MD5 Message Digest Algorithm

MD?5 (http://www.fags.org/rfcs/rfc1321.html) was developed by Ron Rivest at MIT in 1991. Until
1996, when a flaw was found in it, MD5 was the most widely used secure hash algorithm. In
description, we follow Stallings, Cryptography and Network Security textbook.

MDS5 Logic

The algorithm takes as input a message of arbitrary length and produces as output a 128-bit message
digest. The input is processed in 512-bit blocks.

Figure 12.1 depicts the overall processing of a message to produce a digest. The processing consists
of the following steps:

1. Append padding bits: The message is padded so that its length in bits is congruent to 448
modulo 512 (length= 448mod512). That is, the length of the padded message is 64 bits less
than an integer multiple of 512 bits. Padding is always added, even if the message is already
of the desired length. For example, if the message is 448 bits long, it is padded with 512 bits
to a length of 960 bits. Thus, the number of padding bits is in the range of 1 to 512. The
padding consists of a single 1-bit followed by the necessary number of 0-bits.

2. Append length: A 64-bit representation of the length in bits of the original message (before
the padding) is appended to the result of Step 1 (least significant byte first). If the original

length is greater than 2%, then only the lower-order 64 bits of the length are used. Thus, the

field contains the length of the original message, modulo 2% .

The outcome of the first two steps yields a message that is an integer multiple of 512 bits in

length. In Figure 12.1,

http://www.faqs.org/rfcs/rfc1321.html

MD5 Logic (Cont 1)

Padding ME? sage]er;gr
(1 to 512 bits) (K mod 2°%)
- L x 512 bits = N'x 32 hits C >
- K bits \
Message 100.0 |7
4512 hits—p-——512 bits—p «— 512 bits—p 4512 bits—m
& & @ }rL_]_

Figure 12.1 Message Digest Generation Using MD5

the expanded message is represented as the sequence of 512-bit blocks Y,,Y;,..,Y, ;, so that the

total length of the expanded message is Lx512 bits. Equivalently, the result is a multiple of 16
32-bit words. Let M[0..N-1] denote the words of the resulting message with N an integer
multiple of 16. Thus, N =L x16.

3. Initialize MD buffer: A 128-bit buffer is used to hold intermediate and final results of the
hash function. The buffer can be represented as four 32-bit registers (A,B,C,D). These
registers are initialized to the following 32-bit integers (hexadecimal values):

A=67452301

B=EFCDAB89

C=98BADCFE

D=10325476

These values are stored in little-endian format, which is the least-significant byte of a word in the
low-address byte position. As 32-bit strings, the initialization values (in hexadecimal format) appear
as follows:

Word A: 01 23 45 67

Word B: 89 AB CD EF

Word C: FE DC BA 98

Word D: 76 54 32 10

MD5 Logic (Cont 2)

4. Process message in 512-bit (16-word) blocks: The heart of the algorithm is a compression
function that consists of four “rounds” of processing; this module is labeled H,,,.in Figure

12.1, and its logic is illustrated in Figure 12.2. The four rounds have a similar structure, but
each uses a different primitive logical function, referred to as F, G, H, and | in the
specification.
Yq €V,
128

512

Ay By Cy Dy
F, T[1...14], X[i]
16 steps

Ay By Cy Dy
G, T[17...32], X[p,i]
16 steps

Ay By Cy Dy
H, T[33..48], X[pi]
16 steps

Ay By Cy Dy
I, T[49...64], X[p.i] J

TY vy vl Yy
I+ +)
Cb ey

128

L

Note: addition i+) is mod 2¥

|
Figure 12.2 MDS5 Processing of a Single 512-bit Block
Each round takes as input the current 512-bit block being processed (Y,) and the 128-bit buffer

value ABCD and updates the contents of the buffer. Each round also makes use of one-fourth of
a 64-element table T[1..64], constructed from the sine function. The i-th element of T, denoted
T[i], has the value equal to the integer part of 2% x abs(sin(i)), where i is in radians. Because
abs(sin(i)) [0,1], each element of T is an integer that can be represented in 32 bits. The table

provides a “randomized “ set of 32-bit patterns, which should eliminate any regularities in the
input data. Table 12.1b lists values of T.

MD5 Logic (Cont 3)

The output of the fourth round is added to the input to the first round (CV,) to produce CV ;.

The addition is done independently for each of the four words in the buffer with each of the
corresponding words in CV,, using addition modulo 2.

