Final Exam CMPE-523 23.06.2014 (40 points, 100 min)
St. Name, Surname______________________________________ St.Id#_____________
Instructor Alexander Chefranov
Task 1 (14 points) Write SIMD assembly code to calculate sum of the absolute values of the differences of the components of two vectors a and b (SIMD assembly language instructions are on the last page). Assume the number of the each vector components is 20, and the number of processing elements is 10. Specify memory layout (distribution of vectors over memory blocks).
V1[i+a*10] is in the memory block M[i] in the cell a, a=0,..,1, i=1,..,10, i+a*10<=20.
V2[i+a*10] is in the memory block M[i] in the cell 2+a, a=0,..,1, i=1,..,10, i+a*10<=20.
dif[i+a*10] is in the memory block M[i] in the cell 4+a, a=0,..,1, i=1,..,10, i+a*10<=20.
sum[i] is in the memory block M[i] in the cell 6.
mon[i] is in the memory block M[i] in the cell 7.

Zro	data	0.0
V1	bss	2*10
V2	bss	2*10
Dif	bss	2*10	;to keep differences
Sum	bss	1*10	;to keep result
Mone	data	-1
Zer	bss	1*10	;to keep 0
A	equiv	1
Lim	equiv	2
Shlim	equiv	3
Shno	equiv	4
Mon	bss	1*10	;to keep -1
Cload	zro
Cbcast
Sto zer	;zer=0
Cload mone
Cbcast
Movr	toa
Sto	mon	;mon=-1
Ldxi	a,0
Ldxi	lim,1
Loop	Lod	v1,a
Sub	v2,a
Sto	dif,a
[bookmark: _GoBack]Cgt	zer	; find diff<0
Mask
Mul	mon	;negative dif multiply by -1
Sto	dif,a	;store absolute values
Ldxi	mask,=’1111111111’	
Mask	;enable all PE
Incx	a,1
Cmpx	a,lim,loop
	Ldxi	shno,0
	Ldxi	shlim,8
	lod	dif
	Add	dif,1
	Sto	sum	;calculate local sum of two differences
Mova	tor	
L2	Route	1	;move local sum to the right neighbor
	Radd		;sum the local sum with the coming one
	Incx	shno,1	
	Cmpx	shno,shlim,l2	;repeat 9 times
	Sto	sum	;store accumulated sum

	
Task 2 (13 points) Consider the following skewed memory distribution. The storage layout can be by forward diagonals stored across the memories with location
loc[i, k] containing A[(i+k-2)mod N + 1, k].
[image:]
sum[k] := 0, (1 <=k <= N);
for i:= 1 step 1 until N begin
sum[k] := sum[k] + A[(i+k-2)mod N + 1, k], (1<= k<= N);
sum[k] := SHIFT (sum[k+1],-1), (1<= k <= N);
end;
What a problem is solved by the code above? Trace the code assuming N=4 (specify elements of A, and conduct calculations step-by-step showing change of the variables used)
The code calculates sums of the rows. Let

	Sum1
	Sum2
	Sum3
	Sum4
	i

	0
	0
	0
	0
	

	1
	6
	3
	4
	1

	6
	3
	4
	Sum[5] is not existing
Exception
	

Task 3 (13 points) Consider FORTRAN-90 assignment of sections
A(5:14)=A(1:10)
What a problem might be related with that assignment? How that problem might be solved? Write in C (or in pseudo-code) how to implement the assignment correctly. Trace your code showing correctness of its working
The problem is that when assigning values to the elements of the left-hand side, also elements of the right-hand side change, and hence, elements of the left-hand side may get incorrect values. For example,
A(1:14)=(1,2,3,4,5,6,7,8,9,10,11,12,13,14)
A(1:10)= (1,2,3,4,5,6,7,8,9,10)
After assignment we must have
A(1:14)=(1,2,3,4, 1,2,3,4,5,6,7,8,9,10)
However, if we assign using
For (i=5;i<=14;i++)A(i)=A(i-4);
Then A5=1,A6=2,A7=3,A8=4, A9=A5=1 that is not correct
To fix the problem, we copy elements of the right-hand side to a temporary array, and then to A:
For (i=5;i<=14;i++)temp(i)=A(i-4);
For (i=5;i<=14;i++)A(i)=temp(i);

