, SECU  

None  SCED, FCIL *†  TOOL *† , SCED, SITE *†  

* Different multipliers.  
† Different rating scale  



4.1.1 COCOMO 2.0 Object Point Estimation Procedure  

Figure 3 presents the baseline COCOMO 2.0 Object Point procedure for estimating 
the effort involved in Applications Composition and prototyping projects. It is a synthesis 
of the procedure in Appendix B.3 of [Kauffman and Kumar 1993] and the productivity 
data from the 19 project data points in [Banker et al. 1994].  

Definitions of terms in Figure 3 are as follows:  

• NOP: New Object Points (Object Point count adjusted for reuse)  

• srvr: number of server (mainframe or equivalent) data tables used in 
conjunction with the SCREEN or REPORT.  

• clnt: number of client (personal workstation) data tables used in conjunction 
with the SCREEN or REPORT.  

• %reuse: the percentage of screens, reports, and 3GL modules reused from 
previous applications, pro-rated by degree of reuse.  

The productivity rates in Figure 3 are based on an analysis of the year-1 and year-2 
project data in [Banker et al. 1994]. In year-1, the CASE tool was itself under 
construction and the developers were new to its use. The average productivity of 7 
NOP/person-month in the twelve year-1 projects is associated with the Low levels of 
developer and ICASE maturity and capability in Figure 3. In the seven year-2 projects, 
both the CASE tool and the developers’ capabilities were considerably more mature. The 
average productivity was 25 NOP/person-month, corresponding with the High levels of 
developer and ICASE maturity in Figure 3.  

As another definitional point, note that the use of the term “object” in “Object Points” 
defines screens, reports, and 3GL modules as objects. This may or may not have any 
relationship to other definitions of “objects”, such as those possessing features such as 
class affiliation, inheritance, encapsulation, message passing, and so forth. Counting rules 
for “objects” of that nature, when used in languages such as C++, will be discussed under 
“source lines of code” in the next section.  

4.2 Applications Development  

As described in Section 3.2, the COCOMO 2.0 model uses function points and/or 
source lines of code as the basis for measuring size for the Early Design and Post-
Architecture estimation models. For comparable size measurement across COCOMO 2.0 
participants and users, standard counting rules are necessary. A consistent definition for 
size within projects is a prerequisite for project planning and control, and a consistent 
definition across projects is a prerequisite for process improvement [Park 1992].  

The COCOMO 2.0 model has adopted counting rules that have been formulated by 
wide community participation or standardization efforts. The source lines of code metrics 
are based on the Software Engineering Institute source statement definition checklist 
[Park 1992]. The function point metrics are based on the International Function Point 
User Group (IFPUG) Guidelines and applications of function point calculation [IFPUG 
1994] [Behrens 1983] [Kunkler 1985]. 



Step 1: Assess Object-Counts: estimate the number of screens, reports, and 3GL 
components that will comprise this application. Assume the standard definitions 
of these objects in your ICASE environment.  

Step 2: Classify each object instance into simple, medium and difficult complexity levels 
depending on values of characteristic dimensions. Use the following scheme:  

For Screens  For Reports  

# and source of data tables  # and source of data tables Number of 
Views 

contained Total < 4 
(< 2 srvr 
< 3 clnt) 

Total < 8 
(2/3 srvr 
3-5 clnt) 

Total 8+ 
(> 3 srvr 
> 5 clnt) 

Number of 
Sections 
contained Total < 4 

(< 2 srvr 
< 3 clnt)  

Total < 8 
(2/3 srvr 
3-5 clnt)  

Total 8+ 
(> 3 srvr 
> 5 clnt)  

< 3  simple  simple  medium  0 or 1  simple  simple  medium  

3 - 7  simple  medium  difficult  2 or 3  simple  medium  difficult  

> 8  medium  difficult  difficult  4 +  medium  difficult  difficult  

Step 3: Weigh the number in each cell using the following scheme. The weights reflect 
the relative effort required to implement an instance of that complexity level.: 

Complexity-Weight Object Type 
Simple Medium Difficult 

Screen 1 2 3 
Report 2 5 8 
3GL Component    10 

Step 4: Determine Object-Points: add all the weighted object instances to get one number, 
the Object-Point count. 

Step 5: Estimate percentage of reuse you expect to be achieved in this project. Compute 
the New Object Points to be developed, NOP = (Object-Points) (100 - %reuse)/ 
100. 

Step 6: Determine a productivity rate, PROD = NOP / person-month, from the following 
scheme 

Developers’ experience and capability Very Low  Low  Nominal  High  Very High  

ICASE maturity and capability Very Low  Low  Nominal  High  Very High  

PROD 4  7  13  25  50  

Step 7: Compute the estimated person-months: PM = NOP / PROD. 

 

Figure 3. Baseline Object Point Estimation Procedure  

4.2.1 Lines of Code Counting Rules  

In COCOMO 2.0, the logical source statement has been chosen as the standard line of 
code. Defining a line of code is difficult due to conceptual differences involved in 
accounting for executable statements and data declarations in different languages. The 



goal is to measure the amount of intellectual work put into program development, but 
difficulties arise when trying to define consistent measures across different languages. To 
minimize these problems, the Software Engineering Institute (SEI) definition checklist 
for a logical source statement is used in defining the line of code measure. The Software 
Engineering Institute (SEI) has developed this checklist as part of a system of definition 
checklists, report forms and supplemental forms to support measurement definitions 
[Park 1992, Goethert et al. 1992].  

Figure 4 shows a portion of the definition checklist as it is being applied to support 
the development of the COCOMO 2.0 model. Each checkmark in the “Includes” column 
identifies a particular statement type or attribute included in the definition, and vice-versa 
for the excludes. Other sections in the definition clarify statement attributes for usage, 
delivery, functionality, replications and development status. There are also clarifications 
for language specific statements for ADA, C, C++, CMS-2, COBOL, FORTRAN, 
JOVIAL and Pascal.  

Some changes were made to the line-of-code definition that depart from the default 
definition provided in [Park 1992]. These changes eliminate categories of software which 
are generally small sources of project effort. Not included in the definition are 
commercial-off-the-shelf software (COTS), government furnished software (GFS), other 
products, language support libraries and operating systems, or other commercial libraries. 
Code generated with source code generators is not included though measurements will be 
taken with and without generated code to support analysis.  

