Final Exam CMPE-523 16.01.2026 (100 points, 180 min)
St. Name, Surname______________________________________ St.Id#_____________
Instructor Alexander Chefranov

Five A4-sized cheat sheets with your own handwritings can be used for your help (printouts, photocopies, etc. are not allowed). Calculators (standalone) can be used. Telephones, other electronic devices are not allowed.

Totally 5 tasks, 100 points, 13 pages
	Task
	Task 1
	Task 2
	Task 3
	Task 4
	Task 5
	Total

	Point
	14
	19
	18
	22
	27
	100

	Grade
	
	
	
	
	
	

Good Luck!

Task 1. (20 points). Consider Fig. 1-4 from the Lecture notes:[image:]
How much time takes execution of the instructions I1-I43 if
a) using pipelining

From Fig. 1-4, it is seen that I3 completes at time instance 6.

b) not using pipelining
Each instruction takes 4 time units, hence, time to complete I1-I3 is 3*4=12 time units

Explain your answers

Task 2. (19 points). Consider the following code from the Lecture notes:
/* matrix multiply, C=A*B. Compute elements of C by

*/
	1.
	private i, j , k;

	2.
	shared a[N,N], b[N,N], c[N,N], N;

	3.
	/*start N-1 new processes, each for the different column of c*/

	4.
	for j:=0 step 1 until N-2 fork DOCOL;

	5.
	/*the original process reaches that point and does the column N-1*/

	6.
	j:=N-1;

	7.
	DOCOL:

	8.
	For i:=0 step 1 until N-1 begin

	9.
		/*compute a row i element of j-th column of c*/

	10.
		/*initialize the sum for the inner product*/

	11.
		c[i,j]:=0;

	12.
		/*loop over the terms of the inner product*/

	13.
		for k:=0 step 1 until N-1

	14.
			/*add the k-th inner product term*/

	15.
			c[i,j]:=c[i,j]+a[i,k]*b[k,j];

	16.
		/*end of the product term loop*/

	17.
	end /*of all rows*/

	18.
	join N;

1. (2 points) What does this code calculate? Why?
It calculates a product of two matrices, A and B, because it implements a formula for the matrix product

2. (3 points) What is the target computer system for it (SISD, SIMD, MISD, MIMD)? Why?

The target computer is MIMD because respective constructs as fork, join are used.

3. (14 points) Assuming N=3, , , explain how are calculated: specify lines of code (use line numbers 1-18) responsible for these calculations, indicate which shared and local variables are used, trace them (for each instruction, specify affected variables’ new states), check that results obtained are correct
C(1:3, 1), the 1st column of C as C(0:2, 0), is calculated in lines 8-17 labeled by DOCOL by the 1st child created by the master process by fork in line 4. Local variables used are declared in line 1: j, i, and k. Variable j is initialized by 0 when forking in line 4. Shared variables used are A, B, C, N (see line 2).

	#
	Instruction line number
	Action

	1
	8
	I=0

	2
	11
	C[0,0]=0;

	3
	13
	K=0

	4
	15
	C[0,0]=a[0,0]*b[0,0]=1*3=3

	5
	13
	K=1

	6
	15
	C[0,0]=c[0,0]+a[0,1]*b[1,0]=3+2*1=5

	7
	13
	K=2

	8
	15
	C[0,0]= c[0,0]+a[0,2]*b[2,0]=5+3*1=8

	9
	17,8
	I=1

	10
	9
	C[1,0]=0

	11
	13
	K=0

	12
	15
	C[1,0]=0+a[1,0]*b[0,0]=4*3=12

	13
	13
	K=1

	14
	15
	C[1,0]=c[1,0]+a[1,1]*b[1,0]=12+5*1=17

	15
	13
	K=2

	16
	15
	C[1,0]=c[1,0]+a[1,2]*b[2,0]=17+1*1=18

	17
	17, 8
	I=2

	18
	11
	C[2,0]=0

	19
	13
	K=0

	20
	15
	C[2,0]=c[2,0]+a[2,0]*b[0,0]=0+2*3=6

	21
	13
	K=1

	22
	15
	C[2,0]=c[2,0]+a[2,1]*b[1,0]=6+3*1=9

	23
	13
	K=2

	24
	15
	C[2,0]=c[2,0]+a[2,2]*b[2,0]=9+4*1=13

	25
	18
	

Thus, C[0:2,0]=[8,18,13]. Actually, c[0,0]=1*3+2*1+3*1=8, c[1,0]=4*3+5*1+1*1=18, c[2,0]=2*3+3*1+4*1=13.

