
11.5 / SECURE HASH ALGORITHM (SHA) 355

This is similar to the CBC technique, but in this case, there is no secret key. As with

any hash code, this scheme is subject to the birthday attack, and if the encryp-

tion algorithm is DES and only a 64-bit hash code is produced, then the system

is vulnerable.

Furthermore, another version of the birthday attack can be used even if the

opponent has access to only one message and its valid signature and cannot obtain

multiple signings. Here is the scenario: We assume that the opponent intercepts

a message with a signature in the form of an encrypted hash code and that the

 unencrypted hash code is m bits long.

1. Use the algorithm defined at the beginning of this subsection to calculate the

unencrypted hash code G.

2. Construct any desired message in the form Q1, Q2, c , QN-2.

3. Compute Hi = E(Qi, Hi-1) for 1 … i … (N - 2).

4. Generate 2m/2 random blocks; for each block X, compute E(X, HN-2).

Generate an additional 2m/2 random blocks; for each block Y, compute D(Y,

G), where D is the decryption function corresponding to E.

5. Based on the birthday paradox, with high probability there will be an X and Y

such that E(X, HN-2) = D(Y, G).

6. Form the message Q1, Q2, c , QN-2, X, Y. This message has the hash code G

and therefore can be used with the intercepted encrypted signature.

This form of attack is known as a meet-in-the-middle-attack. A number of

 researchers have proposed refinements intended to strengthen the basic block

chaining approach. For example, Davies and Price [DAVI89] describe the variation:

 Hi = E(Mi, Hi-1)⊕Hi-1

Another variation, proposed in [MEYE88], is

 Hi = E(Hi-1, Mi)⊕Mi

However, both of these schemes have been shown to be vulnerable to a variety

of attacks [MIYA90]. More generally, it can be shown that some form of birthday

attack will succeed against any hash scheme involving the use of cipher block chain-

ing without a secret key, provided that either the resulting hash code is small enough

(e.g., 64 bits or less) or that a larger hash code can be decomposed into independent

subcodes [JUEN87].

Thus, attention has been directed at finding other approaches to hashing.

Many of these have also been shown to have weaknesses [MITC92].

 11.5 SECURE HASH ALGORITHM (SHA)

In recent years, the most widely used hash function has been the Secure Hash

Algorithm (SHA). Indeed, because virtually every other widely used hash function

had been found to have substantial cryptanalytic weaknesses, SHA was more or

less the last remaining standardized hash algorithm by 2005. SHA was developed

356 CHAPTER 11 / CRYPTOGRAPHIC HASH FUNCTIONS

by the National Institute of Standards and Technology (NIST) and published as a

federal information processing standard (FIPS 180) in 1993. When weaknesses were

discovered in SHA, now known as SHA-0, a revised version was issued as FIPS

180-1 in 1995 and is referred to as SHA-1. The actual standards document is entitled

“Secure Hash Standard.” SHA is based on the hash function MD4, and its design

closely models MD4.

SHA-1 produces a hash value of 160 bits. In 2002, NIST produced a revised

version of the standard, FIPS 180-2, that defined three new versions of SHA, with

hash value lengths of 256, 384, and 512 bits, known as SHA-256, SHA-384, and

SHA-512, respectively. Collectively, these hash algorithms are known as SHA-2.

These new versions have the same underlying structure and use the same types of

 modular arithmetic and logical binary operations as SHA-1. A revised document

was issued as FIP PUB 180-3 in 2008, which added a 224-bit version (Table 11.3).

In 2015, NIST issued FIPS 180-4, which added two additional algorithms:

SHA-512/224 and SHA-512/256. SHA-1 and SHA-2 are also specified in RFC

6234, which essentially duplicates the material in FIPS 180-3 but adds a C code

implementation.

In 2005, NIST announced the intention to phase out approval of SHA-1 and

move to a reliance on SHA-2 by 2010. Shortly thereafter, a research team described

an attack in which two separate messages could be found that deliver the same

SHA-1 hash using 269 operations, far fewer than the 280 operations previously

thought needed to find a collision with an SHA-1 hash [WANG05]. This result

should hasten the transition to SHA-2.

In this section, we provide a description of SHA-512. The other versions are

quite similar.