[image:][image:]

[image:][image:]
[image:][image:]

1

image3.png
Instruction Assembly code Action

Vector load lod acindex.i | Sg—pApeMlpear], (O=k=N—1)
Vector store sto a.index.i | Sy My[peale=Ap. (0=k=N-1)
Vector add add aindex.i | SpmApe=Ay + Mplpeag]. 0=k =N —1)
Vector subtract sub aindex.i | Sg= A=A — Mylpea].(0=k=N—1)
Vector multiply mul aindex.i | Sg=3Ape=Ap X Mylpear].(0=k=N—1)
Vector divide div aindex.i | SpmApeAy/Mylpeaq]. (O=k=N—1)
Broadcast beast index Sj=> RieRfindext. (0 =k =N — 1)

A A A A
Move PE register mov§ R o R Sg= Ry &R (0=k=N-1)

I 1 I I

cgister add radd Sk ApeAp+ R (0=k=N-1)
subtract rsub Sk A A= R (0=k=N-1)
er multiply rmul Sk=Ape= AR X Rp. (0= k =1

er divide rdiv Sk Ape AR /R (0 =k =

Figure 3-6

Set of vector instructions for an SIMD machine.

image4.png
Instruction Assembly code Action

Load index ldx ix2,aindex | X[ix2]« Mlcal:

Store index stx ix2.aindex | Mlca] & X[ix2]:

Load index immediate| Idxi ix2,aindex | X[ix2]e ca:

Increment index incx ix2,aindex | X[ix2]e= X[ix2] + ca;
Decrement index deex ix2aindex | X[ix2]e X[ix2] = ca:

Multiply index mulx X2 aindex | X[ix2] X[ix2] X ca:

Load data cload a.index A Mlca];

Store data cstore a.index Mca] « AC:

Compare and branch | empx index.ix2.a (Xlindex] = X[ix2])= PC ca:

Figure 3-7
SIMD control unit instruction set.

image5.png
Instruction | Assembly code | Action

Broadcast AC

-1

cheast ‘ SR AC. (0 =k =

Figure 3-8

A simple cooperative instruction.

image6.png
Instruction ‘ Assembly code ‘ Action

Shift routing

route a.index ‘ (Sk=> (R camod N &= Ri).0 =k = N—1):

Figure 3-19
A minimal set of routing instructions.

image7.png
Instruction

Assembly code

Action

Compare <
Compare =

Compare >

Mask PEs

Save enables

CU move

clt aindex. i
ceq aindex. i
cot aindex. i
mask
stmask

i i
movey m o4 m

AC AC

Sk= (My[peag] < Ap)—= mask(kye= 1. (0 =k =N —1):
Sk=> (My[peag] = Ap)— mask(kye= 1. (0 =k =N —1):
Sk=» (My[peag] > Ap)— mask(kye= 1. (0 =k =N —1):

Spe—mask(k).(0 =k =N —1):
mask(k) &= Sg. (0 =k =N —1):

Xlil Xlil
mask ¢ ¢ § mask
AC AC

Figure 3-11

Cooperative SIMD instructions involving the mask.

image8.png
Instruction Assembly code | Action

Bitwise AND and ixLix2ix3 | X[ix1] e X[ix2] and X[i
Bitwise OR or XL i3 | Xix1] « X[ix2] or i
Bitwise NOT not ixl.ix2 X[ix1] & not X[ix2]:

Figure 3-12

Vector logic instructions useful for complex conditionals.

image1.emf

image2.wmf
ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

=

4

1

3

2

2

3

7

8

8

7

6

5

4

3

2

1

A

oleObject1.bin

