
MS Project-like System

(Basic PM)

Final Project Report

CMPE 412

Team members: Elmehdi, Charidi, 149164

Muyiwa, Akinpelu, 147704

Hasan, Soygazi, 123379

Serhat, Kocagoz, 131113

Naim, Al Tarabichi, 137823

Aliza, Wasim, 137843

Abdulrahman, Zurghani, 147592

Waseem, Nasir, 147878

Saidu, Sokoto, 147912

Muhammad, Saleh, 15701299

Computer Engineering Department

Eastern Mediterranean University

May 2017

II

ABSTRACT

The main aim of this project is the design and implementation of a project management

application that is similar to Microsoft Project. An application that is similar in functionality

but easier to use. In order to achieve this a detailed analysis of the requirements set by the client

was done and way of implemented them where devised. It was concluded, as a group, that the

best software engineering model to use is the water fall model, because the requirements were

well understood. At the end after months of working, a working prototype was made, which

has a seamless user interface and at the same time satisfying all the requirements of the client

in addition to other features deemed suitable to be added. These requirements include, but are

not limited to, having task names, predecessors, start dates, duration, Gantt charts, network

diagrams, resources pool and organizations charts.

Keywords: Tasks, time, cost, calendar, resource.

 III

Table of Contents

ABSTRACT .. II

Table of Contents ... III

LIST OF FIGURES .. V

LIST OF TABLES ... VI

1. INTRODUCTION .. 1

2. REQUIREMENTS ANALYSIS... 2

2.1 Functional Requirements ... 2

2.1.1 Portability and storage ... 2

2.1.2 Automatic calculations and smartness: .. 2

2.1.3 Gantt chart:... 3

2.1.4 Activity Network Diagram: ... 4

2.1.5 Organization chart:... 4

2.2 Non-Functional Requirements ... 5

2.2.1 Security Requirements ... 5

2.2.2 Performance Requirements .. 5

2.2.3 Safety Requirements .. 6

2.2.4 Usability ... 6

2.3 Realistic constraints ... 7

2.4 Ethical issues .. 8

3. DESIGN.. 9

3.1 High level design (architectural) .. 9

3.2 Low level design (components used) ... 9

 IV

4. IMPLEMENTATION .. 10

4.1 Tools, technologies and platforms used ... 10

4.2 Use of Software Engineering Process Steps .. 11

4.2.1 Project planning and management ... 11

4.2.2 Requirements analysis and development: .. 21

4.3 Algorithms ... 23

4.4 Standards .. 27

5. TESTING.. 28

6. USER GUIDE OF THE SYSTEM ... 43

7. DISCUSSION ... 47

7.1 Economic Impact ... 47

7.2 Social Impact ... 47

7.3 Environmental Impact .. 47

7.4 Global Impact... 47

8. CONCLUSION .. 48

APPENDICES ... 51

A. Instructions for installing the system ... 51

B. Code for the system .. 53

 V

LIST OF FIGURES

Figure 1. Organization Chart ... 11

Figure 2. Gantt chart .. 14

Figure 3. Resource Allocation ... 15

Figure 4. Network diagram .. 16

Figure 5. Netwrok diagram with expected time... 17

Figure 6 ER Diagram ... 22

Figure 7 Sequence Diagram ... 22

Figure 8 Use Case Diagram ... 23

Figure 9 Application Homepage .. 43

Figure 10 Project Creation Form ... 44

Figure 11 Main Interface ... 45

Figure 12 Network Diagram .. 46

Figure 13 Network Diagram Button .. 46

Figure 14 Executable File .. 51

Figure 15 Setup Wizard ... 51

Figure 16 Select Installation Path .. 52

Figure 17 Comfirm installation .. 52

 VI

LIST OF TABLES

Table 1. Risk Management List ... 11

Table 2. Project work break down ... 15

Table 3. Project completion time ... 16

Table 4. Expected task time ... 16

Table 5. Path duration .. 17

Table 6. Probability of completion dates ... 17

Table 7. Variance of each path .. 18

Table 8. Probability of completion in 56 days ... 18

Table 9. Crashing table .. 18

Table 10. Rating result ... 19

Table 11. Rating result ... 20

Table 12 "Create New Project" Test .. 28

Table 13 “Create New Project” Test Results ... 30

Table 14 “Addidng Resources” Test.. 31

Table 15 “Adding New Resource” Test Results .. 32

Table 16 “Addidng New Task” Test .. 33

Table 17 “Addidng New Task” Test .. 34

Table 18 “Network Diagram Created” Test ... 35

Table 19 “Network Diagram Created” Test Results .. 36

Table 20 “Total calculation” Test .. 37

Table 21 “Total Calculation” Test Results .. 38

Table 22 “Saving Project” Test.. 39

 VII

Table 23 “Saving Project” Test Results ... 40

Table 24 “Loading Project” Test ... 41

Table 25 “Saving Project” Test Results ... 42

1

1. INTRODUCTION

The main objective of this project is to develop a product where students can easily plan and

manage their projects. The product provides more control and hence saving both time and

money. When there are tasks to be achieved and the need to keep up with deadlines, our product

will definitely be helpful. One can track time, people or money all through this product using

the Gantt chart. It is mainly for CMPE/CMSE students to use free of charge. This application

software will be different from other project such as MS project in that it will have a more

simplified user interface incorporating and laying out the most important and used features

used by the students in the CMPE/CMSE department of EMU. In addition to this many of

functions and features that are commonly used will be automated by default, unlike other

software packages in which changes have to be manually made. Due to its simplicity, it will be

easier to learn and use compared other project management applications. By making almost all

features automatic, it will also save time and consequently cost.

 2

2. REQUIREMENTS ANALYSIS

2.1 Functional Requirements

2.1.1 Portability and storage

Description:

When developing the system, we used Dataset and DataTables rather than Database, thing

which will make our .exe file not heavy. If we used SQL database, we should include it in the

deployment which will make the size of our project very large. In addition to that, using SQL

database will force all the project and data to be stored in one database, which will make life

harder if we want to copy a project from one laptop to another one (we should copy the whole

database and link it to the other application in the other laptop). In our case, once the user open

the file, all the data taken from the file will be stored in the Dataset which exist in the

application.

Priority: High

Stimulus/Response Sequences:

When the use click on “create project” the application will ask him/her to fill a form which has

some important information about the project he/she wants to create (starting time, directory

of the project, name of the project, etc.). After filling the form successfully, the application

creates a file with extension (.ale) in with the given name in the given directory.

Functional Requirements:

 REQ-1: The user must be able to create a project file in any location.

REQ-2: The user must be able to open a project from any laptop which has the

application.

REQ-3: The user must be able to save any changes he/she makes while working

in a project.

REQ-4: The application must provide a form which must be filled by the user

which has the necessary information about the project.

2.1.2 Automatic calculations and smartness:

Description:

 3

when dealing with the Tasks, the user does not have to mention the finish time, he/she should

just specify the starting and the duration and type of duration (Hour-Day-Week-Month) and

automatically the finishing time is computed and placed in its place, the application consider

that the duration typed is in Working days, our application is smart enough to detect Saturday

and Sunday, and it does not allow the user to start a task at those days.

The application is able to calculate the cost of each task by referring to the price for the

resources and see how long does this task require.

Priority: Medium

Stimulus/Response Sequences:

The user starts filling the grid for the tasks, when he/she comes to the duration, he/she must

write a valid duration (integer value), then he/she puts a starting time. After this, he/she can

only click on the cell for finishing time, then automatically the value for this cell will be

calculated. Same thing implies for calculation the cost. The user must only to choose the

corresponding resource for the task, and automatically the cost for the selected task will be

calculated and placed in its place.

Functional Requirements:

 REQ-1: The user must be able to add tasks to the project.

REQ-2: The application must be able to hold as many as tasks the user wants to

have.

REQ-3: The user must be able to add resources to his/her project and assign tasks

to them.

REQ-4: The application must be able to calculate the cost for each task, the

finishing time for each task and distinguish between a working day and

weekend.

2.1.3 Gantt chart:

Description and priority:

Representing the tasks in a Gantt chart with their starting and finishing time, which will make

things more clear.

Priority: High

 4

Stimulus/Response Sequences:

Once a task is fully filled in a row in the grid corresponding to the tasks, when leaving that

row, the Gantt chart is automatically updated.

Functional Requirements:

REQ-1: The Gantt chart must be updated according to the data entered by the

user.

REQ-2: The user must be able to create/delete a task and see those things in the

chart.

REQ-3: The user must be able how much is done in each task in the chart.

2.1.4 Activity Network Diagram:

Description and priority:

A tool which shows tasks as a diagram, different look of the Gantt chart. It also gives a better

understanding of how tasks are related to each other.

In addition, it shows the critical paths in a different colors.

Priority: High

Stimulus/Response Sequences:

The user must first enter some tasks information in the grid corresponding to the tasks, then

he/she can easily click on the button (activity network) to be able to see the network diagram.

Functional Requirements:

REQ-1: The diagram must show the critical paths.

REQ-2: The user must be able to see how tasks are related.

REQ-3: The user must be able to export the diagram as an image.

REQ-4: The user must be able to zoom in and zoom out in the chart.

2.1.5 Organization chart:

Description and priority:

 5

A chart which shows how the structure of the team.

Priority: High

Stimulus/Response Sequences:

The user must first fill the resources grid, then give some ranking data, specifies the teams and

so on.

Functional Requirements:

REQ-1: The user must be able to make as much as teams he/she wants.

REQ-2: The user must be able to see an organization chart in a proper way.

REQ-3: The user must be able to export the diagram as an image.

REQ-4: The user must be able to zoom in and zoom out in the chart.

2.2 Non-Functional Requirements

2.2.1 Security Requirements

• The PC on which the software will reside will have its own security depending on the

preferences of the owner. Only the owner, or those given permission will have physical

access to the computer and the software’s on it (including Basic PM)

• For the encryption of user data, a static key will be securely generated that will only be

known to all Basic PM application

• This key will be used to encrypt and decrypt any file that has the. ale extension to prevent

other application from having access to a user’s data.

• When an existing project is trying to be opened, the key will be used to decrypt the data to

retrieve the data and them immediately encrypt it again to prevent unauthorized access

• Whenever a project is saved either manually or automatically it will immediately be

decrypted to allow writing and then immediately decrypted afterwards.