The “COCOMO 2.0 line-of-code definition” is calculated directly by the Amadeus 
automated metrics collection tool [Amadeus 1994] [Selby et al. 1991], which is being 
used to ensure uniformly collected data in the COCOMO 2.0 data collection and analysis 
project. We have developed a set of Amadeus measurement templates that support the 
COCOMO 2.0 data definitions for use by the organizations collecting data, in order to 
facilitate standard definitions and consistent data across participating sites.  

To support further data analysis, Amadeus will automatically collect additional 
measures including total source lines, comments, executable statements, declarations, 
structure, component interfaces, nesting, and others. The tool will provide various size 
measures, including some of the object sizing metrics in [Chidamber and Kemerer 1994], 
and the COCOMO sizing formulation will adapt as further data is collected and analyzed.  

4.2.2 Function Point Counting Rules  

The function point cost estimation approach is based on the amount of functionality 
in a software project and a set of individual project factors [Behrens 1983] [Kunkler 
1985] [IFPUG 1994]. Function points are useful estimators since they are based on 
information that is available early in the project life cycle. A brief summary of function 
points and their calculation in support of COCOMO 2.0 is as follows.  

4.2.2.1 Function Point Introduction  

Function points measure a software project by quantifying the information processing 
functionality associated with major external data or control input, output, or file types. 
Five user function types should be identified, as defined in Table 2.  



Definition Checklist for Source Statements Counts 

Definition name: __Logical Source Statements__  Date:________________ 

________________(basic definition)__________      Originator:_COCOMO 2.0____ 

Measurement unit: Physical source lines     
 Logical source statements 4    
Statement type Definition 4 Data Array   Includes Excludes 

When a line or statement contains more than one type, 
classify it as the type with the highest precedence. 

    

1 Executable  Order of precedence  → 1 4  
2 Nonexecutable    
3  Declarations 2 4  
4  Compiler directives 3 4  
5  Comments    
6       On their own lines 4  4 
7       On lines with source code 5  4 
8       Banners and non-blank spacers 6  4 
9       Blank (empty) comments 7  4 
10     Blank lines 8  4 
11    
12    
How produced Definition 4 Data array   Includes Excludes 
1 Programmed  4  
2 Generated with source code generators   4 
3 Converted with automated translators  4  
4 Copied or reused without change  4  
5 Modified  4  
6 Removed   4 
7    
8    
Origin Definition 4 Data array   Includes Excludes 
1 New work: no prior existence  4  
2 Prior work: taken or adapted from    
3   A previous version, build, or release  4  
4   Commercial, off-the-shelf software (COTS), other than libraries   4 
5   Government furnished software (GFS), other than reuse libraries   4 
6   Another product   4 
7   A vendor-supplied language support library (unmodified)   4 
8   A vendor-supplied operating system or utility (unmodified)   4 
9   A local or modified language support library or operating system   4 
10 Other commercial library   4 
11 A reuse library (software designed for reuse)  4  
12 Other software component or library  4  
13    
14    

Figure 4. Definition Checklist 

 



Table 2: User Function Types  

External Input (Inputs)  Count each unique user data or user control input type that (i) enters 
the external boundary of the software system being measured and (ii) 
adds or changes data in a logical internal file.  

External Output (Outputs)  Count each unique user data or control output type that leaves the 
external boundary of the software system being measured.  

Internal Logical File (Files)  Count each major logical group of user data or control information in 
the software system as a logical internal file type. Include each 
logical file (e.g., each logical group of data) that is generated, used, 
or maintained by the software system.  

External Interface Files (Interfaces)  Files passed or shared between software systems should be counted 
as external interface file types within each system.  

External Inquiry (Queries)  Count each unique input-output combination, where an input causes 
and generates an immediate output, as an external inquiry type.  

Each instance of these function types is then classified by complexity level. The 
complexity levels determine a set of weights, which are applied to their corresponding 
function counts to determine the Unadjusted Function Points quantity. This is the 
Function Point sizing metric used by COCOMO 2.0. The usual Function Point procedure 
involves assessing the degree of influence (DI) of fourteen application characteristics on 
the software project determined according to a rating scale of 0.0 to 0.05 for each 
characteristic. The 14 ratings are added together, and added to a base level of 0.65 to 
produce a general characteristics adjustment factor that ranges from 0.65 to 1.35. 

Each of these fourteen characteristics, such as distributed functions, performance, and 
reusability, thus have a maximum of 5% contribution to estimated effort. This is 
inconsistent with COCOMO experience; thus COCOMO 2.0 uses Unadjusted Function 
Points for sizing, and applies its reuse factors, cost driver effort multipliers, and exponent 
scale factors to this sizing quantity. The COCOMO 2.0 procedure for determining 
Unadjusted Function Points is shown in Figure 5.  

4.3 Reuse and Re-engineering  

4.3.1 Nonlinear Reuse Effects  

The COCOMO 2.0 treatment of software reuse and re-engineering differs 
significantly from that of the original COCOMO in that it uses a nonlinear estimation 
model. In the original COCOMO reuse model, the cost of reusing software is basically a 
linear function of the extent that the reused software needs to be modified. This involves 
estimating the amount of software to be adapted, ASLOC, and three degree-of-
modification parameters: DM, the percentage of design modification; CM, the percentage 
of code modification, and IM, the percentage of the original integration effort required 
for integrating the reused software.  

These are used to determine an equivalent number of new instructions to be used as 
the COCOMO size parameter:  

100
)× 0.3+×0.3+×(0.4

× = 
IMCMDM

ASLOCESLOC   EQ 1. 



 

Thus, if the software is used without modification, its additional size contribution will 
be zero. Otherwise, its additional size contribution will be a linear function of DM, CM, 
and IM.  

However, the analysis in [Selby 1988] of reuse costs across nearly 3000 reused 
modules in the NASA Software Engineering Laboratory indicates that the reuse cost 
function is nonlinear in two significant ways (see Figure 6):  

• It does not go through the origin. There is generally a cost of about 5% for 
assessing, selecting, and assimilating the reusable component.  

• Small modifications generate disproportionately large costs. This is primarily 
due to two factors: the cost of understanding the software to be modified, and 
the relative cost of interface checking.  

A COCOMO 2.0 reuse model which accommodates these nonlinearities is presented 
below.  



 

Step 1: Determine function counts by type. The unadjusted function counts should be counted 
by a lead technical person based on information in the software requirements and 
design documents. The number of each of the five user function types should be 
counted (Internal Logical File* (ILF), External Interface File (EIF), External Input 
(EI), External Output (EO), and External Inquiry (EQ)).  