Task 3. (18 points). Consider Program 3-9 from the Lecture notes:
X[i]=c[i], (1<=i<=n); /*initialize the x vector making x1 correct*/
For j:=1 step 1 until n-1
 X[i]:=x[i]+A[I,j]*x[j], (j+1<=i<=min(j+m,n));
/*do all column j multiplies and add to vector x, completing x[j+1] */
Program 3-9. Column sweep form of a linear recurrence solver
Assuming , , trace the program ((for each instruction, specify affected variables’ new states). Check that solution obtained is correct.
	#
	Instruction
	Effect

	1
	X[i]=c[i], (1<=i<=n);
	X[1:4]=c[1:4]=[2,1,2,1]

	2
	For j:=1 step 1 until n-1
	J=1

	3
	X[i]:=x[i]+A[I,j]*x[j], (j+1<=i<=min(j+m,n));
	X[2]=x[2]+a[2,1]*x[1]=1+1*2=3
X[3]=x[3]+a[3,1]*x[1]=2+2*2=6
X[4]=x[4]+a[4,1]*x[1]=1+4*2=9

	4
	For j:=1 step 1 until n-1
	J=2

	5
	X[i]:=x[i]+A[I,j]*x[j], (j+1<=i<=min(j+m,n));
	X[3]=x[3]+a[3,2]*x[2]=6+3*3=15
X[4]=x[4]+a[4,2]*x[2]=9+5*3=24

	6
	For j:=1 step 1 until n-1
	J=3

	7
	X[i]:=x[i]+A[I,j]*x[j], (j+1<=i<=min(j+m,n));
	X[4]=x[4]+a[4,3]*x[3]=24+6*15=114

Thus, X[1:4]]=[2,3,15,114]. Actually, x[1]=c[1]=2, x[2]=c[2]+a[2,1]*x[1]=2+1*1=3, x[3]=c[3]+a[3,1]*x[1]+a[3,2]*x[2]=2+2*2+3*3=15, x[4]=c[4]+a[4,1]*x[1]+a[4,2]*x[2]+a[4.3]*x[3]=1+4*2+5*3+6*15=114.

Task 4. (22 points). Consider Program 3-11 from the Lecture notes:
SIMD MATRIX MULTIPLICATION EXAMPLE (CONT 1)
			CLOAD	 ZERO	Initialize all
		CBCAST			PE accumulators
		MOVR	TOA			to zero
		STO		C,I		Zero the I-th row of C
		LDXI		J,0		Initialize the column index
		LDX		LIM,N	Loop limit is the matrix size
LOOP:	LOD		A,I		Fetch the row I of A
		MOVA	TOR			and set up for routing
BCAST	J		Broadcast A[I,J] to all PEs
LOD		B,J		Get row J of B and perform
RMUL				A[I,J]xB[J,k] for all k

ADD		C,I		C[I,k]C[I,k]+A[I,J]xB[J,k]
STO		C,I			for all k
INCX		J,1		Increment column of A
CMPX	J,LIM,LOOP	Loop if row of C not complete
Program 3-11. Matrix multiply SIMD assembly code for one row of the product matrix
Assuming N=3, , , trace it (for each instruction, specify affected variables’ new states)
Hints:
[image:]
[image:]
[image:]
SIMD MATRIX MULTIPLICATION EXAMPLE
N		DATA	64	Number of PEs and matrix size
ZERO	DATA	0.0	Constant value
I		EQUIV	2	Index 2 contains I
J		EQUIV	3	Index 3 contains J
LIM		EQUIV	1	Index 1 contains the loop limit
A		BSS		64x64	Storage space for the arrays A,
B		BSS		64x64		B,
C		BSS		64x64		and C
Program 3-10. Assembler pseudo-operations to set up the matrix multiply
It is assumed that data will be organized in the k-th memory module as follows:
[image:]
	#
	Instruction
	Effect

	1.
	Cload zero
	AC=0

	2.
	cbcast
	R[0:2]=[0,0,0]

	3.
	Movr to a
	A[0:2]=[0,0,0]

	4.
	Sto, C,i
	X[i]=x[2] is not initialized; assume it is initialized by by LDXI, I,0, i.e. x[2]=0. Then C[1,1:3]=[0,0,0]

	5.
	Ldxi J,0
	X[J]=x[3]=0

	6.
	Ldx lim,N
	X[lim]=x[1]=3

	7.
	Lod A,I
	A[0:2]=A[0,0:2]=[1,2,3] registers A are loaded by the 1st row the matrix A

	8.
	movA toR
	R[0:2]=A[0:2]=[1,2,3]