• This will ensure the protection of user data by preventing unauthorized access to user data.

2.2.2 Performance Requirements

• The application must be interactive and responsive

 6

• Any delay must be minimal.

• Immediately a new task is added, the corresponding Gantt chart and network

diagrams should be immediately visible.

• Immediately the date and duration of a new task is added, the corresponding end date

should be computed excluding working days.

• Error messages should be displayed immediately an error occurs.

• Data access should be instantaneous to ensure smooth operations

2.2.3 Safety Requirements

• The user should maintain a backup of the local file with (. ale extension) on an external

storage device or on the cloud (e.g. Google Drive, OneDrive, Drop Box etc.)

• To ensure the safety of user data, the system should maintain a good backup: the database

must be secured so that it can be easily restored in case of a failure

• On the part of the system, there is a mechanism in place to automatically save the user data

every one (1) minute while its active. As a result of this the user does not have to manually

save the work.

• In case of a power failure, a temporary file will be created in which the user will be able to

retrieve and continue his work from where he stopped at least one minute before the power

failure.

2.2.4 Usability

• The platform should be user friendly.

• The graphical user interface should be well informed.

• There should be a way for a user to find help immediately in case of a problem.

• The user must be satisfied.

 7

Security: How difficult should it be for people to hack the system? Reliability: How often

will the system be allowed to fail or be unavailable? Usability: How easy should it be for

users to use the system? Accessibility: Should people with disabilities be able to use the

system? What are the requirements for evolution of the system, such as testability,

maintainability, extensibility and scalability?

2.3 Realistic constraints

• Economic

 The product is economically feasible, and any individual can use the system without a lot

of investment. Using this project for proper planning will help one to prepare for any

unfortunate events, and hence saving both time and money. With a methodical project planning

that this product will provide, a successful business is achievable, and thus, helping the

economy of North Cyprus and other countries. In addition to this, because our software will be

free; any organization, state or country that decides to adopt it will save a lot of money.

• Environmental

 The use of this product does not consume a lot of power, it only requires an adequately

charged system. Using this product does not lead to pollution of the environment due to the

fact that the product is used in the confinements of people`s houses or offices.

• Social

 The project is socially feasible, and all age-groups can use this product for various project-

related purpose provided that they are computer literate. The product has simplified the

Microsoft Project features, so due to this factor, the product gives inspiration to students who

might want to do software projects because of its ease of use.

• Political

 There are no political constraints related to this product, therefore it is politically feasible.

• Ethical

 8

 There are no ethical constraints that must be observed in the use of this product.

• Health and safety

 Using this product is very safe and it doesn’t endanger the health and safety of the society

because it is mainly going to be used for official purpose like project management and

scheduling.

• Manufacturability

The source code is available and the application can be installed on any number of systems.

• Sustainability

 The product can be used over a long term because it is user-friendly and easy to use for

specific individuals that finds it difficult to understand Microsoft Project features and its

functionalities.

2.4 Ethical issues

There is no ethical issue related to this product. Furthermore, the product cannot be used for

any unprofessional or criminal activity due to its nature, because it is primarily used for

project management and planning.

 9

3. DESIGN

3.1 High level design (architectural)

The software we coded was designed to work with three parts, these parts are the basic elements

of most running programs.

First is the User Interface (UI), the UI was designed to be simple and self-explanatory, it

follows the same pattern of most project management software’s so users can adapt to use fast

and easy, when the program is opened it is programmed to give the use an interface where he

can start a new project, open an already created project and an exit option, when starting a new

project a simple form will appear asking the user to name the project and give start/end dates,

and can enter an additional information and project description, the next screen will show the

user the standard view, where user will see the task list where he can enter the details, and on

the left side he will have the Gant-chart which also shows the critical path.

In the code, the code starts with creating a file for the project where it stores the information,

now in this software no database was used, since there is not that much of complex data

relations that require using data base, the code can calculate working days and days of slack

and lag, also operates on resources.

The file has a specified structure where all project information is stored in systemic way that it

can be reliably stored retrieved and edited.

3.2 Low level design (components used)

The UI essentially consists of the DataGridView and the Gantt chart, DataGridView is were

user can add a task by entering its information name, duration, duration type, start and end

time, predecessor, and other specific information, after the user have add the task to

DataGridView, it will automatically be added to the Gannt-Chart, the Gannt-Chart will

represent the duration of the task, and will link it to tasks before and after it, the critical path

has red color to differ it from the rest of the path.

When designing the UI the “Metro Modern UI - Metro Framework 1.4.0” since it provides

a different design and graphic elements that are not available on the standard UI provided in

.NET framework. The UI elements were connected to the C# code and programmed to invoke

events. The network diagram was drawn using tool named GLEE, provided by Microsoft and

its free for use.

 10

The language the software was coded in was C#, the first thing was representing tasks in the

proper data structure to preform operation on them. with the help of “guncharts dll” which

had the support of tasks, and tasks related operation with added benefit of supporting the Gann-

chart and its representation, instead of using a database a data table was used as a data structure.

The code will save the project in an encrypted file that has a specific format, the format has the

following structure, file is divided into sections:

o First line contains the date and time of file creation.

o Second line contains the country where the project is taking part.

o Third line specifies the county’s currency.

o Fourth line stats the number of working hours.

o Fifth line starts the first section which is table1 that holds task information.

o Second section is the table of resources.

o Third section is the table hold the relation between tasks and resources.

o Fourth section holds the dependencies of tasks.

o Fifth section hold the Gannt-Chart information.

o Sixth section is simply the data in the DataGridView.

o Last the document ends with the word “Finish” that indicates the end of the file.

4. IMPLEMENTATION

4.1 Tools, technologies and platforms used

MYSQL

MS Project

Adobe Photoshop CS6

Visual Studio 2015

MS Word

C#

.NET framework

 11

4.2 Use of Software Engineering Process Steps

4.2.1 Project planning and management

a. Project Organization Activities & Roles and Responsibilities Activities:

We draw the Organization chart to indicate the roles and responsibilities of each person, the

relationships of the project team and the coordination of project activities. The diagram is

shown as follows:

Figure 1. Organization Chart

b. Managerial Process Plan Activities:

The reason for starting this project as stated earlier is to simplify project management. This

project like other projects has some risks which by using risk management plan we try to

identify different risks and prepare an alternative plan for the risky parts of the project to

minimize the effects of these risks on the project. List of risks are shown in table below:

Table 1. Risk Management List

Risk Probability Effects Your Strategy

Exchange rate variability costs

are incurred in foreign currencies

Moderate Tolerable Make use of two

currencies (i.e. US dollars

and Turkish lira) and use

Elmehdi Charıdı

Project
Manager

Elmehdi Charıdı

Project
Manager

Asoc. Prof. Dr. Alexander Chefranov
Academic Advisor

Asoc. Prof. Dr. Alexander Chefranov
Academic Advisor

Elmehdi Charıdı

Software
Team Leader

Elmehdi Charıdı

Software
Team Leader

Serhat Kocagöz
Software Developer
Serhat Kocagöz

Software Developer

Abdulrahman R.A.
Zurghani

Software Developer &
Analysist

Abdulrahman R.A.
Zurghani

Software Developer &
Analysist

Naım Al Tarabıchı
Software Developer
Naım Al Tarabıchı
Software Developer

Waseem Nasır
Software Developer &

Database Designer

Waseem Nasır
Software Developer &

Database Designer

Muhammed B.I. Saleh
Software Developer

Muhammed B.I. Saleh
Software Developer

Saidu A.I. Sokoto

Testing Team
Leader & Error
Handler

Saidu A.I. Sokoto

Testing Team
Leader & Error
Handler

Hasan Soygazi
Tester & User Interface

Designer

Hasan Soygazi
Tester & User Interface

Designer

Aliza Wasım
Tester & Software

librarian

Aliza Wasım
Tester & Software

librarian

O. Quadri Akınpelu
Tester & User Interface

Designer

O. Quadri Akınpelu
Tester & User Interface

Designer

Armin Mehri
Client

Armin Mehri
Client

 12

exchange rates can have a

dramatic impact.

the most stable one for

calculations

Resource performance issues

Resources who perform below

expectations.

Moderate Tolerable Use more efficient

resources and have backup

resources.

Project team misunderstand

requirements

High Serious Improve communication,

explain clearly, and speak

with the client.

Design lacks flexibility

A poor design makes change

requests difficult and costly

Moderate Serious Organize design carefully

and plan a useful and

flexible design

Decision delays impact project

Moderate Serious Establish guidelines for

decision turnaround time.

Technical change impacts

project. A technology innovation

changes might impact the project.

Moderate Insignificant Ensure all team members

are aware and

knowledgeable of the

technology being used.

The expected yield is not

obtained from the database used.

Moderate Serious Investigate the use of a

higher performance

database.

c. Estimation Plan Activities, Work Plan Activities and Schedule Allocation:

 13

We use Gantt chart to define the work distribution and resources allocation. Also in this part

we draw activity networks diagram and find critical path networks to apply PERT analysis and

Crashing to try to reduce the completion time. Mentioned diagrams are shown as follows:

▪ Gantt chart

14

Figure 2. Gantt chart

15

▪ Resource Allocation

 Figure 3. Resource Allocation

Step1. Project work break down

Table 2. Project work break down

Activity

ID

Task Name Duration

(day)

predecessors

a Development of MS project-like system 1 -

b Information and Requisite Analysis 10 -

c System Software Modelling 16 b

d Database Organization 7 c

e Programming phase 17 d

f Testing and Implementation 6 e

 16

Step2. Network Diagram

Figure 4. Network diagram

Step3. Calculate the project completion time

Table 3. Project completion time

Paths Path duration

abcdef 56(critical path)

Step4. Calculating expected task times

6

cpessimistirealistic4optimistic
 timeExpected

(1)

Table 4. Expected task time

Activity ID Optimistic time Realistic

time

Pessimistic

time

Expected

time

a 0 1 2 1

b 7 10 13 9.6

c 14 16 19 15.8

d 6 7 10 7.16

e 15 17 19 16.8

f 5 6 9 6

 17

Step5. Network diagram with expected activity times

Figure 5. Netwrok diagram with expected time

Step6. Estimated Path Durations through the Network

Table 5. Path duration

Paths Expected duration

abcdefg 55.3 (critical path)

Step7. Estimating the probability of completion dates for each path

2

2

6

op
σ

(2)

 Table 6. Probability of completion dates

Activity ID Optimistic time Realistic

time

Pessimistic

time

Expected

time

Variance

a 0 1 2 1 0.11

b 7 10 13 9.6 0.44

c 14 16 19 15.8 0.25

d 6 7 10 7.16 0.25

e 15 17 19 16.8 0.25

f 5 6 9 6 0.11

Step8. Variance of each path through the network

ET=9.6 ET=15.8 ET=7.1 ET=16.8 ET=6

TE=9.6

TL=9.6

TE=25.4

TL=25.4

TE=32.5

TL=32.5

TE=49.3

TL=49.3

TE=55.3

TL=55.3

 18

Table 7. Variance of each path

Path number Activities on

Paths

Path variance

(days)

1 abcdef 1.416

Step9. Calculating the Probability of Completing the Project in 56 Days

2
Pσ

EFD

 timestandardpath

 timeexpectedpath timespecified
z

PT

(3)

Table 8. Probability of completion in 56 days

Path

number

Activities on

Paths

Path

variance

(days)

Z-value Probability

of

completion

1 abcdef 1.416 0.494 1

Step10. Crashing

The project manager wants to reduce the new product project for 2 days.