SHA-512 Logic

The algorithm takes as input a message with a maximum length of less than 2128 bits

and produces as output a 512-bit message digest. The input is processed in 1024-bit

blocks. Figure 11.9 depicts the overall processing of a message to produce a digest.

Algorithm Message Size Block Size Word Size
Message

Digest Size

SHA-1 6 264 512 32 160

SHA-224 6 264 512 32 224

SHA-256 6 264 512 32 256

SHA-384 6 2128 1024 64 384

SHA-512 6 2128 1024 64 512

SHA-512/224 6 2128 1024 64 224

SHA-512/256 6 2128 1024 64 256

Note: All sizes are measured in bits.

Table 11.3 Comparison of SHA Parameters

11.5 / SECURE HASH ALGORITHM (SHA) 357

This follows the general structure depicted in Figure 11.8. The processing consists

of the following steps.

Step 1 Append padding bits. The message is padded so that its length is congruent

to 896 modulo 1024 [length K 896(mod 1024)]. Padding is always added,

even if the message is already of the desired length. Thus, the number of

padding bits is in the range of 1 to 1024. The padding consists of a single 1 bit

followed by the necessary number of 0 bits.

Step 2 Append length. A block of 128 bits is appended to the message. This block

is treated as an unsigned 128-bit integer (most significant byte first) and

contains the length of the original message in bits (before the padding).

The outcome of the first two steps yields a message that is an integer

multiple of 1024 bits in length. In Figure 11.9, the expanded message is rep-

resented as the sequence of 1024-bit blocks M1, M2, c , MN, so that the

total length of the expanded message is N * 1024 bits.

Step 3 Initialize hash buffer. A 512-bit buffer is used to hold intermediate and final

results of the hash function. The buffer can be represented as eight 64-bit

registers (a, b, c, d, e, f, g, h). These registers are initialized to the following

64-bit integers (hexadecimal values):

a = 6A09E667F3BCC908 e = 510E527FADE682D1

b = BB67AE8584CAA73B f = 9B05688C2B3E6C1F

c = 3C6EF372FE94F82B g = 1F83D9ABFB41BD6B

d = A54FF53A5F1D36F1 h = 5BE0CD19137E2179

Figure 11.9 Message Digest Generation Using SHA-512

N 1024 bits

M1

H1

M2 MN

F

IV = H0

Message

hash code

1024 bits

512 bits 512 bits 512 bits

1024 bits 1024 bits

L bits

L

128 bits

1000000, . . . ,0

+

H2

F

+

HN

F

+

+ = word-by-word addition mod 264

358 CHAPTER 11 / CRYPTOGRAPHIC HASH FUNCTIONS

These values are stored in big-endian format, which is the most significant

byte of a word in the low-address (leftmost) byte position. These words

were obtained by taking the first sixty-four bits of the fractional parts of the

square roots of the first eight prime numbers.

Step 4 Process message in 1024-bit (128-byte) blocks. The heart of the algorithm is

a module that consists of 80 rounds; this module is labeled F in Figure 11.9.

The logic is illustrated in Figure 11.10.

Each round takes as input the 512-bit buffer value, abcdefgh, and

updates the contents of the buffer. At input to the first round, the buffer

has the value of the intermediate hash value, Hi-1. Each round t makes

use of a 64-bit value Wt, derived from the current 1024-bit block being pro-

cessed (Mi). These values are derived using a message schedule described

subsequently. Each round also makes use of an additive constant Kt, where

0 … t … 79 indicates one of the 80 rounds. These words represent the first

64 bits of the fractional parts of the cube roots of the first 80 prime numbers.

The constants provide a “randomized” set of 64-bit patterns, which should

eliminate any regularities in the input data. Table 11.4 shows these constants

in hexadecimal format (from left to right).

Figure 11.10 SHA-512 Processing of a Single 1024-Bit Block

64

Mi

Wt

Hi

Hi–1

W0

W79

Kt

K0

K79

a b c

Round 0

d e f g h

a b c

Round t

d e f g h

Message
schedule

a b c

Round 79

d e f g h

+ + + + + + + +

11.5 / SECURE HASH ALGORITHM (SHA) 359

The output of the eightieth round is added to the input to the first

round (Hi-1) to produce Hi. The addition is done independently for each of

the eight words in the buffer with each of the corresponding words in Hi-1,

using addition modulo 264.