5. Output: After all L 512-bit blocks have been processed, the output from the L-th stage is the
128-bit message digest.

We can summarize the behavior of MD5 as follows:

CV,=1IV

CV,.;. =SUM,, (CV,,RF, (Y,,RF, (Y,,RF; (Y, RF: (Y, ,CV,)))))
MD=CV,_,

Where

IV - initial value of the ABCD buffer, defined in Step 3

Y, - the g-th 512-bit block of the message

L — the number of blocks in the message (including padding and length fields)
CV, - chaining variable processed with the g-th block of the message

RF, - round function using primitive logic function x
MD - final message digest value

SUM,, - addition modulo 2% performed separately on each word of the pair of inputs

MD5 Logic (Cont 4)

Table 12,1 EKey Elements of MDS

{a) Truth table of logical functions

i C d F G H I
0 0 0 0 0] 1
0 ¢ 1 1 0 1 ¢
0 1 0 0 1 1 ¢
0 1 1 1 0 0 1
1 0 0 0 0 1 1
1 0 1 0 1 0 1
1 1 0 1 1 0 0
1 1 1 1 1 1 0

(b Table T, constructed from the sine function

11] = D70AR4TS T[17)] = EF6lE2342 T[33] = EFFFA3d42 T[48] = F4202244
12] = ESCTBT3S T[18)] = CO40E340 T[34] = BT771FS8E1 T[33] = 432AFFTO7
13] = 2420T70CE T[12] = Z263E3A31 T[33] = G@obela2 T[21] = RBB4Z3AT

4] = CI1BDCEEE T[20] = EPBECTAR T[36] = EFDE3330C T[32] =
3] = E3TCOERE T[21] = DEZF103D T[37] = R4EBEER4Z T[33] =

18] = 4787CE2R T[22] = 02441433 T[38] = 4BDECFaQ T[34] =
17] = R3304013 T[23] = DERLEGE] T[30] = FCGEB4E0D T[33] = FFEFF47

18] = FD4E0301 T[24] = ETDEFECA T[43] = BEEEECTI T[38] = 83E43CD1
2] = GOBIDEDS T[23] = Z21ELCDES T[41] = Z2EQBTECS T[37] = SEABTEAF
1101 = EB44FT7RFE T[26] = C33707D8 T[42] = EARLZITER T[2E] = FEZCESED

1] = FFEF3BEL T[27) = EF4D30DE7 T[43] = D4EF3083 T[] = R3014314
] = ER3CDTEE T[28)] = 433AL4ED T[44] = 04351003 T[E2] = 4E08L1Al
113] = gBpOLll22 T[22] = RPEZEQQI T[43] = LDoD4D032 T[&l] = E7337E82

114) = FDQETLRS T[30] = ECEFR3F3 T[4d9] = ECDBSREZ T[¢2] = ED3ARF233
113] = ASTOL3IEE T[31] = G7GF02D2 T[47] = 1ERZTCES T[G3] = ZRDTD2EB
(16] = 40B40E21 T[32] = BD2ALCEL T[43] = CARCIG03 T[E4] = EBEAD3IOL

MD5 Compression Function

Let’s look in more detail at the logic of the four rounds of the processing of one 512-bit block.
Each round consists of a sequence of 16 steps operating on the buffer ABCD. Each step is of the
form

a<b+((@+g(b,c,d)+ X[k]+T[i]) <<< s)

Where

a,b,c,d — the four words of the buffer, in a specified order that varies across steps

g — one of the primitive functions F,G,H,I

<<<s — circular left shift (rotation) of the 32-bit argument by s bits

X[K] — M[qx 16+K] — k-th 32-bit word in the g-th 512-bit of the message

T[i] — the i-th 32-bit word in matrix T

+ - addition modulo 2%

Figure 12.3 illustrates the step operation

A B C D

/

X[k]

T[]

Figure 12.3 Elementary MD3 Operation isingle step)

The order in which the four words (a,b,c,d) are used produces a word-level circular right shift
for each step.