Table 9. Crashing table

Activity

ID

Normal

time

Normal

cost ($)

Crash

time

Crash

cost

Max.

days of

reduction

Reduce

cost per

day

a 1 120 1 240 1 120

b 10 1200 3 1560 3 360

c 16 1920 3 2280 2 240

d 7 840 3 1200 1 120

e 17 2040 2 2280 2 240

f 6 720 1 840 1 120

Totals 56 6840 13 8400 8 days 1200

Cost Management Processes:

 19

We use COCOMO II as one of cost models. To calculate this cost model we need to follow the

steps below and use COCOMOII Formula (4):

𝐸 = 2.45 × (𝐾𝐿𝑂𝐶)𝑏 ×𝐸𝐴𝐹 (4)

𝑏 = 1.01 + 0.01 ∑ S𝐹𝑖

5

𝑗=1

 0.91 ≤ 𝑏 ≤ 1.23

▪ First we need to define program productivity. It depends on the developer’s experience

and capability in conjunction with the capabilities of the CASE tools. We calculated

the productivity rate as follows:

o The developers’ experience is Nominal = 13

o The CASE tool which is used is low = 7

o PROD = (13+7) / 2 = 10

▪ After that we use objects Point Analysis to rate the system. This application has 6

screens which they defined as follows:

o Create project Screen: Create new project.

o Display interface Screen: Shows the page after creating project.

o Enter task & resources Screen: Show the section that user can enter information

o Display for user Screen: Display page after entering tasks and resources.

o Request activity chart Screen: User can request activity chart.

o Result Screen: Display the final result for user.

Table 10. Rating result

Name Object Complexity Weight

Creating

project

Screen Simple 1

 20

Display

interface

Screen Medium 2

Enter task &

resources

Screen Medium 2

Display user

after

entering

Screen Simple 1

Request

activity chart

Screen Medium 2

Display

result

Screen Simple 1

 Total 9

▪ Then calculate the effort in person-months by using formula (5):

PM = (NAP * (1 - %reuse / 100)) / PROD (5)

After applying formula (5) we have:

o PM = 9 * (1 – 0 / 100) / 10 = 0.9 person-months

▪ After that we use objects Point Analysis to rate the system. This application has 6

screens which they defined as follows:

o Create project Screen: Create new project.

o Display interface Screen: Shows the page after creating project.

o Enter task & resources Screen: Show the section that user can enter information

o Display for user Screen: Display page after entering tasks and resources.

o Request activity chart Screen: User can request activity chart.

o Result Screen: Display the final result for user.

Table 11. Rating result

Name Object Complexity Weight

Creating

project

Screen Simple 1

 21

Display

interface

Screen Medium 2

Enter task &

resources

Screen Medium 2

Display user

after

entering

Screen Simple 1

Request

activity chart

Screen Medium 2

Display

result

Screen Simple 1

 Total 9

▪ Then calculate the effert in person-months by using formula (5):

PM = (NAP * (1 - %reuse / 100)) / PROD (5)

After applying formula (5) we have:

o PM = 9 * (1 – 0 / 100) / 10 = 0.9 person-months

4.2.2 Requirements analysis and development:

We use the IEEE standard and we used Adobe Photoshop Cs6 and Microsoft PowerPoint to

draw the UML diagrams. The diagrams are shown below:

 22

A. ER diagram

Figure 6 ER Diagram

B. Sequence Diagram

Figure 7 Sequence Diagram

 23

C. Use Case diagrams

Figure 8 Use Case Diagram

4.3 Algorithms

Our application had many algorithms, however, here we will focus on only the main algorithms

that we used.

1- Calculating the duration in different types:

When the user is filling the data for each task, he/she is asked to choose a duration (integer)

and a type of duration (Hour / Day / Week / Months). Since our Gantt chart knows only

days, we must convert everything to days, so when the user types a duration and type, the

application will functions as follow:

Switch(type_of_duration)

 Case “Hour” Divide the duration by the number of working hours.

 Case “Day” Leave it as it is.

 24

 Case “Week” Multiply the duration by 7

 Case “Month”Multiply the duration by 30.

End

Finally, we store the new value of duration in our dataset.

2- Excluding Weekend:

The programming language that we are using is able know the exact day of every given

date, for example, 25/05/2017, our program can easy know that it is Thursday.

When the user fills the starting time, and the duration and the type of duration, the

algorithms of “calculating the duration in different types” is executed and then we have a

new duration, then the following algorithm will take place:

DateTime dt = the starting time of the task.

Int new_duration=the duration that is calculated from the above algorithm.

Int i=0,

Int count_working_days=0;

While (i<new_duration)

 {

 If(dt+i)==Saturday or Sunday count_working_days+= 2// if the algorithm

found Saturday, it must scape Saturday and Sunday that’s why we added 2.

 Else count_working_days+=1 in the normal days, we add one.

}

 25

By this algorithm, we will have another new duration which is count_working_days, the

difference between this and the other one, is that the newer one excluded the weekends.

3- Calculating the finishing time:

Once a user successfully filled the starting time and the duration and type of duration, the

finishing time will be calculated automatically and placed in its place, by adding the new

duration to the starting time.

4- Calculating the cost of a task:

When the user chooses a resource for a task, the application goes to the resources information

and take its corresponding salary, and multiply it by the new duration and number of working

hour, since the salary of each user is a salary per hour.

5- Calculating the total cost of the project:

By simply add the total cost of all tasks.

6-Finding Critical path:

The essential technique for using CPM(Critical Path Method) is to construct a model of the

project that includes the following:

1. A list of all activities required to complete the project (typically categorized within a

work breakdown structure),

2. The time (duration) that each activity will take to complete,

3. The dependencies between the activities and,

4. Logical end points such as milestones or deliverable items.

Using these values, CPM calculates the longest path of planned activities to logical end points

or to the end of the project, and the earliest and latest that each activity can start and finish

https://en.wikipedia.org/wiki/Work_breakdown_structure
https://en.wikipedia.org/wiki/Duration_%28project_management%29
https://en.wikipedia.org/wiki/Dependency_%28project_management%29
https://en.wikipedia.org/wiki/Deliverable
https://en.wikipedia.org/wiki/Longest_path

 26

without making the project longer. This process determines which activities are "critical" (i.e.,

on the longest path) and which have "total float" (i.e., can be delayed without making the

project longer). In project management, a critical path is the sequence of project network

activities which add up to the longest overall duration, regardless if that longest duration has

float or not. This determines the shortest time possible to complete the project. There can be

'total float' (unused time) within the critical path. For example, if a project is testing a solar

panel and task 'B' requires 'sunrise', there could be a scheduling constraint on the testing activity

so that it would not start until the scheduled time for sunrise. This might insert dead time (total

float) into the schedule on the activities on that path prior to the sunrise due to needing to wait

for this event. This path, with the constraint-generated total float would actually make the path

longer, with total float being part of the shortest possible duration for the overall project. In

other words, individual tasks on the critical path prior to the constraint might be able to be

delayed without elongating the critical path; this is the 'total float' of that task. However, the

time added to the project duration by the constraint is actually critical path drag, the amount by

which the project's duration is extended by each critical path activity and constraint.

A project can have several, parallel, near critical paths; and some or all of the tasks could have

'free float' and/or 'total float'. An additional parallel path through the network with the total

durations shorter than the critical path is called a sub-critical or non-critical path. Activities on

sub-critical paths have no drag, as they are not extending the project's duration.

CPM analysis tools allow a user to select a logical end point in a project and quickly identify

its longest series of dependent activities (its longest path). These tools can display the critical

path (and near critical path activities if desired) as a cascading waterfall that flows from the

project's start (or current status date) to the selected logical end point.

In the coding stage, the code about critical path will be shown.

https://en.wikipedia.org/wiki/Task_%28project_management%29
https://en.wikipedia.org/wiki/Critical_path_drag

 27

4.4 Standards

• For the design of components, the MetroFramework was used.

• Adding comments add the beginning of functions to serve as descriptions of the

functions.

 28

5. TESTING

Test-Case ID: TC-01

Test-Case Name: Create new project

Pass/Fail Criteria :
The test passes if the user fill all

requirement fields correctly.

Input Data: Numeric and alphabet key code

Test Procedure: Expected Outcomes :

Step-1:

An empty requirement field (Name,

Type, Starting Date, Directory,

Description, Country, Currency,

Number of Working hour per day)

System indicate failure;

An appropriate error message should

be displayed and the user shouldn’t

be allowed to create new project by

clicking next button.

Step-2:

Fill in all requirement fields in correct

format

System indicate success;

The user should be directed to the

next page by clicking the next button

which became active by filling all

required fields correctly.

Table 12 "Create New Project" Test

 29

Test Case Result

Test Case ID: TC-01 Test Designed By: Serhat Kocagöz

Module Name: Required fields Test Designed Date: 23/5/2017

Test Title: Create new project Test Executed By: Serhat Kocagöz

Description: Required fields tested Test Execution Date: 23/5/2017

Pre-Conditions: User has fill all requirement fields correctly.