Step 2: Determine complexity-level function counts. Classify each function count into Low, 
Average and High complexity levels depending on the number of data element types 
contained and the number of file types referenced. Use the following scheme:  

For ILF and EIF    For EO and EQ    For EI  

Record  Data Elements  File  Data Elements  File  Data Elements 

Elements  1 - 19  20 - 50  51+  Types 1 - 5  6 - 19  20+  Types  1 - 4  5 - 15  16+  

1  Low  Low  Avg  0 or 1 Low  Low  Avg  0 or 1  Low  Low  Avg  

2 - 5  Low  Avg  High  2 - 3  Low  Avg  High  2 - 3  Low  Avg  High  

6+  Avg  High  High  4+  Avg  High  High  3+  Avg  High  High  

 

Step 3:  Apply complexity weights. Weight the number in each cell using the following 
scheme. The weights reflect the relative value of the function to the user.  

Complexity-Weight 
Function Type 

Low Average High 

Internal Logical Files  7  10  15  

External Interfaces Files  5  7  10  

External Inputs  3  4  6  

External Outputs  4  5  7  

External Inquiries  3  4  6  

 

Step 4: Compute Unadjusted Function Points. Add all the weighted functions counts to get 
one number, the Unadjusted Function Points.  

*. Note: The word file refers to a logically related group of data and not the physical 
implementation of those groups of data  

Figure 5. Function Count Procedure  
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Figure 6. Nonlinear Reuse Effects  

 

Figure 7. Number of Module Interface Checks vs. Fraction Modified  

4.3.2 COCOMO 2.0 Reuse Model  

[Parikh and Zvegintzov 1983] contains data indicating that 47% of the effort in 
software maintenance involves understanding the software to be modified. Thus, as soon 
as one goes from unmodified (black-box) reuse to modified-software (white-box) reuse, 
one encounters this software understanding penalty. Also, [Gerlich and Denskat 1994] 
shows that, if one modifies k out of m software modules, the number N of module 
interface checks required is N = k * (m-k) + k * (k-1)/2.  

Figure 7 shows this relation between the number of modules modified k and the 
resulting number of module interface checks required.  

The shape of this curve is similar for other values of m. It indicates that there are 
nonlinear effects involved in the module interface checking which occurs during the 
design, code, integration, and test of modified software.  

The size of both the software understanding penalty and the module interface 
checking penalty can be reduced by good software stucturing. Modular, hierarchical 
structuring can reduce the number of interfaces which need checking [Gerlich and 
Denskat 1994], and software which is well structured, explained, and related to its 



mission will be easier to understand. COCOMO 2.0 reflects this in its allocation of 
estimated effort for modifying reusable software. The COCOMO 2.0 reuse equation for 
equivalent new software to be developed is:  

100
)×3.0+× 0.3+×0.4++(

× = 
IMCMDMSUAA

ASLOCESLOC   EQ 2. 

The software understanding increment SU is obtained from Table 3. As indicated in 
Table 3, if the software is rated very high on structure, applications clarity, and self-
descriptiveness, the software understanding and interface checking penalty is only 10%. 
If the software is rated very low on these factors, the penalty is 50%.  

Table 3: Rating Scale for Software Understanding Increment SU  

 Very Low  Low  Nom  High  Very High  

Structure 
Very low 
cohesion, high 
coupling, 
spaghetti code.  

Moderately low 
cohesion, high 
coupling.  

Reasonably 
well-structured; 
some weak 
areas.  

High cohesion, 
low coupling.  

Strong 
modularity, 
information 
hiding in data / 
control 
structures.  

Application 
Clarity 

No match 
between program 
and application 
world views.  

Some 
correlation 
between 
program and 
application.  

Moderate 
correlation 
between 
program and 
application.  

Good 
correlation 
between 
program and 
application.  

Clear match 
between 
program and 
application 
world-views.  

Self-
Descriptiveness 

Obscure code; 
documentation 
missing, obscure 
or obsolete  

Some code 
commentary 
and headers; 
some useful 
documentation.  

Moderate level 
of code 
commentary, 
headers, 
documentations. 

Good code 
commentary 
and headers; 
useful 
documentation; 
some weak 
areas.  

Self-descriptive 
code; 
documentation 
up-to-date, 
well-organized, 
with design 
rationale.  

SU Increment to 
AAF 50 40 30 20 10 

 

The other nonlinear reuse increment deals with the degree of assessment and 
assimilation needed to determine whether even a fully-reused software module is 
appropriate to the application, and to integrate its description into the overall product 
description. Table 4 provides the rating scale and values for the Assessment and 
Assimilation increment AA. For software conversion, this factor extends the Conversion 
Planning Increment in [Boehm 1981, p. 558].  



Table 4: Rating Scale for Assessment and Assimilation Increment (AA)  

AA Increment  Level of AA Effort  

0  None  

2  Basic module search and documentation  

4  Some module Test and Evaluation (T&E), documentation 

6  Considerable module T&E, documentation  

8  Extensive module T&E, documentation  

 

4.3.3 Re-engineering and Conversion Cost Estimation  

The COCOMO 2.0 reuse model needs additional refinement to estimate the costs of 
software re-engineering and conversion. The major difference in re-engineering and 
conversion is the efficiency of automated tools for software restructuring. These can lead 
to very high values for the percentage of code modified (CM in the COCOMO 2.0 reuse 
model), but with very little corresponding effort. For example, in the NIST re-
engineering case study [Ruhl and Gunn 1991], 80% of the code (13,131 COBOL source 
statements) was re-engineered by automatic translation, and the actual re-engineering 
effort, 35 person months, was a factor of over 4 lower than the COCOMO estimate of 
152 person months.   

The COCOMO 2.0 re-engineering and conversion estimation approach involves 
estimation of an additional parameter, AT, the percentage of the code that is re-
engineered by automatic translation. Based on an analysis of the project data above, an 
effort estimator for automated translation is 2400 source statements / person month; the 
normal COCOMO 2.0 reuse model is used for the remainder of the re-engineered 
software.  

The NIST case study also provides useful guidance on estimating the AT factor, 
which is a strong function of the difference between the boundary conditions (e.g., use of 
COTS packages, change from batch to interactive operation) of the old code and the re-
engineered code. The NIST data on percentage of automated translation (from an original 
batch processing application without COTS utilities) are given in Table 5.  

.  