Step 5 Output. After all N 1024-bit blocks have been processed, the output from

the Nth stage is the 512-bit message digest.

We can summarize the behavior of SHA-512 as follows:

 H0 = IV

 Hi = SUM64(Hi-1, abcdefghi)

 MD = HN

where

IV = initial value of the abcdefgh buffer, defined in step 3

abcdefghi = the output of the last round of processing of the ith message block

N = the number of blocks in the message (including padding and

length fields)

SUM64 = addition modulo 264 performed separately on each word of the

pair of inputs

MD = final message digest value

428a2f98d728ae22 7137449123ef65cd b5c0fbcfec4d3b2f e9b5dba58189dbbc

3956c25bf348b538 59f111f1b605d019 923f82a4af194f9b ab1c5ed5da6d8118

d807aa98a3030242 12835b0145706fbe 243185be4ee4b28c 550c7dc3d5ffb4e2

72be5d74f27b896f 80deb1fe3b1696b1 9bdc06a725c71235 c19bf174cf692694

e49b69c19ef14ad2 efbe4786384f25e3 0fc19dc68b8cd5b5 240ca1cc77ac9c65

2de92c6f592b0275 4a7484aa6ea6e483 5cb0a9dcbd41fbd4 76f988da831153b5

983e5152ee66dfab a831c66d2db43210 b00327c898fb213f bf597fc7beef0ee4

c6e00bf33da88fc2 d5a79147930aa725 06ca6351e003826f 142929670a0e6e70

27b70a8546d22ffc 2e1b21385c26c926 4d2c6dfc5ac42aed 53380d139d95b3df

650a73548baf63de 766a0abb3c77b2a8 81c2c92e47edaee6 92722c851482353b

a2bfe8a14cf10364 a81a664bbc423001 c24b8b70d0f89791 c76c51a30654be30

d192e819d6ef5218 d69906245565a910 f40e35855771202a 106aa07032bbd1b8

19a4c116b8d2d0c8 1e376c085141ab53 2748774cdf8eeb99 34b0bcb5e19b48a8

391c0cb3c5c95a63 4ed8aa4ae3418acb 5b9cca4f7763e373 682e6ff3d6b2b8a3

748f82ee5defb2fc 78a5636f43172f60 84c87814a1f0ab72 8cc702081a6439ec

90befffa23631e28 a4506cebde82bde9 bef9a3f7b2c67915 c67178f2e372532b

ca273eceea26619c d186b8c721c0c207 eada7dd6cde0eb1e f57d4f7fee6ed178

06f067aa72176fba 0a637dc5a2c898a6 113f9804bef90dae 1b710b35131c471b

28db77f523047d84 32caab7b40c72493 3c9ebe0a15c9bebc 431d67c49c100d4c

4cc5d4becb3e42b6 597f299cfc657e2a 5fcb6fab3ad6faec 6c44198c4a475817

Table 11.4 SHA-512 Constants

360 CHAPTER 11 / CRYPTOGRAPHIC HASH FUNCTIONS

SHA-512 Round Function

Let us look in more detail at the logic in each of the 80 steps of the processing

of one 512-bit block (Figure 11.11). Each round is defined by the following set of

equations:

 T1 = h + Ch(e, f, g) + (a
512
1 e) + Wt + Kt

 T2 = (a
512
0 a) + Maj(a, b, c)

 h = g

 g = f

 f = e

 e = d + T1

 d = c

 c = b

 b = a

 a = T1 + T2

where

t = step number; 0 … t … 79

Ch(e, f, g) = (e AND f)⊕ (NOT e AND g)

 the conditional function: If e then f else g

Maj(a, b, c) = (a AND b)⊕ (a AND c)⊕ (b AND c)

 the function is true only of the majority (two or three) of the
 arguments are true

(Σ512
0 a) = ROTR28(a)⊕ ROTR34(a)⊕ ROTR39(a)

(Σ512
1 e) = ROTR14(e)⊕ ROTR18(e)⊕ ROTR41(e)

ROTRn(x) = circular right shift (rotation) of the 64-bit argument x by n bits

Figure 11.11 Elementary SHA-512 Operation (single round)

a b c d e f g h

a b c d
512 bits

e f g h

Ch

Kt

Wt

Maj

+

+
+

+

+

+

+

11.5 / SECURE HASH ALGORITHM (SHA) 361

Wt = a 64-bit word derived from the current 1024-bit input block

Kt = a 64-bit additive constant

+ = addition modulo 264

Two observations can be made about the round function.