Step

No.

Test

Steps
Test Data Expected Result Actual Result

Status

(Pass/Fail)

1

An empty

requireme

nt

field

An empty requirement field An appropriate

error message

should be shown an

the user shouldn’t

be allowed to move

next page

An appropriate error

message shown

(blinking error icons

at right of textboxes)

and user not allowed

to move next page

Pass

2

Fill in all

requred

fields in

correct

format

Name: testProject

Type: testProjectType

Starting Date: Default (as today)

Directory: A valid directory

If all the required

spaces are correctly

filled, user can

navigate to next

page.

After all fields

correctly filled, next

button became

enabled so that the

user can navigate to

next page by using

this button

Pass

 30

Test-Case ID: TC-02

Test-Case Name: Adding Tesks

Pass/Fail Criteria :

The test passes if the user can not add

a valid resource or enters an invalid

resource

Input Data:
Resource name, salary per hour and E-

mail data

Test Procedure: Expected Outcomes :

Step-1:

An empty field (Name, Salary per

hour or E-mail) in resources form

System indicate failure;

If the resource is accepted even with a

missing data, system fails.

Description: This is a test

project.

Country: Turkey

Currency: TRY (Automated

selection)

Number of working hour per

day: 8

 Table 13 “Create New Project” Test Results

 31

Step-2:

Fill in all requirement fields in correct

format

System indicate success;

Resource is automatically added to

the resources pool and user can

assign the added resource to task

Table 14 “Addidng Resources” Test

 32

Table 15 “Adding New Resource” Test Results

Test Case Result

Test Case ID: TC-02 Test Designed By: Serhat Kocagöz

Module Name: Resource adder Test Designed Date: 23/5/2017

Test Title: Adding new resource Test Executed By: Serhat Kocagöz

Description: Resource adder tested Test Execution Date: 23/5/2017

Pre-Conditions: User has fill all requirement fields correctly.

Step

No.

Test

Steps
Test Data Expected Result Actual Result

Status

(Pass/Fail)

1

An empty

requireme

nt

field

An empty requirement field Resource shouldn’t

added to the

resources pool

After adding invalid

resource, it didn’t

shown in the resource

name list in main page

Pass

2

Fill in all

requred

fields in

correct

format

Name: testResource1

Salary:100

E-mail:

testResource1@testDomain.com

If all the required

spaces are correctly

filled, user can see

new resource on the

list.

After all fields

correctly filled, new

resource appeared on

the available

resources list

Pass

 33

Test-Case ID: TC-03

Test-Case Name: Adding Tesks

Pass/Fail Criteria :
The test passes if the user can not add

a valid task or enters an invalid task

Input Data:

Task name, duration, type of duration,

start time, finish time, cost, resource

name

Test Procedure: Expected Outcomes :

Step-1:

An empty field or inappropriate data

is entered (Name, Salary per hour or

E-mail) in resources form

System indicate failure;

If the resource is accepted even with a

missing data, system fails.

Step-2:

Fill in all requirement fields in correct

format

System indicate success;

Resource is automatically added to

the resources pool and user can

assign the added resource to task

Table 16 “Addidng New Task” Test

 34

Test Case Result

Test Case ID: TC-03 Test Designed By: Serhat Kocagöz

Module Name: Task adder Test Designed Date: 23/5/2017

Test Title: Adding new task Test Executed By: Serhat Kocagöz

Description: Task adder tested Test Execution Date: 23/5/2017

Pre-Conditions: User has fill all requirement fields correctly.

Ste

p

No.

Test

Steps
Test Data Expected Result Actual Result

Status

(Pass/Fail)

1

An empty

requireme

nt

field

An empty requirement field Resource shouldn’t

added to the

resources pool

After adding invalid

resource, it didn’t

shown in the resource

name list in main

page

Pass

2

Fill in all

requred

fields in

correct

format

Task Name: testTask1

Duration: 30

Type of Duration: Hour

Start Time: 23/5/2017

Finish Time: 26/5/2017

Cost: 3200 (Auto-Generated)

Resource Name: testResource1

If all the required

spaces are

correctly filled,

user can see new

task on the list.

After all fields

correctly filled, new

task appeared on the

tasks list.

Pass

Table 17 “Addidng New Task” Test

 35

Test-Case ID: TC-04

Test-Case Name: Network diagram creating

Pass/Fail Criteria :

The test passes if the program can

generate a network diagram according

to the entered valid datas

Input Data: Task list

Test Procedure: Expected Outcomes :

Step-1:

Creating a network diagram

System indicate failure;

If the network diagram is not created

or there is a miscalculation on the

paths.

System indicate success;

If the network diagram is created and

drawn.

 Table 18 “Network Diagram Created” Test

 36

 Table 19 “Network Diagram Created” Test Results

Test Case Result

Test Case ID: TC-04 Test Designed By: Serhat Kocagöz

Module Name: Diagram Drawer Test Designed Date: 24/5/2017

Test Title: Network diagram creating Test Executed By: Serhat Kocagöz

Description: Network diagram tested Test Execution Date: 24/5/2017

Pre-Conditions: User has fill all requirement fields correctly.

Step

No.

Test

Steps
Test Data Expected Result Actual Result

Status

(Pass/Fail)

1

Creating a

network

diagram

Task list Network diagram

either created

successfully (Pass)

or not created (Fail)

After adding valid

tasks and resources,

network diagram is

created successfully.

Pass

 37

Test-Case ID: TC-05

Test-Case Name: Total calculation testing

Pass/Fail Criteria :

The test passes if the program can

calculate the total cost of the project

according to the entered datas

Input Data: Project datas

Test Procedure: Expected Outcomes :

Step-1:

Calculating the total

System indicate failure;

If the calculation is wrong or not

generated

System indicate success;

If the calculation is true according to

the entered datas

Table 20 “Total calculation” Test

 38

Table 21 “Total Calculation” Test Results

Test Case Result

Test Case ID: TC-05 Test Designed By: Serhat Kocagöz

Module Name: Calculate Total Test Designed Date: 24/5/2017

Test Title: Total calculation testing Test Executed By: Serhat Kocagöz

Description: Total calculator tested Test Execution Date: 24/5/2017

Pre-Conditions: User has fill all requirement fields correctly.

Step

No.

Test

Steps
Test Data Expected Result Actual Result

Status

(Pass/Fail)

1

Calculatin

g the total

Porject datas Total amount is

either calculated

successfully (Pass)

or not calculated

(Fail)

After adding valid

project datas, total

amount is calculated

successfully.

Pass

 39

Test-Case ID: TC-06

Test-Case Name: Saving project

Pass/Fail Criteria :
The test passes if the user can not save

a project with missing fields

Input Data: Project data

Test Procedure: Expected Outcomes :

Step-1:

An empty field or inappropriate data

is left in the task list.

System indicate failure;

An appropriate error message should

be displayed and the user shouldn’t be

allowed to save project.

Step-2:

Fill in all requirement fields in correct

format

System indicate success;

The user should be able to save the

project with correct data.

Table 22 “Saving Project” Test

 40

Test Case Result

Test Case ID: TC-06 Test Designed By: Serhat Kocagöz

Module Name: Project Saver Test Designed Date: 24/5/2017

Test Title: Saving Project Test Executed By: Serhat Kocagöz

Description: Project saver tested Test Execution Date: 24/5/2017

Pre-Conditions: User has fill all requirement fields correctly.

Step

No.

Test

Steps
Test Data Expected Result Actual Result

Status

(Pass/Fail)

1

An empty

requireme

nt

field

An empty requirement field Project can not be

saved, error

message should be

shown

With a missing or

incorrect field, project

is not saved and error

message is shown.

Pass

2

Fill in all

requred

fields in

correct

format

Correctly filled project data

fields.

If all the required

spaces are correctly

filled, user can save

the project.

After all fields

correctly filled,

project is successfully

saved.

Pass

Table 23 “Saving Project” Test Results

 41

Test-Case ID: TC-07

Test-Case Name: Loading Project

Pass/Fail Criteria :
The test passes if the user can load a

project with correct file.

Input Data: Saved project file

Test Procedure: Expected Outcomes :

Step-1:

A corrupted or wrong file type is

loaded to the program

System indicate failure;

An appropriate error message should

be displayed and the program should

close

Step-2:

A correct file is loaded to the program

System indicate success;

The user should be able to load the

file and see the project correctly

Table 24 “Loading Project” Test

 42

Table 25 “Saving Project” Test Results

Test Case Result

Test Case ID: TC-07 Test Designed By: Serhat Kocagöz

Module Name: Project Loader Test Designed Date: 25/5/2017

Test Title: Loading Project Test Executed By: Serhat Kocagöz

Description: Project loader tested Test Execution Date: 25/5/2017

Pre-Conditions: User has fill all requirement fields correctly.

Step

No.

Test

Steps
Test Data Expected Result Actual Result

Status

(Pass/Fail)

1

A

corrupted

or wrong

file type is

loaded to

the

program

An empty textFile File can not be

loaded, error

message should be

shown

A missing or

corrupted file is not

loaded and error

message is shown. Pass

2

A correct

file is

loaded to

the

program

An correct project file If the file integrity

is intact, file should

be loaded and the

project details

should be showned

A correct file is

loaded and the

project details are

shown.

Pass

 43

6. USER GUIDE OF THE SYSTEM

Homepage

1- After clicking the application icon, the application homepage shown in figure 9 appears.

2- If a new project is to be created, click New project button.

3- If opening a existing project, click “Open existing Project”,

4- If information about the team who made the application is needed, click “About Team”

5- if you want to close the application, you can either click “Exit” or the cloes button on

the top right corner of the homepage.

Figure 9 Application Homepage

Project Creation Form

After the user either clicks “New project” or “Open existing project”, the project creation form,

figure 10, appears. This is where the user gives information about his/her project. It has the

following fields:

1- Name field – this field is mandatory

2- Type – this field is optional

3- Starting date – this field is mandatory

4- End date – this field is mandatory

5- Directory – this is where you want the filed to be save and is also mandatory

6- Description – this is an option field for a brief description of the project you are about

to create.

7- Country – this is the country in which the project will be executed and is mandatory.

8- Currency – this is automatically field by the application.