	9.
	Bcast J
	R[0:2]=[1,1,1]=[A[x[J=3]], A[x[J=3]], A[x[J=3]]]; A[x[3]]=A[0]=1=A[0,0]

	10.
	Lod B,J
	A[0:2]=B[0,0:2]=[3,2,1]

	11.
	Rmul
	A[0:2]=A[0:2]*R[0:2]=[3,2,1]*[1,1,1]=[3,2,1]

	12.
	Add C,I
	A[0:2]=A[0:2]+C[0,0:2]=[3,2,1]+[0,0,0]=[3,2,1]

	13.
	Sto C,I
	C[0,0:2]=A[0:2]=[3,2,1]

	14.
	Incx J,1
	X[J]=x[3]=x[3]+1=1

	15.
	Cmpx J,Lim, Loop
	X[j]=x[3]=1<=X[Lim]=X[1]=3 => goto Loop

	16.
	Lod A,I
	A[0:2]=A[0,0:2]=[1,2,3]

	17.
	movA toR
	R[0:2]=A[0:2]=[1,2,3]

	18.
	Bcast J
	R[0:2]=[2,2,2]=[A[x[J=3]], A[x[J=3]], A[x[J=3]]]; A[x[3]]=A[1]=2=A[0,1]

	19.
	Lod B,J
	A[0:2]=B[1,0:2]=[1,2,1]

	20.
	Rmul
	A[0:2]=A[0:2]*R[0:2]=[1,2,1]*[2,2,2]=[2,4,2]

	21.
	Add C,I
	A[0:2]=A[0:2]+C[0,0:2]=[2,4,2]+[3,2,1]=[5,6,3]

	22.
	Sto C,I
	C[0,0:2]=A[0:2]=[5,6,3]

	23.
	Incx J,1
	X[J]=x[3]=x[3]+1=2

	24.
	Cmpx J,Lim, Loop
	X[j]=x[3]=2<=X[Lim]=X[1]=3 => goto Loop

	25.
	Lod A,I
	A[0:2]=A[0,0:2]=[1,2,3]

	26.
	movA toR
	R[0:2]=A[0:2]=[1,2,3]

	27.
	Bcast J
	R[0:2]=[3,3,3]=[A[x[J=3]], A[x[J=3]], A[x[J=3]]]; A[x[3]]=A[2]=3=A[0,1]

	28.
	Lod B,J
	A[0:2]=B[2,0:2]=[1,3,2]

	29.
	Rmul
	A[0:2]=A[0:2]*R[0:2]=[1,3,2]*[3,3,3]=[3,9,6]

	30.
	Add C,I
	A[0:2]=A[0:2]+C[0,0:2]=[3,9,6]+[5,6,3]=[8,15,9]

	31.
	Sto C,I
	C[0,0:2]=A[0:2]=[8,15,9]

	32.
	Incx J,1
	X[J]=x[3]=x[3]+1=3

	33.
	Cmpx J,Lim, Loop
	X[j]=x[3]=3<=X[Lim]=X[1]=3 => goto Loop
We see that instead of the termination of the loop on J, the 1st row of C is already correctly calculated to (1*3+2*1+3*1=8,1*2+2*2+3*3=15,1*1+2*1+3*2=9), it continues calculations. Thus, the program shall terminate the loop when J=3. However, it continues.

	34.
	Lod A,I
	A[0:2]=A[0,0:2]=[1,2,3]

	35.
	movA toR
	R[0:2]=A[0:2]=[1,2,3]

	36.
	Bcast J
	R[0:2]=[A[x[J=3]], A[x[J=3]], A[x[J=3]]]; A[x[3]]=A[3], but A[3] does not exist. Hence, the program fails

Task 5. (27 points). Consider Figure 3-16 from the Lecture notes:
[image:]
[image:]
[image:]
Assuming N=3 processing elements with respective memory blocks in the system
1. (12 points) Write a pseudo-code for the matrix row scaling (divide columns 2..N by the 1st column)
N:=3;
NZ<k>:=B[k,0]<>0,(0<=k<=N-1);
For i:=1 step 1 until N-1
 B[k,i]:=B[k,i]/B[k,0],(NZ<k>|0<=k<=N-1);

2. (3 points) Specify distributed memory layout (which variables where located)
Matrix B will be distributed rows allowing getting parallel access to column elements

	M0
	M1
	M1

	B[0,0]=3
	B[1,0]=0
	B[2,0]=1

	B[0,1]=0
	B[1,1]=2
	B[2,1]=3

	B[0,2]=1
	B[1,2]=1
	B[2,2]=2

3. (12 points) Trace the program (for each instruction, specify affected variables’ new states)
	#
	Instruction
	Effect