 

Table 5: Variation in Percentage of Automated Re-engineering [Ruhl and Gunn 1991]  

Re-engineering Target  AT (% automated translation)  

Batch processing  96%  

Batch with SORT  90%  

Batch with DBMS  88%  

Batch, SORT, DBMS  82%  

Interactive  50%  

 

4.4 Breakage  

COCOMO 2.0 replaces the COCOMO Requirements Volatility effort multiplier and 
the Ada COCOMO Requirements Volatility exponent driver by a breakage percentage, 
BRAK, used to adjust the effective size of the product. Consider a project which delivers 
100,000 instructions but discards the equivalent of an additional 20,000 instructions. This 
project would have a BRAK value of 20, which would be used to adjust its effective size 
to 120,000 instructions for COCOMO 2.0 estimation. The BRAK factor is not used in the 
Applications Composition model, where a certain degree of product iteration is expected, 
and included in the data calibration.  

4.5 Applications Maintenance  

The original COCOMO used Annual Change Traffic (ACT), the percentage of code 
modified and added to the software product per year, as the primary measure for sizing a 
software maintenance activity. This has caused some difficulties, primarily the restriction 
to annual increment and a set of inconsistencies with the reuse model. COCOMO 2.0 
remedies these difficulties by applying the reuse model to maintenance as well.  

5. COST FACTORS: SCALING  
5.1 Modeling Software Economies and Diseconomies of Scale  
 

Software cost estimation models often have an exponential factor to account for the 
relative economies or diseconomies of scale encountered as a software project increases 
its size. This factor is generally represented as the exponent B in the equation:  

Effort = A X (Size )
B     

EQ 3.  

If B < 1.0, the project exhibits economies of scale. If the product's size is doubled, the 
project effort is less than doubled. The project's productivity increases as the product size 
is increased. Some project economies of scale can be achieved via project-specific tools 
(e.g., simulations, test-beds), but in general these are difficult to achieve. For small 
projects, fixed startup costs such as tool tailoring and setup of standards and 



administrative reports are often a source of economies of scale.  

If B = 1.0, the economies and diseconomies of scale are in balance. This linear model 
is often used for cost estimation of small projects. It is used for the COCOMO 2.0 
Applications Composition model.  

If B > 1.0, the project exhibits diseconomies of scale. This is generally due to two 
main factors: growth of interpersonal communications overhead and growth of large-
system integration overhead. Larger projects will have more personnel, and thus more 
interpersonal communications paths consuming overhead. Integrating a small product as 
part of a larger product requires not only the effort to develop the small product, but also 
the additional overhead effort to design, maintain, integrate, and test its interfaces with 
the remainder of the product.  

See [Banker et al 1994a] for a further discussion of software economies and 
diseconomies of scale.  

The COCOMO 2.0 value for the coefficient A in EQ 3 is provisionally set at 3.0 
Initial calibration of COCOMO 2.0 to the original COCOMO project database [Boehm 
1981, pp. 496-97] indicates that this is a reasonable starting point.  

5.2 COCOMO and Ada COCOMO Scaling Approaches  

The data analysis on the original COCOMO indicated that its projects exhibited net 
diseconomies of scale. The projects factored into three classes or modes of software 
development (Organic, Semidetached, and Embedded), whose exponents B were 1.05, 
1.12, and 1.20, respectively. The distinguishing factors of these modes were basically 
environmental: Embedded-mode projects were more unprecedented, requiring more 
communication overhead and complex integration; and less flexible, requiring more 
communications overhead and extra effort to resolve issues within tight schedule, budget, 
interface, and performance constraints.  

The scaling model in Ada COCOMO continued to exhibit diseconomies of scale, but 
recognized that a good deal of the diseconomy could be reduced via management 
controllables. Communications overhead and integration overhead could be reduced 
significantly by early risk and error elimination; by using thorough, validated 
architectural specifications; and by stabilizing requirements. These practices were 
combined into an Ada process model [Boehm and Royce 1989, Royce 1990]. The 
project's use of these practices, and an Ada process model experience or maturity factor, 
were used in Ada COCOMO to determine the scale factor B.  

Ada COCOMO applied this approach to only one of the COCOMO development 
modes, the Embedded mode. Rather than a single exponent B = 1.20 for this mode, Ada 
COCOMO enabled B to vary from 1.04 to 1.24, depending on the project's progress in 
reducing diseconomies of scale via early risk elimination, solid architecture, stable 
requirements, and Ada process maturity.  

5.3 COCOMO 2.0 Scaling Approach  

COCOMO 2.0 combines the COCOMO and Ada COCOMO scaling approaches into 
a single rating-driven model. It is similar to that of Ada COCOMO in having additive 



factors applied to a base exponent B. It includes the Ada COCOMO factors, but combines 
the architecture and risk factors into a single factor, and replaces the Ada process 
maturity factor with a Software Engineering Institute (SEI) process maturity factor (The 
exact form of this factor is still being worked out with the SEI). The scaling model also 
adds two factors, precedentedness and flexibility, to account for the mode effects in 
original COCOMO, and adds a Team Cohesiveness factor to account for the diseconomy-
of-scale effects on software projects whose developers, customers, and users have 
difficulty in synchronizing their efforts. It does not include the Ada COCOMO 
Requirements Volatility factor, which is now covered by increasing the effective product 
size via the Breakage factor.  

Table 7 provides the rating levels for the COCOMO 2.0 scale factors. A project's 
numerical ratings W are summed across all of the factors, and used to determine a scale 
exponent B via the followingi formula:  

B = 1.01 + 0.01Σ W
i     

EQ 4.  

Thus, a 100 KSLOC project with Extra High (0) ratings for all factors will have ²W
i
= 

0, B = 1.01, and a relative effort E = 100
1.01

= 105 PM. A project with Very Low (5) 
ratings for all factors will have ²W

i
= 25, B = 1.26, and a relative effort E = 331 PM. This 

represents a large variation, but the increase involved in a one-unit change in one of the 
factors is only about 4.7%. Thus, this approach avoids the 40% swings involved in 
choosing a development mode for a 100 KSLOC product in the original COCOMO.  