 44

9- Number of working hours per day – this is a mandatory field where the user specifies

the number of working hours of the personnel.

After all the mandatory fields have be filled the application allows the user to click the next

button, if not he/she will not be able to continue.

Figure 10 Project Creation Form

Main Interface

After filling all the necessary information about the Project, the main interface, figure 11,

appears

1- A user can add a new task by clicking a cell under the task name and adding the name

of a task

2- After adding a task, a user has to give the duration of the task in the duration cell to the

right of the Task Name.

3- After adding the duration of the task, the user next selects the “Type of Duration”. This

can either be a “day”, “week”, “month” or “year”.

4- Next, the user has to give the start time of the specific Task.

5- The finish time will be automatically calculated by the application

6- In addition to all the above which are necessary, a user can add the cost and resource

name, but these two are optional.

 45

7- Finally, a user can add the predecessor of a task, i.e. the task that has to be completed

before the current task can start. Of course this is only added if a task has a predecessor.

8- After these fields have been properly field, the Gantt chart related to this task

immediately appear on the right half of the main Interface.

9- A user can add as many task as might be needed to complete a project.

10- Resources can be added to any task in the project. However these resources have to be

added to the resource pool, which is the top left icon title “resource”.

11- The user can decide to save after adding the tasks by clicking the save button.

Figure 11 Main Interface

Network Diagram

Each project has a network Diagram that shows project start date, tasks, dependencies and end

dates. After adding all the necessary tasks, a user can view the network diagram of a project.

figure 12, by clicking on the network diagram button (figure 13). In addition, the user can do

the following in the network diagram interface.

1- Export the diagram as an image by clicking the export button

2- Print the diagram by clicking the print button

 46

3- Zoom in and zoom out from the network diagram.

Figure 12 Network Diagram

Figure 13 Network Diagram Button

Closing the application

1- Click the save button

2- Click the X on the top left corner of the main interface

 47

7. DISCUSSION

7.1 Economic Impact

Our application will save a company, school or organization a lot of money for the following

reason. Its free cost in comparison with same products in the market with the same

functionalities will help the company using our product to save money. This amount of saved

money could be used by the company to progress further in their field which will certainly

create jobs for people therefore helping in improving the local and global economy.

7.2 Social Impact

This application will help in organizing and in making it easier to keep up with any project

progress therefore making it a simpler job. This will help in saving a lot of time and it will also

help in handling tasks better which will result in creating a better working atmosphere for

employees. Good working atmosphere is an essential thing in creating a healthy productive

society.

7.3 Environmental Impact

Saving trees will be a huge environmental advantage of our application since our application

focus is the digitalization of project organization which is usually done on paper.

7.4 Global Impact

The simplicity, free cost and solid functionality of the application will have a huge impact on

the social, economic and environmental context of our users’ local community and since the

local community is a building block of the global community, we would be contributing to the

development of the whole globe.

 48

8. CONCLUSION

This project is a project management application similar to the famous and professionally used

Microsoft Project application.

Basically it allows project management by project managers, company staff and everyone who

has affiliation with this duty, doing everything related to it, from creating projects, tasks,

resources to creating Gantt charts, activity network diagrams, exporting data, importing data

and everything necessary to do project management in an application.

This project is useful because, this application can reduce time spent in the process of project

management. It can also do many tasks more efficiently than plain planning on paper, thereby

enabling big companies, managers and individuals to plan their tasks using this project in a

simpler way. Because this application separates project planning stages into one at a time, it is

more reliable way to finish work since human errors can occur without this project, and this

exactly what the system developed does, not mentioning it’s ability to detect errors and

reliability features.

In this project we managed to create an application that is more efficient and easier to use than

Microsoft Project. With a more streamlined way of doing things by cutting out the complexity

found in large application like MS Project, you can create projects and manage them on the fly

with our application. In addition to this, we managed to have clean interface with the aid of the

MetroFramework. In order to increase speed and efficiency, we avoided the use of a database

by using datatables and datasets instead of a database.

This application can also do majority of core tasks done by MS project such as:

• Creating work break down schedule.

• Creating Gantt chart.

• Doing complex calculations of finish times and durations, swiftly and effectively.

• Inserting milestones to tasks.

• Offering Timeline View

• Having different views.

• Data protection

• Data Integrity

 49

We achieved a program that is portable since it is made in .exe format, light and user friendly,

so it can be taken anywhere and its saved files can be used on any system with a similar

application installed.

This project helped our team members on many levels, starting from team work and organizing

jobs, we learned to stay on touch with other teammates to synchronize the work. It developed

our communication and integrity in doing our assigned task. Besides, working on developing

this software gave us an experience of software engineering development, and a better insight

and understanding of the ins and outs of project management systems, how to use minimal

design to simplify a large project into more reasonable system, we learned how to create the

program with development resources available.

Of course each team member developed personally in their own field such as, ER design, C#

programming, .Net framework, UI design, algorithms and all the necessary documentation

work necessary for the project.

We learned how to use .NET components such as datagrid, textbox. Etc, how to use latest

Metroframework, how to do export and import data on files from a gridview and how to

properly use visual studio to make a functional application.

All in all, it was a great opportunity to apply software engineering and learn about software

development.

 50

9. REFERENCES

[1] “Gantt Chart Control: Braincase.GanttChart.Task Class Reference,” Gantt Chart Control:

Braincase.GanttChart.Task Class Reference. [Online]. Available:

http://jakesee.com/docs/ganttchart/class_braincase_1_1_gantt_chart_1_1_task.html.

[Accessed: 25-May-2017].

[2] “Metro Modern UI - Metro Framework,” NuGet Gallery | Metro Modern UI - Metro

Framework 1.4.0. [Online]. Available: https://www.nuget.org/packages/MetroModernUI/.

[Accessed: 25-May-2017].

[3] “Automatic Graph Layout,” Microsoft. [Online]. Available: https://www.microsoft.com/en

us/download/details.aspx?id=52034&from=http%3A%2F%2Fresearch.microsoft.com%2Fen-

us%2Fdownloads%2Ff1303e46-965f-401a-87c3-34e1331d32c5%2F. [Accessed: 25-May-

2017].

[4] U. K., “UweKeim/dot-net-transitions,” GitHub, 16-Jul-2015. [Online]. Available:

https://github.com/UweKeim/dot-net-transitions. [Accessed: 25-May-2017].

https://www.microsoft.com/en

 51

APPENDICES

A. Instructions for installing the system

1- Get the executable file

Figure 14 Executable File

1- Double click on the executable file to get the set up wizard

2- click on “Next”

3- After this, select the installation folder as shown in figure 16, and choose how many

users you want to use the application i.e.

i. Select “Everyone” to give access to all users.

ii. Select “Just Me” to give access to only the current user.

Figure 15 Setup Wizard

 52

Figure 16 Select Installation Path

4- click Next, as show in figure 17, to confirm your installation

Figure 17 Comfirm installation

 53

B. Code for the system

We have used multiple forms in our applications, here we show the necessary code for

application in order to function properly.

The application starts with a Menu, in the Menu we use some classes for animation written by

students from MIT details of which can be found in reference [4]. The Content of those classes

are shown as follow:

using System;

using System.Collections.Generic;

using System.Text;

using System.Reflection;

using System.Timers;

using System.Diagnostics;

using System.Windows.Forms;

using System.ComponentModel;

namespace Transitions

{

 /// <summary>

 /// Lets you perform animated transitions of properties on arbitrary objects. These

 /// will often be transitions of UI properties, for example an animated fade-in of

 /// a UI object, or an animated move of a UI object from one position to another.

 ///

 /// Each transition can simulataneously change multiple properties, including properties

 /// across multiple objects.

 ///

 /// Example transition

 /// ------------------

 /// a. Transition t = new Transition(new TransitionMethod_Linear(500));

 /// b. t.add(form1, "Width", 500);

 /// c. t.add(form1, "BackColor", Color.Red);

 /// d. t.run();

 ///

 54

 /// Line a: Creates a new transition. You specify the transition method.

 ///

 /// Lines b. and c: Set the destination values of the properties you are animating.

 ///

 /// Line d: Starts the transition.

 ///

 /// Transition methods

 /// ------------------

 /// TransitionMethod objects specify how the transition is made. Examples include

 /// linear transition, ease-in-ease-out and so on. Different transition methods may

 /// need different parameters.

 ///

 /// </summary>

 public class Transition

 {

 #region Registration

 /// <summary>

 /// You should register all managed-types here.

 /// </summary>

 static Transition()

 {

 registerType(new ManagedType_Int());

 registerType(new ManagedType_Float());

 registerType(new ManagedType_Double());

 registerType(new ManagedType_Color());

 registerType(new ManagedType_String());

 }

 55

 #endregion

 #region Events

 /// <summary>

 /// Args passed with the TransitionCompletedEvent.

 /// </summary>

 public class Args : EventArgs

 {

 }

 /// <summary>

 /// Event raised when the transition hass completed.

 /// </summary>

 public event EventHandler<Args> TransitionCompletedEvent;

 #endregion

 #region Public static methods

 /// <summary>

 /// Creates and immediately runs a transition on the property passed in.

 /// </summary>

 public static void run(object target, string strPropertyName, object destinationValue,

ITransitionType transitionMethod)

 {

 Transition t = new Transition(transitionMethod);

 t.add(target, strPropertyName, destinationValue);

 t.run();

 }

 56

 /// <summary>

 /// Sets the property passed in to the initial value passed in, then creates and

 /// immediately runs a transition on it.

 /// </summary>

 public static void run(object target, string strPropertyName, object initialValue, object

destinationValue, ITransitionType transitionMethod)

 {

 Utility.setValue(target, strPropertyName, initialValue);

 run(target, strPropertyName, destinationValue, transitionMethod);

 }

 /// <summary>

 /// Creates a TransitionChain and runs it.

 /// </summary>

 public static void runChain(params Transition[] transitions)

 {

 TransitionChain chain = new TransitionChain(transitions);

 }

 #endregion

 #region Public methods

 /// <summary>

 /// Constructor. You pass in the object that holds the properties

 /// that you are performing transitions on.

 /// </summary>

 publicTransition(ITransitionType transitionMethod)

 {

 57

 m_TransitionMethod = transitionMethod;

 }

 /// <summary>

 /// Adds a property that should be animated as part of this transition.