One of the four primitive logical functions is used for each of the four rounds of the algorithm.
Each primitive function takes three 32-bit words as input and produces a 32-bit output. Each

MD5 Compression Function (Cont 1)

function performs a set of logical operations; that is, the n-th bit of the output is a function of the
three inputs. The functions can be summarized as follows:

Round Primitive functiong | g(b,c,d)

1 F(b,c,d) (bac)v (b Ad)
2 G(b,c,d) (bad)v(cad)
3 H(b,c,d) b@&cdd

4 I(b,c.d) c®(bvd)

Figure 12.4 adapted from RFC 1321, defines the processing algorithm of step 4. The array of 32-bit
words X[0..15] holds the value of the current 512-bit input block being processed. Within a round,
each of the 16 words of X[i] is used exactly once, during one step; the order in which these words
are used varies from round to round. In the first round, they are used in the original order. The
following permutations are defined for rounds 2 through 4:

0, (i) = (1+5i)mod16

p5(i) = (5+3i)mod16
p, (1) =7imod16
Consider permutation p, :

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

6 11 |0 5 10 15 4 9 14 3 8 13 2 7 12

Each of the 64 32-bit word elements of T is used exactly once, during one step of one round. Also,
note that for each step, only one of the 4 bytes of the ABCD buffer is updated. Hence, each byte of
the buffer is updated four times during the round and then a final time at the end to produce the final
output of this block. Finally, note that four different circular left shift amounts are used each round
and are different from round to round. The point of all this complexity is to make it very difficult to
generate collisions (two 512-bit blocks that produce the same output).

MD5 Compression Function (Cont 2)

/* Progess gach D8-wond (51 2-mg) block, ®/ * Found 3. %

Farg =0t (N/16) - 1 do * Let[abed k 5 i denote the operation
* Copy block g imo 3T * a=b+ {{a+ Hbedy+ X[k] + T <<<5)
For j=01io 15 do Dig the following 16 operations */

Set X[l o Mlg*l€+j] [ABCD 5 4 33]
end * of loop om j */ DABC E 11 34
CDAB 11 16 33]
M Save Aas AA B as BE, Cas CC, and BCDA 14 23 348
Doas DD * [ABCD 1 4 37
AA=A [DARC 4 11 3§]
EB=B ICDAB T 18 3%
cC=C BCoA 10 23 400
DD=D [ABCD 13 4 41]
[CARC o 11 42
* Found 1. #/ (CDAB 3 18 43]
1* Let [abed k 5 i] denpee the operation [BCDA & 23 44
a ="+ {{a+ Flbed) + X[k] + T} <<<s5) [ABRCD 5 4 43
Do the following 16 aperadoas. */ MARC 12 11 44]
[ABCD a T 1] CDAB 15 18 471
[DABC 1 12 7 BCDA 2 23 48]
[CDAB 2 17 3
[BCDA I o4 * Round 4. */
[ABCD 4 T 58 * Let[abed k 5 i denote the operation
[DABC 5 1 6 a=b+ ((a+ Ibed) + X[k + T <<<=z)
[CDAB & 17 7 Dig the following 16 operations */
[(BCDA T 2 H [ABCD 0 & 48]
[ABCD B T " DASC T 1 541
[DABC #F 12 1W CDAB 14 15 511
[CDAE 10 17 111 [BCDA 5 21 57]
BCCA 11 X2 17] [ABCD 12 & 53]
[ABCD 12 T 13] [DARC 3 10 5]
DABC 13 12 14] CDAB 10 15 53]
[CDAE 14 17 13 ELoA 1 21 56]
(BCDA 15 12 14] [ABCD B & 57]
DAaRC 15 10 58]
* Found 2. #/ ICDAB & 15 58]
1* Let [abed k 5 i] denpee the operation BCDA 13 21 &0]
a ="+ {{a+ Glb.od) + X[k] + T} <<=} [ABCD 4 & €]
Do the following 16 aperadoas. */ DABC 11 10 &2]
[ABCD 1 3 17 ICDAB 2 15 €3]
[DABC & & 1B BCDA g 21 &)
[CDAE 11 14 18]
BCCA o 0 20 * Then mcrement each of the Soar resisters by the
[ABCD 5 5 211 value it had before this block wras stamed. #/
[DABC 10 & 27] A=A+AA
[CDAE 15 14 23] E=E+BE
BCCA 4 0 24] C=C+CC
[ABCD F 5 2§) D=0D+CD
DABC 14 9 26
[CDAB i 4 2M end * of loopom g */
[(BCCA B I0 2E]
[ABCD 13 5 2§]
[DABC 2 9 30
[CDAB T 14 31
(BCD&a 12 0 37

Figure 11.4 Basic MDg& Update Algorithm (RFC 1321)

We see that in Figure 12.4, order of k values in Round 2 follows specified above permutation p,.