Table 6: Rating Scheme for the COCOMO 2.0 Scale Factors  

Scale Factors  

(Wi)  

Very Low  

(5)  

Low  

(4)  

Nominal  

(3)  

High  

(2)  

Very High  

(1)  

Extra High  

(0)  

Precedentedness  thoroughly 
unprecedented  

Largely 
unprecedented  

somewhat 
unprecedented  

generally 
familiar  

largely 
familiar  

throughly 
familiar  

Development 
Flexibility  rigorous  occasional 

relaxation  
some 
relaxation  

general 
conformity  

some 
conformity  general goals  

Architecture / 
risk resolution*  

little (20%)  some (40%)  often (60%)  generally 
(75%)  

mostly (90%)  full (100%)  

Team cohesion  very difficult 
interactions  

some difficult 
interactions  

basically 
cooperative 
interactions  

largely 
cooperative  

highly 
cooperative  

seamless 
interactions  

Process maturity†  Weighted average of “Yes” answers to CMM Maturity Questionnaire  

* % significant module interfaces specified,% significant risks eliminated. 
† 

The form of the Process Maturity scale is being resolved in coordination with the 
SEI. The intent is to produce a process maturity rating as a weighted average of 
the project's percentage compliance levels to the 18 Key Process Areas in Version 
1.1 of the Capability Maturity Model-based [Paulk et al. 1993] rather than to use 
the previous 1-to-5 maturity levels. The weights to be applied to the Key Process 
Areas are still being determined. 

 



6. Cost Factors: Effort-Multiplier Cost Drivers  
COCOMO 2.0 continues the COCOMO and Ada COCOMO practice of using a set of 

effort multipliers to adjust the nominal person-month estimate obtained from the project’s 
size and exponent drivers:  

( ∏×=
i

inominaladjusted EMPMPM )        EQ 5. 

The primary selection and definition criteria for COCOMO 2.0 effort-multiplier cost 
drivers were:  

• Continuity. Unless there has been a strong rationale otherwise, the COCOMO 
2.0 baseline rating scales and effort multipliers are consistent with those in 
COCOMO and Ada COCOMO.  

• Parsimony. Effort-multiplier cost drivers are included in the COCOMO 2.0 
baseline model only if there has been a strong rationale that they would 
independently explain a significant source of project effort or productivity 
variation.  

Table 7 summarizes the COCOMO 2.0 effort-multiplier cost drivers by the four 
categories of Product, Platform, Personnel, and Project Factors. The superscripts 
following the cost driver names indicated the differences between the COCOMO 2.0 cost 
drivers and their counterparts in COCOMO and Ada COCOMO:  

blank - No difference in rating scales or effort multipliers  

* - Same rating scales, different effort multipliers  

† - Different rating scales, different effort multipliers  

Table 7 provides the COCOMO 2.0 effort multiplier rating scales. The following 
subsections elaborate on the treatment of these effort-multiplier cost drivers, and discuss 
those which have been dropped in COCOMO 2.0.  

6.1 Product Factors  

6.1.1 RELY- Required Software Reliability  

COCOMO 2.0 retains the original COCOMO RELY rating scales and effort 
multipliers. Ada COCOMO contained a lower set of effort multiplier values for the 
higher RELY levels, based on a rationale that Ada’s strong typing, tasking, exceptions, 
and other features eliminated significant classes of potential defects. Given the absence of 
strong evidence of a general effort-multiplier trend in this direction, the COCOMO 2.0 
baseline RELY multipliers have not been changed from the original COCOMO, in 
consonance with the continuity criterion above.  



Table 7: Effort Multipliers Cost Driver Ratings for the Post-Architecture model  
 Very Low  Low  Nominal  High  Very High  Extra High 

RELY slight 
inconvenie
nce  

low, easily 
recoverable 
losses  

moderate, 
easily 
recoverable 
losses  

high 
financial 
loss  

risk to human 
life  

 

DATA  DB 
bytes/Pgm 
SLOC < 10  

10 ≤ D/P < 
100  

100 ≤ D/P < 
1000  

D/P ≥ 1000   

CPLX   see Table 8   
RUSE  none  across project  across 

program  
across product 
line  

across 
multiple 
product lines 

DOCU Many life-
cycle needs 
uncovered  

Some life-
cycle needs 
uncovered.  

Right-sized to 
life-cycle 
needs  

Excessive 
for 
life-cycle 
needs  

Very excessive 
for life-cycle 
needs  

 

TIME   ≤ 50% use of 
available 
execution 
time  

70% 85% 95% 

STOR   ≤ 50% use of 
available 
storage  

70% 85% 95% 

PVOL  major change 
every 12 mo.; 
minor change 
every 1 mo.  

major: 6 mo.; 
minor: 2 wk.  

major: 2 
mo.; minor: 
1 wk.  

major: 2 wk.; 
minor: 2 days  

 

ACAP 15th 
percentile  

35th 
percentile  

55th 
percentile  

75th 
percentile  

90th percentile   

PCAP 15th 
percentile  

35th 
percentile  

55th 
percentile  

75th 
percentile  

90th percentile   

PCON 48% / year  24% / year  12% / year  6% / year  3% / year   

AEXP ≤ 2 months  6 months  1 year  3 years  6 years   

PEXP ≤ 2 months  6 months  1 year  3 years  6 year   

LTEX ≤ 2 months  6 months  1 year  3 years  6 year   

TOOL edit, code, 
debug  

simple, 
frontend, 
backend 
CASE, little 
integration  

basic lifecycle 
tools, 
moderately 
integrated  

strong, 
mature 
lifecycle 
tools, 
moderately 
integrated  

strong, mature, 
proactive life-
cycle tools, well 
integrated with 
processes, 
methods, reuse  

 

SITE: 
Collocation 

Internation
al  

Multi-city and 
Multi-
company  

Multi-city or 
Multi-
company  

Same city or 
metro. area  

Same building 
or complex  

Fully 
collocated  

SITE: 
Communications 

Some 
phone,  
mail  

Individual  
phone, FAX  

Narrowband  
email  

Wideband  
electronic  
communicati
on.  

Wideband  
elect. comm,  
occasional  
video conf.  

Interactive  
multimedia  

SCED 75% of 
nominal  

85%  100%  130%  160%   



6.1.2 DATA - Data Base Size  

As with RELY, there has been no strong evidence of a need for change of the DATA 
ratings and effort multipliers. They remain the same in COCOMO 2.0 under the 
continuity criterion.  

6.1.3 CPLX - Product Complexity  

Table 8 provides the new COCOMO 2.0 CPLX rating scale. It has been updated to 
reflect several changes in computer and software technology and applications. These 
include an additional rating scale for User Interface Management Operations, effects of 
distributed and parallel processing, and advances in data/object base technology and 
middleware technology.  