 /// </summary>

 public void add(object target, string strPropertyName, object destinationValue)

 {

 // We get the property info...

 Type targetType = target.GetType();

 PropertyInfo propertyInfo = targetType.GetProperty(strPropertyName);

 if (propertyInfo == null)

 {

throw new Exception("Object: " + target.ToString() + " does not have the property: " +

strPropertyName);

 }

 // We check that we support the property type...

 Type propertyType = propertyInfo.PropertyType;

 if (m_mapManagedTypes.ContainsKey(propertyType) == false)

 {

 throw new Exception("Transition does not handle properties of

type: " + propertyType.ToString());

 }

 // We can only transition properties that are both getable and setable...

 if (propertyInfo.CanRead == false || propertyInfo.CanWrite == false)

 {

 throw new Exception("Property is not both getable and setable: " +

strPropertyName);

 }

 58

 IManagedType managedType = m_mapManagedTypes[propertyType];

 // We can manage this type, so we store the information for the

 // transition of this property...

 TransitionedPropertyInfo info = new TransitionedPropertyInfo();

 info.endValue = destinationValue;

 info.target = target;

 info.propertyInfo = propertyInfo;

 info.managedType = managedType;

 lock (m_Lock)

 {

 m_listTransitionedProperties.Add(info);

 }

 }

 /// <summary>

 /// Starts the transition.

 /// </summary>

 public void run()

 {

 // We find the current start values for the properties we

 // are animating...

 foreach (TransitionedPropertyInfo info in m_listTransitionedProperties)

 {

 object value = info.propertyInfo.GetValue(info.target, null);

 info.startValue = info.managedType.copy(value);

 }

 59

 // We start the stopwatch. We use this when the timer ticks to measure

 // how long the transition has been runnning for...

 m_Stopwatch.Reset();

 m_Stopwatch.Start();

 // We register this transition with the transition manager...

 TransitionManager.getInstance().register(this);

 }

 #endregion

 #region Internal methods

 /// <summary>

 /// Property that returns a list of information about each property managed

 /// by this transition.

 /// </summary>

 internal IList<TransitionedPropertyInfo> TransitionedProperties

 {

 get { return m_listTransitionedProperties; }

 }

 /// <summary>

 /// We remove the property with the info passed in from the transition.

 /// </summary>

 internal void removeProperty(TransitionedPropertyInfo info)

 {

 lock (m_Lock)

 60

 {

 m_listTransitionedProperties.Remove(info);

 }

 }

 /// <summary>

 /// Called when the transition timer ticks.

 /// </summary>

 internal void onTimer()

 {

 // When the timer ticks we:

 // a. Find the elapsed time since the transition started.

 // b. Work out the percentage movement for the properties we're managing.

 // c. Find the actual values of each property, and set them.

 // a.

 int iElapsedTime = (int)m_Stopwatch.ElapsedMilliseconds;

 // b.

 double dPercentage;

 bool bCompleted;

 m_TransitionMethod.onTimer(iElapsedTime, out dPercentage, out bCompleted);

 // We take a copy of the list of properties we are transitioning, as

 // they can be changed by another thread while this method is running...

 IList<TransitionedPropertyInfo> listTransitionedProperties = new

List<TransitionedPropertyInfo>();

 lock (m_Lock)

 {

 foreach (TransitionedPropertyInfo info in m_listTransitionedProperties)

 61

 {

 listTransitionedProperties.Add(info.copy());

 }

 }

 // c.

 foreach (TransitionedPropertyInfo info in listTransitionedProperties)

 {

 // We get the current value for this property...

 object value = info.managedType.getIntermediateValue(info.startValue,

info.endValue, dPercentage);

 // We set it...

 PropertyUpdateArgs args = new PropertyUpdateArgs(info.target, info.propertyInfo,

value);

 setProperty(this, args);

 }

 // Has the transition completed?

 if (bCompleted == true)

 {

 // We stop the stopwatch and the timer...

 m_Stopwatch.Stop();

 // We raise an event to notify any observers that the transition has completed...

 Utility.raiseEvent(TransitionCompletedEvent, this, new Args());

 }

 }

 #endregion

 62

 #region Private functions

 /// <summary>

 /// Sets a property on the object passed in to the value passed in. This method

 /// invokes itself on the GUI thread if the property is being invoked on a GUI

 /// object.

 /// </summary>

 private void setProperty(object sender, PropertyUpdateArgs args)

 {

 try

 {

 // If the target is a control that has been disposed then we don't

 // try to update its proeprties. This can happen if the control is

 // on a form that has been closed while the transition is running...

 if (isDisposed(args.target) == true)

 {

 return;

 }

 ISynchronizeInvoke invokeTarget = args.target as ISynchronizeInvoke;

 if (invokeTarget != null && invokeTarget.InvokeRequired)

 {

 // There is some history behind the next two lines, which is worth

 // going through to understand why they are the way they are.

 // Initially we used BeginInvoke without the subsequent WaitOne for

 // the result. A transition could involve a large number of updates

 // to a property, and as this call was asynchronous it would send a

 63

 // large number of updates to the UI thread. These would queue up at

 // the GUI thread and mean that the UI could be some way behind where

 // the transition was.

 // The line was then changed to the blocking Invoke call instead. This

 // meant that the transition only proceded at the pace that the GUI

 // could process it, and the UI was not overloaded with "old" updates.

 // However, in some circumstances Invoke could block and lock up the

 // Transitions background thread. In particular, this can happen if the

 // control that we are trying to update is in the process of being

 // disposed - for example, it is on a form that is being closed. See

 // here for details:

 // http://social.msdn.microsoft.com/Forums/en-US/winforms/thread/7d2c941a-

0016-431a-abba-67c5d5dac6a5

 // To solve this, we use a combination of the two earlier approaches.

 // We use BeginInvoke as this does not block and lock up, even if the

 // underlying object is being disposed. But we do want to wait to give

 // the UI a chance to process the update. So what we do is to do the

 // asynchronous BeginInvoke, but then wait (with a short timeout) for

 // it to complete.

 IAsyncResult asyncResult = invokeTarget.BeginInvoke(new

EventHandler<PropertyUpdateArgs>(setProperty), new object[] { sender, args });

 asyncResult.AsyncWaitHandle.WaitOne(50);

 }

 else

 {

 // We are on the correct thread, so we update the property...

 args.propertyInfo.SetValue(args.target, args.value, null);

 64

 }

 }

 catch (Exception)

 {

 // We silently catch any exceptions. These could be things like

 // bounds exceptions when setting properties.

 }

 }

 /// <summary>

 /// Returns true if the object passed in is a Control and is disposed

 /// or in the process of disposing. (If this is the case, we don't want

 /// to make any changes to its properties.)

 /// </summary>

 private bool isDisposed(object target)

 {

 // Is the object passed in a Control?

 Control controlTarget = target as Control;

 if (controlTarget == null)

 {

 return false;

 }

 // Is it disposed or disposing?

 if (controlTarget.IsDisposed == true || controlTarget.Disposing)

 {

 return true;

 }

 else

 65

 {

 return false;

 }

 }

 #endregion

 #region Private static functions

 /// <summary>

 /// Registers a transition-type. We hold them in a map.

 /// </summary>

 private static void registerType(IManagedType transitionType)

 {

 Type type = transitionType.getManagedType();

 m_mapManagedTypes[type] = transitionType;

 }

 #endregion

 #region Private static data

 // A map of Type info to IManagedType objects. These are all the types that we

 // know how to perform transactions on...

 private static IDictionary<Type, IManagedType> m_mapManagedTypes = new

Dictionary<Type, IManagedType>();

 #endregion

 #region Private data

 66

 // The transition method used by this transition...

 private ITransitionType m_TransitionMethod = null;

 // Holds information about one property on one taregt object that we are

performing

 // a transition on...

 internal class TransitionedPropertyInfo

 {

 public object startValue;

 public object endValue;

 public object target;

 public PropertyInfo propertyInfo;

 public IManagedType managedType;

 public TransitionedPropertyInfo copy()

 {

 TransitionedPropertyInfo info = new TransitionedPropertyInfo();

 info.startValue = startValue;

 info.endValue = endValue;

 info.target = target;

 info.propertyInfo = propertyInfo;

 info.managedType = managedType;

 return info;

 }

 }

 // The collection of properties that the current transition is animating...

 private IList<TransitionedPropertyInfo> m_listTransitionedProperties = new

List<TransitionedPropertyInfo>();

 67

 // Helps us find the time interval from the time the transition starts to each timer

tick...

 private Stopwatch m_Stopwatch = new Stopwatch();

 // Event args used for the event we raise when updating a property...

 private class PropertyUpdateArgs : EventArgs

 {

 public PropertyUpdateArgs(object t, PropertyInfo pi, object v)

 {

 target = t;

 propertyInfo = pi;

 value = v;

 }

 public object target;

 public PropertyInfo propertyInfo;

 public object value;

 }

 // An object used to lock the list of transitioned properties, as it can be

 // accessed by multiple threads...

 private object m_Lock = new object();

 #endregion

 }

}

We used some methods from the class above, in order to make some animation in our

application, especially in the Menu.