1. Six of the eight words of the output of the round function involve simply per-

mutation (b, c, d, f, g, h) by means of rotation. This is indicated by shading in

Figure 11.11.

2. Only two of the output words (a, e) are generated by substitution. Word e is a

function of input variables (d, e, f, g, h), as well as the round word Wt and the

constant Kt. Word a is a function of all of the input variables except d, as well

as the round word Wt and the constant Kt.

It remains to indicate how the 64-bit word values Wt are derived from the

1024-bit message. Figure 11.12 illustrates the mapping. The first 16 values of Wt are

taken directly from the 16 words of the current block. The remaining values are

defined as

Wt = s1
512(Wt-2) + Wt-7 + s0

512(Wt-15) + Wt-16

where

s0
512(x) = ROTR1(x)⊕ ROTR8(x)⊕ SHR7(x)

s1
512(x) = ROTR19(x)⊕ ROTR61(x)⊕ SHR6(x)

ROTRn(x) = circular right shift (rotation) of the 64-bit argument x by n bits

SHRn(x) = right shift of the 64-bit argument x by n bits with padding by zeros on

the left

+ = addition modulo 264

Thus, in the first 16 steps of processing, the value of Wt is equal to the cor-

responding word in the message block. For the remaining 64 steps, the value of

Wt consists of the circular left shift by one bit of the XOR of four of the preced-

ing values of Wt, with two of those values subjected to shift and rotate operations.

Figure 11.12 Creation of 80-word Input Sequence for SHA-512 Processing of Single Block

1024 bits

64 bits

Wt–16W0 W1 W9 W14 W63 W64 W72 W77Wt–15 Wt–7 Wt–2

W0 W1 W15 W16 Wt

Mi

W79

+

s0 s1 s0 s1 s0 s1

+ +

Hiva-Network.Com

362 CHAPTER 11 / CRYPTOGRAPHIC HASH FUNCTIONS

This introduces a great deal of redundancy and interdependence into the message

blocks that are compressed, which complicates the task of finding a different

 message block that maps to the same compression function output. Figure 11.13

summarizes the SHA-512 logic.

The SHA-512 algorithm has the property that every bit of the hash code is a

function of every bit of the input. The complex repetition of the basic function F

produces results that are well mixed; that is, it is unlikely that two messages cho-

sen at random, even if they exhibit similar regularities, will have the same hash

code. Unless there is some hidden weakness in SHA-512, which has not so far been

published, the difficulty of coming up with two messages having the same message

 digest is on the order of 2256 operations, while the difficulty of finding a message

with a given digest is on the order of 2512 operations.

Example

We include here an example based on one in FIPS 180. We wish to hash a one-block

message consisting of three ASCII characters: “abc,” which is equivalent to the

 following 24-bit binary string:

01100001 01100010 01100011

Recall from step 1 of the SHA algorithm, that the message is padded to a

length congruent to 896 modulo 1024. In this case of a single block, the padding

consists of 896 - 24 = 872 bits, consisting of a “1” bit followed by 871 “0” bits.

Then a 128-bit length value is appended to the message, which contains the length

of the original message in bits (before the padding). The original length is 24 bits,

or a hexadecimal value of 18. Putting this all together, the 1024-bit message block,

in hexadecimal, is

6162638000000000 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000018

This block is assigned to the words W0, . . . , W15 of the message schedule,

which appears as follows.

W0 = 6162638000000000 W8 = 0000000000000000

W1 = 0000000000000000 W9 = 0000000000000000

W2 = 0000000000000000 W10 = 0000000000000000

W3 = 0000000000000000 W11 = 0000000000000000

W4 = 0000000000000000 W12 = 0000000000000000

W5 = 0000000000000000 W13 = 0000000000000000

W6 = 0000000000000000 W14 = 0000000000000000

W7 = 0000000000000000 W15 = 0000000000000018