Ada COCOMO contained a lower set of effort multiplier values for the higher CPLX 
levels, based on a rationale that its models for tasking, exceptions, encapsulation, etc., 
made many previously complex issues easier to deal with. However, the rating-scale 
revisions in Table 8 introduce additional high-complexity areas such as parallelization, 
distributed hard real-time control, and virtual reality, which are not particularly simplified 
by Ada or other programming language constructs. Overall, it appears that the growth in 
desired product complexity keeps pace with the growth in technology. Thus, the 
COCOMO 2.0 baseline CPLX multipliers have not been changed from the original 
COCOMO, in consonance with the continuity criterion.  

6.1.4 RUSE - Required Reusability  

Ada COCOMO added this cost driver to account for the additional effort needed to 
construct components intended for reuse on the current or future projects. It had four 
rating levels and multipliers ranging from 1.0 to 1.5. Subsequent experience indicated 
that both the rating levels and range of effort multipliers needed to be expanded. For 
example, AT&T has experienced a cost escalation factor of 2.25 in developing software 
for broad-based reuse. In reconciling recent experience with the previous Ada COCOMO 
data, it appeared that broad-based reuse required a High or Very High level of Required 
Reliability, which brought the effective Ada COCOMO reuse-multiplier range up to 
(1.5)(1.4) = 2.10. The baseline RUSE COCOMO 2.0 effort multipliers have a 
productivity range of 1.75, yielding a combined RUSE-RELY productivity range of 
(1.75)(1.4) =  

2.45.  

6.1.5 DOCU - Documentation match to life-cycle needs  

Several software cost models have a cost driver for the level of required 
documentation. In COCOMO 2.0, the rating scale for the DOCU cost driver is evaluated 
in terms of the suitability of the project’s documentation to its life-cycle needs. The rating 
scale goes from Very Low (many life-cycle needs uncovered) to Very High (very 
excessive for life-cycle needs). The baseline productivity range for DOCU is 1.38. 



Table 8: Module Complexity Ratings versus Type of Module  
 Very Low  Low  Nominal  High  Very High  Extra High  
Control 
Operations  

Straight-line code with 
a few non-nested 
structured 
programming 
operators: DOs, 
CASEs, 
IFTHENELSEs. 
Simple module 
composition via 
procedure calls or 
simple scripts.  

Straightforward 
nesting of structured 
programming 
operators. Mostly 
simple predicates  

Mostly simple nesting. 
Some intermodule 
control. Decision 
tables. Simple 
callbacks or message 
passing, including 
middlewaresupported 
distributed processing  

Highly nested 
structured 
programming operators 
with many compound 
predicates. Queue and 
stack control. 
Homogeneous, 
distributed processing. 
Single processor soft 
real-time control.  

Reentrant and 
recursive coding. 
Fixed-priority interrupt 
handling. Task 
synchronization, 
complex callbacks, 
heterogeneous 
distributed processing. 
Single-pro-cessor hard 
real-time control.  

Multiple resource 
scheduling with 
dynamically changing 
priorities. Microcode-
level control. 
Distributed hard real-
time control.  

Computational 
Operations  

Evaluation of simple 
expressions: e.g., 
A=B+C*(D-E)  

Evaluation of moder-
ate-level expressions: 
e.g., D=SQRT(B**2-
4.*A*C)  

Use of standard math 
and statistical routines. 
Basic matrix/vector 
operations.  

Basic numerical 
analysis: multivariate 
interpolation, ordinary 
differential equations. 
Basic truncation, 
roundoff concerns.  

Difficult but structured 
numerical analysis: 
near-singular matrix 
equations, partial 
differential equations. 
Simple parallelization.  

Difficult and 
unstructured numerical 
analysis: highly 
accurate analysis of 
noisy, stochastic data. 
Complex 
parallelization.  

Device-depen-
dent Operations  

Simple read, write 
statements with simple 
formats.  

No cognizance needed 
of particular processor 
or I/O device 
characteristics. I/O 
done at GET/ PUT 
level.  

I/O processing includes 
device selection, status 
checking and error 
processing.  

Operations at physical 
I/O level (physical 
storage address 
translations; seeks, 
reads, etc.). Optimized 
I/O overlap.  

Routines for interrupt 
diagnosis, servicing, 
masking. 
Communication line 
handling. Per-
formance-intensive 
embedded systems.  

Device timing-depen-
dent coding, micro-
pro-grammed 
operations. 
Performance-critical 
embedded systems.  

Data 
Management 
Operations  

Simple arrays in main 
memory. Simple 
COTS-DB queries, 
updates.  

Single file subsisting 
with no data structure 
changes, no edits, no 
intermediate files. 
Moderately complex 
COTS-DB queries, 
updates.  

Multi-file input and 
single file output. 
Simple structural 
changes, simple edits. 
Complex COTS-DB 
queries, updates.  

Simple triggers 
activated by data 
stream contents. 
Complex data 
restructuring.  

Distributed database 
coordination. Complex 
triggers. Search 
optimization.  

Highly coupled, 
dynamic relational and 
object structures. 
Natural language data 
management.  

User Interface 
Management 
Operations  

Simple input forms, 
report generators.  

Use of simple graphic 
user interface (GUI) 
builders.  

Simple use of widget 
set.  

Widget set 
development and 
extension. Simple 
voice I/O, multimedia.  

Moderately complex 
2D/3D, dynamic 
graphics, multimedia.  

Complex multimedia, 
virtual reality.  



6.2 Platform Factors  

The platform refers to the target-machine complex of hardware and infrastructure 
software (previously called the virtual machine). The factors have been revised to reflect 
this as described in this section. Some additional platform factors were considered, such 
as distribution, parallelism, embeddedness, and real-time operation, but these 
considerations have been accommodated by the expansion of the Product Complexity 
rating scales in Table 8.  

6.2.1 TIME - Execution Time Constraint 
STOR - Main Storage Constraint  

Given the remarkable increase in available processor execution time and main 
storage, one can question whether these constraint variables are still relevant. However, 
many applications continue to expand to consume whatever resources are available, 
making these cost drivers still relevant. Following the continuity criterion, the rating 
scales and multipliers are not changed in COCOMO 2.0, since there has been no strong 
evidence of need for changing them.  

6.2.2 PVOL - Platform Volatility  

This variable was called Virtual Machine Volatility (VIRT) in COCOMO. In Ada 
COCOMO, it was split into Host Volatility and Target Volatility drivers to reflect the 
Ada host-target software development approach prevalent at the time. The current trend 
appears to be toward distributed software development, with less well-defined boundaries 
between hosts and targets. Thus, following the Parsimony criterion, COCOMO 2.0 is 
returning to a single Platform Volatility driver. Following the continuity guideline, its 
rating scale and effort multipliers are not changed from the original COCOMO VIRT 
counterpart. “Platform” has the same definition as did “Virtual Machine:” the complex of 
hardware and software (OS, DBMS, etc.) the software product calls on to perform its 
tasks.  