Menu Class:

 68

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

using System.Windows.Forms;

using Transitions;

namespace CMPE412_Project

{

 public partial class Menu : MetroFramework.Forms.MetroForm

 {

 private const string STRING_ENGLISH = "Welcome to BASIC PM";

 private const string STRING_FRENCH = "Bienvenue au BASIC PM";

 private const string STRING_ARABIC = "BASIC PM في بكم مرحبا ";

 private const string STRING_TURKISH = "BASIC PM Projesine Hoş Geldiniz";

public Menu()

 {

 InitializeComponent();

 }

 private void metroUserControl1_Load(object sender, EventArgs e)

 {

 }

 private void Form1_Load(object sender, EventArgs e)

 {

 Label_location=lblTextTransition1.Location.X;

 timer1.Start();

 }

 private void metroTile1_Click(object sender, EventArgs e) //click on Make new project

 {

 MetroFramework.Forms.MetroForm f = new Project();

 f.Show();

 this.Hide();

 }

 private void Title_2_Click(object sender, EventArgs e) //click on open existing project

 {

 OpenFileDialog op = new OpenFileDialog();

 //op.Filter = "Ale Files (.ale) | *.ale | Text Files (.txt)|*.txt";

 69

 if (op.ShowDialog() == System.Windows.Forms.DialogResult.OK)

 {

 Program.path = op.FileName;

 }

 if(Program.path!="")

 {

 MetroFramework.Forms.MetroForm f = new Basic_PM();

 f.Show();

 this.Hide();

 }

 }

 public int Label_location;

 private void timer1_Tick(object sender, EventArgs e) //Animation

 {

 string strText1;

 if (lblTextTransition1.Text == STRING_ENGLISH)

 strText1 = STRING_FRENCH;

 else

 if (lblTextTransition1.Text == STRING_FRENCH)

 {

 strText1 = STRING_ARABIC;

 Label_location += 9;

 lblTextTransition1.Location = new Point(Label_location,

lblTextTransition1.Location.Y);

 Label_location -= 9;

 }

 else

 if (lblTextTransition1.Text == STRING_ARABIC)

 {

 strText1 = STRING_TURKISH;

 Label_location -= 15;

 lblTextTransition1.Location = new Point(Label_location,

lblTextTransition1.Location.Y);

 Label_location += 15;

 }

 else

 //if (lblTextTransition1.Text == STRING_TURKISH)

 //{

 // strText1 = STRING_GREEK;

 // Label_location -= 24;

 // lblTextTransition1.Location = new Point(Label_location,

lblTextTransition1.Location.Y);

 // Label_location += 24;

 //}

 //else

 {

 70

 strText1 = STRING_ENGLISH;

 lblTextTransition1.Location = new Point(Label_location,

lblTextTransition1.Location.Y);

 }

 // We create a transition to animate all four properties at the same time...

 Transition t = new Transition(new TransitionType_Linear(2000));

 t.add(lblTextTransition1, "Text", strText1);

 // t.add(lblTextTransition2, "Text", strText2);

 t.run();

 }

 private void metroTile3_Click(object sender, EventArgs e) //click on Exit

 {

 if(MessageBox.Show("Are you sure that you want to exit

?","Confirmation",MessageBoxButtons.YesNo,MessageBoxIcon.Question)==DialogResult.

Yes)

 {

 timer1.Stop();

 Application.Exit();

 }

 }

 private void metroTile2_Click(object sender, EventArgs e) //click on about team.

 {

 MessageBox.Show("EMU STUDENTS", "About team", MessageBoxButtons.OK,

MessageBoxIcon.Information);

 }

 }

}

Program Class (Global and shared class)

in this class we put all the information that must be shared among all forms.

using System;

using System.Collections.Generic;

using System.Data;

using System.Linq;

using System.Threading.Tasks;

using System.Windows.Forms;

namespace CMPE412_Project

{

 static class Program

 71

 {

 public static int number_of_working_hours;

 public static DateTime Starting_time;

 public static string path;

 public static string name;

 public static string type;

 public static string description;

 public static DateTime start;

 public static DateTime finish;

 public static string country;

 public static string currency;

 public static DataSet ods = new DataSet();

 /// <summary>

 /// The main entry point for the application.

 /// </summary>

 [STAThread]

 static void Main()

 {

 DataTable task = new DataTable("task");

 DataColumn task_name = new DataColumn("task_name");

 task_name.DataType =Type.GetType("System.String") ;

 DataColumn task_duration = new DataColumn("task_duration");

 task_duration.DataType = Type.GetType("System.Int32");

 DataColumn task_duration_type = new DataColumn("task_duration_type");

 task_duration_type.DataType = Type.GetType("System.String");

 DataColumn task_starting_time = new DataColumn("task_starting_time");

 task_starting_time.DataType = Type.GetType("System.DateTime");

 DataColumn task_finishing_time = new DataColumn("task_finishing_time");

 task_finishing_time.DataType = Type.GetType("System.DateTime");

 task.Columns.Add(task_name);

 task.Columns.Add(task_duration);

 task.Columns.Add(task_duration_type);

 task.Columns.Add(task_starting_time);

 task.Columns.Add(task_finishing_time);

 DataTable resources = new DataTable("resources");

 DataColumn res_name = new DataColumn("res_name");

 res_name.DataType = Type.GetType("System.String");

 DataColumn res_salary = new DataColumn("res_salary");

 res_salary.DataType = Type.GetType("System.Double");

 DataColumn res_email = new DataColumn("res_email");

 res_email.DataType = Type.GetType("System.String");

 resources.Columns.Add(res_name);

 72

 resources.Columns.Add(res_salary);

 resources.Columns.Add(res_email);

 DataTable Tas_res = new DataTable("Tas_res");

 DataColumn tres_tname = new DataColumn("tres_tname");

 tres_tname.DataType = Type.GetType("System.String");

 DataColumn tres_rname = new DataColumn("tres_rname");

 tres_rname.DataType = Type.GetType("System.String");

 Tas_res.Columns.Add(tres_tname);

 Tas_res.Columns.Add(tres_rname);

 DataTable Tas_dep = new DataTable("Tas_dep");

 DataColumn Tas_dep_t = new DataColumn("Tas_dep_t");

 Tas_dep_t.DataType = Type.GetType("System.String");

 DataColumn Tas_dep_tp = new DataColumn("Tas_dep_tp");

 Tas_dep_t.DataType = Type.GetType("System.String");

 Tas_dep.Columns.Add(Tas_dep_t);

 Tas_dep.Columns.Add(Tas_dep_tp);

 ods.Tables.Add(task);

 ods.Tables.Add(resources);

 ods.Tables.Add(Tas_res);

 ods.Tables.Add(Tas_dep);

 Application.EnableVisualStyles();

 Application.SetCompatibleTextRenderingDefault(false);

 Application.Run(new Menu ());

 }

 }

}

Project Class (this form is opened when the user want to make new project)

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Text;

using System.Windows.Forms;

using DevComponents.DotNetBar;

using System.IO;

using System.Reflection;

namespace CMPE412_Project

{

 public partial class Project : MetroFramework.Forms.MetroForm

 {

 string Succes_icon, failure_icon,countries;

 ErrorProvider err = new ErrorProvider();

 73

 ErrorProvider err1 = new ErrorProvider();

 ErrorProvider err2 = new ErrorProvider();

 int count_filled = 0;

 public Project()

 {

 InitializeComponent();

 }

 private void Project_Load(object sender, EventArgs e)

 {

 currencyText.Enabled = false;

 directoryText.Enabled = false;

 string line;

 string executableLocation = Path.GetDirectoryName(

 Assembly.GetExecutingAssembly().Location);

 Succes_icon = Path.Combine(executableLocation, "suc.ico");

 failure_icon = Path.Combine(executableLocation, "fail.ico");

 countries = Path.Combine(executableLocation, "Countries.txt");

 StreamReader file =

 new StreamReader(countries);

 while (true)

 {

 line = file.ReadLine();

 if (line == null)

 break;

 String[] t = line.Split(';');

 countryCmbox.Items.Add(t[0]);

 }

 countryCmbox.DropDownHeight = countryCmbox.Font.Height * 6;

 file.Close();

 }

 private void timer1_Tick(object sender, EventArgs e)

 {

 if(nameText.Text=="Name" && nameText.Focused==true)

 {

 nameText.Text = "";

 }

 }

 private void panel1_Paint(object sender, PaintEventArgs e)

 {

 metroButton5.Enabled = false;

 timer1.Start();

 }

 74

 private void metroButton5_Click(object sender, EventArgs e)

 {

 try

 {

 Program.path = directoryText.Text + @"\" + nameText.Text + ".ale";

 FileStream fs = File.Create(Program.path);

 fs.Close();

 Program.number_of_working_hours = int.Parse(nmb.Text);

 Program.start = startDate.Value;

 Program.country = countryCmbox.Text;

 Program.currency = currencyText.Text;

 if (typeText.Text != null || typeText.Text != "")

 {

 Program.type = typeText.Text;

 }

 if (descriptionText.Text != null || descriptionText.Text != "")

 {

 Program.type = descriptionText.Text;

 }

 MetroFramework.Forms.MetroForm f = new Interface();

 f.Show();

 this.Hide();

 }catch(Exception e1)

 {

 MessageBox.Show(e1.Message);

 }

 }

 private void metroButton1_Click(object sender, EventArgs e)

 {

 FolderBrowserDialog op = new FolderBrowserDialog();

 if (op.ShowDialog() == DialogResult.OK)

 {

 string path = op.SelectedPath;

 directoryText.Text = path;

 }

 }

 private void timer1_Tick_1(object sender, EventArgs e)

 {

 if(nameText.Text=="" || startDate.Text == "" || countryCmbox.Text == "" ||

 currencyText.Text == "" || nmb.Text == "" || directoryText.Text=="")

 75

 {

 metroButton5.Enabled = false;

 }

 else

 {

 metroButton5.Enabled = true;

 }

 }

 private void countryCmbox_SelectedIndexChanged(object sender, EventArgs e)

 {

 string executableLocation = Path.GetDirectoryName(

 Assembly.GetExecutingAssembly().Location);

 countries = Path.Combine(executableLocation, "Countries.txt");

 StreamReader file =

 new StreamReader(countries);

 String country = countryCmbox.Text ;

 while (true)

 {

 String line = file.ReadLine();

 String[] t = line.Split(';');

 if (t[0] == country)

 {

 currencyText.Text = t[1];

 break;

 }

 }

 }

 private void metroButton2_Click(object sender, EventArgs e)

 {

 MetroFramework.Forms.MetroForm f = new Menu();

 f.Show();

 this.Hide();

 }

 private void metroButton3_Click(object sender, EventArgs e)

 {

 nameText.Clear();

 typeText.Clear();

 startDate.Value = DateTime.Now;

 descriptionText.Clear();

 countryCmbox.Text = "";

 currencyText.Clear();

 nmb.Clear();

 directoryText.Clear();

 }

 76

 private void countryCmbox_TextChanged(object sender, EventArgs e)

 {

 if (countryCmbox.Text == "" || countryCmbox.Text == null)

 {

 err2.SetError(countryCmbox, "Missing");

 err2.Icon = new Icon(failure_icon, new Size(8, 8));

 err2.BlinkStyle = ErrorBlinkStyle.AlwaysBlink;

 count_filled--;