	1
	N:=3;
	N=3

	2
	NZ<k>:=B[k,0]<>0,(0<=k<=N-1);
	Nz<0:2>=<1,0,1>

	3
	For i:=1 step 1 until N-1
	I=1

	4
	B[k,i]:=B[k,i]/B[k,0],(NZ<k>|0<=k<=N-1);
	B[0:2,1]=[0/3,2,3/1]=[0,2,3]

	5
	For i:=1 step 1 until N-1
	I=2

	6
	B[k,i]:=B[k,i]/B[k,0],(NZ<k>|0<=k<=N-1);
	B[0:2,2]=[1/3,1,2/1]=[1/3,1,2]

Resulting matrix is

1

image4.png
Instruction Assembly code Action

Vector load lod acindex.i | Sg—pApeMlpear], (O=k=N—1)
Vector store sto a.index.i | Sy My[peale=Ap. (0=k=N-1)
Vector add add aindex.i | SpmApe=Ay + Mplpeag]. 0=k =N —1)
Vector subtract sub aindex.i | Sg= A=A — Mylpea].(0=k=N—1)
Vector multiply mul aindex.i | Sg=3Ape=Ap X Mylpear].(0=k=N—1)
Vector divide div aindex.i | SpmApeAy/Mylpeaq]. (O=k=N—1)
Broadcast beast index Sj=> RieRfindext. (0 =k =N — 1)

A A A A
Move PE register mov§ R o R Sg= Ry &R (0=k=N-1)

I 1 I I

cgister add radd Sk ApeAp+ R (0=k=N-1)
subtract rsub Sk A A= R (0=k=N-1)
er multiply rmul Sk=Ape= AR X Rp. (0= k =1

er divide rdiv Sk Ape AR /R (0 =k =

Figure 3-6

Set of vector instructions for an SIMD machine.

image5.png
Instruction Assembly code Action

Load index ldx ix2,aindex | X[ix2]« Mlcal:

Store index stx ix2.aindex | Mlca] & X[ix2]:

Load index immediate| Idxi ix2,aindex | X[ix2]e ca:

Increment index incx ix2,aindex | X[ix2]e= X[ix2] + ca;
Decrement index deex ix2aindex | X[ix2]e X[ix2] = ca:

Multiply index mulx X2 aindex | X[ix2] X[ix2] X ca:

Load data cload a.index A Mlca];

Store data cstore a.index Mca] « AC:

Compare and branch | empx index.ix2.a (Xlindex] = X[ix2])= PC ca:

Figure 3-7
SIMD control unit instruction set.

image6.png
Instruction | Assembly code | Action

Broadcast AC

-1

cheast ‘ SR AC. (0 =k =

Figure 3-8

A simple cooperative instruction.

image7.png
Address Contents

A Al0.K]

AlLK]

Anv\}‘— 1.K]

B: BJ0.K]

B[1.K]

1;[19”— 1.K]

C: C[0.k]

C[1.k]

<-[1vw”— 1.K]

Figure 3-9

SIMD storage layout for matrix multiply.

image8.png
ZRO

LIM

ILP

Pseudo Code

NZ(k):= B[0.k] # 0,(0 < k = N—1):
fori:=1step 1 until N—1
Bli.k] := B[i. KI/B[0.AL. (NZ(K) | 0 = k = N—1):

Assembly Language

DATA 64 Number of PEs and matrix size.
DATA 0.0 Constant.

BOUIV 2 Row number is in index 2.
EQUIV 1 and the limit is in index 1.
Bes 64x64 Storage for the matrix.

ldxi 1,0 Set Tto start of columns.
cload ZRO Setall

cheast PE accumulators

movR toA to zero.

ceq B “Test first row for zeros.

not nask, mask Enable processors

mask corresponding to nonzeros.
ldx LIN,N Set up loop limit.

lod B,I Fetch row I and

div B scale it.and

sto B, I store it. if scale factor # 0.

image9.png
inex i1 Increment index and
cmpx I,LIN,ILP loop if not complete.

Figure 3-16
Column scaling using the mask register.

image10.png
Instruction

Assembly code

Action

Compare <
Compare =

Compare >

Mask PEs

Save enables

CU move

clt aindex. i
ceq aindex. i
cot aindex. i
mask
stmask

i i
movey m o4 m

AC AC

Sk= (My[peag] < Ap)—= mask(kye= 1. (0 =k =N —1):
Sk=> (My[peag] = Ap)— mask(kye= 1. (0 =k =N —1):
Sk=» (My[peag] > Ap)— mask(kye= 1. (0 =k =N —1):

Spe—mask(k).(0 =k =N —1):
mask(k) &= Sg. (0 =k =N —1):

Xlil Xlil
mask ¢ ¢ § mask
AC AC

Figure 3-11

Cooperative SIMD instructions involving the mask.

image1.png
Instruction fetch i [B 3] ump | - - -
Operand fetch - i LB Jump | - -
Exccute - - 1l © 3 Jump | -
Result store - - - 1l B 3 Jump
Time 1 2 3 4 5 6 7

Figure 1-4

Overlapped fetch/execute cycle

image2.wmf
å

-

=

=

1

0

N

k

kj

ik

ij

b

a

c

oleObject1.bin

image3.wmf
¬

oleObject2.bin