6.2.3 TURN - Computer Turnaround Time  

Computer turnaround time was a significant cost driver during the initial COCOMO 
calibration period in the 1970’s, as many software developers were still primarily 
supported by batch-processing computers. Currently, most software developers are 
supported by interactive workstations, and the trend is toward interactive support for all 
software developers. As a result, the TURN cost driver has lost most of its significance, 
and is dropped in COCOMO 2.0.  

6.3 Personnel Factors  

6.3.1 ACAP - Analyst Capability    
PCAP - Programmer Capability  

Both COCOMO and Ada COCOMO had combined productivity ranges (the ratios of 
highest to lowest effort multipliers) of somewhat over a factor of 4, reflecting the strong 
influence of personnel capability on software productivity. In the original COCOMO, the 
individual productivity ranges were roughly equal, 2.06 for ACAP and 2.03 for PCAP. In 



Ada COCOMO, the Ada Process Model was organized around a small number of good 
analysts producing a definitive specification to be implemented by generally less-capable 
programmers. This led to a higher productivity range, 2.57, for ACAP, as compared to 
1.62 for PCAP.  

Current trends continue to emphasize the importance of highly capable analysts. 
However the increasing role of complex COTS packages, and the significant productivity 
leverage associated with programmers’ ability to deal with these COTS packages, 
indicates a trend toward higher importance of programmer capability as well.  

For these reasons the COCOMO 2.0 baseline effort multipliers for ACAP and PCAP 
maintain the same composite productivity range, but provide an intermediate position 
with respect to the relative productivity ranges of ACAP and PCAP. The resulting 
baseline COCOMO 2.0 effort multipliers have productivity ranges of 2.24 for ACAP and 
1.85 for PCAP.  

6.3.2 AEXP - Applications Experience    
PEXP - Platform Experience           
LTEX - Language and Tool Experience  

COCOMO 2.0 makes three primary changes in these three personnel experience cost 
drivers:  

• Transforming them to a common rating scale, to avoid some previous 
confusion;  

• Broadening the productivity influence of PEXP, recognizing the importance 
of understanding the use of more powerful platforms, including more graphic 
user interface, database, networking, and distributed middleware capabilities;  

• Extending the previous Language Experience cost driver to include 
experience with software tools and methods.  

The resulting baseline COCOMO 2.0 effort multipliers for these cost drivers have the 
following comparative effect on previous COCOMO productivity ranges:  

• AEXP: 1.54 in COCOMO 2.0 versus 1.57 in COCOMO and Ada COCOMO  

• PEXP: 1.58 in COCOMO 2.0 versus 1.34 in COCOMO and Ada COCOMO 
(VEXP)  

• LTEX: 1.51 in COCOMO 2.0 versus 1.20 in COCOMO and Ada COCOMO 
(LEXP)  

6.3.3 PCON - Personnel Continuity  

The original COCOMO data collection and analysis included a potential PCON cost 
driver, but the analysis results were inconclusive and the cost driver was not included 
[Boehm 1981, p.486-487]. The COCOMO 2.0 rating scale for PCON is in terms of the 
project’s annual personnel turnover: from 3% to 48%. The corresponding baseline 
productivity range is 1.52.  



6.4 Project Factors  

6.4.1 MODP - Use of Modern Programming Practices  

The definition of “modern programming practices” has evolved into a broader 
“mature software engineering practices” term exemplified by the Software Engineering 
Institute Capability maturity Model [Paulk et al 1993] and comparable models such as 
ISO 9000-3 and SPICE. The cost estimation effects of this broader set of practices are 
addressed in COCOMO 2.0 via the Process Maturity exponent driver. As a result, the 
MODP effort-multiplier cost driver has been dropped.  

6.4.2 TOOL - Use of Software Tools  

Software tools have improved significantly since the 1970’s projects used to calibrate 
COCOMO. Ada COCOMO added two rating levels to address late-1980’s and expected 
1990’s tool capabilities. Since then, the number of projects with COCOMO TOOL 
ratings of Very Low and Low have become scarce. Therefore, COCOMO 2.0 has shifted 
the TOOL scale to eliminate the original Very Low and Low levels and to use an updated 
interpretation of the upper five Ada COCOMO rating levels as the TOOL scale. The 
elimination of two rating levels between Ada COCOMO and COCOMO 2.0 reduced the 
productivity range from 2.00 to 1.61.  

6.4.3 SITE - Multisite Development  

Given the increasing frequency of multisite developments, and indications from 
COCOMO users and from other cost models that multisite development effects are 
significant, the SITE cost driver has been added in COCOMO 2.0. Determining its cost 
driver rating involves the assessment and averaging of two factors: site collocation (from 
fully collocated to international distribution) and communication support (from surface 
mail and some phone access to full interactive multimedia). The corresponding baseline 
productivity range is 1.57.  

6.4.4 SCED - Required Development Schedule  

Given that there has been no strong evidence of a need to change the SCED ratings 
and effort multipliers, they remain the same in the baseline COCOMO 2.0 under the 
continuity criterion.  

6.4.5 SECU - Classified Security Application  

Ada COCOMO included a SECU cost driver, which applied an effort multiplier of 
1.10 of a project required classified security procedures. Using the parsimony criterion, 
since most projects do not need to deal with this, we have dropped it from COCOMO 2.0  

7. Additional COCOMO 2.0 Capabilities  
This section covers the remainder of the initial COCOMO 2.0 capabilities: Early 

Design and Post-Architecture estimation models using Function Points; schedule 
estimation, and output estimate ranges. Further COCOMO 2.0 capabilities, such as the 
effects of reuse and applications composition on phase and activity distribution of effort 
and schedule, will be covered in future papers.  



Table 9: Early Design and Post-Architecture Cost Drivers  

Early Design Cost Driver  Counterpart Combined Post-
Arch. Cost Driver  

RCPX  RELY, DATA, CPLX, DOCU  

RUSE  RUSE  

PDIF  TIME, STOR, PVOL  

PERS  ACAP, PCAP, PCON  

PREX  AEXP, PEXP, LTEX  

FCIL  TOOL, SITE  

SCED  SCED  

 

7.1 Early Design and Post-Architecture Function Point Estimation  

Once one has estimated a product’s Unadjusted Function Points, using the procedure 
in Section  

4.2.2 and Figure 5, one needs to account for the product’s level of implementation 
language (assembly, higher order language, fourth-generation language, etc.) in order to 
assess the relative conciseness of implementation per function point. COCOMO 2.0 does 
this for both Early Design and Post-Architecture models by using tables such as those 
generated by Software Productivity Research [SPR 1993] to translate Unadjusted 
Function Points into equivalent SLOC.  