 }

 else

 {

 err2.Clear();

 err2.SetError(countryCmbox, "This field had been filled successfully");

 err2.Icon = new Icon(Succes_icon);

 err2.BlinkStyle = ErrorBlinkStyle.NeverBlink;

 count_filled++;

 }

 }

 private void nameText_TextChanged(object sender, EventArgs e)

 {

 if (nameText.Text == "" || nameText.Text == null){

 err.SetError(nameText, "working");

 err.Icon = new Icon(failure_icon, new Size(8, 8));

 err.BlinkStyle = ErrorBlinkStyle.AlwaysBlink;

 count_filled--;

 }

 else

 {

 err.Clear();

 err.SetError(nameText, "This field had been filled successfully");

 err.Icon = new Icon(Succes_icon);

 err.BlinkStyle = ErrorBlinkStyle.NeverBlink;

 count_filled++;

 }

 }

 }

}

Critical path Function:

private int critical_path()

 77

 {

 DataTable task = new DataTable("task");

 DataColumn task_name = new DataColumn("task_name");

 task_name.DataType = Type.GetType("System.String");

 DataColumn task_duration = new DataColumn("task_duration");

 task_duration.DataType = Type.GetType("System.Int32");

 DataColumn task_duration_type = new DataColumn("task_duration_type");

 task_duration_type.DataType = Type.GetType("System.String");

 DataColumn task_starting_time = new DataColumn("task_starting_time");

 task_starting_time.DataType = Type.GetType("System.DateTime");

 DataColumn task_finishing_time = new DataColumn("task_finishing_time");

 task_finishing_time.DataType = Type.GetType("System.DateTime");

 task.Columns.Add(task_name);

 task.Columns.Add(task_duration);

 task.Columns.Add(task_duration_type);

 task.Columns.Add(task_starting_time);

 task.Columns.Add(task_finishing_time);

 DataTable Tas_dep = new DataTable("Tas_dep");

 DataColumn Tas_dep_t = new DataColumn("Tas_dep_t");

 Tas_dep_t.DataType = Type.GetType("System.String");

 DataColumn Tas_dep_tp = new DataColumn("Tas_dep_tp");

 Tas_dep_tp.DataType = Type.GetType("System.String");

 Tas_dep.Columns.Add(Tas_dep_t);

 Tas_dep.Columns.Add(Tas_dep_tp);

 DataTable flip = new DataTable("flip");

 DataColumn fatherr = new DataColumn("fatherr");

 fatherr.DataType = Type.GetType("System.String");

 DataColumn sonn = new DataColumn("sonn");

 78

 sonn.DataType = Type.GetType("System.String");

 flip.Columns.Add(fatherr);

 flip.Columns.Add(sonn);

 DataTable dep = new DataTable("dep");

 DataColumn f = new DataColumn("f");

 Tas_dep_t.DataType = Type.GetType("System.String");

 DataColumn s = new DataColumn("s");

 Tas_dep_tp.DataType = Type.GetType("System.String");

 dep.Columns.Add(f);

 dep.Columns.Add(s);

 ods.Tables.Add(task);

 ods.Tables.Add(Tas_dep);

 ods.Tables.Add(flip);

 ods.Tables.Add(dep);

 graph.CleanNodes();

 for (int k=0;k<ods.Tables[0].Rows.Count;k++)

 {

 ods.Tables[0].Rows.RemoveAt(k);

 }

 for (int k = 0; k < ods.Tables[1].Rows.Count; k++)

 {

 ods.Tables[1].Rows.RemoveAt(k);

 }

 for (int k=0;k<Program.ods.Tables[0].Rows.Count;k++)

 79

 {

 string name = Program.ods.Tables[0].Rows[k][0].ToString();

 int dur = int.Parse(Program.ods.Tables[0].Rows[k][1].ToString());

 string type= Program.ods.Tables[0].Rows[k][2].ToString();

 switch (type)

 {

 case "Month": { dur = dur * 30; } break;

 case "Hour":

 {

 double duration_ = ((double)dur / Program.number_of_working_hours);

 dur = (int)Math.Ceiling(duration_);

 }

 break;

 case "Week": { dur = dur * 7; } break;

 }

 string d1 = Program.ods.Tables[0].Rows[k][3].ToString();

 string d2 = Program.ods.Tables[0].Rows[k][4].ToString();

 string[] d11 = d1.Split(' ');

 DateTime st = DateTime.Parse(d11[0]);

 //DateTime fn= null;

 ods.Tables["task"].Rows.Add(name,dur,type,st);

 }

 for (int k = 0; k < Program.ods.Tables[3].Rows.Count; k++)

 {

 string col1 = Program.ods.Tables[3].Rows[k][0].ToString();

 80

 string col2= Program.ods.Tables[3].Rows[k][1].ToString();

 ods.Tables[1].Rows.Add(col1, col2);

 }

 for (int q = 0; q < Tas_dep.Rows.Count; q++)

 {

 flip.Rows.Add(null, null);

 flip.Rows[q][0] = Tas_dep.Rows[q][1];

 flip.Rows[q][1] = Tas_dep.Rows[q][0];

 }

 for (int q = 0; q < flip.Rows.Count; q++)

 {

 dep.Rows.Add(null, null);

 dep.Rows[q][0] = flip.Rows[q][0];

 dep.Rows[q][1] = flip.Rows[q][1];

 }

 for (int q = 0; q < task.Rows.Count; q++)//for father

 {

 int y = 0;

 for (int w = 0; w < flip.Rows.Count; w++)//if there is father

 {

 if (task.Rows[q][0] == flip.Rows[w][1]) y = 1;

 }

 if (y != 1)

 {

 dep.Rows.Add(null, task.Rows[q][0]);

 81

 }

 y = 0;

 }

 for (int q = 0; q < task.Rows.Count; q++)//for son

 {

 int y = 0;

 for (int w = 0; w < flip.Rows.Count; w++)//if there is son

 {

 if (task.Rows[q][0] == flip.Rows[w][0]) y = 1;

 }

 if (y != 1)

 {

 dep.Rows.Add(task.Rows[q][0], null);

 }

 y = 0;

 }

 Console.WriteLine("this is the dep that u are going to use\n");

 for (int q = 0; q < dep.Rows.Count; q++)

 {

 Console.WriteLine("fa:{0} son:{1}\n", dep.Rows[q][0], dep.Rows[q][1]);

 }

 int n;

 n = ods.Tables[0].Rows.Count;

 int i;

 82

 init(n);

 net_work[0].flag = 1;

 net_work[n + 1].flag = 1;

 net_work[0].early_start = 0;

 net_work[0].early_end = 0;

 for (i = 1; i < n + 1; i++)

 {

 int x = int.Parse(ods.Tables[0].Rows[i - 1][1].ToString());

 net_work[i].value = x;

 }

 int m;

 m = dep.Rows.Count;

 int fa = new int(), son = new int();

 for (i = 0; i < m; i++)

 {

 string sonName, sonNameToCheck, fatherName, fatherNameToCheck;

 //for the father

 for (int j = 0; j < n; j++)

 {

 fatherName = dep.Rows[i][0].ToString();

 fatherNameToCheck = ods.Tables[0].Rows[j][0].ToString();

 if (fatherName == "")

 {

 fa = 0;

 break;

 }

 if (fatherName == fatherNameToCheck)

 83

 {

 fa = j + 1;

 break;

 }// comparison for parent to find its number from a string

 }

 // for the son

 for (int j = 0; j < n; j++)

 {

 sonName = dep.Rows[i][1].ToString();

 sonNameToCheck = ods.Tables[0].Rows[j][0].ToString();

 if (sonName == "")

 {

 son = n + 1;

 break;

 }

 if (sonName == sonNameToCheck)

 {

 son = j + 1;

 break;

 }

 }

 //fa = int.Parse(ods.Tables[1].Rows[i][0].ToString());

 //son = int.Parse(ods.Tables[1].Rows[i][1].ToString());

 add_node(fa, son);

 }

 84

 for (int z = 0; z < n + 1; z++)

 {

 Console.WriteLine("value:{0}\n", net_work[z].value);

 }

 topological_order();

 show_item(n);

 net_work[n + 1].last_start = net_work[n + 1].early_start;

 net_work[n + 1].last_end = net_work[n + 1].early_end;

 inverse_topological_order(n + 1);

 show_item(n);

 //create a form

 System.Windows.Forms.Form form = new System.Windows.Forms.Form();

 //create a viewer object

 Microsoft.Glee.GraphViewerGdi.GViewer viewer = new

Microsoft.Glee.GraphViewerGdi.GViewer();

 //create a graph object

 //create the graph content

 //graph.AddEdge("Start", "T1");

 for (i = 0; i < m; i++)

 {

 if (dep.Rows[i][0].ToString() == "")

 {

 graph.AddEdge("start", dep.Rows[i][1].ToString());

 continue;

 }

 if (dep.Rows[i][1].ToString() == "")

 {

 85

 graph.AddEdge(dep.Rows[i][0].ToString(), "end");

 continue;

 }

 graph.AddEdge(dep.Rows[i][0].ToString(), dep.Rows[i][1].ToString()).Attr.Color

= Microsoft.Glee.Drawing.Color.Green;

 }

 //graph.AddEdge("Start", "End").Attr.Color = Microsoft.Glee.Drawing.Color.Green;

 //graph.FindNode("start").Attr.Fillcolor = Microsoft.Glee.Drawing.Color.Magenta;

 find_critical_path(0);

 //graph.FindNode("T1").Attr.Fillcolor = Microsoft.Glee.Drawing.Color.MistyRose;

 //Microsoft.Glee.Drawing.Node c = graph.FindNode("End");

 //c.Attr.Fillcolor = Microsoft.Glee.Drawing.Color.PaleGreen;

 //c.Attr.Shape = Microsoft.Glee.Drawing.Shape.Diamond;

 //bind the graph to the viewer

 viewer.Graph = graph;

 //associate the viewer with the form

 form.SuspendLayout();

 viewer.Dock = System.Windows.Forms.DockStyle.Fill;

 form.Controls.Add(viewer);

 form.ResumeLayout();

 //show the form

 form.ShowDialog();

 return 0;

 }

 86

We believe that this is enough for the coding, our CD which will be delivered with this

document will have all the source code.

The other remaining classes has more than 3000 lines of code, it will be too much to include it

in this stage, and a little bit hard to be understood.