For Post-Architecture, the calculations then proceed in the same way as with SLOC. 
In fact, one can implement COCOMO 2.0 to enable some components to be sized using 
function points, and others (which function points may not describe well, such as real-
time or scientific computations) in SLOC.  

For Early Design function point estimation, conversion to equivalent SLOC and 
application of the scaling factors in Section 5 are handled in the same way as for Post-
Architecture. In Early Design, however, a reduced set of effort multiplier cost drivers is 
used. These are obtained by combining the Post-Architecture cost drivers as shown in 
Table 9.  

The resulting seven cost drivers are easier to estimate in early stages of software 
development than the 17 Post-Architecture cost drivers. However, their larger 
productivity ranges (up to 5.45 for PERS and 5.21 for RCPX) stimulate more variability 
in their resulting estimates. This situation is addressed by assigning a higher standard 
deviation to Early Design (versus Post-Architecture) estimates; see Section 7.3.  

7.2 Development Schedule Estimates  

The initial version of COCOMO 2.0 provides a simple schedule estimation capability 
similar to those in COCOMO and Ada COCOMO. The initial baseline schedule equation 
for all three COCOMO 2.0 models is:  
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where TDEV is the calendar time in months from the determination of its requirements 
baseline to the completion of an acceptance activity certifying that the product satisfies 
its requirements. PM is the estimated person-months excluding the SCED effort 
multiplier, and SCEDPercentage is the schedule compression / expansion percentage in 
the SCED cost driver rating table, Table 7.  

Future versions of COCOMO 2.0 will have a more extensive schedule estimation 
model, reflecting the different classes of process model a project can use; the effects of 
reusable and COTS software; and the effects of applications composition capabilities.  

7.3 Output Ranges  

A number of COCOMO users have expressed a preference for estimate ranges rather 
than point estimates as COCOMO outputs. The three-models of COCOMO 2.0 enable the 
estimation of likely ranges of output estimates, using the costing and sizing accuracy 
relationships in Section 3.2, Figure 2. Once the most likely effort estimate E is calculated 
from the chosen model (Application Composition, Early Design, or Post-Architecture), a 
set of optimistic and pessimistic estimates, representing roughly one standard deviation 
around the most likely estimate, are calculated as follows:  

Model Optimistic Estimate Pessimistic Estimate 
Application Composition 0.50 E 2.0 E 

Early Design 0.67 E 1.5 E 
Post-Architecture 0.80 E 1.25 E 

The effort range values can be used in the schedule equation, EQ 6., to determine 
schedule range values.  

8. Conclusions  
Software development trends towards reuse, reengineering, commercial off-the shelf 

(COTS) packages, object orientation, applications composition capabilities, non-
sequential process models, rapid development approaches, and distributed middleware 
capabilities require new approaches to software cost estimation.  

The wide variety of current and future software processes, and the variability of 
information available to support software cost estimation, require a family of models to 
achieve effective cost estimates.  

The baseline COCOMO 2.0 family of software cost estimation models presented here 
provides a tailorable cost estimation capability well matched to the major current and 
likely future software process trends.  

The baseline COCOMO 2.0 model effectively addresses its objectives of openness, 
parsimony, and continuity from previous COCOMO models. It is currently serving as the 
framework for an extensive data collection and analysis effort to further refine and 
calibrate its estimation capabilities. Initial calibration of COCOMO 2.0 to the previous 
COCOMO database indicates that its estimation accuracy is comparable to that of 
original COCOMO’s for this sample.  



9. Acronyms and Abbreviations  

3GL  Third Generation Language  
AA  Percentage of reuse effort due to assessment and assimilation  
ACAP  Analyst Capability  
ACT  Annual Change Traffic  
ASLOC  Adapted Source Lines of Code  
AEXP  Applications Experience  
AT  Automated Translation  
BRAK  Breakage  
CASE  Computer Aided Software Engineering  
CM  Percentage of code modified during reuse  
CMM  Capability Maturity Model  
COCOMO  Constructive Cost Model  
COTS  Commercial Off The Shelf  
CPLX  Product Complexity  
CSTB  Computer Science and Telecommunications Board  
DATA  Database Size  
DBMS  Database Management System  
DI  Degree of Influence  
DM  Percentage of design modified during reuse  
DOCU  Documentation to match lifecycle needs  
EDS  Electronic Data Systems  
ESLOC  Equivalent Source Lines of Code  
FCIL  Facilities  
FP  Function Points  
GFS  Government Furnished Software  
GUI  Graphical User Interface  
ICASE  Integrated Computer Aided Software Environment  
IM  Percentage of integration redone during reuse  
KSLOC  Thousands of Source Lines of Code  
LEXP  Programming Language Experience  
LTEX  Language and Tool Experience  
MODP  Modern Programming Practices  



NIST  National Institute of Standards and Technology  
NOP  New Object Points  
OS  Operating Systems  
PCAP  Programmer Capability  
PCON  Personnel Continuity  
PDIF  Platform Difficulty  
PERS  Personnel Capability  
PEXP  Platform Experience  
PL  Product Line  
PM  Person Month  

PREX  Personnel Experience  

PROD  Productivity rate  
PVOL  Platform Volatility  
RCPX  Product Reliability and Complexity  
RELY  Required Software Reliability  
RUSE  Required Reusability  
RVOL  Requirements Volatility  
SCED  Required Development Schedule  
SECU  Classified Security Application  
SEI  Software Engineering Institute  
SITE  Multi-site operation  
SLOC  Source Lines of Code  
STOR  Main Storage Constraint  
T&E  Test and Evaluation  
SU  Percentage of reuse effort due to software understanding  
TIME  Execution Time Constraint  
TOOL  Use of Software Tools  
TURN  Computer Turnaround Time  

USAF/ESD  U.S. Air Force Electronic Systems Division  
VEXP  Virtual Machine Experience  
VIRT  Virtual Machine Volatility  
VMVH  Virtual Machine Volatility: Host  
VMVT Virtual Machine Volatility: Target 
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